Exercise jupyter pdf

parent 3abfd8bb
{ {
"cells": [], "cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# On the computation of $\\pi$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Asking the maths library"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"My computer tells me that $\\pi$ is *approximatively*"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.141592653589793\n"
]
}
],
"source": [
"from math import *\n",
"print(pi)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Buffon's needle"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Appying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation**"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3.128911138923655"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"np.random.seed(seed=42)\n",
"N = 10000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"theta = np.random.uniform(size=N, low=0, high=pi/2)\n",
"2/(sum((x+np.sin(theta))>1)/N)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using a surface fraction argument"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A method that is easier to understand and does not make use of the sin function is based on the fact that if $X \\sim U(0,1)$, then $P[X^2 + Y^2 \\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWlwXFd2Jvg97IlELkgkNmIhCRAkQUISKZKCKKnIkksq2SpbKle7elyuKGvsaFe4w3bMz/4zEfPDf2qiJ2La0bbHUd1R7U3R9oSnrJJrsZZyiaWSRIiESFHchCRAYiEBYklkJpYEkAm8+fHx1L358N7Ll0CCBCWcCAYI5Mv37rv3nHPPPct3DNM0sUM7tEOfPyp50APYoR3aoQdDO8K/Qzv0OaUd4d+hHfqc0o7w79AOfU5pR/h3aIc+p7Qj/Du0Q59T2hH+HdqhzyntCP8O7dDnlHaEf4d26HNKZQ/qwdFo1NyzZ8+DevwO7dBnkvr7+6dN06z3cu0DE/49e/bg/PnzD+rxO7RDn0kyDGPY67U7Zv8O7dDnlHaEf4d26HNKO8K/Qzv0OaUd4d+hHfqc0o7w79AOfU5pR/h3aIc+p7Qj/Du0Q59T2hH+HdqhzynlTfIxDON7AH4dwKRpmj02nxsA/gzAiwAWAfyvpml+VOyBfiYpHgdiMSCRAMJhoKsLiEQ+v+MohB7GMW8z8pLh99cA/hzA3zp8/msAuu796wXw/9z7uX2pEMZxuzbfffJ9t68P8PuBujpgcZG/9/beXybeLuMohB7WMQsvlJQApsl/D1Bx5TX7TdP8OYC4yyUvA/hbk3QWQNgwjOZiDXCzJHzyxhv8OTt47w/Ly2Sc5WX+Hrd5xbjLtW6fefnua68BV64AN28CqRQZ2e8ng2z2Je3exYliMfVsw1g/js3ce6so35i3G+m8UFYGXLgAXLzI/7vx3xZTMXL7WwCMar+P3fvbuPVCwzC+DeDbANDe3l6ER7uTdYOYmAAG/2cMzRE/orv9aG8DQiE/L47FuHPodI/Jklk/Rq4A83N+BMuA1rIYQkEopgPUT7mPzqD65+fPA6urHFxDAxf/8mWgpwcIBoGZmdwXyGd1jIwAY2P8rKkp/y5ovefICLB3b+411dUcx3bdYRMJjieZBEZHgbk5oKaG47Su4WZpo8cL/Xu3b3Ot/X6udW0trxkb47oDim/u43GmGA4/w+Zvts0ATNP8rmmax03TPF5f76nwaFOky18qBQwNAdXLCcyvViOzwnVIJkFmTyTW3yCRQDJTjcuXgcwKEAoByyXVGOhLIDWS4Pd0qq4mM/b1AW+/zQcmk7mfX7vGAdXXU/B9Pv4bHaVwhcO8dnAQ+Ju/Ad59FxgfB6am7K2OhQXuIEND+S0IO2tkbIxaUafFRZqmYp188gm/d+kSMDwM9Pdval02TeEwx3z5MrByb2Hm5vguxdxB81l3Xr8Xj3M9k0mO+/ZtYGCA85pMKv7b6PM2SMXY+ccAtGm/twK4U4T7bppkgwAoWz4fUNEQRjq5CF8Xd+KRUeCRvZrQ6RQOY+zCInw+P3w+/slvLGIhGsbIHNCzuKh2dIALOzpKLd/SQoaUXT0UolABXOy2Nn4GAJWVwOQkv9fTw8V+/XUKdTQKLC1RuDs6lFCLkM/Pc+xLS3x2KARkMjQtZfeIRoHpaeDsWT5r/35lLjc1UVG1tvK6aJQKZX6epqlpcmzhMHD0KJVCXx9w7NiD2/27uoD33+f8VFXx3U2Tf7ez4IQK3VWdrDe3Z9h9r76eivnqVeDuXaC0FKioANbWyAP19UA6DVy/vn59vDxvg1SMnf91AL9rkJ4EkDRNc53J/yAoHFbyNjdHPpmu7UKodAEl6QVkMyau9y/g/JkFnE92rVewXV1ITy2g2lwATBMl6QUY6QUYXV2YDHZRSBb4GRYWuEhdXVy09nbu1mfOAH/6p8B3vgP8679SyBYXKaQ9PWSCyUkyoZjTsRiPBrKjx2Lc/W/dIuMmNKvDMMhUspOMjnJnrqyk5puaAl59lT9LSpTwfvABhf7DDzkxoiBiMTLizAxN6fl53mtujv4Jw+C1D/J8HYlQeQYC3DkrKjiXTU32FhywsV014WDdOT3D6XttbRT0Tz/l/1dWOJ/t7eSFf/s3Kn5Zn1+apB6ft0HyEur7nwC+CCBqGMYYgP8DQDkAmKb5VwB+DIb5boChvt/bkpG6kJNC7+ri+gLk40QCMEsi2POFXqTGYrh1YQZl0TBKn+rBXHlk/XH2nkAuDsVQk5zBaiCM5c4ezJVF4G8D0HXvbD8zwwe3tpIBAWr6gQF+ZpoUoOFhfp7NAs3NPOPv3cuFlwfH49yhb96kwEajvF6siOZmpUCyWT5nYYECUF4OvPUW73f8OAV1ZoZnzJkZPm92lopkbk7tPpkMGfGRR3ivf/5noLub1w8MUFGVldE/0NoKHD68ZQzpmdraKMC65bWwYG/BARvbxWX30J+x6GAlCsXjNOs/+YQ7elsb56+zk8p7eZnrlE7zKCDv0tzMNVpZUcdAsRbdnrcJyiv8pml+I8/nJoA/KtqICqR8Pind9zY7S4VQ3RTB+YlepA5QRtZCgCyvlRc6jkfQt9qLeT+V8OIieaynB+oB9yiZAsbOLyKV9aP1o48QXS2Dr62Ni9nWRkG9fRs4eJDKQJRGT48S/L4+fiYMcuUKBa60lAJ47Rpw5AiFcniYLy3MEg5zp66rI+MAFPJQiM8+dAj4+GMKfSbDlykv5/2F2aqr+VyAGnPfPlomS0scQ08Px1FTc1/W15F0zb5uYWwokeC4L1/mnAQCfG9512I8Q9avoYHPSKWoBDo7OXdPP01L7sABdVw5exYQRCs5ClZVKaXu9rxN0kOf4Zcv6iPy+fWvA6+8QmU8M0MFfOyYkhHA3sKS74usVlbaO7vjceDcbBfWUguorViAEZ/CzEQW6SUox0NNDRfVNBHv6kVf+AW8kehFXyxC61NeZv9+DrCmhoOamqL18PTT984u0xzE8rJyADY00Ko4cIBMJRQIAHfuUICvXuV3slneLxikANTVkVkBMvihQ5yIdJqMGQzyxZubgY8+4rEiGi1soYodMvS6MEIlJRy3OAhXVvh7iYsIWJ+xvEwhPnfO/h1k/ZqbaUUFg1Syk5O8j85sQj4f7wuoo+DaGv/le6dN0gOD8SqE3Pw0ulNPSCJVVtI36nBYzbmQk4Vl2eBtKRYDKpoiWI32omw0htWSKiwtlWB8ugGNkWrUAfBn54FgEMmSsK218thEAjNGHebnDTTW9KB54ufw1dVRqz39NBmvvJwvHYnQNL94kTuG7CTT09zhFhY4EZWVuaHEqiqaQC+/TMVw+TLvFwioneYrX6FgxONUFNEovxMIKKdgfz93sbU1b4lSWxEy9LIwQk7dqN26VFsTc2ZnqWDFCrC+g86MoRD/mSaZMRLhXB07xqhEMsn57O0FfvELXidzu3v3fQmnbnvhz8c3GzmWAYVbdE5jE964fp3fXQ1HMI5eXO+I4uCd/wbjbgKoqMTc7RV0hOLwfekZxMyudcfPVAp45+MwDnUuIhT2Y66lG+aNQTT5V+FvrqXgp9PcVeTlDJsoa3U1zUzZrRYXKcwrK3xIRwctifFxRiQkglBTw+/IEaS2NjdOffQonw2Qca9e5QQcP55fmDfqNS8GySKdO6d2/OVlCt6xY1RuTt/TGe/8ec5fNJrriT9/nveVecpk1DwBucwoO44wWTLJ7+/fz2dMT1PBnDp1X2L921748/HNRoVY9wdYj95eyMoblZXcDI8fp1zEMp1I9vwBHhn7MaKLVzC/4MOFgy+iovVX8Ma5CFpa6GMTS3B6GpiPdAHzfbg1DsxlgqiNnED5yL/B31LHHb+5mUqgq4tfsttJhKFFqN54gwPUFUUiwR1/ZobnoKeeWv/i+q4q9wD4nHfe4c/JSTKuvISTMBdinhWT9EWS0Ovamgq9Liw4+y6sjJfNkknENwJQ0Pv6gNOn+X6ZDI9Fjz+uEq50ZrQy68AA/3/0qLrn+Djw859zHbc4sWrbC78b34hSX1jgnAUCFCivQlyI1WglK2/s308lPjBAR315ORCv7cTY8T9Booab7fXrwDer7FMApqeBqkgEfXO9aDBjqMMMUg0d+EHgCfzuyWmE1mx2AetOAqxnaDvTqLwcePJJ7y8v94jHyZhDQ/xbba1zdqLd9ws1z/JRvri9vkjt7RyrYTBq0dGR30GoM14gwLkW34jcv75evVdzMwV/cpJzbN1RrDuOneNpepph3myWzt65OR7jSkuBL395c/NloW0v/E58I+Fqv58+qYkJzqlscFtdK2HljVCI63j5MnmqtpZHN5HDyUlaB058WFpKXqiMRrDQ1osFkA/Gx4G/vtqJJ59cn907lORO4qsHWruqESq3MXuKcb7p6mJOwM9/Tp+BRBVqariTjo4yZOkkzMUYg5X0XV3y5d96i8IlCUjWM3hPDyf89m36S5x2CbtwXVsbtXswyPP54iIX6OTJ3O82NVHwX3jBftz6jmMYZNpslsqlre3eLlBFBvH5OO50mu96/HhRmXrbe/u7LLk04+M0r8+dY6RLQt1DQ+SB+XkK0dtvkxe2qh5FTyASkg31a1+j8JeWcszptLKQAcWHgQB5rLISeOklXifFXtPTtBSamqjo7GqKFqsiKH2qF8uoxMAHM0gu23iHC/WK25H4AEpKyLCNjRyYz8cz6tQUF0iOI3bf3+wYrCS7uuyQpaWMeAwOqomSRUomKUxXr9IpeuJEbl6FHoUYHCTjzM4CN24wNHr2LO+zezc1tf4O5eW54/Jq0cTjfEYqxdDr8jKVy9JSbtq3YfBffX3RE6sM083buYV0/Phx02vTDrsalps3Of8Sfs5kFB8ePsyfTU3KH7WwUNxjUzyueCSTIQ/U1gLPP8/P336b18hnMzPAY4/l+oIWFhQPAbzf4CD5WZL+/H6VwCbXA/b5Lfq9ivaSukeztJQP8fmoZcfHGUY8eRL46lc3NrkbLWQRP8SVKyoxxjQp6I8+ynGKxXLrlhLIRIJCLAsl1oNYJO++y0VraeFCjIxwMY4cAb75zfUl29bv64zm9m6SbZjNquKksjIK+bVrVGQ+Hxk8nSZTZ7POFsU9Mgyj3zTN416mftub/UCupdTYyLnWk6EuXlRKsqGBCmJhQf3NzrlcjOIpq7Ndfo9EgOeey71/NEp/gETg7Cxf8dX5/dxwKiu57p2d/Fz3kbn5z4pSGGbn0ZyY4M9olH+PRvkAN8H3gmmwukpT55NPmLP/0kvqpe1ocJBHkMlJTuTRo0pQAgE1GWKxxONklkCAu0FZ2foaCfn/xAR/rq4yD391VSXt2OE4yHktnbZP2NJLSt9/n9eYJt+hq0s5qQAVFuztVYVAgQDnYgsSqx4K4RfSj3B6MtTsLOemooK7/dAQ/7+woL5rFY7Nhp1jMT5L59GFhdzITzhMC1PuKdEziS60tKyXC/EHSZ6HOASBXIvSyX9WtJC6nUczlVK5BlKg8tJLhcX333qLE2GaPPOsrnKnk3yBqioWNb3yiv19BwdZqxAIUNhTKSqC3l4lKPpEra2pVGch06TpeOcOjzLBoErDraggQ2WzHIskZg0Pq7Oj9Z3szEp9/pJJMuXyMhXc3r383sQE760XfgkjyC5QLB+JDW37M79O+jk7FKLSHBykiX/3Lj/3+8mTKyuKbyWcev06162/f/NYENbajWSSFa9///f0PdnhNIgF88ILXN+BgfV1JgCv+da3aJ2Wlam6ITlWW/0g+mdFw7mwvqB4NMvKeHb5whcooG47tHUw2SyFaGiILz06CvzoRzSzIxF+Pj1NgXAa8JkzVB6trXzhPXuoQC5doiBbMxD18t8PPuD5/Sc/4XHgzh0+c0Wr7961i9rZMKgIVlb4b/9+jsnrBOvzJyWl6TSVkXiDp6aU11dfxK3wkdjQQ7Xz607jTIbCU1fHZLX5ec5lWRn5YmpK7cBSfn7smBIyq5PWLexsZ7nqUQjxJw0PczcvLeVRtKdH8YUDTohj/kK+PAT57NYtykogwN9HR1WquJd3c6RihAitIRGpP1hZIdOvrvLvy8v8vbJSnYOlvt068ePj3KUB7sqPPEJB/7d/oyUgWXIDAxSyaJT+AfHAXrpEi6O3l9+/fp21FhJ3b2vjubG0lKZ+Nktmy2SoOFpavE2wPn9SX5FIKCAP0fji9bVGHzYTh/ZID5Xw6wJx4QKtNfGgX77MNQkE6JCdmFBhaLlOzGepSD1xQt1bN5vtzupWM3r/fpWjMTJC3l1cZB2M1P6PjtJPYyd4XvJe3NZfqhYlrV+sw9FRWqtOSWaeqRjhOasCkUrCQIC/i1kbj1Njr6zQlCkv54TanV+kjFeECKBCePRR4Nln1d+kxBpg7H1mhia3fE/Slg8e5PNLS7krP/ccr5Ez9927rJeorlZhTS8TbFdSWlqqrlta4rlx714K/lZnOtrQQyX8gBIIER45yllDuM89p9KprQluggVhdb61tKznt9dfVyX6gPoptTWxGJ/Z0kJBL7s3o1VV5B07vnCq+ixUSM+fV+FOCROL6R8MbvK4uNkUSIDC9frr3OGjUe50i4s8gwNkfhFSMW8XF6kkPv2UgmGd+JYWmlUAJy2Z5GL85m/mPlvXpE1NFFbZgQcHVQVXXR0XTSIEkYjyvA4PUxEYBk32nh6Oz8sE25WUnjhBJ+XsLBmzuXlLq/by0UMn/ELWTSUU4o5vVaJO1qt+pBK+tjPFxRGtK3rdmSzPEmtVwHlMU9XX6Gubr+rTKx/IfRob+e5LS3z24cPcRJeXaR0BnJMN0WZMz3icplFXFydwepqDam5Wjoy6OgrYyy/z8wsXaDY9/zwFdHCQky0mW3U1d9FvfpNn/9FR3u/ll9ebUXbeUXEShsOceEmssC6UvPfAgHIIdnaqQp10msU4grfwxBPu86dj85WXq3Naff0DhRx/aIXfq1XqdJ2d/8TOFBeAG52sO7Q8w++n8MViyjKIRAiFNz5OPg2FVEaoQP5NTXFDKCRULpmlkgMiR41YjHyazTIC5lSAtuWka1LRnAsL99IYK1VdwTe/ycm6e5c7o5zPUin+03PpZeI7O3MdjaIJAXtmkM9aW5UD6NQpng2npjgx1uy5SIT+DT2hIplUKEllZRTgtTXlSPICmirm2TaAGH9ohd/OKm1poSl87RqvOXSIFpxX69XOSpBqVrf4vD6WdJpC19XF7736Ki3Htjbyzs9+Bvy7f8dn2FV9eqVEgs8QC7iqSmUGdnQUuYjOzvEmN3RKJnByaqTT6wfR2bn+HNfWRpNIsAzczi9evaPpNJN1DINCKwvlNPFOhTiVlSrZSSDP9u61n+BCYq/3uRHJQ5Hh54XicfdkLq9oy3YJW/v3U6gKXZPvfU/l+QtJGPDf/3v1Nz07b3CQFq1YCqdP20fTnBLEOjvt/RyiYPQEMSde0/9eZ8Sxf7YPwWZtUsbHeXO9tt1qTskAvaYh2l0/MMCzTHW1+2RsJdnVbV+7Rq1tGJzYO3d4/rp9m0cAvSFHMknNrL/X+DhNvZaWXGXqli3okT5zGX5eKBbjOtXWKhPYMLj7et3x3DaQjfCcHpUS6uxkxMjOkpD8Fd1SePVVWsbW51uPGnKfY8c4/nxFdE4bkkQxpF5m5M0Yrkz7ceBxP7q77/U5mJ1VLyPY+YIRIGcXr+cy0XaDg4rZu7pUpdbJk6o8VsJ399NktkOAEd+Bz0dGmZxUvglxtOhx5aeeUvdLJvmumQydjJL5l07zWfcJuRf4DAl/IsH51Bm+qkqB3XqlYoZXm5vXR6VWV3m8tIPwe+01XivXy88zZ9YLv5ui8iJ3TnkGZ84wXCn1MvuWEkBjHcbGOPaeHiCUyfBiSXDw+ejBnJy0B1B0Om/p2u7AAe6gEq83TYboxF9wPwFAnEgmtq6OY19aosOysZHjLSmxb8jx13+tUJAMg0kphsFdQBqOzMzw88uXmb2WTNLnsbb2+QXz8ErhMB2popAB/l/KqoH739vx9GnyNqCiUrOz9js5YG8phELcWO3ITVFJlSugIiBejuQSMr9y5V5tRG0Y1ZlFJLPsXTAyCjwilWySuSZnX/FkWjOVnOjHP+ZA5ucpLDLwGzd4HhckZH2AWw0AYiUr08gZUFKLq6s5zvZ2Vg1WVfF7YhHduMF7tLXx53vvMTHp5El+Pj/PBRLP7dwc8I//SIVSVcU5/byCeXglcX7195N/BL6uu1slw1jLv998097R60T5lIfd59ao1IsvOh8h7CyFZDI3zOhljPKeTz+tdn3r+JwQp5qbVag9FALmmroQuNqHQA1QVVmNuclFzNXWYnzcwOrwCMp2NaCpNo1Ayb0KJK+pkiUlFISODu5ut27xmt276fkvWraSyxjyLaKO2ydno4EBFb4Dcn0VchwA+P/33uMCptNMO5biIvkpCRojI8xQm5lRjVIkM3BlhSbXFlg8nxnhBzhfHR20HgXQRgRbBELMWZ+PynVoiHObT7Hmc9q6ff77v+9t/E6Wwosvep8Daz2JHMdjMb5vc7M74tTp0+TvsjLy7FJpBLPNvXg8EMPq5AxQGUZf4HlUNwLNy69hdWoSQ3P12Hu6E0GBxvKSKnn+vOpHoDv6xsaoRCRbCVB5AlJIJAtSqBlX6CLquH0Sdpya4m5+4ACFVBxL0k9BQoldXQotePdu7kSDg1zYu3f52bVrVBY1NRzD7duqoKeiguGq0lK+uxU3oAj00Aq/de1TKc7/vn3qmoUFzpseSRLB18u/nfLvdcqXi18oRqUd73Z2Emvz+98nb7S0EBikEGej3sNSjuPV1QwxBoMU9u5ud8QpSYPv67uXh/JEBOnyXkwv8O9VVUClH0g++1VUX+6DafgxPFuNR2oX8qdKiva9dIlCNTTEQUYi1Dazs3SWNTUprSUZgqJAAPuc63wavNBFFNy+a9c4BpnM/n6O9dgxlYq8vKzCh6bJ71RUUNiDQd5PmqYAFHQJfcr1mQwtgN27VWGSaVJZbDhTy5keSuF3UuAnTzo3bpUYvpizwPrybzfKl4vvJVc/X2Pd/fspjC+8oBx1k5P8Xj6rxGrOz8yQV1dXmSlbUsKdX3fcOSFORSKEizt+XN23pobfOXdOFauthiJY7OlF5UgM87dngO48qZK3blFAxEE4P69CZpOT/P/p01yU8+c58AMHONBkkt+XWvwjRwpPZCh0EQW37+ZNjsPno7JqaKCGHBtTZ/nxceRgrUlsVXDdpPhjeJiVg62tqlFEWZkCoXziCSq9dFp5rHXQ1iLSQyn8drwVjfK4VF6uoM8SCSraeFw5asWclXTtzk5GWyYnWfzlZEHmw6DM97musPTGunr2qnjaC+FpqyIUcx7gJnL9Ovlwzx5VVSsNftxg9wB7f531PVdDEUx19KKyG4Bc65Qq2d9Pb6LPR4G+do0miNS3AwoJFaC2SqfZ4/DgQd4znebnhw/n3t+LBi90EQW3T7IS02m+26OPUjDv3FFxfB1rTXabXbv4vevXafIHAuq4MDzMxZbSz0SCc1JTw+sk6zEfZsIm6KEUfrvOS42N5JGeHufGrb29/F5fH3lR4uNy9nWzIPOFz/J9rissu8a6uqddp3w8LVbxzZucC3EaX73KDUQAQeRvAs+vNwUuhDyF751SJZeXVQJMaSmZXar0TpxQg5SzhfQrDAa56BIqa252LssEck2s8XFOuN/P3XZ1dX1yktsirqxQY54/T8GVdmVLS/yuMEkwmKutu7oo4KkUn9vYqO4lfRWlViGd5u/t7Yphy8uVt3qLQlIPpfAbBjeR2lpV1CK57sJLAuqiI0pHIsz2k0SYRIJCIOFkp3wV+a5b2Drf5/pmKE5h2TwAPlPAXQpxcI+M8B7V1ZQZSW3u6iJfjYwon1JzM59tbQpcCHkq9rMTIoGenp7O7VZTVpab9ZdI8IUqKriAkpYL0JeQTtO8FnPaKsQ6NJgogIoKWheDg1yEcHg97Jb15W7epFl/5AjPk/39Kt1T/A7V1VRkS0vrsdYEy+38eTpx/H4qj9ZWKrjxcSqD5maViqoDedwHemiF344aG1Veu5Bd41Z9fgUHMl++ivV7duT2ub4ZCgTZzAwtu+pqKvqeHmWF+HzkQak7GRxcn2IM8KgzO8t3X1ykspM2ZMePK4Xw+OM8TpaXbx7MNC9/OmkIwD6FVTcb5uZoQkuyxoEDPOvH40ohLC7mZtPpiQxyfzGFxHGWStEMz2T4XTegBCtgJMDJlOaoulPPDWtNnCcAz3gCUtLdzXcZG1PFIAI3fh/Jk/AbhvGrAP4MQCmA/26a5ncsn4cA/D2A9nv3/L9M0/wfRR7rL8mpUU08rmLaXmvZRSjz5atslvTNMBikknr7ba63DiEXCJBvk0ny7VNPcTyvvpoblnvrLQV+I2C6Q0PcQEpKVOHQ6dO0Jtvbcx13dliURU18ctIQ+cyGYJBCKw6vXbs4GQKYMDFhH6MUEhNLUHhEiczPF5byaXe2lGiFIP8eP64cSU7FRzpEt6QHDwzQCfN7v/dAq/vyCr9hGKUA/gLA8wDGAJwzDON10zSvapf9EYCrpmn+hmEY9QA+NQzjVdM0V7Zi0DKHbW3Ks3/xogLwHB9XAmVXwWeXxzE1xR0/nVaOwGImlFk3w/p64JlnlCNOqKmJu/ypU7mh79pafq+5WWFDABT22VnFqzMz3EgkUWhxkYLvFG50CnsDhSkFz0okn9kgTUdnZlTG0xe/qKrn9HMawMGnUsyNbmlR4Y5AgBOysqKum5khc3hpLmp3tuzv5zHA+i5uyiwW41jr6xWzBoP3v0bBhrzs/E8AuGGa5hAAGIbxDwBeBqALvwkgYBiGAaAGQByAQwfEzVNXF3e+4WHOdybD0PHu3cyLEJNZv17f6awMb5pUHJOTXCPBbbA7MmyG7PhexwEUf8Pt2+stYSlxF5L0+v371cbY0MAakcuX+T79/fzbN75hPx6nsPf58zwyyxxJ7Yk0rrFLiitaE15Jx9y7N9d8e+EF3kzvGwisL5SRcMf+/Sp7rqKCE3HpkoLKzleD73S2tP49nzLTS5XlaCBhwAdMXtB7WwDo2eVj9/6m058D6Ab0KoHvAAAgAElEQVRwB8AnAP430zTXijJCG5JElGCQin12luu+axejKtbuPTqCrh34anMzj2GHD5PngsFcMNWtIkHhHR9n6XoqxTO5JIolk7wuEKAPbHKSALSXL/O9y8tV95+KCtWdG+BnktEo3batZAXoBSg7P/kJlan4vNzmEygiYjCghMkJudbaKml0lOabIJtI9tLiIif40CGaUzMzXOBTpxTMs9sg19aoQEZHOemjo/x9rUC2tmvtVIw05SKQl53fTgVaQQBeAHARwK8A6ATwlmEY75qmmdIvMgzj2wC+DQDt7e2Fj1YfgKng2D/4QClVyQsRDD19NwuFeM62dsjVMSY2A1lXKAmfv/YahU7w/GS8AwOqAlDvh5lM0kIIh6k8gkEqrXicNSPBoDrqTk9T+K05KMD6iJwA1UifiuVlNrBpa1NOUbvcg6I34XXbTa2RhKkpajq9Isoue8muW7Fbp5P5eVoUYuosLXFBjh719g5yv9FR/tMzuh4gbp9OXoR/DIBea9YK7vA6/R6A75hEBrlhGMZNAAcBfKhfZJrmdwF8FyCYx0YHDeQyrl5PAag4P0ChGR/nLvYbv2HfIVcUcaFRlmI4yyIRjunRR3P5Upp+zsxwfF/5Cnf7VEoJe0VFbmlwaytN9GyW6efSybimRuH66Wf6VErlPOip9AcOqHZxq6u0rGSeAcqM1OEkElS4mQzHIkCiZWVbtLlZz9mRCDWV3unWDrzADTHVrrvOm29SSNvauFOISeUF/Ea/3549ZEgJWeodevr67l+JqQ15Ef5zALoMw9gL4DaA3wbwO5ZrRgB8CcC7hmE0AjgAYKiYA7WSvgHo9RR79qgqUYAMKTvW0BDnPpXy3qnZifI1oylkPfNB5NttWnpnJ51GRhS47PKyEl6JAAC5Z/qTJ3n9++8zLNjby+cIEGkoxHvOz1PGACqdiQn+XlbGuRgZodUh/Sb37GGYe0tI19KyEAsL1EB6fFTvsOOGmKqfW0ZH2QHo9m2ViXXpEq8TVN98ZHWmNDdzQeQIU0zm2QTlPfObppkF8McA3gBwDcD/a5rmFcMw/tAwjD+8d9mfAnjKMIxPAPwUwH8yTXPa/o4bJ72haizGI1hlJdfjyBFaZI2NKolKTFHBu/P5qAisHXI34pjSM+vOniU/ib9B78DjpTuw9ez/s5+tbzojx0bJR3jnHY5fv39XFzcXgb+XVvLSHg7grn3tmuJNaSl2+rSylnU/wvIylUd9PXk4leL4JOowNqYsl9lZPvu+OrNFESwv8/wHMD5aVZXbnqm5WZ2JMhk6UGThxfmRTPKcU1rK66UL7IEDNJ90cAg3snOmSB4/sN5JYu1kVAjzbII8xflN0/wxgB9b/vZX2v/vAPhycYeWS3bKUkqr7UJ5f/d3nMNgUOHpix9Ah/kWc7dQ60vPrAuFmLQloeRCUZgEvUmHuNebzoiVk0rxGFpSQj5saMh1WEci5NNwmGa5wOzt36+a44gSsePNQECFzHU/wmOP5R45WlrUsUoiEVVVnOOTJx+AM1uSJfT4qNCFCwQ2AJwRU/Vkj9VVXrO2xr9JyW42ywmXikWnxqOxGHeBysrcTjH6USRfJ6P7hFq07TP8ZD7PnlXzmW9+IpFc1GXZLWdmyNw/+xkV+qlTGw9RWRPRVlc5PqfmoPloeppWpTU7Ua9LsDoGJRypz0F7O60fqXC8fFlhRkgE49Ah+/oWPbVc/AhtbetzEQQlGFiPXyH3uu/ObEHFmZ9Xjgcppc0HaCjaVXq8yeI+/jj/f/s2J1QHOLRLjBBm6umhxXH+vCr71c+W+ToZAfcFtWhbC7++25eU8J/uqHObH2tGXX09hb6lRe2sP/+5fTceESY3dNuJCe7+kYhycM3P8zlC+YRArz95/30FtiGCrb+fk2PQOgd2mYSxmCrosULZWzMh3XIRhHQ4c/G3LC7y76JYN4O5UTDF4xR+8TJKBxMx7/KlfcpLj4/z89VVasK6OlWT/9WvKnNdMAkEMrm0lNfo53xJB758mTuRHjqyRizKyjhBx4/nJnwIs30eC3v0o5HE9KUc1Ut7Kx3HzjDIkHrRzPXrqhuPzLlgJubr0ReJcCyTk/QHifddrMp8ER29/uTOHY7vzh11NJHiMR0UJ581CdhnEj711HrLVHwMgYByQNvxmFONzksvce7SacrYp5+u75MJbAxzo2CSKrqhIVUxJdVer7yirnGL4UYiFHBZFLuS2kSCL/Huu7wmHOa/vj4qGWkOaU0HtjNN9UXq7KQ2XVx0P9cVmbY1br/u5RYTtqqK5vxjjzkXqNjh7585QyHQBeWTT7jGjz+uinpMk8KfTnPtdGWxsMAQmqDbWr8jyLteHLYC/XbzpoJpu3CBz62t5XseO8Z/IkCZTG7H4UKLdJz6EniBMHPbvZ0g+mWurH93gu53evbQ+Tiy12IIIYFdh8IIHbMM4I03qCmvX+eEAjyrNDYCX/96YS+lm2OSiiux/vPn6Zjx+RQWXyrF1FJBj5XFW1qiQHd08Pv5Gp4APNfF4+vPdQVM2GcGt18/GokHemCAgiYmrB3T2qWt1tevLwEX83VgQIGuLi2p6jq7Hn1Sc28YvE63FvTmIPkERq8/kTWWVPTycoXuNDjo3ZrMR3bzoqfFO/mv5B1OnLB/ll2STyYDfPihSkKyO8rko3gc+OjtOBpv9aEm7Mci6nDtwiIOxfsQfF7TWCUlKg//sceU4DmZhfnykSXFuLGRA5b85nicXnk97VOqq1IplQsgtLhIk6ihITekJ55Y67O9nOuKSNta+O2ORrt359+p7Jixq4uRIL0EXCy6H/5wfT9Gpx59gm4rCklXzm71A1brTRSbOMwmJjiuhgamKVdU8FnirLbCk0WjhTuCrfNiTYtfXGQGZG0tr7WDGrObe6dMwVCI87Kyonw1Ak3mhpokFIsBkXgMFbV+rPn8CNwdRUX/e1j5lwHgtb8Ffuu32JbbyXp1+nshWH7JpMpvXlwkg4yNcdKkxffCgnL06aWm0SgXV3+O3vBE/iYaeG4u/7muiLSthd8TcISFnJK5nDrzAlwna0jVqUefoNsChTfE0B2JySSFqbqaJrPU9YdCuVWFABWD4Fxa4ckKOQpahVTS4n0++q/EidnRoTpXW6HG7KIrTi3tTp7k/Xw+WlYXLnCuBDVJLxgKBlULPVEKiQSwN5PAqr8OZXdHEf7ZazAW55CuqgUy88CPfsSLQiH7Gm+nhBxdC1qdPfJg+VxqvSWGu2cPlUp1NSdKMPYOHVKgDEI/+5lK1hCSiiyhsTEmbczP02qZmOBY7KIERaZtLfxAYSm3+dpfW3etfNeLU8uqeGpr3RWSW667bhU89ZS6jwiYtOoSi+LQIe6akqdgB0/mlezS4iW0XFGhsA3fe0+F+Wprc6HG9LRefefWlfTyMnk3HKZQi2yNjQFf+pJysMqGKsoNyO1yVVoK3F0JY+7aIuo++ghIZFEeCKO65F7q4twcBefEifWYZILdbkeiBXXHTWUlhV/q80VLyrlsaYle3dVVKoCxsVyHYG2tvWdUCjPECbiykmsinTnD5wreX2Ulv7eRc12BtO2FvxDSd1wv7a+9XG8Hm51PIbnhRFqtghMnKOBLSyrlNpMhSq5kqYbDKhogFqZ42gsRfru0+NlZVQg0M8P7VlfTIhCrZnmZPDgxwTnSj7DW7lzy/oImpB+N1tZUEx7ZULNZtrqPRvnc69fJ8wDf/+JUFw4k+hBOjyOTBRbHl1BfMw7U7+IXJifpiGlqcsbms5JoweHh9c4eHZ8PoAJJJKhx5X4DAwyRWCulrGbqqVO0TgQTQCqyamt5f8FYk0akPh8norycv28xnNdnSvj1HddL++tCr9dJd4YJaKaYrHqoy8qL5865d67u71fFNk89RT5IJBRvRCIKkGYjpr81Lf4v/5IbkmlydxboeOH9TIYWqSQTueVFCDmBfOrJRRMTnOfr1/nubW0qj6O7mwppbAw49EwEc8O9SNz8BernryHsW8FCaBf8gYCC/t69mwJl1wDRbRIuXOD1Ys5bF0MSJGZn+VLBIF/AyfEk9xXm+MUvVJKKXpElO/zt22SGujplpWSzjB3v27flOf4PnfC7edFLSlQjGHGYSvNTOyHJh+TsNga99ZcefpPCltJSpQAOHVK8YhhqjNYKOKcs1a4uOuI6Ozdv+uskvDo4qIqfampUf4qVFW5OkjfT2uqtfV4+CL9Uihaz9K3w+3mcaGlRx4y9e3l9UxPQ3BxBRcvvw/jH/4bMlU8wPlkG05hD0EjBd/wx53h6PvL5KPTWxKD6evUSujB7USzWzDTx6EpmmrUia2qKZ550mu/w8cdkCC+AI5ukh0r488FOCVRaeTnnM5OhkrbmSrg1z/DiXzl/nhZjNquQcKXIpa2Nn5WWcozT04qnZIx37yq4sHPn6AD76lf5uV2WalOTKqlNJqlASkoY0h4c3NzmIH4xEXxx+iUSnMf6egrk7Cx/elWWbhB+r76qul/t3s2I2ugon/vsswpSrbtbPW8q2In+fX+Anom/QN3sINYyftza/Qxajh1HsLzM+XzvRP39NNWuXuULtLdzYmOx3Jbabi9jR4VkpklIsaODjHLpEgX/+edzJ3WLcvwfKuF386IDFJJolD4g6ZYcDNJk1s1WUSB79yrIr6UlZ8w/oXicgv/3f68AQVIpFQFaXuYal5dz1w8GydiJBHNDpD9DRQWfV1GhMvzk/nqW6swM+UE87dEon2lNLtrM5qDv0n4/rdHmZoWobZr8fXiYf5MCIbujtddU3mSSSMKRCN99bIz+Lqml0WVNjg8jI8BcQyf6v/y/oxd9WIn6kTarMTqxiMOVBXrEdU/vo4/y5pcusQKstXVzGU/6WVJgmquqyChSXCFjlYquM2fotygrYziptVXd7/Ma57dSPsQYyQZsaFB5GAKFJdf195ORk0nlPJPzvptyFX4ZHqbgZ7O0LioqKCAjIwz5TkwwbLa8TMZubCSP3L3LTUZyCAR4RlqxiQKTLNWZGQpFNstdt7eXiUc6qIbuoyqG+S8W7p/+Keexpobjr6mhUI6NAd/6lr0F7CW3IR5nOPvuXX7e2EiBNwxaStKmTv+OKKbbt+8p3MMRAL1YG42hJjWD+FoYs/t7MBCLkD+MOLqMGEJrLhl1Ao1sGJzMw4dphklOv1v2n5cEDnFozM3xxaQGwJqZFo9zl9i3j0pI4JuCwZ04v5XyndHtkH30SrOSErV2U1OqfVpFBf/uBp2u13S0t6vQFMBnLS6SB86dowX3yCM8dgwOqmKiZJKfNTbmfjcaVaXe4rB+5x0+q7ZW9RK4fZs+pI4O/rMeI4tBkQiFUHpSCppVPM75A+yVjJfcBilR7+5WdRUVFXyviQnKhxyP9PHI8ySFeBURLIZ6sbDA+Tt7L/25oSyOsv4+XIMf3cfqEFpeBP75n7mrVlVxojMZOvokPRPgZ6ZJpohGnQU830sC/P4bb+R6+BcWCMWUzZJB9LZKktSTSqnGijMzxPvf4ji/FwDPbUMCerGwwLXSQTb1z1pbuVvOzvL/+neiUa5xVRUVbFWVWnM3wEnBZxBE6M5Orv38PIXlyBFaBXv38ve1NTI2QKsgGiXTl5aqyJGc+6NRVSMi/SgaGqiMWlr4nMuX+eyODt5fzG9gc5uDDpCiC2ciQeG8cYPvaJqcSyeMCa/4FfX15Ondu1Vj0bIyArHU1/OIbPcMp7XXAUOrxpgNWFHrx8jYPZCMCxdUV5NMRmUt3b2rEEuSSS5Yby8/Hx7mMeDKFeUQEUvA7SUBVSwSDCoPf1cXS0iXl/myFy+qQg7Zkfr6OJZjx7igH3zA67fI2Qc8BMLvhN5jBXaVHcKK7JPNquvEQz47q1rGmaaK5Lj1chDBbGvjmpWW8pz66KP05n/zmzT7T5+m0l5b49irq/nd0lLm5b/0Esd09y6FoKNDNWHVGVzCy5J44/Px5969qi38yMjmUIZlbpeXcwFkOjupYMbHKS9lZTz3Hz2q5MBpfnSy4ldUV6v5m56mtSs+hkcf5Xt9+CFlTmpchPT1lbXfv5+b58cfUzkuTSSwVlWNqipgfg7c2UtLKWAyiZLQI1DHhw/z4bt388X7+nh9KKTykjMZdQTIh8QrDTd7epji2NbGQQoc8rVrqgJMwEIkw8znI1McP86QTzC4pXBI29rs94re47UARZJPJAV7fl7BuJWXuzuMdUfh4cMqWiDOROkovbLCHewLX1A5HcK4oqReecXZZ6Rbl6KUbt5ULeHEAhwZ4a7Z3b3xJDAnK3Z6mvh7N25QUWUyChfDyf/k1sDTmnLd3s7xZzKUM2k9Lz6Offvyt0sT3qis5D1WVoCBu2Hsq1yE4fejJgAKlXWnlpppu1zvWEz5AkRZyEQdPeqtS6l+NpVS1OlpmnArK1QCjz6q+sen07zH6iqVxOws75fJqB6FW0TbWvi9HLEKaRgha7d7N5mspIQ79O7d+Y9Wuldcathrayn8Umq7uKgKvAQfUKIIdiQgMSMjCkXHLrw8OKhawgHc0KTiUHb8jQDB2hX6iFJJpVRrb7swuNv82MX29RRqSVpaXeXuXVbGZxoG53R52b1dmjgO43HKsrTkW2rrwsSNPtS1A53HqoFYmUqosfa7t3PwCNjjlSv8XfcF2OUxW19SbwHV1MTJFCUizptwWCUyNDWROQYHedTo6aFikOQRvTvQFtC2Fv58OfJe4L2sVsH+/RScpSWF4js5yfO0hALzJYYBXOuqKnUeF0tOukMNDpIhxW9jRXtaXSXDl5SQeX0+jtVup5MORRcucIzV1RSOhgYm/0g4rtCWW3ablGFwk5JqP8El1PExrGFwu/kREsVsTaGuqKAPwe/ns5wKm6xWhu44lN4Cc3Oc96WyCNK7evHM0RhC2XsgGZEIb+Sl371uGo6OclLKypzND31A+u4jZpqEKE6doiKQVMb+fj7r2DHev6GBzNPSkos779Q1qEi0rYXfypw648ju4Qbv5XZssCIoixXnNWauKyap/QDIO9J9emVlfa4GQMH/8EMqH3EKz8xwM3AK2YmSko0M4JjHxvj/ffv4U5Rff7/yVTlZRLoVK5uUadIKuXpVNbUVn1ggQGu1kCOGWwr1iRPKkpJ3sxY2WR2ZuuNQegtEo6oLd2VlBCGrcMZi6/vd24XzrGe7iQleIyWYdjuDnXna3MyXee45MuzMDF9SFEpFhdL27e1EXa2t9V6VWCTa1sLvhFqbydBKqq93T6IqpGzb7nM30lOJJyeVoAUC7niMYuonk+SjTIZrPjurmomcPUs+PX6c18RiykIMhSik6TSff/Ei73XnDp3MbW181oULykHn9G66FfvLOHq76ha8vJxbzyK4BYWQW3hWP+J86Uu5itiaDyMkykTyZwCOaXJyfWEfAMQRQQy9SAAIA+gCEHE7K8qE3Lq1vtOO3c7gZp7u26fCftJ+OZsFXnyR99A9tWJxAFzQgQH+bQvz+7e1t1+YY3JSOZ0eeYSLLUcn8R5LYYru/c4XmfESubEjvetyRQXX9tIlClBrq8Jj1M/6wvCplMo+zGRoBQwP03z/6U9p9fl8FOq33+az9DCjWITJpMoFiEY5B//6r5wTcUhnMhQQ6e8nTmu7OX7uOZ7nxYJpa6O3f3SUNffnznEjzBdVsIYOo1Hn8KzdOJxa9Anp4VCJ1EmKtVPJtjWakezXtL61uaDcqK2Nu29zs3sDQrcIgB72GxrivR99VBVSyP30ME8iQa2eSuXm928Bhv+23vkBzpcV3Uh2JTG3neC98iUFbaSwR3c2+f0KduvwYf7MZilEs7P2bdsFGk4sk5ERClk6rRqNCB6gWKZ6mFF2u0uXVAaeaapU3A8+YEdrQdW1dph2ajVn58hOp1WXHsAeGEevk5iY4LuI81Ja0YufJV9djJcUeis68d69HKOdonCy7O5cSCD0dJ7mgl4bELpFAM6dk8qk3LOhNe1UN8EuXOCL6Wg+8jJFzu/f1ju/kFW5Ch6iCJfAe33rW+vPtE67jqDpnDnDNUok8sfMrc6migoK6qFDjO8fOMDekF/+Mmsz7HYxwdWPxxlKGx/nvYNBnrHn52kdVlWpnToapeB+9JGqDr19m+98+LCKDEnHH5kXO3L6u3XnnZwEnnmGiuTwYXWs0uPvMh9TUzx23LzJ8S8t5ebH6NmQmyWvFgLgbNkl4SFe7yWmn29A+j3EbFtasm9wIPc5eJDnPV3wvZijG6Btjd4rZOeYm5jgrqbDPtkxgJ1fB1D3k/Zu09Oce7cUXyvirs+Xu2NPTtoDYeo0OMiqttpanu1XV+mEFl4xTY7p1Cl+1tHBn4ImPTKiFFdtLTcIua+0ynr+eSq1nh4qCgGRaW2lQOrNa51IB8SVaEZrK+f+8GG1UenzIX618nLOg3j0P/iA71MIYvBmSbfQrGC41UtxHF+1MJR1UBuFOrYOQmc0L9DLTlDIHhF8PzPovUJ24dXnnvO2BvnCTwC9zlYQTjuyczYJ6k46zbDs7t3uZdhyDBQHcCBA597kpEJ+ymR4bJBOOXqoTCIE09O0BD79lL/L8VW6/tTXU6noaMVuyFZWMgzy6uyswiG4fp3WjZ7tqiMQyzFocVHl0kjezEacqhulfPBsPb0sDnKt0XeK6W8EOUVCGkeOqN58NTX29/OSSFQkeiiEHyispDofFdpP3q5pRk8PMzU/+ogM//jjXM8rV1Tprh2DS/ZnczNN5E8/pQIoKeFOOzjI3fLIEVp/P/0p135+Xjm2xLv95JP8/sAAFcWv/7pyMtqhFRfCQ+JfkRJbHXdS5sqKQNzYyDmRsLr4AJ54QvVIzDfXxSBvcG4eGKoYTFfoPYqhdDzSQyP8drTRVlCFOPp0y83agk0auErBkAjM6ChNYzsG15/d3c1daXqaAt3VxQQasWricYYBpb7/xg3+bXqaz5SefA0NtDj0Yh8ntGKnELfVS371Ko9Uc3MU7F27ON7VVTVXsknV1alQbFMTN7aPPqICa2uj4vrRjzjOmhreT95pK6JYBcGzuU3GVvUay3ffYu50LuTpzG8Yxq8C+DMApQD+u2ma37G55osA/guAcgDTpmmedrtnIWd+O9rMkawQH4L1CKaHYAFVJyA+ANPkNY8+an9Msz5b8kja2lRjGBm/ONMEtlusj0SCQl9eTuXR2spnZTL05rv5MPLNm45bICCe16/TD1VdrdKhxYN/9SqVUjrNMe7bxzloaKB1MzYG/OQnKjkpleJcSZKdPBtQUQNroxxdYQkSsLQZs5NHp2Pz0pKCPg+Hgf3ROGoHHCZDbrSZM79X5iuiE6SQM39e4TcMoxTAAIDnAYwBOAfgG6ZpXtWuCQN4H8CvmqY5YhhGg2mak2733azwb9Ivsg6Ac3aWzGpdDwHctHapld10edm+dZdbcxGvG4q0KxPIqw8/VDkPhw+rgrCuLpr9Q0NUPPX1/JudTynfvMnn+jvNz1NJiX8CoHnv86mMxrU1daaen2cIzjB4j9lZvuulSwotq7SUORt1daoSc3VVWRD6/aQ/otPnTvF9q3KXNGj5W1l/Hw53LSPUbDMZwOYYzGmxUynew+6+G+0Xr1Ehwu8l1PcEgBumaQ6ZprkC4B8AvGy55ncAfN80zREAyCf4xaCNJugIiWX1wgvcDZqb7XM+3CI+EkqUylDx3Hd0uCty/dn6JqPX1AMKFEY69QAcVyrFBJ9YjLu+gInoVatOeSleE5/0JJqyMpr93/iGwvtvaKACnJigkpFzvN/Pscqczc1RwFtaeCQoK+O1hkELYHCQSs3vV/0LpN+hlPd+73ucW/1z/XnWvBu76JsUYelrHFhNYGTaYTI2y2CAc5aRtXGHOCbsrt2C5B4hL8LfAmBU+33s3t902g+g1jCMdwzD6DcM43eLNUCd9OwxQX/RaaOgFomEczacW66AFUPg6FHgj/6Icf5Co0F2ax6N8uwsWYG3bnFsBw8qpfHxxxyrafK7DQ2qDD2ZXM+v+cLX+uehEE3v8nL+fuYMhTCbVZj7gQDXQarrqqtpstvhEojgCUSYz8f3kl4Bc3O8z/w8jwupFN/n7l0qCXkOkPs8O3m0Kti1tfWyXBYNY3HaYTK8xvndSPc8isaxQ41ZXOTLWq9dXWW80rorFIm8OPzsSousZ4UyAMcAfAmAD8AHhmGcNU1zIOdGhvFtAN8GgPb29oIGak3HzmQoGPv3c+eTSj1BoSnEapKwlhQM3bhBc//ZZ/M7Xzfjm3GKRQOKPyQs+MknFBjJ629qoskrQtXczPeXYhdAVY7q/JovkqR/bg1Nv/cexyH5BHpEQHJXJBNRLFgdl2BxkclAKytUYOk0hbK+PjdqMDGRW967axeVhJzbfT71vIkJb73/7Jy8s9EuRGb7gAWHydAnSpwz4TDNETeng5BT08j3318fhgkEcrWTXSPFIsN4exH+MQB6RXorgDs210ybprkAYMEwjJ8DeAz0FfySTNP8LoDvAjzzFzJQa6qm1LKfPUvTV3aMwcHclk9e5kqw/MbGuAZigl6/rvD+i+18tStNlcrEYFBFCvTsUDkr377NdxVFKDugU7FLS0tuvb9buq1Tpimg0K78fpX+CyihF2ATuZ8Vl8Dnoy+kspKbmjSqqazk9yRqYC3vPXaMVo900Vpa4jgCAW4A0vvPCTRUHIXWOp2F0gi6X+oFpjXN3tKizt3SvefuXTJHUxMn1a0OWyc7jeMUhonFcq+VRor19fa16kUgL8J/DkCXYRh7AdwG8NvgGV+nHwD4c8MwygBUAOgF8H8XZYT3yE6JLi9T8J99lkwv8Fjf/75qNDk+bt+qS6e1NVpjy8tUtH4/eyYK3PdWRF3sSlOB9bu1DkpaVqaQbjo7FeBsRUVuscvoqMoJEGdZPjQknURwBSbs6lV1v9lZtXNLVKGnh7uzOBqt99VxCewc3ceOqTlxKu8tLWUm4eqPwqoAACAASURBVNycwlwsKaHgSxt1XT66unK7H3V1cYOQZ7S3c9y1kQjQeW+B7ar9FhY4gMZGDqC6WqV25qvDdjKz3JBm5NqpKSoKvTqsyAkSeYXfNM2sYRh/DOANMNT3PdM0rxiG8Yf3Pv8r0zSvGYbxrwAuAVgDw4GXizZK2CvR6Wku6OXLPI8uL3OdZOdYW+N1+SwAQao5dCi304+Oqlts8lqaKvzQ2kreu3uXgra4yHvs3s1kIOkOZC122WjZsjXHQFJ3xRRfXaU16vcDX/+6t3e2O0LpG204zNJep/LexkZVwXjrFtf/a19Twg/w+ps3Of7hYc6DYajkq2PHXBz2TpMlfdL14hxJYXQTyEISdqzXRiIcvJ7jX2QYb09JPqZp/hjAjy1/+yvL7/8ZwH8u2sgsZKdEl5Zo/gqO2+oqhaChQYGn6uCrTswuxzBhwKUlMlhzs/e5LjQfxFqaqu/WuqLSs0OfeorhsU8/5a4s3XRqa515zAsakt2YZfccGuJ8hMO8bmaGmYSSJ19ofb9+hMpXVt/fT7kDVCSjv1/VKaRSwD/+I/AHf6D6XCwuUkYbG7n2gn8AuCdfAXCeLLmxOCV0p0M+gdzombGtzb5HfBHTfB+aDD87JdrdzTMiwPWYm1Om8NAQmUMQm/NhIba3A2++SRP6wIFcVN18VAiOoJDX0lQr7wgisB36kB2PiZLJZlXIsKzMHZ5elIb0EBgdVd54KT7SuwiLX2RwkBaYrMm+fbSmnBShm1Ui7feOHlV9DN5/XwG4AJyzTz7h37/+dSUfwWAu/oHPpzZqV1l1Sv08dCjXKSFOB93JsVkSJpIKrulpmljS728L0nwfGuEH1gtCIkEzbmyMO5C0fJLuOeJccsNClDmvrwd+7dcY6vvwQ97nK1/xNtcbNa3LytTO1t2dm2XntiMX8ixp8nnrFs324WHy7+oqswSfftren6RbJmKdjI/TpP7gg9wuwlJE86MfqVZk2SydsVVVzj4x8SnofQnF2Wl9TykpTiToc4hEVH5FMplr8UgKdjLJY1J7O5VBWVkeWXU7o8vkCPhjIODs5PBKOhjCxYtclJUVVfedSPClX3llJ7ffSjreopydBUAzGlX57ysrzliIwmTZLNdAnGlrazxC1NbmF0gvhUJOGYVPP614TK6THVmUw1tvqVTdQouSIhHV+fbSJZWjMDKiav97e3OxDwF7OZBaBgEu1en736elEI8raPxUipmAzz23XjlZfQpWdGD9PZNJ3quqihZcJkMlVF9Pn8HBg6pMWUdZqq2lMrpxg7L67LMKGs1xsjTzMlkSRqy0BzPnIvfWvBeRzXh/7ZjA72f8U+q06+oYzqmq4sRIL7ct8Do/FGAeTqQn4ASDZJxslqmucqaNx3mdOP+sJIlco6MqO04SWMRX4JaIA+TPB7F+X5rCZLNk0ps3VaOK8+e5AXzyCfBP/0Qh9fu5W/f1qbCk07PsaG2Nz21upvdfFNramkodtt7HCaPCNO0T327fVn4A6VRUU6MSeKyOUzHtBei2qko1ye3qyp3T0VEq8yef5O+SIbu2RsV++nTufZuaKOSVlbRMenoo+J6Sr+69ePzEC3g/24vFqggayuIov9CHwb98A8m3PCTb2LVBcmKC4WFOkOxSS0sc+N2763u5FZke6p1fQlnS5LS5mabs5CT/rsNNO5n9wmS6I1d8ObIT6iaojiIsYcR8iTNWEzab5XOvXaOgSy++yUnuUjU1/H8iofI89u5V+IBiJXj1A4XDVCaZjAKRCQTIj4ODKgOvtpZAIPr8Wjccp2NxS4uCpltZIf/Oz5N37ZST1adgRQfW51SEvbER+A//gfMpKM7f/CYtNf2+Uosh62ntZSi+CeGZ06dz76GvWTAbR/WVPpg+PxYa6jA2uIhQ1sWh4+QAKi21Z4KBAcaVm5r4UOkxJz3RC/E6F0gP9c6vNzl94QX+vH17/c4IOJv9en6+9M4TeHVhWrEOBNt+ZYXCKusMuENLWdPEAwE+8733uAGI1VdfT4Hp7+e5WkcsvnWLApxIeIex0t+xtJSKZnlZ/fP7+XcZmxeYeKd05699jfwq/TGmpym03d320GjWaMfJk7TcJKytWx5ra6ppyaFDwMsvs87gt397vdBKPYSeqj0xoeRHkJQWFvishQX+Lk5KIVmzytEYTJ8faz4/qnwGUlmbggmd7FJ6/X4FdCCkQzvPzHCnLyvjpN26pRozevU6b4AeauG3m+fKSoXjLhDpx47lmv12/f86O7nbrq7SiSQ7rG6C6kcDa1cZN7IeC0IhCrKE0ObnmU0o+HyTk3yfkhIy4eoqr5uaooVizVvPZ8pGIiyhraujIGSzfD+fj7H6L3yB/x8ZWd8jz+5edsrn2DHuwg0NtLhqamimOxU5udVMWJ/1rW/ReSvYhHKtRCx061qvh5Bw70cf8e8Ad3wJjwqKcm0t/263ZqVz7P8HcL1qAnAv8HEqCALsgShDISoGGfyTT6omjvX1W4p39lCb/XbOr2iUu87Jk+pvOnyVWyOPY8eUP0ZHWYpGgddf57m8pUUxjnSVuXVLofnahc2sx4KJCTp0JWNOmrUIcnQyyftN3quNlPr4xUUV5iqUOjuB//gfaVVcvUpHoiTMvPkmhbi0VPkYnn8+fwag3TOsO7ETbSb/RZKDrJmLYl1LPYQogL17yROdnTT1re3TQiHl9xCSNa8fCiNSs4hAo/+Xa+7qZLGeiwQAYmGBk9/VpcAZEgnl8NDLNp99VjH2uXNbhnryUAu/3fkzGnXPjcgXKrMD3xgYUIi/k5Ncp1OnlINLqs+c7mllXlHyPh+tPWlgceUKGVUqSltayBvJpMpAdOr7l4/E0Sxow+LjGBnhO0nZrt9PH1R/f+75fyvIS/6LUxNWKw6jNRlPz/rTz/zNzQr8VCiZzL1eX/NUeRcWL/Rhbg546rlqhMpsnCz6IPVefXplVG8vNe3Fi2TK9namMr71FrO2BP0kHOZucukSY89eE0c2QA+18DuFo156yblwpdBQma4spIbAMHgfQaKxFmTZ3VMYXSCyTJPCVlmp0GkaGmiGl5aqZh0S/5ZMtc204pZdUjoNzc9T+AMBHi0ErrukhGPcqPA7ISYXilPhljyVLxnPCaLt9Gme8QHOaTJJWX3xRXW9vubNzRGUHurF2kAM88MzQLOFoQYHaSKsrlKjS4x5aYnmvI7BHw6r/monTvDhw8Nc8LU1Loo4raSLL7AlRT3AQy78bqajk/lZaKMOKx7c7t0Unv5+rtfp01Q0Xu9pTZutq+PaZ7M8Mw8M8Pcvf5n/Hxnh+3R3czPZiOK3izbs2kXHZWmpim5UVpLn7BymXskuT+G11/j7kSPuna/yjVuXgXzJeIC95dfZyXk+c4ZKt7mZgl9bqyofr1/P3dhXQxGYx3sxMgN067I3OAj81/+qPMDisJPWRwcProeB0oE8RkcV+MH8PLX88jI9wFYh3wLU04da+IHCU6cLRUbWmUwUdUMDmaijQ3WkkcKafPd0CnH5/bxnbS3PpfE4U1tfemnjefT6M/VdUjoeATSRP/2U966upmWaSGy8O7SeNHXliqpWjMdpNQ0Pq0YrZWXu1oWblXbiRP5kPCdfgtU3MTgI/M3fqM07m6Vyl94Ztq3zEOeOv7Kicsil4eH0NJ12TiW9QnNzKjNKClUE8MO6cxS5qAf4DAh/oSTK4vx5lVorra3sGoC4dbKVNR0c5A4q9zt0KH+Jt6TNArmCHYkwd8BL00onsprdAsQp421r4/sHg3y/6WlGEurqKAB79pDxN0IisCL4kjC1ssINze/n/KTTfEe3JiluVlo+h6HXDSF+T4al3mFpiWNdWVHnfh3QRBK8niqLIbS6yp0gk1ELmEjwhaUjsFVDRSIqZFFTQ4EXUMa6OoUjIGfKLcTuf2iE30vVXCGVdaur3FnFJ5NOc+6Xllgo8tJLqr27MJm1ky3A7/f10fy3purakRfLw42xvcBuS4PPTIYbTUWFQvuRHPfdu2llZLPM0TdN/tusY1lPmiotZdKSIPIePMh5FygvQbRyq7Z0m6tigKzEYmrHl8pBwXYQgBW71nl3LiQQikY5mbdv84/l5fTghkK5OG/6Qj73nHqwxKZPn+bD7t7lpH3jG1ycLcbuf2jbddlBPo+NWZBaHHATdARbQZcdGlK7kihvaz2FHfLtuXP8ae2M4wbyulE4eC+oz2++SYdyba3KcJydVQk0Ww1PL2O8epUmfmWlcnIaBhXqsWO0Rg4fzt8+bKug84XeeIPHrExGHVFMk3L4hS/kZgwKmSaQfa8PT3ZOkXHW1njh5CQ17Z/8ifeYZ5Ff8DPXrsvJ8SN58H6/ytIbGlIQUPJdqxDqZ8m5OeVVz2S4yE71FBL71R271pwCIL9vZqM7lpeKvmvXOH4pa15Y4GYyMAD81m+tv+dGypHdSN7txg31bJ+PR6vJSVq5o6MUrPLy/O3DtgJCTadwmOsuzUSrqsgPklhnRdcC+Ht1dxewGqdWnZ5W4AFiMrrRVms0j/RQCL+T4+fCBZrufj+ZSqrDJGFjZERZZPr86mfJQICMqguVXT2FxH6bmriLffoprz96NNeHA2yJbyZnHqS+YG5ORYR0AVlY4PlavPepFHdhqbvXyeqgk3p/iThshKTm4tAhetXFAS4O8QMHmOgk7dSBBycPkr8hMiyWtzQVcTx66P3+ysvVGX8z8cv7rAAeCuGXfO2ZGdVxVpSBxHYFuEFw2j7+WEFxTU3l1pTrC9raStN9Zob1FZLbb62nkLPh1BTP/Pv3q3Lrqqr1DT+2oK/iL+dBOvhI95nZWSXYhw4BP/gBLZhkkvMlkFtOVlBZGTEMBPmorIzKwrX81YXicSrdeJzzceAA12d6mn9bXqalrOMX3G950JWNKLvm5vUy7O5/iSCGXiQAhAF0Acg73I2CP2wBbXvhl7rvH/xAJdMsLNBUe+YZtYNLPb9U4UnGnVRPdnSsz7g7f55mcihExpycpCOsuXl9PUUiwWvEgw0oPIHaWvueeF7fz+uOJ3BjZWXqPG+ayjyVFOUf/5hzVlrK69bWKIz/8i/qProV9Itf8NwbDOYiIp0/TwVQSMKOtUPu2hotpc5OnvO/+EWOX++IfL/lwQmn00nZ2B09NqywCs0y20La1sIvEzw1xd3j448pbAcOcIL1XVfq+d9+m8xVW0sTvaZGVZlZzXPx+Ouw7KZJJRAIqIScSESVxTY2qu/L8cA01wNV6FDZTgJdKANFIqrxpeQHdHbmQn1HIkwRLimh8BuGOnsbhgpVCXz36CiFv6WFvioBQ+nszPWpyPjefpvv6/fz+wKjJUddXZCrq1UIdHycxwg7NJ37LQ/FUDYbvkehWWZbSNu6qk8/j2YyZNhHHuHfWloo+PquW19Pa+BLX+Ln4kyqqiKjWs14WbxUSh0pPv6Yu9bevbmgHVIWm0iQ+eV4YM3HyAf8Yfd+1upPtyrBtjYquZMnKUCh0Hre2bVL9ZMQS0Wca34/Bfr11zm2PXv4DnfvKrTozk5eNzW1fnxiiQ0NcU0aGynQr7+uUpLlKBYKcZy/8zscUzZrX4KcDwwlH9lhZ7hRMTpxbfgeXsoZ7xNt651fdgRxygnDzM8777qA6mwLrPfeAmSOs2e5O0qzy2hUQag5RQxeeolMfvcur7ceD/J14HGLOgjl2/G85Am0tfG9Z2ZoxegovwAVoezoAH0dly9TOXR0qPBgff16Bs9k6Ew8eDD3+CPREaektief3Hg83402Yn7bjTFf5598iVOAR4VVSDnjFtO23vllkdraKGRzc9ytBHjDLgtSduiODpVzkc0q760wi7SMvnOHJunqKhe2oUGBRQK52ryzk7H/L3yBgq+XW0uK6AcfcJyzs8798qzvp5NXJGg3MA+Zg717gSeeUA0upCJwelrVtwN0Eu7eTYET/ADpB2AdX3k5FaT0zANyoyMb2di8vJMT9ffTOXnpEqMVOvyaE1nHOD7Omv+GBntrzc6am53l9za0gRcKyLBFtK13fr3DyzPPqMy1o0dpri4u0mS3amtRrHYRGDG19++ncEoBlRRXhcMK5hlYj8Vn5+jSU0SloYZAW9n1y7O+H1DYjpcv9h2JkJG//32Vg/LccwpyOxZT0QBJM37kEZrwLS25jj277FQBlpXQqh4d8bKxOc1joc493bkYCikQ0PZ2rqeTz8U6xslJ+84//f30p5w9S4W0f786/jQ1Kbi9B7yBb5i2fYaftVRa0lB1BNx8nZB0kp73wvzvvMOf5eVUMJK/LyhKeiahU3ZdLAa8+y6FYmGBRxTDUNjxhw+7Q74VO74tUFW1tRSKO3focY9EaK43Nqqd8dgxvrvT3NmNb3Z2fbJTaam3TcxLlqLX+enrozNREokAWjU3blAQxXLJxxc6TwglErTiTp2iH0gyFQMB8p/4T7x2K7pf9JnK8HPaEfr6ciGkvXpb9fNeKMTQ07vvKpiuZJJhsbo6VbLrBh4hjClFITU1xBIcH6fQnTzpznhbkcGmQ1UBKruuvFylIYdCTFq6fJnn8XwoOta/vfLKxpRWIV7yeJxYF7Ozqk7h1i2FMiTHjCtXeH1VFY956XTuLu10fyE7H0AsxjX1+7n7z87mFiZZ8yu2SdJeQbStz/xutFFvq/W8t7hIZmlo4N/u3qVJ9yu/QiEeGFjvxbY+LxxWkFjSMjsaJZPkaxLqRoV6sYXGx3OLUACFDygUCnFnPHhwY8dOSZYSgFOBOM9HhaybnOflOFZaqlCGAP5NoLkFs3F+nsdC/f3z8UVXFx1+584xbHnuHJ8jR5+2Nm4MFRX0KVjzKwqJ8Gwn2vY7vxOVlChEGkG7kQYQbmR33nvmGR4fLl9W3vexsVzoL7fwbL4UUS9k3TmiUXuMOi+CagdVtba2Hv9vM+HljSa5FBLmvnqVfxeT3uej0AnKkO4TOnyY98lk6A8q9D3FaXfnDu+xskLeCIepSBoauDaZDJVAZye/c/asvU8AeCBJewXRQyH8doIhXVkky+78eXqodXAIJ1NMN2XlvAfkYveLwy8feITei77QNG99nFb0mwsXyExHjxbOUHZQVRUVvF+xSsQl3VnaZkvKtdv4pCmNtEfr6lL+hkLGsbCgkqhKS7n+6TTX+KWXFF6m/p4tLc6JV3IUKS+nJVRVxaPfz37G92pqUjBqOsCHOAQzGW5Gly+r3IsHlLRXEG17s9/OpHr9dU6udGVZWeEiSCcap+/ZmWJ6uE3qAwTWClgPHrGRcFQ+shbXSFru9DQZanSUPz/+mLtMPnNSoKr8fn7X72cn269+tXjjHxmhY3Flhcy+ssLfR0bsr5f1qKoifgBAh9rysvM4urtVQxFJrLpzh1aMrGtVFeftxAnep7Nz/ToJ0pITL1hTt6Xhh2kCP/0p+ytEo7nw4YLctH8/eU+wAOy6H21X8rTzG4bxqwD+DEApgP9umuZ3HK47AeAsgP/FNM1/KsYA7RxE0si0vV1dp4fnnL4nf9d3JmuRj47aYkXQcXLOWTEcM5ncQqJ8ZId+U1vLv6+t0SF58KBqYOHFvHaC0S6WGTo3x91ON8mXlhQCtZWs63HihMI9cHKYHT/O38XnUl5O4TtyxH1drevk5qzt7V2fui19FKJRhm4fe4xjlZTomRkqkGPHlKV4+TJ5MJUqHHnpQVFe4TcMoxTAXwB4HsAYgHOGYbxumuZVm+v+TwBvFHOAdllwVVXUxn19XLj2dpVYI95Xr9lzusmeTlNgbt/mDiutnNyEzA4GSi8kEqeQG/LO7dtkvokJJbDhMBlJkpQA3runh8960OfJYFAVAEmRkZ1fQchtPcQqEKWu1wtIk0+Zv9FRmuF293Eiqdy7fFkdUVpbVdt2KZiSZ4yMqCavwaBSFtPTas7luAmorkMDA5wDKVXe7t5+Lzv/EwBumKY5BACGYfwDgJcBXLVc9ycA/j8AJ1BEsuuBMD1NQd+zh7vP9etkiEceUeew69e5CE1NqrS1rIxCaSVRAMKER46o86LeqdeO7GCgAAW9/oMf8PPaWr7L8DAZWs821Cvgrl3jGEtKqHjefpvndXEyiTn6oM+TkkI8PExsA0AVWNmRm6NP5lBKlSWJ6PXXGVK0KrlC02rn53l+F4dwNkul2tmp/ABtbeQZge+S4ijJirQqGGuClkCj2Vpk2zQO6OXM3wJA72cydu9vvyTDMFoA/CaAv3K7kWEY3zYM47xhGOenpqY8DdAamhsY4GQfPkwGyGT4u5Sjyjm/p4c7qRScVFRwJxXrwI42Umijx/gBMlosBvzwh4TTmpqiUE9P85pbt+ic1J/X3EzF1dREB9r776uqvI4O9gsQRxKwPc6TXV3KmbZ/P/+trjrPr1var92ZW9CIrHNfaPpwPE6FKmm/0t57ZoZ/Fz9AQwPf4bHHaEn6fO5z7tkHtI3jgF6E3659ozUt8L8A+E+maa663cg0ze+apnncNM3j9fX1ngZonWQ5azU0qPLTigoldJKYIVGBcJhmdWUlz5DNzesZStbn7be5++i+g3wxYj3GL9llw8MKFkwsDvFJhMNkOmB9zLuqivkFbW2qu/CpU1QC26AILIciEVozwaDqyus0v3K9k7CEw5w7p3oBr/exo1iM933sMfoMUine88YNdaTSU3aDQefegNY595SiX+iOstHkjg2QF7N/DIDeJKoVwB3LNccB/IPB/MgogBcNw8iapvlaMQapO3DCYe6mqZTKy19YICMkEgocVejIEV4rzheryayH2VpaKKx6yCbfLqvH+Pv6eP3KCpF8P/6Yz4vHee/5+dzv6qawNAEFiLrT08P3ymaLUwS2FZbn2hoF3gpu6XQkcXKYWs/c1noBr/exI7HMMhkK98ICBfzKFfKOXXiumIV3qZEEhhfqMD/PJp/tbUAo6OCkuM+QRl6E/xyALsMw9gK4DeC3AfyOfoFpmnvl/4Zh/DWAHxZL8K0kjFJTQw/4yAgXdN8+anYdsCMQ4G6rn0Otwqwr5vZ21Y5rZETl9rt5bXVGqapiFd38PHekXbtoBaRSKv89kWDsXt7F2oN+aUk5/azMuFHaKp4qFi5FJKLKpYeGqPDKyzmn3d0bH5+MUQA6x8cVYEl1NX0LEp6zKnq3OfeqSONx4PpYGNVliwiF/b8sPOrpWESo3maS7jOkUV7hN00zaxjGH4Ne/FIA3zNN84phGH9473PXc36xKRKhp1Y6HB08SDM5GORZTm/VVFdH4du7V6XyuqHIiNdWgD+7u71pfJ1RlpfJvIL3nk6rRptHj9KcPHYs93uxWG4P+mKf7TfDU26M7qUq0augdHYqBaAXDOVzuOYj3TIbHlYYhb/2a/RPmGZh4TknRSphQP09YzEOoHqoD+YS4KuqRsnSIsZjCwg95dDO6T5CGm37qj47ssPPl5ixdFi5ei8W0dJCYbLrxpPvXoUKhp6SOzNDH0IySXMzEKAycEJ2LrTaTf+e/r7d3euBN+2q1sQ8z4eZn29MbsJt9/3xcQqzXYOQzayFG8kY9TRcaxuuJ590Pwo53QPgO8ViVOo6JNzMDC3SjnAc9ckYSucSWK0JY7ymC7/yWzYPkgnIZhU8s4SoPEIpf6aq+uwo346TzSpsvnxCpN8rk+GiSTzXDupayG4HkL5909O0Hh55JJdJFhZUn3j9PjqKrJx3vZwzpepteFhZCBcvKt+HfLcQ81wfz+3b7q3HAXfz2GpxZLMc6+ysKrfVjx9bsfHp73PoEJ8tjjzX8JzlHrLWJSVcnx/+kMeGpiaFkJzNUjlcucJxC0rUxVQEPT29v+y56HfqudjVxR3j1i0uTkXF+vLBItK2T++1o0iEQnXjBne1Gzf4eyRSuHNVmFfadAEsw62sdHe2Oj1HFMfBgyoPXMgaObBGgSoryUSSqppvrWMx8kVtLe9dXc3/C8MLeQ2PWccTjzN7sZDoh07WaMboqIqzW9dGkp3eeUchIAHFKT7S51cAWt97j/UTZR62P72O4fp1piVnMlQCKyu8z+oqx33nDtdNYNTm55UPKW+kptAQyibpodz5pYHGvn30jOvJOBvZPSIRCunp07m7I+B8Ls73HC+7rdNZXBKV8p2TpcpMf4ZgFkparOx6AjKSSjlnLlrHU1/P68UhZvcObmSdg7k5bmZSNyFzdvMmxyrJTqkUs/waGmhCt7by2kIjFHbzK8pGTHQvzs/RUSqm6mp+X8BOAR4rfT5+/sgjVGw1NZTd5ma+a01NAT6ksTFePDOjYtUtLVty7n8od3633X2jSLCF4gPke46X3dbumdL4c2qKZ8l33yU24OCg/RjKy1WCEcD/l5dzXmTXkzZm6TTPtjpOgdsctLXRVzI1pd5hfJy78htv8Mjx5pvOIWnrHJSVqWw6fc7m5nKTnYJBVf3X1bUeSdlrKNxufnXwUq+JXKlUbh3Dvn2M3MzMUJk99xzHa5p8nmBNynt2dPCavNbc4CDNilSKZ4p0GvjJT6i1tyCra9sLv91CuwnqRpGRC1Ua+Z7jJRnF7pmxGJnMCRrbOobaWpr+ghs4O8tn6Iw9NqaQfcbGnBneOp5QSHUqlgQrw6B1IaXHFy/y/3aJa9Y56OxkSrY1eSYYzIX77ulh2LW1lQpBf5f+fu8Jc/I+ySRN8g8+IFCnnkwE5D/KBAJUguk012Z1leN67DG1kx8/zmvk85YWKgjpU+ApKevMGYU8m8nwwZWVdCRsQVbXthZ+p8xIgU3Wya709uZN1TAyH9JMoUrDi3DnywDTn5lIKCSZ8XHFSIahdu6/+7tcRo9EiF9w9KhCETpyhLvM2poSqLk5MnxVlaq6y2TIU7pStZuD0lKWAktUIB5nzcKZM9z18ikUfQ6ef55js85ZW9v69bQiDAN8n6tX1bNSKa7xlSsKMt06v+PjTKdeXuZ4JdVa92Pkswzb26m4Kio4hrU1jk0wGxcWgBdfpPPw5EngK19RCpSYeAAAIABJREFUkGIdHQXkU4yPMzlk3z4uujSg9PsfWJLPAyOnM/HSUm48365vu8R3Gxu9ne02ktVVaPKNXVist5dFJ2++SeZqaFBMLDvUtWs8N5aUKAUo7yEKQAcxAXLP24JTAKjEJ/ErWJN+nObAipR74wa/19mpqts26pm3i96UluYKv4TlpL2aVN/5fBzTrVs8HrW2qoYl4j+bneUZPBCg8hkY4D8d4NMtvi+8tHcva0oklOf3c17LyjgfEq0xTSrkgrModQimffv4t9nZ9Y6oItG2Fn4np1o6nV9QN5LYshVgmkJuySEjIxx/OMz3GRqi5TcxoUxta3lpvgQdN5wCHYjCDiXI7r5SN2EY/Fdbq9ptHzjAa+x2UCv68uwsw2P5lI4g8oyPU7AvXKCg791L6+WTT2gx+HxqJ6+tpSDrCtI016cgBwL8/L33+PuhQ+5rZ90Y6usVIMlGcjMcyQ6CaXaWZsUW0LYWfjePeT5BzeeNv99Vlk7K6MyZ3JLgaJQC+sknqj5eSpedykvtSMKhZ85QgEruHfDOnqWwnDq1Pgxpvac+R9evc0cVpJqGBlWL/6Uv2WfIWRXe+fMq1dlJ6cgzxbK4fp1KsKGBCnBpiUonnVab4sgIxxYOU170+9rxkJzd9VwQO6swH4/kAwkpmASC6cwZTnRzMwXfLiusCLSthd9rUwu7RXJTHF5z3e0y+KwpnF4VhpMyGh+nc2hpSXmT29sZMmpr4y5nzSjzEr3Qw6G7d6ud/4kn6KT76U95/6Yme/BTK2z2nTv8/5EjFDA5mlRU0JnW3b1+/uySfASQQ97FqpD1dbl5kxZQayuPwoahYut1dRxTRweVQl1dLvyaG/ZiLEa5ssMflLTc0VH+6+riHNnxyJZk4zpBMG0BbWvh93IOdzOnxby1Kg4vRwLrfScm6Bx7/HFnZtDHZE25dert1txMpWLtLRgM0tEG8DniIfcKvKm/4+XLCsn3+nUKT/b/b+/bY+O8rjt/lzN8v4dDigofelBULVmW7YgKozSJnI2cxDbQZIu0TWJksWmLNEWy2D/bXaDdBRaL7f7XLZo0GwRFs2jRYNMtDG/gxo2ytuVUlmwpkmXKskRSD5IiJXL4flMk7/7x48m9c+d+M9+QQ4qM5gCCSM4333e/e88599zz+J1lPqe21g9+KrDZtbW8x8oKHX2VlVQA9+9TKO2mHy65wlFZSZPchvqyFVmQshgYMMqxpMTg/l2+TGUwPMzxSPs0+74+Hqqp4fXSj3FhgVG2kRGuXXk5rYtolBbYnTsmVBmNmnlaL4J0Cj0ksI9tLfxAZvM+SJAl086nOMJobPe+o6MUhNFRCqytMGyoroICmqHyTIBMKjgDboehkyeppNLBfq+nvNR+RxuV+Pp1ntFragwApwt+CqTCZpeU8Lqf/5zC2NxsqhNv3TJ5CXafAtf6ammhsEgCk5tKHaQsACqtlRWOo76ec/ehD3H89fUc09JScqQmCHvx6lU//mBPj+lQLMI/NMSjyuHDVDTnz5vCLB+CdF0d3zOo4WcKpTNDgU1VCtte+DNROkEOUhxhsu/c+4oA2Y0vysrojJLdQs61XV00tyXUphQZs7nZ39utttZgCMo5P5EwAhn0Huk2DHnH5WXujD09ZHIbc++JJziGTLBgMzPGm71/PxVYNMo5uXPHeNyHh5OtIV/dxPg4hfhnP+Px5sQJWg6ChXDrltlJa2qoOKVAZniY/yoqqCAPHDBrKNGATB2IgGD8QVlTgM+/ft2AsoijMx434czGRv7e30/L8O5dKpYTJ/juIyMM3boRiCRKl+Yp8EObVNu/reP8YSjb5JyxMQrwmTOMq0vqqxvTd+8rITI7NVUahdrZhsvLZMzxcXNdSQkZSNqJu3F/ERRp9bV3b2a0p0zoUNKF5sIFKpHVVY5pdZVMOj9vHIi++bJhs4eGjALbv587bUEB+VOgtxYX+Xc71u+rmzh1yuAZHjxowtgrK9zdp6boR1hcpPDJMwVT/8UX6ayUdFuhbDoQtbSYuL30NJCjtqx5Swvna3HRRJjm5w3smCSaVVebqEN5Od8nEgHefptHBknyCVxPuZGdiXTlCrusXr1KbWgzWQ5z/He88Acl58TjqZmBIjDFxdTOAJlyYSGVYdz71tWRGerqkp9TWZnMhJWVZAQ7Y0xSbl2Hmj2+CxeyK0jKVMBk14gUFtLUP3KEu/a9exSoqqrgZKaODiqhlRXutpEIzexDh0za7+Ag51IEo6UlNVvOrps4ftwU9ojjTyiRMHUsdi+G8nJ+98SJZMQdYH1p3KL8xV9w6BDDh5EIn2NnHR44YCIDS0tUeJcuUfEoZZ4vKEzz85zz0lI+Y3qa45mZSbOeNTVckK4uPiQS4c8DA3zRpaXMvd7XSTve7Pc5dJqa/K2uotFkC8vFjhcSc1py2Ssraba9+KLBbRezvbvbHCGkV9zAABlh717+fWKCP4uABR3zJHYslM5zHMZvEQSzdfs2d+l0PoRYzMBmLy6mRhza2owZXl9vkIVnZ1MFMIzjTzL6pGW4jPVf/sV/RDt8OH2il+9IBJh5P3GCn589a8KM9hFsdJRFY6LQensp/IWFPOKMj3NeGxsNClNBgXl3G27djUAkkUBTCdDjtWvGFBkYMEkI6Xq9r5N2vPADqWfioPjrpUvE1rNJqsqA1ESUvXsNU8l5zY3CyLl2asowyOOPc/E/+IBe9I6OZIAN3zGvvp5/ly66QHJoMptQplDQNS0t4eLQMq/yjnbEIRIBfvd3jZItKwtGw0nn+LPv56bzphNy2x8WlI24HuXv8tLYGFOHHzzgGrW0GCUnSnF6mnJaWWk6Fkm9g/SCCF7PGA7VtKBKzXD3WFoy2GVXrvAGxcXUsg0NOe0E8ish/C5J7fTMjAnBCI6fKwz37nHhJFacKRHFJWEWm0Eef9wwiA+Fxrdrt7fzuBfUYy6bUKZ9zzB5EpkoXcjV3imDrAjX8Xf5Mi3ZsjIKwvHjwT320gk5EJyNmI3yz1Tu3dREK8C2oMQP0N5Op6fgb0jpdGEh18s9XvnWs2uiBY+3L6L6ibVcbIGllvbDw8NmEfLe/mAaG6MwS7xVQBP376dCdXcRCdWFTUTxUToG8X3PtyMXFiYXCtnHimxDmetBB8oUag6KOIRJiZZrLl5kHcPUFMOEciQaG2P4LF1IMxswzaAjEbA+wNF0VlZ3d7LXf2mJ496/n9ae+z6+9Vxsb8dQ93lUY81RcOkSjwCnTpmmApuA4PsrJ/wizDdvkukllNPdze4vco0siGS5CWVKRPGR3XLLNg2Dvhe0I/vWN9tQps/kzZRvnit033QKJBYzhUQAfSnl5Zyn8fH0dQXpnucbdyTiF1af8k9nCcn7+LL95HvvvGPwEW1fhbs+cq/Tp7lRtLaa64saYxgeOYjHul+mh/Xpp8mEXV3JDokc06+c8E9McIHKyrhgEp6rqAjeRdzz6JkzpjNsYSFNW7dqTshtuSUoNG1tZEIfY2VTQZgN/h6wvoKm9XzHpTAKpL+f96yrM2g3AwPJzTmySXYLGvfiYvZ+gnTvs3cvNxHJxWhtNd8Lsz5hekPEdILmj5u4IGWMm5D19ysn/LIYttdYzt4+8u3CCwsU5tlZ7kp9fZz3Y8fSQ1+JwhkZ4THNznZzKWwFYbbn9vUUNOUiRz2MApFwtSTMFBdTUMfHs6u5yPSumao+w8y7+z7Sh9D14bjrI+W+NvSYfa+g3hBPVU4AZWsvIzBG0l6ouJhOhWefzZ/5bQqCzwaMsNy7x93bl3Lp7sLDw8DHP87vdnWZuH5vr+meY8+/i/tvN9LMxTplizOwnoKmaHR9Z2GbwigQKaC5d8+EvwSq2xaS5WXmtwhydSTiR67eSNWnTRtRiPb63L7tLwaanaX1AJA/Wlvp/7h4keHYJ58E+oZqMPv6HMrqy7Hv/vuouHePzr5duzgBd+7wC0Em6DpoRwu/MLPd2jkSYQbY8jIXSikKY3FxcPmmzSiCcX/1qsle09qUirqmcLZm+XooG0ZOZyn4Cmfu3OE8lZX5z7RAOFM8zDxIA8zqahNe3bOHacZScxGNmrmvrjb59G4vgkzvGpZyoRDt9fFBnQ8NJeeC9PXx55YWHnveegt4rrMdRwrPY24KuP/WLaimQpQDXBBhwvffzwu/UHe3v7XzmTN07sViXMiSkvDnWWFiuxhGEjV8mj+XXWtyQeksBXs3k2xSKdjZt4/fWVggU2aKmfsyIjPNgyDiPPEEvy/XdKy1mKipYeHQ6KhJa6+uNjkQ7nplYxW5oCJa819Qb4JMaFE+CrIWKivNvfr6eK/bt5mKPD7Oa37+fgzxT3aifrIbJauzGJ+qRfmRPXSObBLtaOF3WzsDplxTmCXb86yd0DI/b2rIJe/b1fyZGNCtiy8s3JTjm3dMLtm7s90YtKoq+EybjTNQQD0Bf31/prmKx5kDsGsXBWZmhhbCY4/RSw6ED0HaZCuwaDQZ1WhsjIpe8vSB8GhR6eZXaG7OFPV0d1PZLCzwneJxg/M/Pg7cmoyh/EgnCqYnoS9dphmrNb8wMcFa6hzSjhb+mhqa+rt2mb+5rZ2zNcuFmSIRMowk7UiBhiRpTEwYx5W0Ajt+PJU53Lr4hYVNOb6ForCNQW0Kozxt4fr1Xze7pI/SCWsiQf4eHeX3CwpMctvRo6n4hWFJLMRbt8gvhYXkmYGB1N4EdguvbK20dNaP/d5vvmnmtKzM4HRKeHl0bwfiExPAylqdc2EhnQZiIuWIdrTwS3ejS5cMTLJAP4twZ3suFPNQa5aGam0aMdg1A+4OEsSYbl18tse3XB4Z7J03bGPQMMpzvaFC9936+yn8cua/e5dCOzvL3TPdfdPNU18fd1hpoVVQQMFfXKTCfu89WmOSX1NayvyadMom6HmZrAW3HbnU9Uj4c3YWmI3EcOjLp4DE5p4Vd5zw25M+Pc3doqeHC7t7N3eK2VlTJON6Y6emaFJKMpBb0JMuQcauGbDRcQYGjDIJGxufnTUWRNDa5ir5xqZ0+fo+pRhGeQZZB3bNhERiBAZNKZq6u3ebd+vvpw/iyBH+PDxslHm6bMtM8zQ9bcA7KipMff7sLO+7axfHmkgYrMC+PlNV6HZQshuy+p6Xbv1jMdON+P593uvkSSqA8nLy75EjQG0sBrRlkfG0DgpV0quU+pxS6rpSqkcp9ceez19USl1Z+3dWKfVkrgc6NkZ4629/m9p5bo593ebnOXn791NTV1amotJIvXx5Ocs03Q4wQpnKZO1mIT4s/LIyMo1dqtvcbOriteb/g4PcdTM1nsg0no2QMGm6vgNhr/NhKkjNhLzjyAiBaUdG+PvNm6ZltrybnIujUR61jh7lWkqdC+C3TnzztLLCeotXX+VYBLxDkrGkTl8qN0+dYtnz4cMUyNJSKiDpoGSvlbQRX++6tLXRIf2JT1D57d/P33/rtzYtmc9LGXd+pVQEwLcBPAtgAMA7SqmXtdbvW5fdAnBSaz2ulHoOwPcA5ExtiWa/c4daWSmemx484ELNzpJZ5ud5PLK7jtutlZeXTbKPD7TRl3oZ1H/PxcIHUouE5ubIJHV1HKsc36JRmreumXzhAp8rO0xfHxWVTbls1x42hJjpOp914NZMuDBovhqKxkZTxCYdfuyuukE5G2J5TE4aVJ379/n50aMc/717Buarvd20MSsuNmAcgnhUW0slsbjI9xAINsAolkSC7yGU7bpkE77dLApj9n8EQI/W+iYAKKV+CODzAH4p/Frrs9b15wA053KQdvJHdTWFf2WF/wDjXJIuKbJT2Oag7LhK0dO6tJQK2hiUeunzH7hY+NIVyGb48nIydE1NslCLp72ry6DHVlXx95MnjeIYGOB1kjkoSS+bCe66Hh+D76zr1ky4MGhBNRStrakltXLfoJyNSITCLSHfuTleL2f5ujqa/ZFIcqMO2WWliUksxs9mZijce/dS+bg4C3J8EdqIk/BhUhjhbwJgYa5gAOl39d8D8E8bGZRLotllt11Z4QIJuGIsRgYZHiZjSF24bQ7OzfEz8R63taWCNgalXrpAkJLj/dRTBrqroiKV4YHksJGQMFttrUGPPX2az7MVR3s78O67BgVok9u1b8jH4NvJbEehwKBJabWvpt/nc7DvG5SzITu04GHcvm2q7SIRXnPvHj8XPAzbESfh3KEhKtzhYdMfQFqh2UeNeJxrMDtLi87n+D14kAqiv9/4mQJx/Jw12KqckDDCrzx/056/QSn1KVD4Px7w+dcBfB0AWltbQw7RmNstLZzYoSGDmRaNUlCXlihInZ3+dt2iALQ2TR9WV7nwbpPIvr7glsqZzLUwYUXlmdGFhdT6g8ZGHlempsjQ8Tihw0XZ5dpsDPLaX7jAMdtQ5L6MO5vco0BdHY9t+/YZGOy9e81RIEwc3edYfPCA40okDDz62BjnrqGBv0u7e8D0HHTvOzVF7IyFBV4r46ivZ3NPG7Jd0JUTCfqfqqqSUY6mpugXaG8nHxUU0MIpLeXYgpTpZjh401EY4R8AYDVVRjOAQfcipdRRAN8H8JzW2nv60Vp/D/QHoKOjw6tAfCSMJGftkREK7/Hj/Fk8sM88Y0A0Ll5MLrMVT+r9+2S+oiLTP90W2OpqU/ufrXBJ6HFszCT0xGJ0JgmNjZFZV1e5K8jR4Omnk1ttA9ytRka4owi8dF8fxzw/7x/DRhqNBAnX66+bsBTARJyJCb5XpsIlMdnr69nA8t13+W/3bh5xsjnCuGFHu+dgezsFTGv+Lt58AReNRv1KF+BmcvMmMQpnZij8gku4tETBHx42FpgoqbY2M2f2vaUNuKRNC77f6KjJpMwGhGQzFD0QTvjfAdCulNoH4C6ALwH4in2BUqoVwD8C+KrW+kauB2kz0uQknTjilDt9mhM8MmIAIbWmsnjqKVNmOz3NhaytTW40Ibj5QHJVliDbZmt2aR38uw0gWlpKphHgS3GS2Ug23d2mn55SJlegu9tg5tu0kUYjgD+mLwkyAkwJcCyiZDKFteTz3l7jJW9qMuEyNzKTjlxr4sYNM9779/mvoYGKvaiIglxczLWuqOBnPpqZ4bgKC42iiET4t+lpOpMLC/1Wg2/OBI/QThEvKTEYnL4KS6VoYYn/Z1/1GOonu1E5NYGx1c2x/zOG+rTWywC+BeBVANcA/G+t9VWl1DeUUt9Yu+xPAdQB+I5S6rJS6kJORwnDSKdOcWeWbKz79zl59fUG6FSaZOzezTzyqioyQyxGoRGvf2cntbeEsm7dMk67MPDZLnV385nHj9NJdPw4f5cQkGj2gwfNLl9SQiYWU9IOqTU3U4HJLiT56ImEv3W4G/KyPexhQlI+JGTpH2D3tBcoch+QrItKLKjJL79Modq1i9+9eZPClU3YUnhgcZHAnufOUcE9eMBdu7WV/FBSQsvqiSdM1uXSEhW9j8rLzXFE/jU00FwXyzAoIzSorXk8nhwRkvoQt8JSlM3ly3RILy8DanwM4z85j7nxRcwU16GyOEtGDEmhkny01q8AeMX523etn38fwO/ndGQBZGv/vj7TnlkYdGGBeO+/8zu8xi2z9WXV2TvUrl3rz1Q7fdpEI7TmYjc3GxPdNhElkWVqiowqu7FrBi8ummsnJ8koQRln586RYauqTJ8/X6ORoJCUz2vf2cld2+4lKFDkSiUnKgUlv8guKriIcp9EgvfxzWW6Y8ryMpV4IsF3u3uXax+P81nl5RR0X79L3/0PH6YDT2vy0d27nLumJr5HuoxQ35wJHmFdnZm71VWOw1dhKQljRUXk6b3F3VAV5bh1vxy7dwNtR8opqTm2/3dchp892XfvcoEee4yCIag9e/akMlWYMtv1gFq4RSM/+xkX+rHHuNj37xsT3TYRRSn5oMOFbF+H3Rd+YoJ/F8GwjxMFBcYCikSSPexh5sF1aMrOLf3qZJ7E411SYgRdnFxuyfDly7TMolETiXHDsu5cBjm8bKGpqDCK9d498sLMDAW3p4dzZgOqpOvrKNiPg4Ncl5oaNjWtr89scfucwAJsurDAe87OUhHI+/raqUkfwoqRCYyiDvqBld2oc5jgsUY7TviB5MkWMAg5o0vxTbblmMD6avPtHITbtyl8FRVk7IUFMoEITbZ1BmGAIuRzOU50dZmGltPTvL+YtOvxZ8RitJbsxqMS4iwuDk5+kZLhlRWDSH31Kv0tra1k/kgk+fgSxuFlC01jI8cwPk6HXDxOfmhs9CuPoPsnEnzHXIbY3DRqmZtz54BXXuEm1dTENbOPB42NQHNjDeqn5hCpKjdt1HMNEoEdKvxC6YAwgezKMdPdL0wN99WrprGF7V2fmSHIo8CwZVsmmgkoQhjWd5yIRk2jkVu3uLOlazkdZHKLArCPTK++mtypCEhOfunvpwV065aJtxcWMvqyvExrxG5Gas+lTa7lZSvolhYqlnicCm5hgdeLk9RVHuvp6+hSUDOQIMVhY06srnJdtKaDOhLh75JhClA5js+3o/DOeWZ36g1grmegHS38maqosj0eZQMOIWSDf9TUkLF37eJ3Vlb42ZEjyRVi6zm2pWPcdMcJu917On+GL1Jw9iwFrKUldSf0WUl28svUFO8BMGce4O+rq7yfD98wjOVlK+iqKjp/ZUefnKTw/HK3RHB6dtD905Hv2HD6NIXZLlCyk3xOn6ZSqqvjGgp4ytgYjxSRCM/5dsJYpD6GAy92ojqR5e6VJe1o4Qc2niPt0+TZ3M+ujquupnmutfGIl5TwvkFtrMNSOsbdSOWdCIZtEk9OcqeKRmm5LC6SiaXhZxBWop38srrKvx06ZMBompp4JHnvPc6DG+sP8x6+/IGPfcxUXUpLb3eO3PtL12C7RXimNfEdG8QBf+CA+Zsk+Rw7xnd++236JqSZ6dISx6Q1k6VGR30Yhdukqm+nkS/clO46u/LsBz8AfvSj8JEVYca2NlN3fvAgd8CCAsbYJQOxocE8M9uoTVBDUruO3Fd5J8/74APGkScneb/JSf7+wQf8vK/PmPHXrlE4+/p4bh8bo1Lr7TWVbTdu8D3dZ0ro9KtfpSm+vGyqGfv6mEWnFHf/2VlW+vX2Js9l2EpDt9txujmyv2d3DT5xgs8JsyZ2VafQgwf8Z5Mk+UjKuGwEYiFKDUCmMOJm047f+YPQe8OkSAbtdnZL5bCplVVVNG+np/lzWRmFfXTUwIzNzye3sc7Gwsh0JPFZQLaZeuQInXYXLqSeMRcXk4uIurp4v6Ii7uBnzlBY7fJbwOyaQeO169ZLShiCnZ1l+HNuzuAhvPGG2f03YsmFObbFYqZrsG1FAclHIDv5RtCa7t6lENvVfG5USeZFohryrNdf5wawskK+UCpzGHGzaccJvwvEKE01g8JN6WL1tikslXaSiZVNjF8EbN8+Y6o+/TSV0MgIF1sSddra1l+WawtGuni4XcYsTsiaGpqYN25QmH/t15Lz0UUhCGqulL8eOEBLwA3LhXkHqVu/eJFztLBARi8s5G4vnX3tVt0bpTDKo7+fxxm3l+PoaHq8v4aG1Dz/WIzzNDREoU8kqEibmszzmpuBT3+aEYmqKlPoI2FEIDOwy2bQjhJ+1+Hia6qZTa21fY6WWGvGlsoOpQsfdXaSKcK0sd7IPNjWDWA+KyjgP7tEWc6Ybuvuxka++927HNvwsIHOKivj7/a5NKy5GouR4T/5SZMzLwVM9+/zc3utNpvGxij80stxdJRHkepqCqmdCelDa3Lz/E+d4gb08svkRckefe01fq+93fhDfL6erS7msWlHCb8raD5ACLfWGghmVNsBVFFBzat1akvldOTCYdtZe+3tXHBZ3HRtrLMhG5BS8AAEmAQwcyTVbKurNDsbGsj0bjGTvKt49hcXObeSVRiPc35sUI2hoeBGKEFz9OEPAz/5iRnj/fsUtuefD/feGyl3ta2h1VWuwcoKhXp5mQL84Q9TaGXXvn2bvFBRYXwljY2pef6SEi54AiUlVKLnz/NaGwrdpa0u5rFpRwm/67H2AULY4aZMsXr7jFhRwe+1tye3VD5yJD3TSUGG1Bm0tvK5q6vJob1scw7SkQ1IKdZKby931aoqCmlXF0Nr4mwsKzOQYnV1xtvumyM7q1A+k9DV6CitCaXI5EGNUGwSC0tCc5cv855tbcxDsFOag+Z6Izuk/V3J1x8dpYAuL5uipbIy8tLNmzy2FRXxyLN/v7EAfBuCD0K+qYnr0NKSXohz0SptvbSjvP0uVlxLi+nyYhdVuAUy6RhEFMAXv8jzaX198veAVAw3u2BlfJw7/eAghf+118jcjY3GsRfknV4v2YCUkisvNeNK8Zy6tMRil8JCMqaYox0dFKjaWv8cBXncxYv/2c9SiOX9whYM3btHJVlYSAUZj6cyvRt9sed6I3iG9nel3DceJ89IOK6xkZZOWxuVqDQvWVri95ubU6MHQjU1nGO7+MmFkA8iH/7hVkUAdtTO78aBo1Hm8fsAIdYDdeVzFtmIvUCyWQYYxOBz57hT2AUa6eruM1E6a6OqygBSSjHT6qphbJukCMcmH7qQ75kHDpCp33kneQzZ7laxGJXywIAJFx49ynl7+WXTXSmdCbyRHdL+bkuL6VSkdfJR7/33TWSkqMgUVclZvqLCb7W5cNwLC5zf3bv9QuxGEwTFeL0tx9ZLO0r4faGcXHa+sfuxi0d2cDB1IWymq6szXWUKCkwdeWlpcN29/awgb306E7elhcw7OmqKmXbvptUyMcHdTIpUJid51i8tNQU/+/fzWnc8PiwAAbt87z0y+G/8RvaZcmNj3PUnJjjW5WUqy8ZGY6k8+2z4LEb3mZl8AW4G5JEjjHrEYhyLHPWiUd6joyO1w7MdZfF55t2w5oMHRPlxE4h8a6sU51jgwjYhmc9LO8rsB3JvQgvJooyM8Cw4O2vqqy9eNA4fwDCdndorjjJp/ZSu7t6t5b50CfjOd9jWK4w67jiaAAAU9ElEQVSJ297OnXTfPjYW2bfPFMnU1HCnP3KEwtXZaRqalJTwfuKgssmHBVBURKF98ICpwdEoGVwQk4OSaVy6eDHZUkkkKCTXr9Nz/g//QIsgnQkclMATjwcfFYTc74rF+Id/mHzUi8f5rr/4hclCtN8r3bFEwppPPknFUF7OzMOSkuTx2IVgV68y0iCf5ZqnM9GOE/5ckp0J+NJLydBLtbX8v6SEDPjqq9z53nmHTNHebphKkF+amniP0tLkGn2XXAaIRLg79/ZyPIIX39XFDq5dXcngGbEYHXA9PRxXTw9/j8WSGX1qiu/Q2Mgz6+AghS2R4BhsAXGz10RY5X2UohBKKDVMJp7Q++9TOARGLRLhvRMJzll5eWalEuSLSCQy+wLSZQ7KZ8eP83tPPmkiRoKk5Csn9j3LDmseP875cq+ZmOC8//jHVPqJhOlEnGOsjoy0o8z+XJINKxWP00yenuZ57UMf4jUlJVwQYRohOVcL49h9/V54wUCEHTvmf7ZdCehrA/7WWxQYwfzft49CI30ax8Zoth44wLPz3FwyJJYcjaQll5isXV2ma6ybweia1ZWVHJ/bB7GkhCa7mL2+/oQ+Ki/nEejHP+ZzCgv5jEjEoCSLUpFjncBt2z6HeJzjevNNkzZsw7oBfl9ApuQfWyFLJCMaNclIQPrkIHdtbbLHU1DAOonSUr7T0hJDiq2tWxPes+mRFH4bVioeN01Qi4rImIJaI22a6+t5DpSzv2D0i+B85jP8XM6dQY4hMek/+IAKZXLSKBpJLhodpYUhiLcipIcOGaXjc4xNTdF6aWoygmIXHd28aRCGfH3vfGi7KyvGMbawQOFcWkpuShIm3HboECMgtbVUFu+8Q6XU3EzBEtiriQkjpPbZWBxhL71EJVdTQ6EXsJCKCr6/r9dCJj6QNfvgA86LZHpWV5sdWfpj2slBCwt+/0kmf4goLLvyUHoRZIoM5JoeSbP/wgUKQ1+fwZIT/LdolIs1Ps7/o1FThipUVpa6UJl8EfZ5UTzI/f3G7BMgz3PnuJs8/jiVkVL8fWWF4wBSTfTJSe5QY2PJCgMwx4PXX6fJv2dP8g5pHyVs07i+HviDPzDYhn19psmJOOrChts6OoiJuLLC51RWUmBLSmjlnD1rdnohn4l9/TqVz+IiBTQe55z19JheC5n8D771qKvje54+zTmWY45SnIeLF6l4pqc5F6Ojwf4TOXYNDdFv8Npr/L7k+mtNC2h1lRZENErluLCw9QU+O3rnF83d12cKany15+53zp8n8xUU8Czd22sSOZqbk/OvKysN6qt02IlGeX025O7WHR3c8a5dY2aZtAEfGjK7YfNa36PVVR5LhDnc3aW/n+9SX59ceHPxInfHAwdMHsCdO3wn3w7pM41raszxaG6OY7p2jeMBOI8VFZlRfI8dYwHPzAzneWGByray0iTX2M1I3BZc09MGIHV21pQJi5+gsjK414KPpHX68jK/29hIi0Q65kq4rrXVNAvZu5fju36d8ykQZu67HjyYfKS0kYprangfUTKSDSgJWUA+tz+Fgqr3VlboyBLmlnN6OmdbfT0Xd2CA1xcVGXgrN/96bIw7grTaXm/XHPcsKNVera0G1qqiwrSTkjNiUZFpJyY7jGuij4yYNFKhsjI6lJ5+2pSWputGFESJBAVXct3Hx6mgpqcpaBMTnMd//mfuar5Q29iYSTyanzdZmLt38/0iEa5JY6M5htTUJLfgEoy7wUEK19ISd+uZGSqkoF4LQcg7589TqUuGZF8f73v3rgmftrWRx6Rx5+Iix1BYaAq5VldTsQ4EVMQ2/e12bmNjHK8gLPX3s/BHCsO2Krd/R5j9vhCLaFbXOz86mt4UnZjgAhQUkGkiETLQ7GwqrBTA32trTZ68ZMnZkNxhKCiMJb3p5Ljwwgt8Tl2d6UE3N8f6eLd8V0x0O6mpq4vM+KMfUfhv3iQzSnxbdshMHnp7vsrKeI+ZGVYEjo4a5+jsLHfPmzeDQ20XLtCpFYmYHVO87kePEj1X6+RjiFQZivNtYYEWTFmZ6bgk6L2HDvlN/aDQ3IULphhMMiRLS007r6NHjSU2MsL7trQYTIKKCmMBDA1xTq5cMWHbv/1b/m6Hh6XfYnc3xz88zPs0NwOf/zyfMTVFZXD1Ko8Zm+393xE7v1t339/PCRob4wTa3nm3MYJLck6bnyfDlJdTkG24K5dWV1Or4AQKPAyNjXFhz58n07W3m4iAu/NKvvsbb5CxOjr8nW3c8t6f/pTWSWEhhXtpifNx716yM8y3Q6ZLkiko4Fh6eviZ1KAPDDCxqbKS1y4t+XHzAB4TamooYBUVPGrV1lIhPPFEKqa9vJ+k1MpO/MwzPCK98YbBR4jHKUiu+S1j8GUMXrrE+bh6lb+LU3NuDvjKV0wNg0CXy04vrdykEcyhQwbBuKuLcxCPkx8Fs0/m/d498m1DQ3Lpt9a0eATwtLSU1wwPb74FsCOE3z7/yQQ1NXGCJANLvPbp0FHsXPzaWtPPT86kQbQR7Dfba33iBBny7FlT8ONbWFFEIpQ9PSZhyHe9WCfj47y2ooIWhZiz+/YFm/qZyoPHx7kbSVHM1BSZ+SMf4XOkqErKoIH0ynfXLvpYpFJufDwV016otdWgMwtFo8CXvpQMax5UXBQUdgNMIpTbD8HdBGR+AFp/Bw6QBzs7yXODg+Q/6e7T0kKnqiAWybyLye8qoqEhjl2iDBsFfcmGdoTwi/DZE1Rby8luaKDjJhIJZiIhcRjV1xsnUlVV5pZR60H1tZ9p7z7HjxuFBRgILddhKZ8FCaW7UwsenN3GvLycwpPOGZYunx7griTtxCRfXaoEp6YoRJISK+QqxsOHudvKmJqaqKT27+eOqBTHePJk8tjSzXuYUtggpX34sLH67MpF+x2E3JTytjbym2RxyrGxutrAeUWjHGN5uZn35ubUtuziXJ6dzS3oS1jaEcIvTGBPUEEBM6kmJjiZUrGVrsmCDXEt4a4w5rvNAFJDX1VltHk6xeHuPpOTFPaeHv59926aiKOj5tx65w4Vko+5L1ww+HBuV5y5OYMBL3kKjY3c+YMaj2ZKSqmr4z2Wlkwy0uCgSSBqa+Pubdf6u4rx2DFjdU1McPx2q245Brm9+9LBcoUp9MkVtLsbBdGaYbwbN0wbNaU4ByK8R46YMF5np78t+8WLTNzq6Ngc0JdMtCOEXybfnqD6ek5oIsHJ+sIXeG13d2oVmtBGzHdJnR0bM/3mLl3iWbuzkwyerpZd/BXicRdmOXOGu3VDg3GETU8zDHb4sLEGqqtTPfiASfDp7jb+jqUlmtWZLKEwcyIgH11d/F1rjmXPnmSQ0Ey4edIUo7+f/+rqqKiU4tlbdkrXzA3KzAuzlpkw/dZrTre1MR9DciYGB/kORUVUbGJNSAQJMOnS4+Ncb7vWIhbbHNCXTLQjhB9InqCVFZ4bCwq4YzQ0UAiVCu7WAmRnvvf2GqebQExLHrnk5ItzpreXf/Od4dvbObbxcTKD1lRcFRUGRqq0lMcAaeagFJ9VXGwq8WQnkbELTU7yfDk0ZPwgi4vGEWpbQj7HXtCcNDWZWoP6ep6/pWV4Zyd3K3eHzrR+ck1DA8e8ssLxjo/zfU+eDF8CHXYtM40tDBai+1kiQcfj6KjJB3nqKc67lHNLVEmw/i5eTE5iAsyRyR5nLkFfMtGOEX7ATNBLL3Hnra83mvXNNznJHR1mpwSSd5KwE9zbS0jp2lrTFebv/o4/P/GEPyd/ZSU1vdZG+wGSd6byclNrL62alpb4c3U1BUTMd+nku2cPrQF7x7t2jcxWW2saS46P0xN/7JixhOy6cbspR3Nzcg26FKNIKLW2lkIlTq7f/u3UGH4Q8o7v7/bR69o143ORXICgEuggXtiIsITFQpQQnlh5k5NM1Nm9m1GPN97gXEWjDBPKcVCwCcvLTduyhgbOZ0mJyU1x32mraEcJP8AJamriJCtlTGkpOrF3SrfoQr6faYLfeMNEAwDzf08PTT677/rCAsfR20uFJIU2dh+9xkZ+T2rqAZPwUl3N3U/aOEUi/OzQIQq628kXSN7xLl3iHBQW0newaxcF4e23aY0IYwvYaX09/7dhynftSj4L/+AHyXUPq6tE+62qShV8V3h++lODeivKo6aGfoxTp/z5DuJABExfwzC0UWHJ5OwMsvKkNLmsjLwSiZhKzps3yR8uiGxxMa2dsjJaZTMzPC5I4dRG8AnXS6GEXyn1OQD/A0AEwPe11n/mfK7WPn8ewByAf6u1/kWOx/pLss97EgEoLyfjCIZafz8dXetxmAwNJWfLASZWKyW88/MU+vl5k7zipte6CDTV1Tzjyy7R0UFBLCri92trDSMdPhzcydd2PkpZrHSC6e2luW+XugLJYKdAMEw5QOZdXeW1AoDha6ftA1S9c8ek/hYXG3ir27epgDo6qDDm52mdDAxwvuNxPvPateQjxWZSGGenz8qzYc6l5HlxkWHASIRHo74+8oJAq33wAT8bHzftu+rqeM+HheCbMcNPKRUB8G0AzwE4DODLSqnDzmXPAWhf+/d1AH+V43EmkVuzrjXPXVVVBhp6ZCRcgYePpMusTZOTBsdu/3465MS5Mz8fXPwjikq8/K2tZJYHD6hMvvxl4E/+BPjN36TJe+oUBd/GJXTfQ3a81lbgE58w1kJRET/v7aUysH0DEoefnjZp0C5M+cQExygAqJKQMzBAofYBV9rP6O/nNXfvmvUQBVNTQ8GWscdinBfpVCt182G75+SC0oGH2EAtgs0n8yX4CALGsrpKwZdipQcPjMVWUMDIwMgId3nBTpSkJ4kaZcIk2AwKk977EQA9WuubWuslAD8E8Hnnms8D+F+adA5AjVJq09DY7fRWu2a9s5MCMDyczGTZ0smTFABJQJGfJQ79mc8A3/wmhXV52aTX2mWaLgLNjRtkjPJy7sxf+ALP5IlEckXgs89SAYQBypiYoKNp926TZBKNkqGOHw8GOxWYcqkktMc7PW1MUVEoDx4YZGObXOGR86sNZFlUZNqlC4nz9vHHqbhk911YoBLYCsYH0rf3soFaJHwn8yVp2R/9KPCpT3H+IxGDCbiwwFz9qioeA2IxrlNVFed+edmg/8i6uG3AfJWjuaYwZn8TALunygAA96Tlu6YJwJB9kVLq66BlgNbW1mzHmkQiMHbNelkZTf2Gho2ZTHaKbX8/F/f555Mzv9z02vPn/XDhct2NG9wFqqqMogjKMQh7lq2p4e7T2WmSlqJR3v/YsVSw0717ufNIZp0Pplzu09RkUGciETo6fZEM9xkTE/R7DA4a/IBIhH+3nXnrmZdcU5hQoA3UIvn+dlTBLtIRlKInn6QlIGZ/dTXP+FeuUPHv28cNSqDXurs31j14vRRG+JXnb65bJsw10Fp/D8D3AKCjoyML104wbVaIJF2uf7ZjiMW4S7ipqhtdYDvF1c5Uk5wDd0ynTqWGsdzx2uCgUuhSV5cK+Ol7b0n4kb4FIyMcU3s7zWQ3hXqz5iUbSqdowwC1yPsXFtJJ6wqzJF1J1p/PMt1IBulGSOkM7lWl1AkA/1lr/dm13/8DAGit/5t1zf8E8LrW+u/Xfr8O4Bmt9ZDnlgAo/BcuXNj4G+wQ8iHTiId9I4oq117ijY7Th4Dc2ho8rs2al4dJ9js9eJDc708Kutz3y9U6KqUuaq09icqea0MIfxTADQCfBnAXwDsAvqK1vmpd8wKAb4He/k4Af6G1/ki6+z5qwg88nHDOemirx7lT5iUbCur0u9nvl1PhX7vh8wD+HAz1/bXW+r8qpb4BAFrr766F+v4SwOfAUN/XtNZpJftRFP485WmzKRvhDxXn11q/AuAV52/ftX7WAL6ZzSDzlKc8PVzaEUg+ecpTnnJPeeHPU54eUcoLf57y9IhSXvjzlKdHlPLCn6c8PaKUF/485ekRpbzw5ylPjyiFSvLZlAcrNQLgTsjL4wASmzicjdB2HVt+XNnTdh1bNuPao7X2VGKk0kMT/mxIKXUhbNbSVtN2HVt+XNnTdh3bZo0rb/bnKU+PKOWFP095ekRppwj/9x72ANLQdh1bflzZ03Yd26aMa0ec+fOUpzzlnnbKzp+nPOUpx7SthF8p9Tml1HWlVI9S6o89nyul1F+sfX5FKfXhbTKuF9fGc0UpdVYp9eRWjCvM2KzrjiulVpRSX9wu41JKPaOUuqyUuqqUemM7jEspVa2U+r9KqXfXxvW1LRrXXyulhpVSXQGf5573tdbb4h8IFNILYD+AIgDvAjjsXPM8gH8CMQM/CuD8NhnXxwDUrv383FaMK+zYrOv+H4jJ8MXtMC4ANQDeB9C69nvDNhnXfwTw39d+rgcwBqBoC8b2SQAfBtAV8HnOeX877fzbDiI87Li01me11uNrv54D0LzJYwo9tjX6dwD+D4DhbTSurwD4R611HwBorbdibGHGpQFUrqFTVYDCv7zZA9Nan1l7VhDlnPe3k/AHwX9ne83DGJdNvwdq6K2gjGNTSjUB+NcAvoutozBzdhBArVLqdaXURaXUv9km4/pLAIcADAJ4D8C/11qvbsHYMlHOeX879erLGUR4jin0M5VSnwKF/+ObOiLrkZ6/uWP7cwB/pLVeUcp3+aZQmHFFARwDgWFLAbyllDqntb7xkMf1WQCXAfwrAG0AfqqUelNrPbWJ4wpDOef97ST8AwDsDnnNoPbN9pqHMS4opY4C+D6A57TWW9ByIvTYOgD8cE3w4wCeV0ota61fesjjGgCQ0FrPAphVSp0B8CSIFP0wx/U1AH+medDuUUrdAvAYgLc3cVxhKPe8v9mOjCwcHlEANwHsg3HGPO5c8wKSnR5vb5NxtQLoAfCx7TZnzvV/g61x+IWZs0MAfrZ2bRmALgBHtsG4/grsUwEAu0C4+vgWredeBDv8cs7722bn11ovK6W+BeBVGIjwqzZEOOitfh4UtDlQS2+Hcf0pgDoA31nbYZf1FhSIhBzbllOYcWmtrymlfgLgCoBVsPuzN8y1leMC8F8A/I1S6j1Q0P5Ia73plX5Kqb8H8AyAuFJqAMB/AlBojSvnvJ/P8MtTnh5R2k7e/jzlKU9bSHnhz1OeHlHKC3+e8vSIUl7485SnR5Tywp+nPD2ilBf+POXpEaW88OcpT48o5YU/T3l6ROn/A7ES1VMMDVJlAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n",
"accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n",
"\n",
"fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
"ax.set_aspect('equal')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than $1$:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3.1"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"4*np.mean(accept)"
]
}
],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3",
...@@ -16,10 +171,9 @@ ...@@ -16,10 +171,9 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.3" "version": "3.6.4"
} }
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 2 "nbformat_minor": 2
} }
{ {
