#+TITLE: Exercice 2
#+AUTHOR: Igor Benek-Lins
#+DATE: 2023-01-12
#+LANGUAGE: fr
# #+PROPERTY: header-args :eval never-export
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
#+HTML_HEAD:
* Le calcul
1. Préparation du environment.
#+begin_src python :results value :session *python* :exports code
import numpy as np
data = np.array([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0])
data
#+end_src
2. Calcul des quantités
#+begin_src python :results value :session *python* :exports both
mean = np.mean(data)
std_dev = np.std(data, ddof=1)
min = np.min(data)
max = np.max(data)
median = np.median(data)
output = f"mean: {mean}\n"
output += f"std. dev.: {std_dev}\n"
output += f"min: {min}\n"
output += f"max: {max}\n"
output += f"median: {median}\n"
output
#+end_src
#+RESULTS:
: mean: 14.113000000000001
: std. dev.: 4.334094455301447
: min: 2.8
: max: 23.4
: median: 14.5