diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index 8e0a4e4fd700a1a4550b31ac1726c00ef5ed5913..066ec1670de366ddd75d03b50afef75a71c0d9db 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -30,7 +30,71 @@ "metadata": {}, "source": [ "## En utilisant la méthode des aiguilles de Buffon\n", - "Mais calculé avec la méthode des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme approximation :" + "Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'pi' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mN\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m10000\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muniform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mN\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlow\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhigh\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mtheta\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muniform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mN\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlow\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhigh\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpi\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtheta\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m>\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0mN\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'pi' is not defined" + ] + } + ], + "source": [ + "import numpy as np\n", + "np.random.seed(seed=42)\n", + "N = 10000\n", + "x = np.random.uniform(size=N, low=0, high=1)\n", + "theta = np.random.uniform(size=N, low=0, high=pi/2)\n", + "2/(sum((x+np.sin(theta))>1)/N)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Avec un argument \"fréquentiel\" de surface\n", + "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\\sim U(0,1)$ et $Y\\sim U(0,1)$ alors $P[X^2+Y^2\\leq 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline \n", + "import matplotlib.pyplot as plt\n", + "\n", + "np.random.seed(seed=42)\n", + "N = 1000\n", + "x = np.random.uniform(size=N, low=0, high=1)\n", + "y = np.random.uniform(size=N, low=0, high=1)\n", + "\n", + "accept = (x*x+y*y) <= 1\n", + "reject = np.logical_not(accept)\n", + "\n", + "fig, ax = plt.subplots(1)\n", + "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", + "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", + "ax.set_aspect('equal')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Il est alors aisé d'obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :" ] }, {