"cells": [], "cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# toy_notebook_en"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## On the computation of $\\pi$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Asking the maths library"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"My computer tells me that $\\pi$ is *approximatively*"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.141592653589793\n"
]
}
],
"source": [
"from math import *\n",
"print(pi)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Buffon's needle"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Appying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation**"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3.128911138923655"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"np.random.seed(seed=42)\n",
"N = 10000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"theta = np.random.uniform(size=N, low=0, high=pi/2)\n",
"2/(sum((x+np.sin(theta))>1)/N)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using a surface fraction argument"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A method that is easier to understand and does not make use of the sin function is based on the fact that if $X \\sim U(0,1)$, then $P[X^2 + Y^2 \\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWlwXFd2Jvg97IlELkgkNmIhCRAkQUISKZKCKKnIkksq2SpbKle7elyuKGvsaFe4w3bMz/4zEfPDf2qiJ2La0bbHUd1R7U3R9oSnrJJrsZZyiaWSRIiESFHchCRAYiEBYklkJpYEkAm8+fHx1L358N7Ll0CCBCWcCAYI5Mv37rv3nHPPPct3DNM0sUM7tEOfPyp50APYoR3aoQdDO8K/Qzv0OaUd4d+hHfqc0o7w79AOfU5pR/h3aIc+p7Qj/Du0Q59T2hH+HdqhzyntCP8O7dDnlHaEf4d26HNKZQ/qwdFo1NyzZ8+DevwO7dBnkvr7+6dN06z3cu0DE/49e/bg/PnzD+rxO7RDn0kyDGPY67U7Zv8O7dDnlHaEf4d26HNKO8K/Qzv0OaUd4d+hHfqc0o7w79AOfU5pR/h3aIc+p7Qj/Du0Q59T2hH+HdqhzynlTfIxDON7AH4dwKRpmj02nxsA/gzAiwAWAfyvpml+VOyBfiYpHgdiMSCRAMJhoKsLiEQ+v+MohB7GMW8z8pLh99cA/hzA3zp8/msAuu796wXw/9z7uX2pEMZxuzbfffJ9t68P8PuBujpgcZG/9/beXybeLuMohB7WMQsvlJQApsl/D1Bx5TX7TdP8OYC4yyUvA/hbk3QWQNgwjOZiDXCzJHzyxhv8OTt47w/Ly2Sc5WX+Hrd5xbjLtW6fefnua68BV64AN28CqRQZ2e8ng2z2Je3exYliMfVsw1g/js3ce6so35i3G+m8UFYGXLgAXLzI/7vx3xZTMXL7WwCMar+P3fvbuPVCwzC+DeDbANDe3l6ER7uTdYOYmAAG/2cMzRE/orv9aG8DQiE/L47FuHPodI/Jklk/Rq4A83N+BMuA1rIYQkEopgPUT7mPzqD65+fPA6urHFxDAxf/8mWgpwcIBoGZmdwXyGd1jIwAY2P8rKkp/y5ovefICLB3b+411dUcx3bdYRMJjieZBEZHgbk5oKaG47Su4WZpo8cL/Xu3b3Ot/X6udW0trxkb47oDim/u43GmGA4/w+Zvts0ATNP8rmmax03TPF5f76nwaFOky18qBQwNAdXLCcyvViOzwnVIJkFmTyTW3yCRQDJTjcuXgcwKEAoByyXVGOhLIDWS4Pd0qq4mM/b1AW+/zQcmk7mfX7vGAdXXU/B9Pv4bHaVwhcO8dnAQ+Ju/Ad59FxgfB6am7K2OhQXuIEND+S0IO2tkbIxaUafFRZqmYp188gm/d+kSMDwM9Pdval02TeEwx3z5MrByb2Hm5vguxdxB81l3Xr8Xj3M9k0mO+/ZtYGCA85pMKv7b6PM2SMXY+ccAtGm/twK4U4T7bppkgwAoWz4fUNEQRjq5CF8Xd+KRUeCRvZrQ6RQOY+zCInw+P3w+/slvLGIhGsbIHNCzuKh2dIALOzpKLd/SQoaUXT0UolABXOy2Nn4GAJWVwOQkv9fTw8V+/XUKdTQKLC1RuDs6lFCLkM/Pc+xLS3x2KARkMjQtZfeIRoHpaeDsWT5r/35lLjc1UVG1tvK6aJQKZX6epqlpcmzhMHD0KJVCXx9w7NiD2/27uoD33+f8VFXx3U2Tf7ez4IQK3VWdrDe3Z9h9r76eivnqVeDuXaC0FKioANbWyAP19UA6DVy/vn59vDxvg1SMnf91AL9rkJ4EkDRNc53J/yAoHFbyNjdHPpmu7UKodAEl6QVkMyau9y/g/JkFnE92rVewXV1ITy2g2lwATBMl6QUY6QUYXV2YDHZRSBb4GRYWuEhdXVy09nbu1mfOAH/6p8B3vgP8679SyBYXKaQ9PWSCyUkyoZjTsRiPBrKjx2Lc/W/dIuMmNKvDMMhUspOMjnJnrqyk5puaAl59lT9LSpTwfvABhf7DDzkxoiBiMTLizAxN6fl53mtujv4Jw+C1D/J8HYlQeQYC3DkrKjiXTU32FhywsV014WDdOT3D6XttbRT0Tz/l/1dWOJ/t7eSFf/s3Kn5Zn1+apB6ft0HyEur7nwC+CCBqGMYYgP8DQDkAmKb5VwB+DIb5boChvt/bkpG6kJNC7+ri+gLk40QCMEsi2POFXqTGYrh1YQZl0TBKn+rBXHlk/XH2nkAuDsVQk5zBaiCM5c4ezJVF4G8D0HXvbD8zwwe3tpIBAWr6gQF+ZpoUoOFhfp7NAs3NPOPv3cuFlwfH49yhb96kwEajvF6siOZmpUCyWT5nYYECUF4OvPUW73f8OAV1ZoZnzJkZPm92lopkbk7tPpkMGfGRR3ivf/5noLub1w8MUFGVldE/0NoKHD68ZQzpmdraKMC65bWwYG/BARvbxWX30J+x6GAlCsXjNOs/+YQ7elsb56+zk8p7eZnrlE7zKCDv0tzMNVpZUcdAsRbdnrcJyiv8pml+I8/nJoA/KtqICqR8Pind9zY7S4VQ3RTB+YlepA5QRtZCgCyvlRc6jkfQt9qLeT+V8OIieaynB+oB9yiZAsbOLyKV9aP1o48QXS2Dr62Ni9nWRkG9fRs4eJDKQJRGT48S/L4+fiYMcuUKBa60lAJ47Rpw5AiFcniYLy3MEg5zp66rI+MAFPJQiM8+dAj4+GMKfSbDlykv5/2F2aqr+VyAGnPfPlomS0scQ08Px1FTc1/W15F0zb5uYWwokeC4L1/mnAQCfG9512I8Q9avoYHPSKWoBDo7OXdPP01L7sABdVw5exYQRCs5ClZVKaXu9rxN0kOf4Zcv6iPy+fWvA6+8QmU8M0MFfOyYkhHA3sKS74usVlbaO7vjceDcbBfWUguorViAEZ/CzEQW6SUox0NNDRfVNBHv6kVf+AW8kehFXyxC61NeZv9+DrCmhoOamqL18PTT984u0xzE8rJyADY00Ko4cIBMJRQIAHfuUICvXuV3slneLxikANTVkVkBMvihQ5yIdJqMGQzyxZubgY8+4rEiGi1soYodMvS6MEIlJRy3OAhXVvh7iYsIWJ+xvEwhPnfO/h1k/ZqbaUUFg1Syk5O8j85sQj4f7wuoo+DaGv/le6dN0gOD8SqE3Pw0ulNPSCJVVtI36nBYzbmQk4Vl2eBtKRYDKpoiWI32omw0htWSKiwtlWB8ugGNkWrUAfBn54FgEMmSsK218thEAjNGHebnDTTW9KB54ufw1dVRqz39NBmvvJwvHYnQNL94kTuG7CTT09zhFhY4EZWVuaHEqiqaQC+/TMVw+TLvFwioneYrX6FgxONUFNEovxMIKKdgfz93sbU1b4lSWxEy9LIwQk7dqN26VFsTc2ZnqWDFCrC+g86MoRD/mSaZMRLhXB07xqhEMsn57O0FfvELXidzu3v3fQmnbnvhz8c3GzmWAYVbdE5jE964fp3fXQ1HMI5eXO+I4uCd/wbjbgKoqMTc7RV0hOLwfekZxMyudcfPVAp45+MwDnUuIhT2Y66lG+aNQTT5V+FvrqXgp9PcVeTlDJsoa3U1zUzZrRYXKcwrK3xIRwctifFxRiQkglBTw+/IEaS2NjdOffQonw2Qca9e5QQcP55fmDfqNS8GySKdO6d2/OVlCt6xY1RuTt/TGe/8ec5fNJrriT9/nveVecpk1DwBucwoO44wWTLJ7+/fz2dMT1PBnDp1X2L921748/HNRoVY9wdYj95eyMoblZXcDI8fp1zEMp1I9vwBHhn7MaKLVzC/4MOFgy+iovVX8Ma5CFpa6GMTS3B6GpiPdAHzfbg1DsxlgqiNnED5yL/B31LHHb+5mUqgq4tfsttJhKFFqN54gwPUFUUiwR1/ZobnoKeeWv/i+q4q9wD4nHfe4c/JSTKuvISTMBdinhWT9EWS0Ovamgq9Liw4+y6sjJfNkknENwJQ0Pv6gNOn+X6ZDI9Fjz+uEq50ZrQy68AA/3/0qLrn+Djw859zHbc4sWrbC78b34hSX1jgnAUCFCivQlyI1WglK2/s308lPjBAR315ORCv7cTY8T9Booab7fXrwDer7FMApqeBqkgEfXO9aDBjqMMMUg0d+EHgCfzuyWmE1mx2AetOAqxnaDvTqLwcePJJ7y8v94jHyZhDQ/xbba1zdqLd9ws1z/JRvri9vkjt7RyrYTBq0dGR30GoM14gwLkW34jcv75evVdzMwV/cpJzbN1RrDuOneNpepph3myWzt65OR7jSkuBL395c/NloW0v/E58I+Fqv58+qYkJzqlscFtdK2HljVCI63j5MnmqtpZHN5HDyUlaB058WFpKXqiMRrDQ1osFkA/Gx4G/vtqJJ59cn907lORO4qsHWruqESq3MXuKcb7p6mJOwM9/Tp+BRBVqariTjo4yZOkkzMUYg5X0XV3y5d96i8IlCUjWM3hPDyf89m36S5x2CbtwXVsbtXswyPP54iIX6OTJ3O82NVHwX3jBftz6jmMYZNpslsqlre3eLlBFBvH5OO50mu96/HhRmXrbe/u7LLk04+M0r8+dY6RLQt1DQ+SB+XkK0dtvkxe2qh5FTyASkg31a1+j8JeWcszptLKQAcWHgQB5rLISeOklXifFXtPTtBSamqjo7GqKFqsiKH2qF8uoxMAHM0gu23iHC/WK25H4AEpKyLCNjRyYz8cz6tQUF0iOI3bf3+wYrCS7uuyQpaWMeAwOqomSRUomKUxXr9IpeuJEbl6FHoUYHCTjzM4CN24wNHr2LO+zezc1tf4O5eW54/Jq0cTjfEYqxdDr8jKVy9JSbtq3YfBffX3RE6sM083buYV0/Phx02vTDrsalps3Of8Sfs5kFB8ePsyfTU3KH7WwUNxjUzyueCSTIQ/U1gLPP8/P336b18hnMzPAY4/l+oIWFhQPAbzf4CD5WZL+/H6VwCbXA/b5Lfq9ivaSukeztJQP8fmoZcfHGUY8eRL46lc3NrkbLWQRP8SVKyoxxjQp6I8+ynGKxXLrlhLIRIJCLAsl1oNYJO++y0VraeFCjIxwMY4cAb75zfUl29bv64zm9m6SbZjNquKksjIK+bVrVGQ+Hxk8nSZTZ7POFsU9Mgyj3zTN416mftub/UCupdTYyLnWk6EuXlRKsqGBCmJhQf3NzrlcjOIpq7Ndfo9EgOeey71/NEp/gETg7Cxf8dX5/dxwKiu57p2d/Fz3kbn5z4pSGGbn0ZyY4M9olH+PRvkAN8H3gmmwukpT55NPmLP/0kvqpe1ocJBHkMlJTuTRo0pQAgE1GWKxxONklkCAu0FZ2foaCfn/xAR/rq4yD391VSXt2OE4yHktnbZP2NJLSt9/n9eYJt+hq0s5qQAVFuztVYVAgQDnYgsSqx4K4RfSj3B6MtTsLOemooK7/dAQ/7+woL5rFY7Nhp1jMT5L59GFhdzITzhMC1PuKdEziS60tKyXC/EHSZ6HOASBXIvSyX9WtJC6nUczlVK5BlKg8tJLhcX333qLE2GaPPOsrnKnk3yBqioWNb3yiv19BwdZqxAIUNhTKSqC3l4lKPpEra2pVGch06TpeOcOjzLBoErDraggQ2WzHIskZg0Pq7Oj9Z3szEp9/pJJMuXyMhXc3r383sQE760XfgkjyC5QLB+JDW37M79O+jk7FKLSHBykiX/3Lj/3+8mTKyuKbyWcev06162/f/NYENbajWSSFa9///f0PdnhNIgF88ILXN+BgfV1JgCv+da3aJ2Wlam6ITlWW/0g+mdFw7mwvqB4NMvKeHb5whcooG47tHUw2SyFaGiILz06CvzoRzSzIxF+Pj1NgXAa8JkzVB6trXzhPXuoQC5doiBbMxD18t8PPuD5/Sc/4XHgzh0+c0Wr7961i9rZMKgIVlb4b/9+jsnrBOvzJyWl6TSVkXiDp6aU11dfxK3wkdjQQ7Xz607jTIbCU1fHZLX5ec5lWRn5YmpK7cBSfn7smBIyq5PWLexsZ7nqUQjxJw0PczcvLeVRtKdH8YUDTohj/kK+PAT57NYtykogwN9HR1WquJd3c6RihAitIRGpP1hZIdOvrvLvy8v8vbJSnYOlvt068ePj3KUB7sqPPEJB/7d/oyUgWXIDAxSyaJT+AfHAXrpEi6O3l9+/fp21FhJ3b2vjubG0lKZ+Nktmy2SoOFpavE2wPn9SX5FIKCAP0fji9bVGHzYTh/ZID5Xw6wJx4QKtNfGgX77MNQkE6JCdmFBhaLlOzGepSD1xQt1bN5vtzupWM3r/fpWjMTJC3l1cZB2M1P6PjtJPYyd4XvJe3NZfqhYlrV+sw9FRWqtOSWaeqRjhOasCkUrCQIC/i1kbj1Njr6zQlCkv54TanV+kjFeECKBCePRR4Nln1d+kxBpg7H1mhia3fE/Slg8e5PNLS7krP/ccr5Ez9927rJeorlZhTS8TbFdSWlqqrlta4rlx714K/lZnOtrQQyX8gBIIER45yllDuM89p9KprQluggVhdb61tKznt9dfVyX6gPoptTWxGJ/Z0kJBL7s3o1VV5B07vnCq+ixUSM+fV+FOCROL6R8MbvK4uNkUSIDC9frr3OGjUe50i4s8gwNkfhFSMW8XF6kkPv2UgmGd+JYWmlUAJy2Z5GL85m/mPlvXpE1NFFbZgQcHVQVXXR0XTSIEkYjyvA4PUxEYBk32nh6Oz8sE25WUnjhBJ+XsLBmzuXlLq/by0UMn/ELWTSUU4o5vVaJO1qt+pBK+tjPFxRGtK3rdmSzPEmtVwHlMU9XX6Gubr+rTKx/IfRob+e5LS3z24cPcRJeXaR0BnJMN0WZMz3icplFXFydwepqDam5Wjoy6OgrYyy/z8wsXaDY9/zwFdHCQky0mW3U1d9FvfpNn/9FR3u/ll9ebUXbeUXEShsOceEmssC6UvPfAgHIIdnaqQp10msU4grfwxBPu86dj85WXq3Naff0DhRx/aIXfq1XqdJ2d/8TOFBeAG52sO7Q8w++n8MViyjKIRAiFNz5OPg2FVEaoQP5NTXFDKCRULpmlkgMiR41YjHyazTIC5lSAtuWka1LRnAsL99IYK1VdwTe/ycm6e5c7o5zPUin+03PpZeI7O3MdjaIJAXtmkM9aW5UD6NQpng2npjgx1uy5SIT+DT2hIplUKEllZRTgtTXlSPICmirm2TaAGH9ohd/OKm1poSl87RqvOXSIFpxX69XOSpBqVrf4vD6WdJpC19XF7736Ki3Htjbyzs9+Bvy7f8dn2FV9eqVEgs8QC7iqSmUGdnQUuYjOzvEmN3RKJnByaqTT6wfR2bn+HNfWRpNIsAzczi9evaPpNJN1DINCKwvlNPFOhTiVlSrZSSDP9u61n+BCYq/3uRHJQ5Hh54XicfdkLq9oy3YJW/v3U6gKXZPvfU/l+QtJGPDf/3v1Nz07b3CQFq1YCqdP20fTnBLEOjvt/RyiYPQEMSde0/9eZ8Sxf7YPwWZtUsbHeXO9tt1qTskAvaYh2l0/MMCzTHW1+2RsJdnVbV+7Rq1tGJzYO3d4/rp9m0cAvSFHMknNrL/X+DhNvZaWXGXqli3okT5zGX5eKBbjOtXWKhPYMLj7et3x3DaQjfCcHpUS6uxkxMjOkpD8Fd1SePVVWsbW51uPGnKfY8c4/nxFdE4bkkQxpF5m5M0Yrkz7ceBxP7q77/U5mJ1VLyPY+YIRIGcXr+cy0XaDg4rZu7pUpdbJk6o8VsJ399NktkOAEd+Bz0dGmZxUvglxtOhx5aeeUvdLJvmumQydjJL5l07zWfcJuRf4DAl/IsH51Bm+qkqB3XqlYoZXm5vXR6VWV3m8tIPwe+01XivXy88zZ9YLv5ui8iJ3TnkGZ84wXCn1MvuWEkBjHcbGOPaeHiCUyfBiSXDw+ejBnJy0B1B0Om/p2u7AAe6gEq83TYboxF9wPwFAnEgmtq6OY19aosOysZHjLSmxb8jx13+tUJAMg0kphsFdQBqOzMzw88uXmb2WTNLnsbb2+QXz8ErhMB2popAB/l/KqoH739vx9GnyNqCiUrOz9js5YG8phELcWO3ITVFJlSugIiBejuQSMr9y5V5tRG0Y1ZlFJLPsXTAyCjwilWySuSZnX/FkWjOVnOjHP+ZA5ucpLDLwGzd4HhckZH2AWw0AYiUr08gZUFKLq6s5zvZ2Vg1WVfF7YhHduMF7tLXx53vvMTHp5El+Pj/PBRLP7dwc8I//SIVSVcU5/byCeXglcX7195N/BL6uu1slw1jLv998097R60T5lIfd59ao1IsvOh8h7CyFZDI3zOhljPKeTz+tdn3r+JwQp5qbVag9FALmmroQuNqHQA1QVVmNuclFzNXWYnzcwOrwCMp2NaCpNo1Ayb0KJK+pkiUlFISODu5ut27xmt276fkvWraSyxjyLaKO2ydno4EBFb4Dcn0VchwA+P/33uMCptNMO5biIvkpCRojI8xQm5lRjVIkM3BlhSbXFlg8nxnhBzhfHR20HgXQRgRbBELMWZ+PynVoiHObT7Hmc9q6ff77v+9t/E6Wwosvep8Daz2JHMdjMb5vc7M74tTp0+TvsjLy7FJpBLPNvXg8EMPq5AxQGUZf4HlUNwLNy69hdWoSQ3P12Hu6E0GBxvKSKnn+vOpHoDv6xsaoRCRbCVB5AlJIJAtSqBlX6CLquH0Sdpya4m5+4ACFVBxL0k9BQoldXQotePdu7kSDg1zYu3f52bVrVBY1NRzD7duqoKeiguGq0lK+uxU3oAj00Aq/de1TKc7/vn3qmoUFzpseSRLB18u/nfLvdcqXi18oRqUd73Z2Emvz+98nb7S0EBikEGej3sNSjuPV1QwxBoMU9u5ud8QpSYPv67uXh/JEBOnyXkwv8O9VVUClH0g++1VUX+6DafgxPFuNR2oX8qdKiva9dIlCNTTEQUYi1Dazs3SWNTUprSUZgqJAAPuc63wavNBFFNy+a9c4BpnM/n6O9dgxlYq8vKzCh6bJ71RUUNiDQd5PmqYAFHQJfcr1mQwtgN27VWGSaVJZbDhTy5keSuF3UuAnTzo3bpUYvpizwPrybzfKl4vvJVc/X2Pd/fspjC+8oBx1k5P8Xj6rxGrOz8yQV1dXmSlbUsKdX3fcOSFORSKEizt+XN23pobfOXdOFauthiJY7OlF5UgM87dngO48qZK3blFAxEE4P69CZpOT/P/p01yU8+c58AMHONBkkt+XWvwjRwpPZCh0EQW37+ZNjsPno7JqaKCGHBtTZ/nxceRgrUlsVXDdpPhjeJiVg62tqlFEWZkCoXziCSq9dFp5rHXQ1iLSQyn8drwVjfK4VF6uoM8SCSraeFw5asWclXTtzk5GWyYnWfzlZEHmw6DM97musPTGunr2qnjaC+FpqyIUcx7gJnL9Ovlwzx5VVSsNftxg9wB7f531PVdDEUx19KKyG4Bc65Qq2d9Pb6LPR4G+do0miNS3AwoJFaC2SqfZ4/DgQd4znebnhw/n3t+LBi90EQW3T7IS02m+26OPUjDv3FFxfB1rTXabXbv4vevXafIHAuq4MDzMxZbSz0SCc1JTw+sk6zEfZsIm6KEUfrvOS42N5JGeHufGrb29/F5fH3lR4uNy9nWzIPOFz/J9rissu8a6uqddp3w8LVbxzZucC3EaX73KDUQAQeRvAs+vNwUuhDyF751SJZeXVQJMaSmZXar0TpxQg5SzhfQrDAa56BIqa252LssEck2s8XFOuN/P3XZ1dX1yktsirqxQY54/T8GVdmVLS/yuMEkwmKutu7oo4KkUn9vYqO4lfRWlViGd5u/t7Yphy8uVt3qLQlIPpfAbBjeR2lpV1CK57sJLAuqiI0pHIsz2k0SYRIJCIOFkp3wV+a5b2Drf5/pmKE5h2TwAPlPAXQpxcI+M8B7V1ZQZSW3u6iJfjYwon1JzM59tbQpcCHkq9rMTIoGenp7O7VZTVpab9ZdI8IUqKriAkpYL0JeQTtO8FnPaKsQ6NJgogIoKWheDg1yEcHg97Jb15W7epFl/5AjPk/39Kt1T/A7V1VRkS0vrsdYEy+38eTpx/H4qj9ZWKrjxcSqD5maViqoDedwHemiF344aG1Veu5Bd41Z9fgUHMl++ivV7duT2ub4ZCgTZzAwtu+pqKvqeHmWF+HzkQak7GRxcn2IM8KgzO8t3X1ykspM2ZMePK4Xw+OM8TpaXbx7MNC9/OmkIwD6FVTcb5uZoQkuyxoEDPOvH40ohLC7mZtPpiQxyfzGFxHGWStEMz2T4XTegBCtgJMDJlOaoulPPDWtNnCcAz3gCUtLdzXcZG1PFIAI3fh/Jk/AbhvGrAP4MQCmA/26a5ncsn4cA/D2A9nv3/L9M0/wfRR7rL8mpUU08rmLaXmvZRSjz5atslvTNMBikknr7ba63DiEXCJBvk0ny7VNPcTyvvpoblnvrLQV+I2C6Q0PcQEpKVOHQ6dO0Jtvbcx13dliURU18ctIQ+cyGYJBCKw6vXbs4GQKYMDFhH6MUEhNLUHhEiczPF5byaXe2lGiFIP8eP64cSU7FRzpEt6QHDwzQCfN7v/dAq/vyCr9hGKUA/gLA8wDGAJwzDON10zSvapf9EYCrpmn+hmEY9QA+NQzjVdM0V7Zi0DKHbW3Ks3/xogLwHB9XAmVXwWeXxzE1xR0/nVaOwGImlFk3w/p64JlnlCNOqKmJu/ypU7mh79pafq+5WWFDABT22VnFqzMz3EgkUWhxkYLvFG50CnsDhSkFz0okn9kgTUdnZlTG0xe/qKrn9HMawMGnUsyNbmlR4Y5AgBOysqKum5khc3hpLmp3tuzv5zHA+i5uyiwW41jr6xWzBoP3v0bBhrzs/E8AuGGa5hAAGIbxDwBeBqALvwkgYBiGAaAGQByAQwfEzVNXF3e+4WHOdybD0PHu3cyLEJNZv17f6awMb5pUHJOTXCPBbbA7MmyG7PhexwEUf8Pt2+stYSlxF5L0+v371cbY0MAakcuX+T79/fzbN75hPx6nsPf58zwyyxxJ7Yk0rrFLiitaE15Jx9y7N9d8e+EF3kzvGwisL5SRcMf+/Sp7rqKCE3HpkoLKzleD73S2tP49nzLTS5XlaCBhwAdMXtB7WwDo2eVj9/6m058D6Ab0KoHvAAAgAElEQVRwB8AnAP430zTXijJCG5JElGCQin12luu+axejKtbuPTqCrh34anMzj2GHD5PngsFcMNWtIkHhHR9n6XoqxTO5JIolk7wuEKAPbHKSALSXL/O9y8tV95+KCtWdG+BnktEo3batZAXoBSg7P/kJlan4vNzmEygiYjCghMkJudbaKml0lOabIJtI9tLiIif40CGaUzMzXOBTpxTMs9sg19aoQEZHOemjo/x9rUC2tmvtVIw05SKQl53fTgVaQQBeAHARwK8A6ATwlmEY75qmmdIvMgzj2wC+DQDt7e2Fj1YfgKng2D/4QClVyQsRDD19NwuFeM62dsjVMSY2A1lXKAmfv/YahU7w/GS8AwOqAlDvh5lM0kIIh6k8gkEqrXicNSPBoDrqTk9T+K05KMD6iJwA1UifiuVlNrBpa1NOUbvcg6I34XXbTa2RhKkpajq9Isoue8muW7Fbp5P5eVoUYuosLXFBjh719g5yv9FR/tMzuh4gbp9OXoR/DIBea9YK7vA6/R6A75hEBrlhGMZNAAcBfKhfZJrmdwF8FyCYx0YHDeQyrl5PAag4P0ChGR/nLvYbv2HfIVcUcaFRlmI4yyIRjunRR3P5Upp+zsxwfF/5Cnf7VEoJe0VFbmlwaytN9GyW6efSybimRuH66Wf6VErlPOip9AcOqHZxq6u0rGSeAcqM1OEkElS4mQzHIkCiZWVbtLlZz9mRCDWV3unWDrzADTHVrrvOm29SSNvauFOISeUF/Ea/3549ZEgJWeodevr67l+JqQ15Ef5zALoMw9gL4DaA3wbwO5ZrRgB8CcC7hmE0AjgAYKiYA7WSvgHo9RR79qgqUYAMKTvW0BDnPpXy3qnZifI1oylkPfNB5NttWnpnJ51GRhS47PKyEl6JAAC5Z/qTJ3n9++8zLNjby+cIEGkoxHvOz1PGACqdiQn+XlbGuRgZodUh/Sb37GGYe0tI19KyEAsL1EB6fFTvsOOGmKqfW0ZH2QHo9m2ViXXpEq8TVN98ZHWmNDdzQeQIU0zm2QTlPfObppkF8McA3gBwDcD/a5rmFcMw/tAwjD+8d9mfAnjKMIxPAPwUwH8yTXPa/o4bJ72haizGI1hlJdfjyBFaZI2NKolKTFHBu/P5qAisHXI34pjSM+vOniU/ib9B78DjpTuw9ez