#+TITLE: Exercice 2 #+AUTHOR: Igor Benek-Lins #+DATE: 2023-01-12 #+LANGUAGE: fr # #+PROPERTY: header-args :eval never-export #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: #+HTML_HEAD: * Le calcul 1. Préparation du environment. #+begin_src python :results value :session *python* :exports code import numpy as np data = np.array([14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]) data #+end_src 2. Calcul des quantités #+begin_src python :results value :session *python* :exports both mean = np.mean(data) std_dev = np.std(data, ddof=1) min = np.min(data) max = np.max(data) median = np.median(data) output = f"mean: {mean}\n" output += f"std. dev.: {std_dev}\n" output += f"min: {min}\n" output += f"max: {max}\n" output += f"median: {median}\n" output #+end_src #+RESULTS: : mean: 14.113000000000001 : std. dev.: 4.334094455301447 : min: 2.8 : max: 23.4 : median: 14.5