/s5+tbzojx0bJR3jnHY5fv39XFzcXgb+XVvLSHg7grn3tmuJNaSl2+rSylnU/wvIylUd9PXk4leL4JOowNqYsl9lZPvu+OrNFESwv8/wHMD5aVZXbnqm5WZ2JMhk6UGThxfmRTPKcU1rK66UL7IEDNJ90cAg3snOmSB4/sN5JYu1kVAjzbII8xflN0/wxgB9b/vZX2v/vAPhycYeWS3bKUkqr7UJ5f/d3nMNgUOHpix9Ah/kWc7dQ60vPrAuFmLQloeRCUZgEvUmHuNebzoiVk0rxGFpSQj5saMh1WEci5NNwmGa5wOzt36+a44gSsePNQECFzHU/wmOP5R45WlrUsUoiEVVVnOOTJx+AM1uSJfT4qNCFCwQ2AJwRU/Vkj9VVXrO2xr9JyW42ywmXikWnxqOxGHeBysrcTjH6USRfJ6P7hFq07TP8ZD7PnlXzmW9+IpFc1GXZLWdmyNw/+xkV+qlTGw9RWRPRVlc5PqfmoPloeppWpTU7Ua9LsDoGJRypz0F7O60fqXC8fFlhRkgE49Ah+/oWPbVc/AhtbetzEQQlGFiPXyH3uu/ObEHFmZ9Xjgcppc0HaCjaVXq8yeI+/jj/f/s2J1QHOLRLjBBm6umhxXH+vCr71c+W+ToZAfcFtWhbC7++25eU8J/uqHObH2tGXX09hb6lRe2sP/+5fTceESY3dNuJCe7+kYhycM3P8zlC+YRArz95/30FtiGCrb+fk2PQOgd2mYSxmCrosULZWzMh3XIRhHQ4c/G3LC7y76JYN4O5UTDF4xR+8TJKBxMx7/KlfcpLj4/z89VVasK6OlWT/9WvKnNdMAkEMrm0lNfo53xJB758mTuRHjqyRizKyjhBx4/nJnwIs30eC3v0o5HE9KUc1Ut7Kx3HzjDIkHrRzPXrqhuPzLlgJubr0ReJcCyTk/QHifddrMp8ER29/uTOHY7vzh11NJHiMR0UJ581CdhnEj711HrLVHwMgYByQNvxmFONzksvce7SacrYp5+u75MJbAxzo2CSKrqhIVUxJdVer7yirnGL4UYiFHBZFLuS2kSCL/Huu7wmHOa/vj4qGWkOaU0HtjNN9UXq7KQ2XVx0P9cVmbY1br/u5RYTtqqK5vxjjzkXqNjh7585QyHQBeWTT7jGjz+uinpMk8KfTnPtdGWxsMAQmqDbWr8jyLteHLYC/XbzpoJpu3CBz62t5XseO8Z/IkCZTG7H4UKLdJz6EniBMHPbvZ0g+mWurH93gu53evbQ+Tiy12IIIYFdh8IIHbMM4I03qCmvX+eEAjyrNDYCX/96YS+lm2OSiiux/vPn6Zjx+RQWXyrF1FJBj5XFW1qiQHd08Pv5Gp4APNfF4+vPdQVM2GcGt18/GokHemCAgiYmrB3T2qWt1tevLwEX83VgQIGuLi2p6jq7Hn1Sc28YvE63FvTmIPkERq8/kTWWVPTycoXuNDjo3ZrMR3bzoqfFO/mv5B1OnLB/ll2STyYDfPihSkKyO8rko3gc+OjtOBpv9aEm7Mci6nDtwiIOxfsQfF7TWCUlKg//sceU4DmZhfnykSXFuLGRA5b85nicXnk97VOqq1IplQsgtLhIk6ihITekJ55Y67O9nOuKSNta+O2ORrt359+p7Jixq4uRIL0EXCy6H/5wfT9Gpx59gm4rCklXzm71A1brTRSbOMwmJjiuhgamKVdU8FnirLbCk0WjhTuCrfNiTYtfXGQGZG0tr7WDGrObe6dMwVCI87Kyonw1Ak3mhpokFIsBkXgMFbV+rPn8CNwdRUX/e1j5lwHgtb8Ffuu32JbbyXp1+nshWH7JpMpvXlwkg4yNcdKkxffCgnL06aWm0SgXV3+O3vBE/iYaeG4u/7muiLSthd8TcISFnJK5nDrzAlwna0jVqUefoNsChTfE0B2JySSFqbqaJrPU9YdCuVWFABWD4Fxa4ckKOQpahVTS4n0++q/EidnRoTpXW6HG7KIrTi3tTp7k/Xw+WlYXLnCuBDVJLxgKBlULPVEKiQSwN5PAqr8OZXdHEf7ZazAW55CuqgUy88CPfsSLQiH7Gm+nhBxdC1qdPfJg+VxqvSWGu2cPlUp1NSdKMPYOHVKgDEI/+5lK1hCSiiyhsTEmbczP02qZmOBY7KIERaZtLfxAYSm3+dpfW3etfNeLU8uqeGpr3RWSW667bhU89ZS6jwiYtOoSi+LQIe6akqdgB0/mlezS4iW0XFGhsA3fe0+F+Wprc6HG9LRefefWlfTyMnk3HKZQi2yNjQFf+pJysMqGKsoNyO1yVVoK3F0JY+7aIuo++ghIZFEeCKO65F7q4twcBefEifWYZILdbkeiBXXHTWUlhV/q80VLyrlsaYle3dVVKoCxsVyHYG2tvWdUCjPECbiykmsinTnD5wreX2Ulv7eRc12BtO2FvxDSd1wv7a+9XG8Hm51PIbnhRFqtghMnKOBLSyrlNpMhSq5kqYbDKhogFqZ42gsRfru0+NlZVQg0M8P7VlfTIhCrZnmZPDgxwTnSj7DW7lzy/oImpB+N1tZUEx7ZULNZtrqPRvnc69fJ8wDf/+JUFw4k+hBOjyOTBRbHl1BfMw7U7+IXJifpiGlqcsbms5JoweHh9c4eHZ8PoAJJJKhx5X4DAwyRWCulrGbqqVO0TgQTQCqyamt5f8FYk0akPh8norycv28xnNdnSvj1HddL++tCr9dJd4YJaKaYrHqoy8qL5865d67u71fFNk89RT5IJBRvRCIKkGYjpr81Lf4v/5IbkmlydxboeOH9TIYWqSQTueVFCDmBfOrJRRMTnOfr1/nubW0qj6O7mwppbAw49EwEc8O9SNz8BernryHsW8FCaBf8gYCC/t69mwJl1wDRbRIuXOD1Ys5bF0MSJGZn+VLBIF/AyfEk9xXm+MUvVJKKXpElO/zt22SGujplpWSzjB3v27flOf4PnfC7edFLSlQjGHGYSvNTOyHJh+TsNga99ZcefpPCltJSpQAOHVK8YhhqjNYKOKcs1a4uOuI6Ozdv+uskvDo4qIqfampUf4qVFW5OkjfT2uqtfV4+CL9Uihaz9K3w+3mcaGlRx4y9e3l9UxPQ3BxBRcvvw/jH/4bMlU8wPlkG05hD0EjBd/wx53h6PvL5KPTWxKD6evUSujB7USzWzDTx6EpmmrUia2qKZ550mu/w8cdkCC+AI5ukh0r488FOCVRaeTnnM5OhkrbmSrg1z/DiXzl/nhZjNquQcKXIpa2Nn5WWcozT04qnZIx37yq4sHPn6AD76lf5uV2WalOTKqlNJqlASkoY0h4c3NzmIH4xEXxx+iUSnMf6egrk7Cx/elWWbhB+r76qul/t3s2I2ugon/vsswpSrbtbPW8q2In+fX+Anom/QN3sINYyftza/Qxajh1HsLzM+XzvRP39NNWuXuULtLdzYmOx3Jbabi9jR4VkpklIsaODjHLpEgX/+edzJ3WLcvwfKuF386IDFJJolD4g6ZYcDNJk1s1WUSB79yrIr6UlZ8w/oXicgv/3f68AQVIpFQFaXuYal5dz1w8GydiJBHNDpD9DRQWfV1GhMvzk/nqW6swM+UE87dEon2lNLtrM5qDv0n4/rdHmZoWobZr8fXiYf5MCIbujtddU3mSSSMKRCN99bIz+Lqml0WVNjg8jI8BcQyf6v/y/oxd9WIn6kTarMTqxiMOVBXrEdU/vo4/y5pcusQKstXVzGU/6WVJgmquqyChSXCFjlYquM2fotygrYziptVXd7/Ma57dSPsQYyQZsaFB5GAKFJdf195ORk0nlPJPzvptyFX4ZHqbgZ7O0LioqKCAjIwz5TkwwbLa8TMZubCSP3L3LTUZyCAR4RlqxiQKTLNWZGQpFNstdt7eXiUc6qIbuoyqG+S8W7p/+Keexpobjr6mhUI6NAd/6lr0F7CW3IR5nOPvuXX7e2EiBNwxaStKmTv+OKKbbt+8p3MMRAL1YG42hJjWD+FoYs/t7MBCLkD+MOLqMGEJrLhl1Ao1sGJzMw4dphklOv1v2n5cEDnFozM3xxaQGwJqZFo9zl9i3j0pI4JuCwZ04v5XyndHtkH30SrOSErV2U1OqfVpFBf/uBp2u13S0t6vQFMBnLS6SB86dowX3yCM8dgwOqmKiZJKfNTbmfjcaVaXe4rB+5x0+q7ZW9RK4fZs+pI4O/rMeI4tBkQiFUHpSCppVPM75A+yVjJfcBilR7+5WdRUVFXyviQnKhxyP9PHI8ySFeBURLIZ6sbDA+Tt7L/25oSyOsv4+XIMf3cfqEFpeBP75n7mrVlVxojMZOvokPRPgZ6ZJpohGnQU830sC/P4bb+R6+BcWCMWUzZJB9LZKktSTSqnGijMzxPvf4ji/FwDPbUMCerGwwLXSQTb1z1pbuVvOzvL/+neiUa5xVRUVbFWVWnM3wEnBZxBE6M5Orv38PIXlyBFaBXv38ve1NTI2QKsgGiXTl5aqyJGc+6NRVSMi/SgaGqiMWlr4nMuX+eyODt5fzG9gc5uDDpCiC2ciQeG8cYPvaJqcSyeMCa/4FfX15Ondu1Vj0bIyArHU1/OIbPcMp7XXAUOrxpgNWFHrx8jYPZCMCxdUV5NMRmUt3b2rEEuSSS5Yby8/Hx7mMeDKFeUQEUvA7SUBVSwSDCoPf1cXS0iXl/myFy+qQg7Zkfr6OJZjx7igH3zA67fI2Qc8BMLvhN5jBXaVHcKK7JPNquvEQz47q1rGmaaK5Lj1chDBbGvjmpWW8pz66KP05n/zmzT7T5+m0l5b49irq/nd0lLm5b/0Esd09y6FoKNDNWHVGVzCy5J44/Px5969qi38yMjmUIZlbpeXcwFkOjupYMbHKS9lZTz3Hz2q5MBpfnSy4ldUV6v5m56mtSs+hkcf5Xt9+CFlTmpchPT1lbXfv5+b58cfUzkuTSSwVlWNqipgfg7c2UtLKWAyiZLQI1DHhw/z4bt388X7+nh9KKTykjMZdQTIh8QrDTd7epji2NbGQQoc8rVrqgJMwEIkw8znI1McP86QTzC4pXBI29rs94re47UARZJPJAV7fl7BuJWXuzuMdUfh4cMqWiDOROkovbLCHewLX1A5HcK4oqReecXZZ6Rbl6KUbt5ULeHEAhwZ4a7Z3b3xJDAnK3Z6mvh7N25QUWUyChfDyf/k1sDTmnLd3s7xZzKUM2k9Lz6Offvyt0sT3qis5D1WVoCBu2Hsq1yE4fejJgAKlXWnlpppu1zvWEz5AkRZyEQdPeqtS6l+NpVS1OlpmnArK1QCjz6q+sen07zH6iqVxOws75fJqB6FW0TbWvi9HLEKaRgha7d7N5mspIQ79O7d+Y9Wuldcathrayn8Umq7uKgKvAQfUKIIdiQgMSMjCkXHLrw8OKhawgHc0KTiUHb8jQDB2hX6iFJJpVRrb7swuNv82MX29RRqSVpaXeXuXVbGZxoG53R52b1dmjgO43HKsrTkW2rrwsSNPtS1A53HqoFYmUqosfa7t3PwCNjjlSv8XfcF2OUxW19SbwHV1MTJFCUizptwWCUyNDWROQYHedTo6aFikOQRvTvQFtC2Fv58OfJe4L2sVsH+/RScpSWF4js5yfO0hALzJYYBXOuqKnUeF0tOukMNDpIhxW9jRXtaXSXDl5SQeX0+jtVup5MORRcucIzV1RSOhgYm/0g4rtCWW3ablGFwk5JqP8El1PExrGFwu/kREsVsTaGuqKAPwe/ns5wKm6xWhu44lN4Cc3Oc96WyCNK7evHM0RhC2XsgGZEIb+Sl371uGo6OclLKypzND31A+u4jZpqEKE6doiKQVMb+fj7r2DHev6GBzNPSkos779Q1qEi0rYXfypw648ju4Qbv5XZssCIoixXnNWauKyap/QDIO9J9emVlfa4GQMH/8EMqH3EKz8xwM3AK2YmSko0M4JjHxvj/ffv4U5Rff7/yVTlZRLoVK5uUadIKuXpVNbUVn1ggQGu1kCOGWwr1iRPKkpJ3sxY2WR2ZuuNQegtEo6oLd2VlBCGrcMZi6/vd24XzrGe7iQleIyWYdjuDnXna3MyXee45MuzMDF9SFEpFhdL27e1EXa2t9V6VWCTa1sLvhFqbydBKqq93T6IqpGzb7nM30lOJJyeVoAUC7niMYuonk+SjTIZrPjurmomcPUs+PX6c18RiykIMhSik6TSff/Ei73XnDp3MbW181oULykHn9G66FfvLOHq76ha8vJxbzyK4BYWQW3hWP+J86Uu5itiaDyMkykTyZwCOaXJyfWEfAMQRQQy9SAAIA+gCEHE7K8qE3Lq1vtOO3c7gZp7u26fCftJ+OZsFXnyR99A9tWJxAFzQgQH+bQvz+7e1t1+YY3JSOZ0eeYSLLUcn8R5LYYru/c4XmfESubEjvetyRQXX9tIlClBrq8Jj1M/6wvCplMo+zGRoBQwP03z/6U9p9fl8FOq33+az9DCjWITJpMoFiEY5B//6r5wTcUhnMhQQ6e8nTmu7OX7uOZ7nxYJpa6O3f3SUNffnznEjzBdVsIYOo1Hn8KzdOJxa9Anp4VCJ1EmKtVPJtjWakezXtL61uaDcqK2Nu29zs3sDQrcIgB72GxrivR99VBVSyP30ME8iQa2eSuXm928Bhv+23vkBzpcV3Uh2JTG3neC98iUFbaSwR3c2+f0KduvwYf7MZilEs7P2bdsFGk4sk5ERClk6rRqNCB6gWKZ6mFF2u0uXVAaeaapU3A8+YEdrQdW1dph2ajVn58hOp1WXHsAeGEevk5iY4LuI81Ja0YufJV9djJcUeis68d69HKOdonCy7O5cSCD0dJ7mgl4bELpFAM6dk8qk3LOhNe1UN8EuXOCL6Wg+8jJFzu/f1ju/kFW5Ch6iCJfAe33rW+vPtE67jqDpnDnDNUok8sfMrc6migoK6qFDjO8fOMDekF/+Mmsz7HYxwdWPxxlKGx/nvYNBnrHn52kdVlWpnToapeB+9JGqDr19m+98+LCKDEnHH5kXO3L6u3XnnZwEnnmGiuTwYXWs0uPvMh9TUzx23LzJ8S8t5ebH6NmQmyWvFgLgbNkl4SFe7yWmn29A+j3EbFtasm9wIPc5eJDnPV3wvZijG6Btjd4rZOeYm5jgrqbDPtkxgJ1fB1D3k/Zu09Oce7cUXyvirs+Xu2NPTtoDYeo0OMiqttpanu1XV+mEFl4xTY7p1Cl+1tHBn4ImPTKiFFdtLTcIua+0ynr+eSq1nh4qCgGRaW2lQOrNa51IB8SVaEZrK+f+8GG1UenzIX618nLOg3j0P/iA71MIYvBmSbfQrGC41UtxHF+1MJR1UBuFOrYOQmc0L9DLTlDIHhF8PzPovUJ24dXnnvO2BvnCTwC9zlYQTjuyczYJ6k46zbDs7t3uZdhyDBQHcCBA597kpEJ+ymR4bJBOOXqoTCIE09O0BD79lL/L8VW6/tTXU6noaMVuyFZWMgzy6uyswiG4fp3WjZ7tqiMQyzFocVHl0kjezEacqhulfPBsPb0sDnKt0XeK6W8EOUVCGkeOqN58NTX29/OSSFQkeiiEHyispDofFdpP3q5pRk8PMzU/+ogM//jjXM8rV1Tprh2DS/ZnczNN5E8/pQIoKeFOOzjI3fLIEVp/P/0p135+Xjm2xLv95JP8/sAAFcWv/7pyMtqhFRfCQ+JfkRJbHXdS5sqKQNzYyDmRsLr4AJ54QvVIzDfXxSBvcG4eGKoYTFfoPYqhdDzSQyP8drTRVlCFOPp0y83agk0auErBkAjM6ChNYzsG15/d3c1daXqaAt3VxQQasWricYYBpb7/xg3+bXqaz5SefA0NtDj0Yh8ntGKnELfVS371Ko9Uc3MU7F27ON7VVTVXsknV1alQbFMTN7aPPqICa2uj4vrRjzjOmhreT95pK6JYBcGzuU3GVvUay3ffYu50LuTpzG8Yxq8C+DMApQD+u2ma37G55osA/guAcgDTpmmedrtnIWd+O9rMkawQH4L1CKaHYAFVJyA+ANPkNY8+an9Msz5b8kja2lRjGBm/ONMEtlusj0SCQl9eTuXR2spnZTL05rv5MPLNm45bICCe16/TD1VdrdKhxYN/9SqVUjrNMe7bxzloaKB1MzYG/OQnKjkpleJcSZKdPBtQUQNroxxdYQkSsLQZs5NHp2Pz0pKCPg+Hgf3ROGoHHCZDbrSZM79X5iuiE6SQM39e4TcMoxTAAIDnAYwBOAfgG6ZpXtWuCQN4H8CvmqY5YhhGg2mak2733azwb9Ivsg6Ac3aWzGpdDwHctHapld10edm+dZdbcxGvG4q0KxPIqw8/VDkPhw+rgrCuLpr9Q0NUPPX1/JudTynfvMnn+jvNz1NJiX8CoHnv86mMxrU1daaen2cIzjB4j9lZvuulSwotq7SUORt1daoSc3VVWRD6/aQ/otPnTvF9q3KXNGj5W1l/Hw53LSPUbDMZwOYYzGmxUynew+6+G+0Xr1Ehwu8l1PcEgBumaQ6ZprkC4B8AvGy55ncAfN80zREAyCf4xaCNJugIiWX1wgvcDZqb7XM+3CI+EkqUylDx3Hd0uCty/dn6JqPX1AMKFEY69QAcVyrFBJ9YjLu+gInoVatOeSleE5/0JJqyMpr93/iGwvtvaKACnJigkpFzvN/Pscqczc1RwFtaeCQoK+O1hkELYHCQSs3vV/0LpN+hlPd+73ucW/1z/XnWvBu76JsUYelrHFhNYGTaYTI2y2CAc5aRtXGHOCbsrt2C5B4hL8LfAmBU+33s3t902g+g1jCMdwzD6DcM43eLNUCd9OwxQX/RaaOgFomEczacW66AFUPg6FHgj/6Icf5Co0F2ax6N8uwsWYG3bnFsBw8qpfHxxxyrafK7DQ2qDD2ZXM+v+cLX+uehEE3v8nL+fuYMhTCbVZj7gQDXQarrqqtpstvhEojgCUSYz8f3kl4Bc3O8z/w8jwupFN/n7l0qCXkOkPs8O3m0Kti1tfWyXBYNY3HaYTK8xvndSPc8isaxQ41ZXOTLWq9dXWW80rorFIm8OPzsSousZ4UyAMcAfAmAD8AHhmGcNU1zIOdGhvFtAN8GgPb29oIGak3HzmQoGPv3c+eTSj1BoSnEapKwlhQM3bhBc//ZZ/M7Xzfjm3GKRQOKPyQs+MknFBjJ629qoskrQtXczPeXYhdAVY7q/JovkqR/bg1Nv/cexyH5BHpEQHJXJBNRLFgdl2BxkclAKytUYOk0hbK+PjdqMDGRW967axeVhJzbfT71vIkJb73/7Jy8s9EuRGb7gAWHydAnSpwz4TDNETeng5BT08j3318fhgkEcrWTXSPFIsN4exH+MQB6RXorgDs210ybprkAYMEwjJ8DeAz0FfySTNP8LoDvAjzzFzJQa6qm1LKfPUvTV3aMwcHclk9e5kqw/MbGuAZigl6/rvD+i+18tStNlcrEYFBFCvTsUDkr377NdxVFKDugU7FLS0tuvb9buq1Tpimg0K78fpX+CyihF2ATuZ8Vl8Dnoy+kspKbmjSqqazk9yRqYC3vPXaMVo900Vpa4jgCAW4A0vvPCTRUHIXWOp2F0gi6X+oFpjXN3tKizt3SvefuXTJHUxMn1a0OWyc7jeMUhonFcq+VRor19fa16kUgL8J/DkCXYRh7AdwG8NvgGV+nHwD4c8MwygBUAOgF8H8XZYT3yE6JLi9T8J99lkwv8Fjf/75qNDk+bt+qS6e1NVpjy8tUtH4/eyYK3PdWRF3sSlOB9bu1DkpaVqaQbjo7FeBsRUVuscvoqMoJEGdZPjQknURwBSbs6lV1v9lZtXNLVKGnh7uzOBqt99VxCewc3ceOqTlxKu8tLWUm4eqPwqoAACAASURBVNycwlwsKaHgSxt1XT66unK7H3V1cYOQZ7S3c9y1kQjQeW+B7ar9FhY4gMZGDqC6WqV25qvDdjKz3JBm5NqpKSoKvTqsyAkSeYXfNM2sYRh/DOANMNT3PdM0rxiG8Yf3Pv8r0zSvGYbxrwAuAVgDw4GXizZK2CvR6Wku6OXLPI8uL3OdZOdYW+N1+SwAQao5dCi304+Oqlts8lqaKvzQ2kreu3uXgra4yHvs3s1kIOkOZC122WjZsjXHQFJ3xRRfXaU16vcDX/+6t3e2O0LpG204zNJep/LexkZVwXjrFtf/a19Twg/w+ps3Of7hYc6DYajkq2PHXBz2TpMlfdL14hxJYXQTyEISdqzXRiIcvJ7jX2QYb09JPqZp/hjAjy1/+yvL7/8ZwH8u2sgsZKdEl5Zo/gqO2+oqhaChQYGn6uCrTswuxzBhwKUlMlhzs/e5LjQfxFqaqu/WuqLSs0OfeorhsU8/5a4s3XRqa515zAsakt2YZfccGuJ8hMO8bmaGmYSSJ19ofb9+hMpXVt/fT7kDVCSjv1/VKaRSwD/+I/AHf6D6XCwuUkYbG7n2gn8AuCdfAXCeLLmxOCV0p0M+gdzombGtzb5HfBHTfB+aDD87JdrdzTMiwPWYm1Om8NAQmUMQm/NhIba3A2++SRP6wIFcVN18VAiOoJDX0lQr7wgisB36kB2PiZLJZlXIsKzMHZ5elIb0EBgdVd54KT7SuwiLX2RwkBaYrMm+fbSmnBShm1Ui7feOHlV9DN5/XwG4AJyzTz7h37/+dSUfwWAu/oHPpzZqV1l1Sv08dCjXKSFOB93JsVkSJpIKrulpmljS728L0nwfGuEH1gtCIkEzbmyMO5C0fJLuOeJccsNClDmvrwd+7dcY6vvwQ97nK1/xNtcbNa3LytTO1t2dm2XntiMX8ixp8nnrFs324WHy7+oqswSfftren6RbJmKdjI/TpP7gg9wuwlJE86MfqVZk2SydsVVVzj4x8SnofQnF2Wl9TykpTiToc4hEVH5FMplr8UgKdjLJY1J7O5VBWVkeWXU7o8vkCPhjIODs5PBKOhjCxYtclJUVVfedSPClX3llJ7ffSjreopydBUAzGlX57ysrzliIwmTZLNdAnGlrazxC1NbmF0gvhUJOGYVPP614TK6THVmUw1tvqVTdQouSIhHV+fbSJZWjMDKiav97e3OxDwF7OZBaBgEu1en736elEI8raPxUipmAzz23XjlZfQpWdGD9PZNJ3quqihZcJkMlVF9Pn8HBg6pMWUdZqq2lMrpxg7L67LMKGs1xsjTzMlkSRqy0BzPnIvfWvBeRzXh/7ZjA72f8U+q06+oYzqmq4sRIL7ct8Do/FGAeTqQn4ASDZJxslqmucqaNx3mdOP+sJIlco6MqO04SWMRX4JaIA+TPB7F+X5rCZLNk0ps3VaOK8+e5AXzyCfBP/0Qh9fu5W/f1qbCk07PsaG2Nz21upvdfFNramkodtt7HCaPCNO0T327fVn4A6VRUU6MSeKyOUzHtBei2qko1ye3qyp3T0VEq8yef5O+SIbu2RsV++nTufZuaKOSVlbRMenoo+J6Sr+69ePzEC3g/24vFqggayuIov9CHwb98A8m3PCTb2LVBcmKC4WFOkOxSS0sc+N2763u5FZke6p1fQlnS5LS5mabs5CT/rsNNO5n9wmS6I1d8ObIT6iaojiIsYcR8iTNWEzab5XOvXaOgSy++yUnuUjU1/H8iofI89u5V+IBiJXj1A4XDVCaZjAKRCQTIj4ODKgOvtpZAIPr8Wjccp2NxS4uCpltZIf/Oz5N37ZST1adgRQfW51SEvbER+A//gfMpKM7f/CYtNf2+Uosh62ntZSi+CeGZ06dz76GvWTAbR/WVPpg+PxYa6jA2uIhQ1sWh4+QAKi21Z4KBAcaVm5r4UOkxJz3RC/E6F0gP9c6vNzl94QX+vH17/c4IOJv9en6+9M4TeHVhWrEOBNt+ZYXCKusMuENLWdPEAwE+8733uAGI1VdfT4Hp7+e5WkcsvnWLApxIeIex0t+xtJSKZnlZ/fP7+XcZmxeYeKd05699jfwq/TGmpym03d320GjWaMfJk7TcJKytWx5ra6ppyaFDwMsvs87gt397vdBKPYSeqj0xoeRHkJQWFvishQX+Lk5KIVmzytEYTJ8faz4/qnwGUlmbggmd7FJ6/X4FdCCkQzvPzHCnLyvjpN26pRozevU6b4AeauG3m+fKSoXjLhDpx47lmv12/f86O7nbrq7SiSQ7rG6C6kcDa1cZN7IeC0IhCrKE0ObnmU0o+HyTk3yfkhIy4eoqr5uaooVizVvPZ8pGIiyhraujIGSzfD+fj7H6L3yB/x8ZWd8jz+5edsrn2DHuwg0NtLhqamimOxU5udVMWJ/1rW/ReSvYhHKtRCx061qvh5Bw70cf8e8Ad3wJjwqKcm0t/263ZqVz7P8HcL1qAnAv8HEqCALsgShDISoGGfyTT6omjvX1W4p39lCb/XbOr2iUu87Jk+pvOnyVWyOPY8eUP0ZHWYpGgddf57m8pUUxjnSVuXVLofnahc2sx4KJCTp0JWNOmrUIcnQyyftN3quNlPr4xUUV5iqUOjuB//gfaVVcvUpHoiTMvPkmhbi0VPkYnn8+fwag3TOsO7ETbSb/RZKDrJmLYl1LPYQogL17yROdnTT1re3TQiHl9xCSNa8fCiNSs4hAo/+Xa+7qZLGeiwQAYmGBk9/VpcAZEgnl8NDLNp99VjH2uXNbhnryUAu/3fkzGnXPjcgXKrMD3xgYUIi/k5Ncp1OnlINLqs+c7mllXlHyPh+tPWlgceUKGVUqSltayBvJpMpAdOr7l4/E0Sxow+LjGBnhO0nZrt9PH1R/f+75fyvIS/6LUxNWKw6jNRlPz/rTz/zNzQr8VCiZzL1eX/NUeRcWL/Rhbg546rlqhMpsnCz6IPVefXplVG8vNe3Fi2TK9namMr71FrO2BP0kHOZucukSY89eE0c2QA+18DuFo156yblwpdBQma4spIbAMHgfQaKxFmTZ3VMYXSCyTJPCVlmp0GkaGmiGl5aqZh0S/5ZMtc204pZdUjoNzc9T+AMBHi0ErrukhGPcqPA7ISYXilPhljyVLxnPCaLt9Gme8QHOaTJJWX3xRXW9vubNzRGUHurF2kAM88MzQLOFoQYHaSKsrlKjS4x5aYnmvI7BHw6r/monTvDhw8Nc8LU1Loo4raSLL7AlRT3AQy78bqajk/lZaKMOKx7c7t0Unv5+rtfp01Q0Xu9pTZutq+PaZ7M8Mw8M8Pcvf5n/Hxnh+3R3czPZiOK3izbs2kXHZWmpim5UVpLn7BymXskuT+G11/j7kSPuna/yjVuXgXzJeIC95dfZyXk+c4ZKt7mZgl9bqyofr1/P3dhXQxGYx3sxMgN067I3OAj81/+qPMDisJPWRwcProeB0oE8RkcV+MH8PLX88jI9wFYh3wLU04da+IHCU6cLRUbWmUwUdUMDmaijQ3WkkcKafPd0CnH5/bxnbS3PpfE4U1tfemnjefT6M/VdUjoeATSRP/2U966upmWaSGy8O7SeNHXliqpWjMdpNQ0Pq0YrZWXu1oWblXbiRP5kPCdfgtU3MTgI/M3fqM07m6Vyl94Ztq3zEOeOv7Kicsil4eH0NJ12TiW9QnNzKjNKClUE8MO6cxS5qAf4DAh/oSTK4vx5lVorra3sGoC4dbKVNR0c5A4q9zt0KH+Jt6TNArmCHYkwd8BL00onsprdAsQp421r4/sHg3y/6WlGEurqKAB79pDxN0IisCL4kjC1ssINze/n/KTTfEe3JiluVlo+h6HXDSF+T4al3mFpiWNdWVHnfh3QRBK8niqLIbS6yp0gk1ELmEjwhaUjsFVDRSIqZFFTQ4EXUMa6OoUjIGfKLcTuf2iE30vVXCGVdaur3FnFJ5NOc+6Xllgo8tJLqr27MJm1ky3A7/f10fy3purakRfLw42xvcBuS4PPTIYbTUWFQvuRHPfdu2llZLPM0TdN/tusY1lPmiotZdKSIPIePMh5FygvQbRyq7Z0m6tigKzEYmrHl8pBwXYQgBW71nl3LiQQikY5mbdv84/l5fTghkK5OG/6Qj73nHqwxKZPn+bD7t7lpH3jG1ycLcbuf2jbddlBPo+NWZBaHHATdARbQZcdGlK7kihvaz2FHfLtuXP8ae2M4wbyulE4eC+oz2++SYdyba3KcJydVQk0Ww1PL2O8epUmfmWlcnIaBhXqsWO0Rg4fzt8+bKug84XeeIPHrExGHVFMk3L4hS/kZgwKmSaQfa8PT3ZOkXHW1njh5CQ17Z/8ifeYZ5Ff8DPXrsvJ8SN58H6/ytIbGlIQUPJdqxDqZ8m5OeVVz2S4yE71FBL71R271pwCIL9vZqM7lpeKvmvXOH4pa15Y4GYyMAD81m+tv+dGypHdSN7txg31bJ+PR6vJSVq5o6MUrPLy/O3DtgJCTadwmOsuzUSrqsgPklhnRdcC+Ht1dxewGqdWnZ5W4AFiMrrRVms0j/RQCL+T4+fCBZrufj+ZSqrDJGFjZERZZPr86mfJQICMqguVXT2FxH6bmriLffoprz96NNeHA2yJbyZnHqS+YG5ORYR0AVlY4PlavPepFHdhqbvXyeqgk3p/iThshKTm4tAhetXFAS4O8QMHmOgk7dSBBycPkr8hMiyWtzQVcTx66P3+ysvVGX8z8cv7rAAeCuGXfO2ZGdVxVpSBxHYFuEFw2j7+WEFxTU3l1pTrC9raStN9Zob1FZLbb62nkLPh1BTP/Pv3q3Lrqqr1DT+2oK/iL+dBOvhI95nZWSXYhw4BP/gBLZhkkvMlkFtOVlBZGTEMBPmorIzKwrX81YXicSrdeJzzceAA12d6mn9bXqalrOMX3G950JWNKLvm5vUy7O5/iSCGXiQAhAF0Acg73I2CP2wBbXvhl7rvH/xAJdMsLNBUe+YZtYNLPb9U4UnGnVRPdnSsz7g7f55mcihExpycpCOsuXl9PUUiwWvEgw0oPIHaWvueeF7fz+uOJ3BjZWXqPG+ayjyVFOUf/5hzVlrK69bWKIz/8i/qProV9Itf8NwbDOYiIp0/TwVQSMKOtUPu2hotpc5OnvO/+EWOX++IfL/lwQmn00nZ2B09NqywCs0y20La1sIvEzw1xd3j448pbAcOcIL1XVfq+d9+m8xVW0sTvaZGVZlZzXPx+Ouw7KZJJRAIqIScSESVxTY2qu/L8cA01wNV6FDZTgJdKANFIqrxpeQHdHbmQn1HIkwRLimh8BuGOnsbhgpVCXz36CiFv6WFvioBQ+nszPWpyPjefpvv6/fz+wKjJUddXZCrq1UIdHycxwg7NJ37LQ/FUDYbvkehWWZbSNu6qk8/j2YyZNhHHuHfWloo+PquW19Pa+BLX+Ln4kyqqiKjWs14WbxUSh0pPv6Yu9bevbmgHVIWm0iQ+eV4YM3HyAf8Yfd+1upPtyrBtjYquZMnKUCh0Hre2bVL9ZMQS0Wca34/Bfr11zm2PXv4DnfvKrTozk5eNzW1fnxiiQ0NcU0aGynQr7+uUpLlKBYKcZy/8zscUzZrX4KcDwwlH9lhZ7hRMTpxbfgeXsoZ7xNt651fdgRxygnDzM8777qA6mwLrPfeAmSOs2e5O0qzy2hUQag5RQxeeolMfvcur7ceD/J14HGLOgjl2/G85Am0tfG9Z2ZoxegovwAVoezoAH0dly9TOXR0qPBgff16Bs9k6Ew8eDD3+CPREaektief3Hg83402Yn7bjTFf5598iVOAR4VVSDnjFtO23vllkdraKGRzc9ytBHjDLgtSduiODpVzkc0q760wi7SMvnOHJunqKhe2oUGBRQK52ryzk7H/L3yBgq+XW0uK6AcfcJyzs8798qzvp5NXJGg3MA+Zg717gSeeUA0upCJwelrVtwN0Eu7eTYET/ADpB2AdX3k5FaT0zANyoyMb2di8vJMT9ffTOXnpEqMVOvyaE1nHOD7Omv+GBntrzc6am53l9za0gRcKyLBFtK13fr3DyzPPqMy1o0dpri4u0mS3amtRrHYRGDG19++ncEoBlRRXhcMK5hlYj8Vn5+jSU0SloYZAW9n1y7O+H1DYjpcv9h2JkJG//32Vg/LccwpyOxZT0QBJM37kEZrwLS25jj277FQBlpXQqh4d8bKxOc1joc493bkYCikQ0PZ2rqeTz8U6xslJ+84//f30p5w9S4W0f786/jQ1Kbi9B7yBb5i2fYaftVRa0lB1BNx8nZB0kp73wvzvvMOf5eVUMJK/LyhKeiahU3ZdLAa8+y6FYmGBRxTDUNjxhw+7Q74VO74tUFW1tRSKO3focY9EaK43Nqqd8dgxvrvT3NmNb3Z2fbJTaam3TcxLlqLX+enrozNREokAWjU3blAQxXLJxxc6TwglErTiTp2iH0gyFQMB8p/4T7x2K7pf9JnK8HPaEfr6ciGkvXpb9fNeKMTQ07vvKpiuZJJhsbo6VbLrBh4hjClFITU1xBIcH6fQnTzpznhbkcGmQ1UBKruuvFylIYdCTFq6fJnn8XwoOta/vfLKxpRWIV7yeJxYF7Ozqk7h1i2FMiTHjCtXeH1VFY956XTuLu10fyE7H0AsxjX1+7n7z87mFiZZ8yu2SdJeQbStz/xutFFvq/W8t7hIZmlo4N/u3qVJ9yu/QiEeGFjvxbY+LxxWkFjSMjsaJZPkaxLqRoV6sYXGx3OLUACFDygUCnFnPHhwY8dOSZYSgFOBOM9HhaybnOflOFZaqlCGAP5NoLkFs3F+nsdC/f3z8UVXFx1+584xbHnuHJ8jR5+2Nm4MFRX0KVjzKwqJ8Gwn2vY7vxOVlChEGkG7kQYQbmR33nvmGR4fLl9W3vexsVzoL7fwbL4UUS9k3TmiUXuMOi+CagdVtba2Hv9vM+HljSa5FBLmvnqVfxeT3uej0AnKkO4TOnyY98lk6A8q9D3FaXfnDu+xskLeCIepSBoauDaZDJVAZye/c/asvU8AeCBJewXRQyH8doIhXVkky+78eXqodXAIJ1NMN2XlvAfkYveLwy8feITei77QNG99nFb0mwsXyExHjxbOUHZQVRUVvF+xSsQl3VnaZkvKtdv4pCmNtEfr6lL+hkLGsbCgkqhKS7n+6TTX+KWXFF6m/p4tLc6JV3IUKS+nJVRVxaPfz37G92pqUjBqOsCHOAQzGW5Gly+r3IsHlLRXEG17s9/OpHr9dU6udGVZWeEiSCcap+/ZmWJ6uE3qAwTWClgPHrGRcFQ+shbXSFru9DQZanSUPz/+mLtMPnNSoKr8fn7X72cn269+tXjjHxmhY3Flhcy+ssLfR0bsr5f1qKoifgBAh9rysvM4urtVQxFJrLpzh1aMrGtVFeftxAnep7Nz/ToJ0pITL1hTt6Xhh2kCP/0p+ytEo7nw4YLctH8/eU+wAOy6H21X8rTzG4bxqwD+DEApgP9umuZ3HK47AeAsgP/FNM1/KsYA7RxE0si0vV1dp4fnnL4nf9d3JmuRj47aYkXQcXLOWTEcM5ncQqJ8ZId+U1vLv6+t0SF58KBqYOHFvHaC0S6WGTo3x91ON8mXlhQCtZWs63HihMI9cHKYHT/O38XnUl5O4TtyxH1drevk5qzt7V2fui19FKJRhm4fe4xjlZTomRkqkGPHlKV4+TJ5MJUqHHnpQVFe4TcMoxTAXwB4HsAYgHOGYbxumuZVm+v+TwBvFHOAdllwVVXUxn19XLj2dpVYI95Xr9lzusmeTlNgbt/mDiutnNyEzA4GSi8kEqeQG/LO7dtkvokJJbDhMBlJkpQA3runh8960OfJYFAVAEmRkZ1fQchtPcQqEKWu1wtIk0+Zv9FRmuF293Eiqdy7fFkdUVpbVdt2KZiSZ4yMqCavwaBSFtPTas7luAmorkMDA5wDKVXe7t5+Lzv/EwBumKY5BACGYfwDgJcBXLVc9ycA/j8AJ1BEsuuBMD1NQd+zh7vP9etkiEceUeew69e5CE1NqrS1rIxCaSVRAMKER46o86LeqdeO7GCgAAW9/oMf8PPaWr7L8DAZWs821Cvgrl3jGEtKqHjefpvndXEyiTn6oM+TkkI8PExsA0AVWNmRm6NP5lBKlSWJ6PXXGVK0KrlC02rn53l+F4dwNkul2tmp/ABtbeQZge+S4ijJirQqGGuClkCj2Vpk2zQO6OXM3wJA72cydu9vvyTDMFoA/CaAv3K7kWEY3zYM47xhGOenpqY8DdAamhsY4GQfPkwGyGT4u5Sjyjm/p4c7qRScVFRwJxXrwI42Umijx/gBMlosBvzwh4TTmpqiUE9P85pbt+ic1J/X3EzF1dREB9r776uqvI4O9gsQRxKwPc6TXV3KmbZ/P/+trjrPr1var92ZW9CIrHNfaPpwPE6FKmm/0t57ZoZ/Fz9AQwPf4bHHaEn6fO5z7tkHtI3jgF6E3659ozUt8L8A+E+maa663cg0ze+apnncNM3j9fX1ngZonWQ5azU0qPLTigoldJKYIVGBcJhmdWUlz5DNzesZStbn7be5++i+g3wxYj3GL9llw8MKFkwsDvFJhMNkOmB9zLuqivkFbW2qu/CpU1QC26AILIciEVozwaDqyus0v3K9k7CEw5w7p3oBr/exo1iM933sMfoMUine88YNdaTSU3aDQefegNY595SiX+iOstHkjg2QF7N/DIDeJKoVwB3LNccB/IPB/MgogBcNw8iapvlaMQapO3DCYe6mqZTKy19YICMkEgocVejIEV4rzheryayH2VpaKKx6yCbfLqvH+Pv6eP3KCpF8P/6Yz4vHee/5+dzv6qawNAEFiLrT08P3ymaLUwS2FZbn2hoF3gpu6XQkcXKYWs/c1noBr/exI7HMMhkK98ICBfzKFfKOXXiumIV3qZEEhhfqMD/PJp/tbUAo6OCkuM+QRl6E/xyALsMw9gK4DeC3AfyOfoFpmnvl/4Zh/DWAHxZL8K0kjFJTQw/4yAgXdN8+anYdsCMQ4G6rn0Otwqwr5vZ21Y5rZETl9rt5bXVGqapiFd38PHekXbtoBaRSKv89kWDsXt7F2oN+aUk5/azMuFHaKp4qFi5FJKLKpYeGqPDKyzmn3d0bH5+MUQA6x8cVYEl1NX0LEp6zKnq3OfeqSONx4PpYGNVliwiF/b8sPOrpWESo3maS7jOkUV7hN00zaxjGH4Ne/FIA3zNN84phGH9473PXc36xKRKhp1Y6HB08SDM5GORZTm/VVFdH4du7V6XyuqHIiNdWgD+7u71pfJ1RlpfJvIL3nk6rRptHj9KcPHYs93uxWG4P+mKf7TfDU26M7qUq0augdHYqBaAXDOVzuOYj3TIbHlYYhb/2a/RPmGZh4TknRSphQP09YzEOoHqoD+YS4KuqRsnSIsZjCwg95dDO6T5CGm37qj47ssPPl5ixdFi5ei8W0dJCYbLrxpPvXoUKhp6SOzNDH0IySXMzEKAycEJ2LrTaTf+e/r7d3euBN+2q1sQ8z4eZn29MbsJt9/3xcQqzXYOQzayFG8kY9TRcaxuuJ590Pwo53QPgO8ViVOo6JNzMDC3SjnAc9ckYSucSWK0JY7ymC7/yWzYPkgnIZhU8s4SoPEIpf6aq+uwo346TzSpsvnxCpN8rk+GiSTzXDupayG4HkL5909O0Hh55JJdJFhZUn3j9PjqKrJx3vZwzpepteFhZCBcvKt+HfLcQ81wfz+3b7q3HAXfz2GpxZLMc6+ysKrfVjx9bsfHp73PoEJ8tjjzX8JzlHrLWJSVcnx/+kMeGpiaFkJzNUjlcucJxC0rUxVQEPT29v+y56HfqudjVxR3j1i0uTkXF+vLBItK2T++1o0iEQnXjBne1Gzf4eyRSuHNVmFfadAEsw62sdHe2Oj1HFMfBgyoPXMgaObBGgSoryUSSqppvrWMx8kVtLe9dXc3/C8MLeQ2PWccTjzN7sZDoh07WaMboqIqzW9dGkp3eeUchIAHFKT7S51cAWt97j/UTZR62P72O4fp1piVnMlQCKyu8z+oqx33nDtdNYNTm55UPKW+kptAQyibpodz5pYHGvn30jOvJOBvZPSIRCunp07m7I+B8Ls73HC+7rdNZXBKV8p2TpcpMf4ZgFkparOx6AjKSSjlnLlrHU1/P68UhZvcObmSdg7k5bmZSNyFzdvMmxyrJTqkUs/waGmhCt7by2kIjFHbzK8pGTHQvzs/RUSqm6mp+X8BOAR4rfT5+/sgjVGw1NZTd5ma+a01NAT6ksTFePDOjYtUtLVty7n8od3633X2jSLCF4gPke46X3dbumdL4c2qKZ8l33yU24OCg/RjKy1WCEcD/l5dzXmTXkzZm6TTPtjpOgdsctLXRVzI1pd5hfJy78htv8Mjx5pvOIWnrHJSVqWw6fc7m5nKTnYJBVf3X1bUeSdlrKNxufnXwUq+JXKlUbh3Dvn2M3MzMUJk99xzHa5p8nmBNynt2dPCavNbc4CDNilSKZ4p0GvjJT6i1tyCra9sLv91CuwnqRpGRC1Ua+Z7jJRnF7pmxGJnMCRrbOobaWpr+ghs4O8tn6Iw9NqaQfcbGnBneOp5QSHUqlgQrw6B1IaXHFy/y/3aJa9Y56OxkSrY1eSYYzIX77ulh2LW1lQpBf5f+fu8Jc/I+ySRN8g8+IFCnnkwE5D/KBAJUguk012Z1leN67DG1kx8/zmvk85YWKgjpU+ApKevMGYU8m8nwwZWVdCRsQVbXthZ+p8xIgU3Wya709uZN1TAyH9JMoUrDi3DnywDTn5lIKCSZ8XHFSIahdu6/+7tcRo9EiF9w9KhCETpyhLvM2poSqLk5MnxVlaq6y2TIU7pStZuD0lKWAktUIB5nzcKZM9z18ikUfQ6ef55js85ZW9v69bQiDAN8n6tX1bNSKa7xlSsKMt06v+PjTKdeXuZ4JdVa92Pkswzb26m4Kio4hrU1jk0wGxcWgBdfpPPw5EngK19RCpSYeAAAIABJREFUkGIdHQXkU4yPMzlk3z4uujSg9PsfWJLPAyOnM/HSUm48365vu8R3Gxu9ne02ktVVaPKNXVist5dFJ2++SeZqaFBMLDvUtWs8N5aUKAUo7yEKQAcxAXLP24JTAKjEJ/ErWJN+nObAipR74wa/19mpqts26pm3i96UluYKv4TlpL2aVN/5fBzTrVs8HrW2qoYl4j+bneUZPBCg8hkY4D8d4NMtvi+8tHcva0oklOf3c17LyjgfEq0xTSrkgrModQimffv4t9nZ9Y6oItG2Fn4np1o6nV9QN5LYshVgmkJuySEjIxx/OMz3GRqi5TcxoUxta3lpvgQdN5wCHYjCDiXI7r5SN2EY/Fdbq9ptHzjAa+x2UCv68uwsw2P5lI4g8oyPU7AvXKCg791L6+WTT2gx+HxqJ6+tpSDrCtI016cgBwL8/L33+PuhQ+5rZ90Y6usVIMlGcjMcyQ6CaXaWZsUW0LYWfjePeT5BzeeNv99Vlk7K6MyZ3JLgaJQC+sknqj5eSpedykvtSMKhZ85QgEruHfDOnqWwnDq1Pgxpvac+R9evc0cVpJqGBlWL/6Uv2WfIWRXe+fMq1dlJ6cgzxbK4fp1KsKGBCnBpiUonnVab4sgIxxYOU170+9rxkJzd9VwQO6swH4/kAwkpmASC6cwZTnRzMwXfLiusCLSthd9rUwu7RXJTHF5z3e0y+KwpnF4VhpMyGh+nc2hpSXmT29sZMmpr4y5nzSjzEr3Qw6G7d6ud/4kn6KT76U95/6Yme/BTK2z2nTv8/5EjFDA5mlRU0JnW3b1+/uySfASQQ97FqpD1dbl5kxZQayuPwoahYut1dRxTRweVQl1dLvyaG/ZiLEa5ssMflLTc0VH+6+riHNnxyJZk4zpBMG0BbWvh93IOdzOnxby1Kg4vRwLrfScm6Bx7/HFnZtDHZE25dert1txMpWLtLRgM0tEG8DniIfcKvKm/4+XLCsn3+nUKT/b/b+/bY+O8rjt/lzN8v4dDigofelBULVmW7YgKozSJnI2cxDbQZIu0TWJksWmLNEWy2D/bXaDdBRaL7f7XLZo0GwRFs2jRYNMtDG/gxo2ytuVUlmwpkmXKskRSD5IiJXL4flMk7/7x48m9c+d+M9+QQ4qM5gCCSM4333e/e88599zz+J1lPqe21g9+KrDZtbW8x8oKHX2VlVQA9+9TKO2mHy65wlFZSZPchvqyFVmQshgYMMqxpMTg/l2+TGUwPMzxSPs0+74+Hqqp4fXSj3FhgVG2kRGuXXk5rYtolBbYnTsmVBmNmnlaL4J0Cj0ksI9tLfxAZvM+SJAl086nOMJobPe+o6MUhNFRCqytMGyoroICmqHyTIBMKjgDboehkyeppNLBfq+nvNR+RxuV+Pp1ntFragwApwt+CqTCZpeU8Lqf/5zC2NxsqhNv3TJ5CXafAtf6ammhsEgCk5tKHaQsACqtlRWOo76ec/ehD3H89fUc09JScqQmCHvx6lU//mBPj+lQLMI/NMSjyuHDVDTnz5vCLB+CdF0d3zOo4WcKpTNDgU1VCtte+DNROkEOUhxhsu/c+4oA2Y0vysrojJLdQs61XV00tyXUphQZs7nZ39utttZgCMo5P5EwAhn0Huk2DHnH5WXujD09ZHIbc++JJziGTLBgMzPGm71/PxVYNMo5uXPHeNyHh5OtIV/dxPg4hfhnP+Px5sQJWg6ChXDrltlJa2qoOKVAZniY/yoqqCAPHDBrKNGATB2IgGD8QVlTgM+/ft2AsoijMx434czGRv7e30/L8O5dKpYTJ/juIyMM3boRiCRKl+Yp8EObVNu/reP8YSjb5JyxMQrwmTOMq0vqqxvTd+8rITI7NVUahdrZhsvLZMzxcXNdSQkZSNqJu3F/ERRp9bV3b2a0p0zoUNKF5sIFKpHVVY5pdZVMOj9vHIi++bJhs4eGjALbv587bUEB+VOgtxYX+Xc71u+rmzh1yuAZHjxowtgrK9zdp6boR1hcpPDJMwVT/8UX6ayUdFuhbDoQtbSYuL30NJCjtqx5Swvna3HRRJjm5w3smCSaVVebqEN5Od8nEgHefptHBknyCVxPuZGdiXTlCrusXr1KbWgzWQ5z/He88Acl58TjqZmBIjDFxdTOAJlyYSGVYdz71tWRGerqkp9TWZnMhJWVZAQ7Y0xSbl2Hmj2+CxeyK0jKVMBk14gUFtLUP3KEu/a9exSoqqrgZKaODiqhlRXutpEIzexDh0za7+Ag51IEo6UlNVvOrps4ftwU9ojjTyiRMHUsdi+G8nJ+98SJZMQdYH1p3KL8xV9w6BDDh5EIn2NnHR44YCIDS0tUeJcuUfEoZZ4vKEzz85zz0lI+Y3qa45mZSbOeNTVckK4uPiQS4c8DA3zRpaXMvd7XSTve7Pc5dJqa/K2uotFkC8vFjhcSc1py2Ssraba9+KLBbRezvbvbHCGkV9zAABlh717+fWKCP4uABR3zJHYslM5zHMZvEQSzdfs2d+l0PoRYzMBmLy6mRhza2owZXl9vkIVnZ1MFMIzjTzL6pGW4jPVf/sV/RDt8OH2il+9IBJh5P3GCn589a8KM9hFsdJRFY6LQensp/IWFPOKMj3NeGxsNClNBgXl3G27djUAkkUBTCdDjtWvGFBkYMEkI6Xq9r5N2vPADqWfioPjrpUvE1rNJqsqA1ESUvXsNU8l5zY3CyLl2asowyOOPc/E/+IBe9I6OZIAN3zGvvp5/ly66QHJoMptQplDQNS0t4eLQMq/yjnbEIRIBfvd3jZItKwtGw0nn+LPv56bzphNy2x8WlI24HuXv8tLYGFOHHzzgGrW0GCUnSnF6mnJaWWk6Fkm9g/SCCF7PGA7VtKBKzXD3WFoy2GVXrvAGxcXUsg0NOe0E8ish/C5J7fTMjAnBCI6fKwz37nHhJFacKRHFJWEWm0Eef9wwiA+Fxrdrt7fzuBfUYy6bUKZ9zzB5EpkoXcjV3imDrAjX8Xf5Mi3ZsjIKwvHjwT320gk5EJyNmI3yz1Tu3dREK8C2oMQP0N5Op6fgb0jpdGEh18s9XvnWs2uiBY+3L6L6ibVcbIGllvbDw8NmEfLe/mAaG6MwS7xVQBP376dCdXcRCdWFTUTxUToG8X3PtyMXFiYXCtnHimxDmetBB8oUag6KOIRJiZZrLl5kHcPUFMOEciQaG2P4LF1IMxswzaAjEbA+wNF0VlZ3d7LXf2mJ496/n9ae+z6+9Vxsb8dQ93lUY81RcOkSjwCnTpmmApuA4PsrJ/wizDdvkukllNPdze4vco0siGS5CWVKRPGR3XLLNg2Dvhe0I/vWN9tQps/kzZRvnit033QKJBYzhUQAfSnl5Zyn8fH0dQXpnucbdyTiF1af8k9nCcn7+LL95HvvvGPwEW1fhbs+cq/Tp7lRtLaa64saYxgeOYjHul+mh/Xpp8mEXV3JDokc06+c8E9McIHKyrhgEp6rqAjeRdzz6JkzpjNsYSFNW7dqTshtuSUoNG1tZEIfY2VTQZgN/h6wvoKm9XzHpTAKpL+f96yrM2g3AwPJzTmySXYLGvfiYvZ+gnTvs3cvNxHJxWhtNd8Lsz5hekPEdILmj5u4IGWMm5D19ysn/LIYttdYzt4+8u3CCwsU5tlZ7kp9fZz3Y8fSQ1+JwhkZ4THNznZzKWwFYbbn9vUUNOUiRz2MApFwtSTMFBdTUMfHs6u5yPSumao+w8y7+z7Sh9D14bjrI+W+NvSYfa+g3hBPVU4AZWsvIzBG0l6ouJhOhWefzZ/5bQqCzwaMsNy7x93bl3Lp7sLDw8DHP87vdnWZuH5vr+meY8+/i/tvN9LMxTplizOwnoKmaHR9Z2GbwigQKaC5d8+EvwSq2xaS5WXmtwhydSTiR67eSNWnTRtRiPb63L7tLwaanaX1AJA/Wlvp/7h4keHYJ58E+oZqMPv6HMrqy7Hv/vuouHePzr5duzgBd+7wC0Em6DpoRwu/MLPd2jkSYQbY8jIXSikKY3FxcPmmzSiCcX/1qsle09qUirqmcLZm+XooG0ZOZyn4Cmfu3OE8lZX5z7RAOFM8zDxIA8zqahNe3bOHacZScxGNmrmvrjb59G4vgkzvGpZyoRDt9fFBnQ8NJeeC9PXx55YWHnveegt4rrMdRwrPY24KuP/WLaimQpQDXBBhwvffzwu/UHe3v7XzmTN07sViXMiSkvDnWWFiuxhGEjV8mj+XXWtyQeksBXs3k2xSKdjZt4/fWVggU2aKmfsyIjPNgyDiPPEEvy/XdKy1mKipYeHQ6KhJa6+uNjkQ7nplYxW5oCJa819Qb4JMaFE+CrIWKivNvfr6eK/bt5mKPD7Oa37+fgzxT3aifrIbJauzGJ+qRfmRPXSObBLtaOF3WzsDplxTmCXb86yd0DI/b2rIJe/b1fyZGNCtiy8s3JTjm3dMLtm7s90YtKoq+EybjTNQQD0Bf31/prmKx5kDsGsXBWZmhhbCY4/RSw6ED0HaZCuwaDQZ1WhsjIpe8vSB8GhR6eZXaG7OFPV0d1PZLCzwneJxg/M/Pg7cmoyh/EgnCqYnoS9dphmrNb8wMcFa6hzSjhb+mhqa+rt2mb+5rZ2zNcuFmSIRMowk7UiBhiRpTEwYx5W0Ajt+PJU53Lr4hYVNOb6ForCNQW0Kozxt4fr1Xze7pI/SCWsiQf4eHeX3CwpMctvRo6n4hWFJLMRbt8gvhYXkmYGB1N4EdguvbK20dNaP/d5vvmnmtKzM4HRKeHl0bwfiExPAylqdc2EhnQZiIuWIdrTwS3ejS5cMTLJAP4twZ3suFPNQa5aGam0aMdg1A+4OEsSYbl18tse3XB4Z7J03bGPQMMpzvaFC9936+yn8cua/e5dCOzvL3TPdfdPNU18fd1hpoVVQQMFfXKTCfu89WmOSX1NayvyadMom6HmZrAW3HbnU9Uj4c3YWmI3EcOjLp4DE5p4Vd5zw25M+Pc3doqeHC7t7N3eK2VlTJON6Y6emaFJKMpBb0JMuQcauGbDRcQYGjDIJGxufnTUWRNDa5ir5xqZ0+fo+pRhGeQZZB3bNhERiBAZNKZq6u3ebd+vvpw/iyBH+PDxslHm6bMtM8zQ9bcA7KipMff7sLO+7axfHmkgYrMC+PlNV6HZQshuy+p6Xbv1jMdON+P593uvkSSqA8nLy75EjQG0sBrRlkfG0DgpV0quU+pxS6rpSqkcp9ceez19USl1Z+3dWKfVkrgc6NkZ4629/m9p5bo593ebnOXn791NTV1amotJIvXx5Ocs03Q4wQpnKZO1mIT4s/LIyMo1dqtvcbOriteb/g4PcdTM1nsg0no2QMGm6vgNhr/NhKkjNhLzjyAiBaUdG+PvNm6ZltrybnIujUR61jh7lWkqdC+C3TnzztLLCeotXX+VYBLxDkrGkTl8qN0+dYtnz4cMUyNJSKiDpoGSvlbQRX++6tLXRIf2JT1D57d/P33/rtzYtmc9LGXd+pVQEwLcBPAtgAMA7SqmXtdbvW5fdAnBSaz2ulHoOwPcA5ExtiWa/c4daWSmemx484ELNzpJZ5ud5PLK7jtutlZeXTbKPD7TRl3oZ1H/PxcIHUouE5ubIJHV1HKsc36JRmreumXzhAp8rO0xfHxWVTbls1x42hJjpOp914NZMuDBovhqKxkZTxCYdfuyuukE5G2J5TE4aVJ379/n50aMc/717Buarvd20MSsuNmAcgnhUW0slsbjI9xAINsAolkSC7yGU7bpkE77dLApj9n8EQI/W+iYAKKV+CODzAH4p/Frrs9b15wA053KQdvJHdTWFf2WF/wDjXJIuKbJT2Oag7LhK0dO6tJQK2hiUeunzH7hY+NIVyGb48nIydE1NslCLp72ry6DHVlXx95MnjeIYGOB1kjkoSS+bCe66Hh+D76zr1ky4MGhBNRStrakltXLfoJyNSITCLSHfuTleL2f5ujqa/ZFIcqMO2WWliUksxs9mZijce/dS+bg4C3J8EdqIk/BhUhjhbwJgYa5gAOl39d8D8E8bGZRLotllt11Z4QIJuGIsRgYZHiZjSF24bQ7OzfEz8R63taWCNgalXrpAkJLj/dRTBrqroiKV4YHksJGQMFttrUGPPX2az7MVR3s78O67BgVok9u1b8jH4NvJbEehwKBJabWvpt/nc7DvG5SzITu04GHcvm2q7SIRXnPvHj8XPAzbESfh3KEhKtzhYdMfQFqh2UeNeJxrMDtLi87n+D14kAqiv9/4mQJx/Jw12KqckDDCrzx/056/QSn1KVD4Px7w+dcBfB0AWltbQw7RmNstLZzYoSGDmRaNUlCXlihInZ3+dt2iALQ2TR9WV7nwbpPIvr7glsqZzLUwYUXlmdGFhdT6g8ZGHlempsjQ8Tihw0XZ5dpsDPLaX7jAMdtQ5L6MO5vco0BdHY9t+/YZGOy9e81RIEwc3edYfPCA40okDDz62BjnrqGBv0u7e8D0HHTvOzVF7IyFBV4r46ivZ3NPG7Jd0JUTCfqfqqqSUY6mpugXaG8nHxUU0MIpLeXYgpTpZjh401EY4R8AYDVVRjOAQfcipdRRAN8H8JzW2nv60Vp/D/QHoKOjw6tAfCSMJGftkREK7/Hj/Fk8sM88Y0A0Ll5MLrMVT+r9+2S+oiLTP90W2OpqU/ufrXBJ6HFszCT0xGJ0JgmNjZFZV1e5K8jR4Omnk1ttA9ytRka4owi8dF8fxzw/7x/DRhqNBAnX66+bsBTARJyJCb5XpsIlMdnr69nA8t13+W/3bh5xsjnCuGFHu+dgezsFTGv+Lt58AReNRv1KF+BmcvMmMQpnZij8gku4tETBHx42FpgoqbY2M2f2vaUNuKRNC77f6KjJpMwGhGQzFD0QTvjfAdCulNoH4C6ALwH4in2BUqoVwD8C+KrW+kauB2kz0uQknTjilDt9mhM8MmIAIbWmsnjqKVNmOz3NhaytTW40Ibj5QHJVliDbZmt2aR38uw0gWlpKphHgS3GS2Ug23d2mn55SJlegu9tg5tu0kUYjgD+mLwkyAkwJcCyiZDKFteTz3l7jJW9qMuEyNzKTjlxr4sYNM9779/mvoYGKvaiIglxczLWuqOBnPpqZ4bgKC42iiET4t+lpOpMLC/1Wg2/OBI/QThEvKTEYnL4KS6VoYYn/Z1/1GOonu1E5NYGx1c2x/zOG+rTWywC+BeBVANcA/G+t9VWl1DeUUt9Yu+xPAdQB+I5S6rJS6kJORwnDSKdOcWeWbKz79zl59fUG6FSaZOzezTzyqioyQyxGoRGvf2cntbeEsm7dMk67MPDZLnV385nHj9NJdPw4f5cQkGj2gwfNLl9SQiYWU9IOqTU3U4HJLiT56ImEv3W4G/KyPexhQlI+JGTpH2D3tBcoch+QrItKLKjJL79Modq1i9+9eZPClU3YUnhgcZHAnufOUcE9eMBdu7WV/FBSQsvqiSdM1uXSEhW9j8rLzXFE/jU00FwXyzAoIzSorXk8nhwRkvoQt8JSlM3ly3RILy8DanwM4z85j7nxRcwU16GyOEtGDEmhkny01q8AeMX523etn38fwO/ndGQBZGv/vj7TnlkYdGGBeO+/8zu8xi2z9WXV2TvUrl3rz1Q7fdpEI7TmYjc3GxPdNhElkWVqiowqu7FrBi8ummsnJ8koQRln586RYauqTJ8/X6ORoJCUz2vf2cld2+4lKFDkSiUnKgUlv8guKriIcp9EgvfxzWW6Y8ryMpV4IsF3u3uXax+P81nl5RR0X79L3/0PH6YDT2vy0d27nLumJr5HuoxQ35wJHmFdnZm71VWOw1dhKQljRUXk6b3F3VAV5bh1vxy7dwNtR8opqTm2/3dchp892XfvcoEee4yCIag9e/akMlWYMtv1gFq4RSM/+xkX+rHHuNj37xsT3TYRRSn5oMOFbF+H3Rd+YoJ/F8GwjxMFBcYCikSSPexh5sF1aMrOLf3qZJ7E411SYgRdnFxuyfDly7TMolETiXHDsu5cBjm8bKGpqDCK9d498sLMDAW3p4dzZgOqpOvrKNiPg4Ncl5oaNjWtr89scfucwAJsurDAe87OUhHI+/raqUkfwoqRCYyiDvqBld2oc5jgsUY7TviB5MkWMAg5o0vxTbblmMD6avPtHITbtyl8FRVk7IUFMoEITbZ1BmGAIuRzOU50dZmGltPTvL+YtOvxZ8RitJbsxqMS4iwuDk5+kZLhlRWDSH31Kv0tra1k/kgk+fgSxuFlC01jI8cwPk6HXDxOfmhs9CuPoPsnEnzHXIbY3DRqmZtz54BXXuEm1dTENbOPB42NQHNjDeqn5hCpKjdt1HMNEoEdKvxC6YAwgezKMdPdL0wN99WrprGF7V2fmSHIo8CwZVsmmgkoQhjWd5yIRk2jkVu3uLOlazkdZHKLArCPTK++mtypCEhOfunvpwV065aJtxcWMvqyvExrxG5Gas+lTa7lZSvolhYqlnicCm5hgdeLk9RVHuvp6+hSUDOQIMVhY06srnJdtKaDOhLh75JhClA5js+3o/DOeWZ36g1grmegHS38maqosj0eZQMOIWSDf9TUkLF37eJ3Vlb42ZEjyRVi6zm2pWPcdMcJu917On+GL1Jw9iwFrKUldSf0WUl28svUFO8BMGce4O+rq7yfD98wjOVlK+iqKjp/ZUefnKTw/HK3RHB6dtD905Hv2HD6NIXZLlCyk3xOn6ZSqqvjGgp4ytgYjxSRCM/5dsJYpD6GAy92ojqR5e6VJe1o4Qc2niPt0+TZ3M+ujquupnmutfGIl5TwvkFtrMNSOsbdSOWdCIZtEk9OcqeKRmm5LC6SiaXhZxBWop38srrKvx06ZMBompp4JHnvPc6DG+sP8x6+/IGPfcxUXUpLb3eO3PtL12C7RXimNfEdG8QBf+CA+Zsk+Rw7xnd++236JqSZ6dISx6Q1k6VGR30Yhdukqm+nkS/clO46u/LsBz8AfvSj8JEVYca2NlN3fvAgd8CCAsbYJQOxocE8M9uoTVBDUruO3Fd5J8/74APGkScneb/JSf7+wQf8vK/PmPHXrlE4+/p4bh8bo1Lr7TWVbTdu8D3dZ0ro9KtfpSm+vGyqGfv6mEWnFHf/2VlW+vX2Js9l2EpDt9txujmyv2d3DT5xgs8JsyZ2VafQgwf8Z5Mk+UjKuGwEYiFKDUCmMOJm047f+YPQe8OkSAbtdnZL5bCplVVVNG+np/lzWRmFfXTUwIzNzye3sc7Gwsh0JPFZQLaZeuQInXYXLqSeMRcXk4uIurp4v6Ii7uBnzlBY7fJbwOyaQeO169ZLShiCnZ1l+HNuzuAhvPGG2f03YsmFObbFYqZrsG1FAclHIDv5RtCa7t6lENvVfG5USeZFohryrNdf5wawskK+UCpzGHGzaccJvwvEKE01g8JN6WL1tikslXaSiZVNjF8EbN8+Y6o+/TSV0MgIF1sSddra1l+WawtGuni4XcYsTsiaGpqYN25QmH/t15Lz0UUhCGqulL8eOEBLwA3LhXkHqVu/eJFztLBARi8s5G4vnX3tVt0bpTDKo7+fxxm3l+PoaHq8v4aG1Dz/WIzzNDREoU8kqEibmszzmpuBT3+aEYmqKlPoI2FEIDOwy2bQjhJ+1+Hia6qZTa21fY6WWGvGlsoOpQsfdXaSKcK0sd7IPNjWDWA+KyjgP7tEWc6Ybuvuxka++927HNvwsIHOKivj7/a5NKy5GouR4T/5SZMzLwVM9+/zc3utNpvGxij80stxdJRHkepqCqmdCelDa3Lz/E+d4gb08svkRckefe01fq+93fhDfL6erS7msWlHCb8raD5ACLfWGghmVNsBVFFBzat1akvldOTCYdtZe+3tXHBZ3HRtrLMhG5BS8AAEmAQwcyTVbKurNDsbGsj0bjGTvKt49hcXObeSVRiPc35sUI2hoeBGKEFz9OEPAz/5iRnj/fsUtuefD/feGyl3ta2h1VWuwcoKhXp5mQL84Q9TaGXXvn2bvFBRYXwljY2pef6SEi54AiUlVKLnz/NaGwrdpa0u5rFpRwm/67H2AULY4aZMsXr7jFhRwe+1tye3VD5yJD3TSUGG1Bm0tvK5q6vJob1scw7SkQ1IKdZKby931aoqCmlXF0Nr4mwsKzOQYnV1xtvumyM7q1A+k9DV6CitCaXI5EGNUGwSC0tCc5cv855tbcxDsFOag+Z6Izuk/V3J1x8dpYAuL5uipbIy8tLNmzy2FRXxyLN/v7EAfBuCD0K+qYnr0NKSXohz0SptvbSjvP0uVlxLi+nyYhdVuAUy6RhEFMAXv8jzaX198veAVAw3u2BlfJw7/eAghf+118jcjY3GsRfknV4v2YCUkisvNeNK8Zy6tMRil8JCMqaYox0dFKjaWv8cBXncxYv/2c9SiOX9whYM3btHJVlYSAUZj6cyvRt9sed6I3iG9nel3DceJ89IOK6xkZZOWxuVqDQvWVri95ubU6MHQjU1nGO7+MmFkA8iH/7hVkUAdtTO78aBo1Hm8fsAIdYDdeVzFtmIvUCyWQYYxOBz57hT2AUa6eruM1E6a6OqygBSSjHT6qphbJukCMcmH7qQ75kHDpCp33kneQzZ7laxGJXywIAJFx49ynl7+WXTXSmdCbyRHdL+bkuL6VSkdfJR7/33TWSkqMgUVclZvqLCb7W5cNwLC5zf3bv9QuxGEwTFeL0tx9ZLO0r4faGcXHa+sfuxi0d2cDB1IWymq6szXWUKCkwdeWlpcN29/awgb306E7elhcw7OmqKmXbvptUyMcHdTIpUJid51i8tNQU/+/fzWnc8PiwAAbt87z0y+G/8RvaZcmNj3PUnJjjW5WUqy8ZGY6k8+2z4LEb3mZl8AW4G5JEjjHrEYhyLHPWiUd6joyO1w7MdZfF55t2w5oMHRPlxE4h8a6sU51jgwjYhmc9LO8rsB3JvQgvJooyM8Cw4O2vqqy9eNA4fwDCdndorjjJp/ZSu7t6t5b50CfjOd9jWK4w67jiaAAAU9ElEQVSJ297OnXTfPjYW2bfPFMnU1HCnP3KEwtXZaRqalJTwfuKgssmHBVBURKF98ICpwdEoGVwQk4OSaVy6eDHZUkkkKCTXr9Nz/g//QIsgnQkclMATjwcfFYTc74rF+Id/mHzUi8f5rr/4hclCtN8r3bFEwppPPknFUF7OzMOSkuTx2IVgV68y0iCf5ZqnM9GOE/5ckp0J+NJLydBLtbX8v6SEDPjqq9z53nmHTNHebphKkF+amniP0tLkGn2XXAaIRLg79/ZyPIIX39XFDq5dXcngGbEYHXA9PRxXTw9/j8WSGX1qiu/Q2Mgz6+AghS2R4BhsAXGz10RY5X2UohBKKDVMJp7Q++9TOARGLRLhvRMJzll5eWalEuSLSCQy+wLSZQ7KZ8eP83tPPmkiRoKk5Csn9j3LDmseP875cq+ZmOC8//jHVPqJhOlEnGOsjoy0o8z+XJINKxWP00yenuZ57UMf4jUlJVwQYRohOVcL49h9/V54wUCEHTvmf7ZdCehrA/7WWxQYwfzft49CI30ax8Zoth44wLPz3FwyJJYcjaQll5isXV2ma6ybweia1ZWVHJ/bB7GkhCa7mL2+/oQ+Ki/nEejHP+ZzCgv5jEjEoCSLUpFjncBt2z6HeJzjevNNkzZsw7oBfl9ApuQfWyFLJCMaNclIQPrkIHdtbbLHU1DAOonSUr7T0hJDiq2tWxPes+mRFH4bVioeN01Qi4rImIJaI22a6+t5DpSzv2D0i+B85jP8XM6dQY4hMek/+IAKZXLSKBpJLhodpYUhiLcipIcOGaXjc4xNTdF6aWoygmIXHd28aRCGfH3vfGi7KyvGMbawQOFcWkpuShIm3HboECMgtbVUFu+8Q6XU3EzBEtiriQkjpPbZWBxhL71EJVdTQ6EXsJCKCr6/r9dCJj6QNfvgA86LZHpWV5sdWfpj2slBCwt+/0kmf4goLLvyUHoRZIoM5JoeSbP/wgUKQ1+fwZIT/LdolIs1Ps7/o1FThipUVpa6UJl8EfZ5UTzI/f3G7BMgz3PnuJs8/jiVkVL8fWWF4wBSTfTJSe5QY2PJCgMwx4PXX6fJv2dP8g5pHyVs07i+HviDPzDYhn19psmJOOrChts6OoiJuLLC51RWUmBLSmjlnD1rdnohn4l9/TqVz+IiBTQe55z19JheC5n8D771qKvje54+zTmWY45SnIeLF6l4pqc5F6Ojwf4TOXYNDdFv8Npr/L7k+mtNC2h1lRZENErluLCw9QU+O3rnF83d12cKany15+53zp8n8xUU8Czd22sSOZqbk/OvKysN6qt02IlGeX025O7WHR3c8a5dY2aZtAEfGjK7YfNa36PVVR5LhDnc3aW/n+9SX59ceHPxInfHAwdMHsCdO3wn3w7pM41raszxaG6OY7p2jeMBOI8VFZlRfI8dYwHPzAzneWGByray0iTX2M1I3BZc09MGIHV21pQJi5+gsjK414KPpHX68jK/29hIi0Q65kq4rrXVNAvZu5fju36d8ykQZu67HjyYfKS0kYprangfUTKSDSgJWUA+tz+Fgqr3VlboyBLmlnN6OmdbfT0Xd2CA1xcVGXgrN/96bIw7grTaXm/XHPcsKNVera0G1qqiwrSTkjNiUZFpJyY7jGuij4yYNFKhsjI6lJ5+2pSWputGFESJBAVXct3Hx6mgpqcpaBMTnMd//mfuar5Q29iYSTyanzdZmLt38/0iEa5JY6M5htTUJLfgEoy7wUEK19ISd+uZGSqkoF4LQcg7589TqUuGZF8f73v3rgmftrWRx6Rx5+Iix1BYaAq5VldTsQ4EVMQ2/e12bmNjHK8gLPX3s/BHCsO2Krd/R5j9vhCLaFbXOz86mt4UnZjgAhQUkGkiETLQ7GwqrBTA32trTZ68ZMnZkNxhKCiMJb3p5Ljwwgt8Tl2d6UE3N8f6eLd8V0x0O6mpq4vM+KMfUfhv3iQzSnxbdshMHnp7vsrKeI+ZGVYEjo4a5+jsLHfPmzeDQ20XLtCpFYmYHVO87kePEj1X6+RjiFQZivNtYYEWTFmZ6bgk6L2HDvlN/aDQ3IULphhMMiRLS007r6NHjSU2MsL7trQYTIKKCmMBDA1xTq5cMWHbv/1b/m6Hh6XfYnc3xz88zPs0NwOf/zyfMTVFZXD1Ko8Zm+393xE7v1t339/PCRob4wTa3nm3MYJLck6bnyfDlJdTkG24K5dWV1Or4AQKPAyNjXFhz58n07W3m4iAu/NKvvsbb5CxOjr8nW3c8t6f/pTWSWEhhXtpifNx716yM8y3Q6ZLkiko4Fh6eviZ1KAPDDCxqbKS1y4t+XHzAB4TamooYBUVPGrV1lIhPPFEKqa9vJ+k1MpO/MwzPCK98YbBR4jHKUiu+S1j8GUMXrrE+bh6lb+LU3NuDvjKV0wNg0CXy04vrdykEcyhQwbBuKuLcxCPkx8Fs0/m/d498m1DQ3Lpt9a0eATwtLSU1wwPb74FsCOE3z7/yQQ1NXGCJANLvPbp0FHsXPzaWtPPT86kQbQR7Dfba33iBBny7FlT8ONbWFFEIpQ9PSZhyHe9WCfj47y2ooIWhZiz+/YFm/qZyoPHx7kbSVHM1BSZ+SMf4XOkqErKoIH0ynfXLvpYpFJufDwV016otdWgMwtFo8CXvpQMax5UXBQUdgNMIpTbD8HdBGR+AFp/Bw6QBzs7yXODg+Q/6e7T0kKnqiAWybyLye8qoqEhjl2iDBsFfcmGdoTwi/DZE1Rby8luaKDjJhIJZiIhcRjV1xsnUlVV5pZR60H1tZ9p7z7HjxuFBRgILddhKZ8FCaW7UwsenN3GvLycwpPOGZYunx7griTtxCRfXaoEp6YoRJISK+QqxsOHudvKmJqaqKT27+eOqBTHePJk8tjSzXuYUtggpX34sLH67MpF+x2E3JTytjbym2RxyrGxutrAeUWjHGN5uZn35ubUtuziXJ6dzS3oS1jaEcIvTGBPUEEBM6kmJjiZUrGVrsmCDXEt4a4w5rvNAFJDX1VltHk6xeHuPpOTFPaeHv59926aiKOj5tx65w4Vko+5L1ww+HBuV5y5OYMBL3kKjY3c+YMaj2ZKSqmr4z2Wlkwy0uCgSSBqa+Pubdf6u4rx2DFjdU1McPx2q245Brm9+9LBcoUp9MkVtLsbBdGaYbwbN0wbNaU4ByK8R46YMF5np78t+8WLTNzq6Ngc0JdMtCOEXybfnqD6ek5oIsHJ+sIXeG13d2oVmtBGzHdJnR0bM/3mLl3iWbuzkwyerpZd/BXicRdmOXOGu3VDg3GETU8zDHb4sLEGqqtTPfiASfDp7jb+jqUlmtWZLKEwcyIgH11d/F1rjmXPnmSQ0Ey4edIUo7+f/+rqqKiU4tlbdkrXzA3KzAuzlpkw/dZrTre1MR9DciYGB/kORUVUbGJNSAQJMOnS4+Ncb7vWIhbbHNCXTLQjhB9InqCVFZ4bCwq4YzQ0UAiVCu7WAmRnvvf2GqebQExLHrnk5ItzpreXf/Od4dvbObbxcTKD1lRcFRUGRqq0lMcAaeagFJ9VXGwq8WQnkbELTU7yfDk0ZPwgi4vGEWpbQj7HXtCcNDWZWoP6ep6/pWV4Zyd3K3eHzrR+ck1DA8e8ssLxjo/zfU+eDF8CHXYtM40tDBai+1kiQcfj6KjJB3nqKc67lHNLVEmw/i5eTE5iAsyRyR5nLkFfMtGOEX7ATNBLL3Hnra83mvXNNznJHR1mpwSSd5KwE9zbS0jp2lrTFebv/o4/P/GEPyd/ZSU1vdZG+wGSd6byclNrL62alpb4c3U1BUTMd+nku2cPrQF7x7t2jcxWW2saS46P0xN/7JixhOy6cbspR3Nzcg26FKNIKLW2lkIlTq7f/u3UGH4Q8o7v7/bR69o143ORXICgEuggXtiIsITFQpQQnlh5k5NM1Nm9m1GPN97gXEWjDBPKcVCwCcvLTduyhgbOZ0mJyU1x32mraEcJP8AJamriJCtlTGkpOrF3SrfoQr6faYLfeMNEAwDzf08PTT677/rCAsfR20uFJIU2dh+9xkZ+T2rqAZPwUl3N3U/aOEUi/OzQIQq628kXSN7xLl3iHBQW0newaxcF4e23aY0IYwvYaX09/7dhynftSj4L/+AHyXUPq6tE+62qShV8V3h++lODeivKo6aGfoxTp/z5DuJABExfwzC0UWHJ5OwMsvKkNLmsjLwSiZhKzps3yR8uiGxxMa2dsjJaZTMzPC5I4dRG8AnXS6GEXyn1OQD/A0AEwPe11n/mfK7WPn8ewByAf6u1/kWOx/pLss97EgEoLyfjCIZafz8dXetxmAwNJWfLASZWKyW88/MU+vl5k7zipte6CDTV1Tzjyy7R0UFBLCri92trDSMdPhzcydd2PkpZrHSC6e2luW+XugLJYKdAMEw5QOZdXeW1AoDha6ftA1S9c8ek/hYXG3ir27epgDo6qDDm52mdDAxwvuNxPvPateQjxWZSGGenz8qzYc6l5HlxkWHASIRHo74+8oJAq33wAT8bHzftu+rqeM+HheCbMcNPKRUB8G0AzwE4DODLSqnDzmXPAWhf+/d1AH+V43EmkVuzrjXPXVVVBhp6ZCRcgYePpMusTZOTBsdu/3465MS5Mz8fXPwjikq8/K2tZJYHD6hMvvxl4E/+BPjN36TJe+oUBd/GJXTfQ3a81lbgE58w1kJRET/v7aUysH0DEoefnjZp0C5M+cQExygAqJKQMzBAofYBV9rP6O/nNXfvmvUQBVNTQ8GWscdinBfpVCt182G75+SC0oGH2EAtgs0n8yX4CALGsrpKwZdipQcPjMVWUMDIwMgId3nBTpSkJ4kaZcIk2AwKk977EQA9WuubWuslAD8E8Hnnms8D+F+adA5AjVJq09DY7fRWu2a9s5MCMDyczGTZ0smTFABJQJGfJQ79mc8A3/wmhXV52aTX2mWaLgLNjRtkjPJy7sxf+ALP5IlEckXgs89SAYQBypiYoKNp926TZBKNkqGOHw8GOxWYcqkktMc7PW1MUVEoDx4YZGObXOGR86sNZFlUZNqlC4nz9vHHqbhk911YoBLYCsYH0rf3soFaJHwn8yVp2R/9KPCpT3H+IxGDCbiwwFz9qioeA2IxrlNVFed+edmg/8i6uG3AfJWjuaYwZn8TALunygAA96Tlu6YJwJB9kVLq66BlgNbW1mzHmkQiMHbNelkZTf2Gho2ZTHaKbX8/F/f555Mzv9z02vPn/XDhct2NG9wFqqqMogjKMQh7lq2p4e7T2WmSlqJR3v/YsVSw0717ufNIZp0Pplzu09RkUGciETo6fZEM9xkTE/R7DA4a/IBIhH+3nXnrmZdcU5hQoA3UIvn+dlTBLtIRlKInn6QlIGZ/dTXP+FeuUPHv28cNSqDXurs31j14vRRG+JXnb65bJsw10Fp/D8D3AKCjoyML104wbVaIJF2uf7ZjiMW4S7ipqhtdYDvF1c5Uk5wDd0ynTqWGsdzx2uCgUuhSV5cK+Ol7b0n4kb4FIyMcU3s7zWQ3hXqz5iUbSqdowwC1yPsXFtJJ6wqzJF1J1p/PMt1IBulGSOkM7lWl1AkA/1lr/dm13/8DAGit/5t1zf8E8LrW+u/Xfr8O4Bmt9ZDnlgAo/BcuXNj4G+wQ8iHTiId9I4oq117ijY7Th4Dc2ho8rs2al4dJ9js9eJDc708Kutz3y9U6KqUuaq09icqea0MIfxTADQCfBnAXwDsAvqK1vmpd8wKAb4He/k4Af6G1/ki6+z5qwg88nHDOemirx7lT5iUbCur0u9nvl1PhX7vh8wD+HAz1/bXW+r8qpb4BAFrr766F+v4SwOfAUN/XtNZpJftRFP485WmzKRvhDxXn11q/AuAV52/ftX7WAL6ZzSDzlKc8PVzaEUg+ecpTnnJPeeHPU54eUcoLf57y9IhSXvjzlKdHlPLCn6c8PaKUF/485ekRpbzw5ylPjyiFSvLZlAcrNQLgTsjL4wASmzicjdB2HVt+XNnTdh1bNuPao7X2VGKk0kMT/mxIKXUhbNbSVtN2HVt+XNnTdh3bZo0rb/bnKU+PKOWFP095ekRppwj/9x72ANLQdh1bflzZ03Yd26aMa0ec+fOUpzzlnnbKzp+nPOUpx7SthF8p9Tml1HWlVI9S6o89nyul1F+sfX5FKfXhbTKuF9fGc0UpdVYp9eRWjCvM2KzrjiulVpRSX9wu41JKPaOUuqyUuqqUemM7jEspVa2U+r9KqXfXxvW1LRrXXyulhpVSXQGf5573tdbb4h8IFNILYD+AIgDvAjjsXPM8gH8CMQM/CuD8NhnXxwDUrv383FaMK+zYrOv+H4jJ8MXtMC4ANQDeB9C69nvDNhnXfwTw39d+rgcwBqBoC8b2SQAfBtAV8HnOeX877fzbDiI87Li01me11uNrv54D0LzJYwo9tjX6dwD+D4DhbTSurwD4R611HwBorbdibGHGpQFUrqFTVYDCv7zZA9Nan1l7VhDlnPe3k/AHwX9ne83DGJdNvwdq6K2gjGNTSjUB+NcAvoutozBzdhBArVLqdaXURaXUv9km4/pLAIcADAJ4D8C/11qvbsHYMlHOeX879erLGUR4jin0M5VSnwKF/+ObOiLrkZ6/uWP7cwB/pLVeUcp3+aZQmHFFARwDgWFLAbyllDqntb7xkMf1WQCXAfwrAG0AfqqUelNrPbWJ4wpDOef97ST8AwDsDnnNoPbN9pqHMS4opY4C+D6A57TWW9ByIvTYOgD8cE3w4wCeV0ota61fesjjGgCQ0FrPAphVSp0B8CSIFP0wx/U1AH+medDuUUrdAvAYgLc3cVxhKPe8v9mOjCwcHlEANwHsg3HGPO5c8wKSnR5vb5NxtQLoAfCx7TZnzvV/g61x+IWZs0MAfrZ2bRmALgBHtsG4/grsUwEAu0C4+vgWredeBDv8cs7722bn11ovK6W+BeBVGIjwqzZEOOitfh4UtDlQS2+Hcf0pgDoA31nbYZf1FhSIhBzbllOYcWmtrymlfgLgCoBVsPuzN8y1leMC8F8A/I1S6j1Q0P5Ia73plX5Kqb8H8AyAuFJqAMB/AlBojSvnvJ/P8MtTnh5R2k7e/jzlKU9bSHnhz1OeHlHKC3+e8vSIUl7485SnR5Tywp+nPD2ilBf+POXpEaW88OcpT48o5YU/T3l6ROn/A7ES1VMMDVJlAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"N = 1000\n",
"x = np.random.uniform(size=N, low=0, high=1)\n",
"y = np.random.uniform(size=N, low=0, high=1)\n",
"accept = (x*x+y*y) <= 1\n",
"reject = np.logical_not(accept)\n",
"\n",
"fig, ax = plt.subplots(1)\n",
"ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n",
"ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n",
"ax.set_aspect('equal')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than $1$:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3.1"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"4*np.mean(accept)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "Python 3", "display_name": "Python 3",
...@@ -16,10 +183,9 @@ ...@@ -16,10 +183,9 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.6.3" "version": "3.6.4"
} }
}, },
"nbformat": 4, "nbformat": 4,
"nbformat_minor": 2 "nbformat_minor": 2
} }
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment