Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
823187c04e8c4a6d76aa54f9ef23c141
mooc-rr
Commits
6c4b36d5
Commit
6c4b36d5
authored
Jan 24, 2024
by
823187c04e8c4a6d76aa54f9ef23c141
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
now do part 2 of the exercise _ graphical plots
parent
e1f19efe
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
65 additions
and
5 deletions
+65
-5
exercice.ipynb
module2/exo2/exercice.ipynb
+65
-5
No files found.
module2/exo2/exercice.ipynb
View file @
6c4b36d5
...
@@ -2,7 +2,7 @@
...
@@ -2,7 +2,7 @@
"cells": [
"cells": [
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 3,
"execution_count":
1
3,
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [],
"source": [
"source": [
...
@@ -11,7 +11,7 @@
...
@@ -11,7 +11,7 @@
},
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
4
,
"execution_count":
12
,
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [],
"source": [
"source": [
...
@@ -108,12 +108,72 @@
...
@@ -108,12 +108,72 @@
"print(ecart_type)"
"print(ecart_type)"
]
]
},
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# PART 2 - Réaliser un affichage graphique"
]
},
{
{
"cell_type": "code",
"cell_type": "code",
"execution_count":
null
,
"execution_count":
15
,
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [
"source": []
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFMpJREFUeJzt3X2wJXV95/H3B1DkSdCdgUGDjBJCREsRR4Ora0CyBo2IZOMqcRUfVthVomTdioYyka0slqlSiFk2RigpRkQQUREju4qUyrrr02BYgYCL0UEehjuDBgcigjN894/TVy+XO/eeGW6fnju/96vq1Onu0w/fPnPmfG7/+vSvU1VIktq109AFSJKGZRBIUuMMAklqnEEgSY0zCCSpcQaBJDXOINDEJbkhyZFD1zGkJMcnuTXJvUmetcjrPjLJbYu5Tu3YDAItqiRrk/zOrGmvT/K16fGqelpVfWWB9axMUkl26anUob0fOKWq9qyqv5/5QpKbkrxx9gJJ3p5kzcQqVDMMAjVpOwiYA4EbtvDaauB1c0x/bfeatKgMAk3czKOGJM9NsibJxiRTSc7sZru6e767az55XpKdkrw7yS1J1if5aJK9Z6z3dd1rP07yZ7O2c3qSS5N8LMlG4PXdtr+e5O4k65KcneTRM9ZXSd6S5OYk9yT5iyQHdctsTHLJzPln7eOctSbZNcm9wM7A/03yj3MsfgHwgiQHzljfU4FnABd1429IcmNX1w+SnDzP+11Jfn3G+PlJ/uuM8ZclubZ7H/5PkmfMeO2dSW7vtvO9JEdvaTtaugwCDe2DwAer6rHAQcAl3fQXds/7dM0nXwde3z2OAp4C7AmcDZDkUOBvgNcA+wN7A0+cta3jgEuBfYALgc3AHwPLgOcBRwNvmbXMMcCzgSOAPwHO6bZxAPB04IQt7NectVbV/VW1ZzfPM6vqoNkLVtVtwJcZHQFMex1wRVXd1Y2vB14GPBZ4A3BWksO3UMsWdcucB5wM/Avgw8DlXWAdApwCPKeq9gJ+F1i7tdvQ9s8gUB8u6/66vDvJ3Yy+oLfkF8CvJ1lWVfdW1Tfmmfc1wJlV9YOquhf4U+DVXTPPHwCfq6qvVdUDwJ8DszvS+npVXVZVD1bVfVV1TVV9o6o2VdVaRl+Cvz1rmb+sqo1VdQNwPfDFbvs/Bf4HsKUTvfPVOo7VdEGQZKdufb9sFqqqz1fVP9bIV4EvAv9qzHXP9Gbgw1X1zaraXFWrgfsZBd9mYFfg0CSPqqq1VTXXEYyWOINAfXhFVe0z/eDhf2XP9CbgN4Cbknw7ycvmmfcJwC0zxm8BdgH26167dfqFqvoZ8ONZy986cyTJbyT5uyR3ds1F72V0dDDT1Izh++YY35O5zVfrOD4N7J/kCOBIYHfg8zNqf0mSbyT5SRe2L52j9nEcCLxjVnAfADyhqr4PnAqcDqxPcnGSJ2zDNrSdMwg0qKq6uapOAPYF/hK4NMkePPyveYA7GH1xTXsSsInRl/M64NemX0iyG6Omjodsbtb4h4CbgIO7pqnTgGz73oxd64K6ILuUUZPQa4GLuyMdkuwKfIrRL4/268L2inlq/xmjIJm2YsbwrcAZM4O7qnavqou6Oj5eVS/o9qUY/RtpB2MQaFBJ/l2S5VX1IHB3N3kzsAF4kFH7+rSLgD9O8uQkezL6C/4TVbWJ0ZfmsUn+ZXcC97+w8Jf6XsBG4N4kvwn8x0XbsflrHddq4FXAv+GhvxZ6NKMmmw3ApiQvAV48z3quBf4wyc5JjuGhzV/nAv8hyW9lZI8kv5dkrySHJHlRFzw/Z3QEtHkr6tcSYRBoaMcAN3S/pPkg8Oqq+nn3F/EZwP/umiyOYHRS8wJGvyj6IaMvpz8C6Nrw/wi4mNHRwT2MTqjeP8+2/zPwh9285wKfWMT92mKtW+Fq4KfA7VX17emJVXUP8DZGJ9b/idE+XD7Pet4OHMsoaF8DXDZjXWsYnSc4u1vX9xmd5IZR2LwPuAu4k9FR22lbuQ9aAuKNabQj6v4Kv5tRs88Ph65H2p55RKAdRpJjk+zenWN4P3Ad/txRWpBBoB3JcYxO0t4BHMyomclDXmkBNg1JUuM8IpCkxg3d8dZYli1bVitXrhy6DElaUq655pq7qmr5QvMtiSBYuXIla9bY+64kbY0ktyw8l01DktQ8g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAWqJWrFhJkok/VqxYOfSua5EtiS4mJD3c1NQtzH1r5763u1i3ddb2wiMCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxvUWBEkOSPLlJDcmuSHJ27vpj09yZZKbu+fH9VWDJGlhfR4RbALeUVVPBY4A3prkUOBdwFVVdTBwVTcuSRpIb0FQVeuq6jvd8D3AjcATgeOA1d1sq4FX9FWDJGlhEzlHkGQl8Czgm8B+VbUORmEB7DuJGiRJc+s9CJLsCXwKOLWqNm7FciclWZNkzYYNG/orUHoEhrpdZOJdwrR4eg2CJI9iFAIXVtWnu8lTSfbvXt8fWD/XslV1TlWtqqpVy5cv77NMaZv96naRQzykxdHnr4YCfAS4sarOnPHS5cCJ3fCJwGf7qkGStLA+b17/fOC1wHVJru2mnQa8D7gkyZuAHwGv7LEGSdICeguCqvoasKWGzKP72q4kaet4ZbEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcbsMXYC0GFasWMnU1C1DlyEtSQaBdgijEKgBtpwBtiktLpuGJKlxBoEkNc4gkKTGGQSS1LjegiDJeUnWJ7l+xrTTk9ye5Nru8dK+ti9JGk+fRwTnA8fMMf2sqjqse1zR4/YlSWPoLQiq6mrgJ32tX5K0OIY4R3BKku92TUePG2D7kqQZJh0EHwIOAg4D1gEf2NKMSU5KsibJmg0bNkyqPklqzkSDoKqmqmpzVT0InAs8d555z6mqVVW1avny5ZMrUpIaM9EgSLL/jNHjgeu3NK8kaTJ662soyUXAkcCyJLcB7wGOTHIYo05h1gIn97V9SdJ4eguCqjphjskf6Wt7kqRt45XFktQ4g0CSGmcQSFLjxgqCJE/vuxBJ0jDGPSL42yTfSvKWJPv0WpEkaaLGCoKqegHwGuAAYE2Sjyf5171WJkmaiLHPEVTVzcC7gXcCvw38dZKbkvx+X8VJkvo37jmCZyQ5C7gReBFwbFU9tRs+q8f6JEk9G/eCsrMZ9Q10WlXdNz2xqu5I8u5eKpMkTcS4QfBS4L6q2gyQZCfgMVX1s6q6oLfqJEm9G/ccwZeA3WaM795NkyQtceMGwWOq6t7pkW54935KkiRN0rhB8M9JDp8eSfJs4L555pckLRHjniM4Ffhkkju68f2BV/VTkiRpksYKgqr6dpLfBA4BAtxUVb/otTJJ0kRszf0IngOs7JZ5VhKq6qO9VCVJmpixgiDJBYxuOn8tsLmbXIBBIElL3LhHBKuAQ6uq+ixGkjR54/5q6HpgRZ+FSJKGMe4RwTLgH5J8C7h/emJVvbyXqiRJEzNuEJzeZxGSpOGM+/PRryY5EDi4qr6UZHdg535LkyRNwrjdUL8ZuBT4cDfpicBlfRUlSZqccU8WvxV4PrARfnmTmn37KkqSNDnjBsH9VfXA9EiSXRhdRyBJWuLGDYKvJjkN2K27V/Engc/1V5YkaVLGDYJ3ARuA64CTgSsY3b9YkrTEjfuroQcZ3ary3H7LkSRN2rh9Df2QOc4JVNVTFr0iSdJEbU1fQ9MeA7wSePzilyNJmrSxzhFU1Y9nPG6vqr8CXtRzbZKkCRi3aejwGaM7MTpC2KuXiiRJEzVu09AHZgxvAtYC/3bRq5EkTdy4vxo6qu9CJEnDGLdp6D/N93pVnbk45UiSJm1rfjX0HODybvxY4Grg1j6KkiRNztbcmObwqroHIMnpwCer6t/3VZgkaTLG7WLiScADM8YfAFYuejWSpIkb94jgAuBbST7D6Arj44GP9laVJGlixr2g7AzgDcA/AXcDb6iq9863TJLzkqxPcv2MaY9PcmWSm7vnxz2S4iVJj9y4TUMAuwMbq+qDwG1JnrzA/OcDx8ya9i7gqqo6GLiqG5ckDWjcW1W+B3gn8KfdpEcBH5tvmaq6GvjJrMnHAau74dXAK8auVJLUi3GPCI4HXg78M0BV3cG2dTGxX1Wt69axjnlud5nkpCRrkqzZsGHDNmxKkjSOcYPggaoquq6ok+zRX0kjVXVOVa2qqlXLly/ve3OS1Kxxg+CSJB8G9knyZuBLbNtNaqaS7A/QPa/fhnVIkhbRuH0Nvb+7V/FG4BDgz6vqym3Y3uXAicD7uufPbsM6JEmLaMEgSLIz8IWq+h1g7C//JBcBRwLLktwGvIdRAFyS5E3Ajxjd4EaSNKAFg6CqNif5WZK9q+qn4664qk7YwktHj12dJKl3415Z/HPguiRX0v1yCKCq3tZLVZKkiRk3CD7fPSRJO5h5gyDJk6rqR1W1er75JElL10I/H71seiDJp3quRUvcihUrSTLIQ5O062D/zitWrBx653dICzUNzfwf9pQ+C9HSNzV1C901hwMwDCbnfob6d56a8t+5DwsdEdQWhiVJO4iFjgiemWQjoz+3duuG6carqh7ba3WSpN7NGwRVtfOkCpEkDWNr7kcgSdoBGQSS1DiDQJIaZxBIUuPG7WJCkrYDuw5yAeF++x3InXeunfh2J8UgkLSEDHMx245+IZtNQ5LUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMbtMsRGk6wF7gE2A5uqatUQdUiSBgqCzlFVddeA25ckYdOQJDVvqCAo4ItJrkly0lwzJDkpyZokazZs2DDh8pa2FStWkmTiD0lL01BNQ8+vqjuS7AtcmeSmqrp65gxVdQ5wDsCqVatqiCKXqqmpWxhl7aQZBtJSNMgRQVXd0T2vBz4DPHeIOiRJAwRBkj2S7DU9DLwYuH7SdUiSRoZoGtoP+EzXprwL8PGq+p8D1CFJYoAgqKofAM+c9HYlSXPz56OS1DiDQJIaZxBIUuN2+CAY6uKqJKxYsXLo3Ze0KHbdob9HhuxraCKGu7gKpqa8wEraMdzPjvw9ssMfEUiS5mcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUuB3+grJh7eotHCVt9wyCXg11NaLhI2l8Ng1JUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1LhBgiDJMUm+l+T7Sd41RA2SpJGJB0GSnYH/DrwEOBQ4Icmhk65DkjQyxBHBc4HvV9UPquoB4GLguAHqkCQBuwywzScCt84Yvw34rdkzJTkJOKkbvTfJ97Z9k9n2RR+xACwD7hpguwN4RNt9hO/TktznrTXrPWpin7dl2z38nxtun5Nt3vaB48w0RBDMtUf1sAlV5wDn9F9O/5KsqapVQ9exvfN9Wpjv0Xh8n7bOEE1DtwEHzBj/NeCOAeqQJDFMEHwbODjJk5M8Gng1cPkAdUiSGKBpqKo2JTkF+AKwM3BeVd0w6TombIdo4poA36eF+R6Nx/dpK6TqYc3zkqSGeGWxJDXOIJCkxhkEPUqyNsl1Sa5NsmboerYXSc5Lsj7J9TOmPT7JlUlu7p4fN2SN24MtvE+nJ7m9+0xdm+SlQ9a4PUhyQJIvJ7kxyQ1J3t5N9zM1JoOgf0dV1WH+pvkhzgeOmTXtXcBVVXUwcFU33rrzefj7BHBW95k6rKqumHBN26NNwDuq6qnAEcBbu25r/EyNySDQxFXV1cBPZk0+DljdDa8GXjHRorZDW3ifNEtVrauq73TD9wA3MurBwM/UmAyCfhXwxSTXdF1maMv2q6p1MPqPDew7cD3bs1OSfLdrOrK5Y4YkK4FnAd/Ez9TYDIJ+Pb+qDmfU0+pbk7xw6IK05H0IOAg4DFgHfGDYcrYfSfYEPgWcWlUbh65nKTEIelRVd3TP64HPMOp5VXObSrI/QPe8fuB6tktVNVVVm6vqQeBc/EwBkORRjELgwqr6dDfZz9SYDIKeJNkjyV7Tw8CLgevnX6pplwMndsMnAp8dsJbt1vQXW+d4/EyRUdecHwFurKozZ7zkZ2pMXlnckyRPYXQUAKOuPD5eVWcMWNJ2I8lFwJGMugqeAt4DXAZcAjwJ+BHwyqpq+kTpFt6nIxk1CxWwFjh5uh28VUleAPwv4DrgwW7yaYzOE/iZGoNBIEmNs2lIkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoGaluQrSX531rRTk/zNPMvc239l0uQYBGrdRYzumz3Tq7vpUhMMArXuUuBlSXaFX3Za9gTg2iRXJflOd0+J42YvmOTIJH83Y/zsJK/vhp+d5Ktdh4NfmNHVwduS/EPXadzF/e+etLCJ37xe2p5U1Y+TfItRv/+fZXQ08AngPuD4qtqYZBnwjSSX1xhXYHb93vw34Liq2pDkVcAZwBsZ9Yn/5Kq6P8k+Pe2WtFUMAulXzUPTQfBGIMB7ux5jH2TUv/1+wJ1jrO8Q4OnAlaNucNiZUU+hAN8FLkxyGaNuNaTBGQTS6Av5zCSHA7tV1Xe6Jp7lwLOr6hdJ1gKPmbXcJh7avDr9eoAbqup5c2zr94AXAi8H/izJ06pq0+LtirT1PEeg5lXVvcBXgPP41UnivYH1XQgcBRw4x6K3AIcm2TXJ3sDR3fTvAcuTPA9GTUVJnpZkJ+CAqvoy8CfAPsCefe2XNC6PCKSRi4BP86tfEF0IfC7JGuBa4KbZC1TVrUkuYdTcczPw9930B5L8AfDXXUDsAvwV8P+Aj3XTwujew3f3u1vSwux9VJIaZ9OQJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmN+/8BUMbsjagG9AAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# Example list of values (replace this with your own data)\n",
"\n",
"# Create a histogram\n",
"plt.hist(my_data, bins='auto', color='blue', edgecolor='black')\n",
"\n",
"# Add labels and a title\n",
"plt.xlabel('Values')\n",
"plt.ylabel('Frequency')\n",
"plt.title('Histogram of Values')\n",
"\n",
"# Show the plot\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXuUHVWZ9p/d3Uk66U469/ulA+EaAnHMAhQEFEQEFXWNMzA6Mi5mgBHXoONccLwMgzozOnwjHy5xwMsH832Iw4wIKChB0DCgAyQgAQyBQBLSnU4noSF9SdLpy/7+ePtdtc8+uy7nUlWnqt7fWr3OpU+frn3q1FNPPXvvdyutNQRBEITs05T2BgiCIAj1QQRdEAQhJ4igC4Ig5AQRdEEQhJwggi4IgpATRNAFQRByggi6IAhCThBBFwRByAki6IIgCDmhJcl/NnfuXN3Z2ZnkvxQEQcg8mzZt2q+1nhf2ukQFvbOzExs3bkzyXwqCIGQepdTOKK+TyEUQBCEniKALgiDkBBF0QRCEnCCCLgiCkBNE0AVBEHKCCLogCEJOEEEXBEHICSLogiAUmsceAzZvTnsr6kOiE4sEQRAajT/7M+D444Ef/zjtLakdceiCIBSari7g4MG0t6I+iKALglBYBgaAwUFgeDjtLakPIuiCIBSW7m66PXw43e2oFyLogiAUlt276VYcuiAIQsZhhy6CLgiCkHHEoQuCIOQEydAFQRBygjh0QRCEDDA2BlxwAfDww/6vkQxdEAQhAxw4ADz4IE3t90McuiAIQgYYGCi9tRkfB3p66P7ICD3OOiLogiDkksFBuu3vd/9+/34S8iVL6HEeXLoIuiAIuSTMoXPcsnIl3YqgC4IgNCjs0P0EnTtEjzqKbkXQBUHIFfv2pb0F9SOqQ2dBz8NYdBF0QRAAABs2AAsWAK++mvaW1IewDL27G1AKWLGCHotDFwQhNzz5JKA1sGdP2ltSH8Iil927gfnzgfZ2eiyCLghCJhgcBF56Kfg1W7fSbR6iByA8cunuBhYvBlpb6XEe2i2CLggF4MYbgVNPJQfuR94EPYpDX7IEmDKFHotDFwQhE+zZQzMng0Qrb4LOQn7oEDA6Wv57dugi6IIgZIqhIbr1c6t9fd4Il7wIOjt0oLzdR45Qe8WhC4KQOcLiB3bnQH4E3Wyr3W7u+E0iQ+/uBr76VeCVV+J5fxMRdEEoAJUIeh6cKhDs0HlSURIOfccO4AtfEEEXBKFOhEUueXTopqDbY9F5UlESGfqRI3Q7eXI8728igi4IBSCKQ+/spPt5EfSBAWDmTO++ienQOXKJS9D5ffnEESci6IJQAKII+po1dD8vgj44SA4cKG/37t3kmOfM8YQ2rnaLoAtCytx5J/DTn6a9FfUjSNDHxoBt24Djjye3mhdBHxgAFi3y7pvwkEWl4o9cRNAFIWW+8hXgppvS3or6EZSh79hBOe9xxyUr6D/6EXDDDbW/z+HDwFVXAXv3lj4f5tD5d0kJekNk6EqpZUqpXyqltiilXlBKXTPx/Gyl1ENKqZcnbmfFv7mCkAx79uRntIfWwQ6dO0STFPQdO4DLLgO+8Y3a3+uZZ4BbbildO5TbzA7d7hRlhw4ALS1Ac3P8naKN4tBHAXxWa30CgNMBXK2UOhHAtQAe1lofA+DhiceCkHmOHKGJNnmJHg4f9pZXCxP0KVPib7fW5KiHhvwrIVZCX1/pLQAcPEj/Z84ccsZ2u/fupcqSTJztbqjIRWvdo7V+euL+AIAtAJYAuBjA7RMvux3AB+PaSEFIEr50z4tD57gF8Bf0WbOAuXOTceg/+AEt3rxiBbnosbHa3o+F/I03vOe4ne3twPTppe0eHaXXzpvnPTdlSgEzdKVUJ4C3AHgCwAKtdQ9Aog9gfr03ThDSoLeXbvPi0IPGYwMk6McdRx2Era3xnsj27QOuuQY4/XTg6qvLt68aWMhNh87vOX06MGNGqaDz6+bO9Z4rnKArpdoB/AjAp7XWkS+UlFJXKKU2KqU27svTcihCJtEauOAC4IEH/F/D08LzKOh+Dv344+l+3A79H/6BTirf/S5dFQC1xy6uyIXbzA7d/B/799OtKehxnsgabmKRUmoSSMzv0FrfPfF0r1Jq0cTvFwHY6/pbrfWtWut1Wut188xrHEFIgcFButx/7DH/1+TZoduC3t8P9PSQQwfiF/StW4G3vhVYvZqcM0BVIGvBJejczunTyyMXl6DHnaE3N9NP3EQZ5aIAfA/AFq31vxq/ug/AZRP3LwNwb/03TxDqCx/YQa6QBT1vGXp7e7mg86IXSQn68LAXPXR00G0SDj2KoMcZuSQRtwDRHPoZAP4YwLuUUr+d+LkQwD8DeLdS6mUA7554LAgNTdgqNkB+I5eFC8vb/fLLdHvssXSbpKCzQ49D0Ktx6HkQ9JawF2itHwOgfH59bn03RxDiJYqgm5GL1tRZmGVY0BctohmhJtxWHq+dZUE3R7mYDn3GDHeGPmeO91zcGXoS+TkgM0WFglGJQweAkZF4tycJOHJZtKi83X19dMLiIlZZFHRzlAsvsRc0bHH/fnqei3IB8WfojRS5CEJuqMShA/mIXUyHPjjoTTICSARnzQKaJpQg7olFcTr0I0doQhFQOmxx+nR6zGK/f39p3ALkJ3IRQRcKRZRO0T17aDo4kJyg79xZ+wQbgNr3+uulz5kZOlA60aivD5g923sc9zh0U9za2+m2FkEfH6c28KxPFvfBQWDSJIo6pk8nMed2i6ALQk4Ic+jDw8CbbwLLltHjJAR9505g1Srgnntqf69rrgE+8IHS5wYHSahdtcFdgp6UQ29uJrGtZdjiwACJ+tFH02MW9IEBem+g/ErAJehxnshE0AUhJsIEneOWFSvoNomhi48/TtPRedGFWnj1VSp8ZTI0BLS1eQJntv3118s7B7kzOA5scbM7LCuFBXzVqtLHg4PeFYDdbj+HHteJTDpFBSEmTEF3iZYt6Ek49CeeKN22WujrKx2+B3ji5hJ0l0MHvNmN9SZuQecOUtOhRxV0cehC7hkfB372s/gcW9LwQT0+7nWgmaQh6E8+WbpttcBVIs3trkbQ42j3+DiNGqpE0A8eLC2La8MCHtWhDw/TrQi6UEgefBC48EJg06a0t6Q+mGLmElAespiUoB85QvW8/banUlxjsoeG3II+Nkb9BUkJuqsueJigf+97wHnnUT+DC7/IxeXQ+/u9DmPJ0IVCwlPDa6230SiECXrSGfqzz3r/o9bhe4cO0Q9QPg3elaGz6Ccl6K6qg2GC/uKLdPvcc+7fczuXLKGc2uXQuVN0YMA9S5S3aXg4nitRydCFhmH7drrNw3hsIJpD7+jw6ozE3W6OW2bPrt2hmyJuz5p0OXR+vd0pCjSOoL/yCt2+8IL799yG2bPpx3TorsglSNCBaH0HO3fS8nlREYcuNAx5FHSeROMSkt5eGq8dp7CZPPEE/b/jj6+voNsOPUjQTYfOwpOUoHd0BF/9camC5593/76vD5g6lfbX7NneiWxw0N0pGiboUa7IvvlN4CMfif4ZiaALDQMPgeNL+awzMOBNQvFz6AsWJCvop55aPj29GvwcOg9bbGujx0GCzu2OI2ryc+g8ltxmZMTLzoMcOm+/6dDNyGXaNDqJ9/d7gm5X8q6k3bt2UTTT1RX+Wn5PEfQG5J57gPvvT3srkkPrfDr0JUu8+zbs0ONeCR4g0X3pJeC00+ov6C6H3tRUWkI3SNCTjFx4G21ee43G58+ZA2zZ4p5J+8Yb5YI+Okrbz85cKe/zZUE322xuU5R283wBv45aGxH0BuW664Abbkh7K5Kjr887+LMm6CMjwGc+460PygwMeKu9+wl6Ug79qafotl6Cbk75Z4c+Pu6NcgFK/w+/Pu0MHXDHXxy3vO99tD1sLkxMhz5rFj02Ky0ypqDPmuWVdmAqOYGzM3/ttfDXAtIp2rD09GRP2ILYtAn4/Of9f28eQFmLXDZvBm68kcbQm5iCbovI4cOU5yaVoT/xBLnHdevq69CnTPHuHzpEV1ouQedKi9wBDDSWoHOH6MUX060rdnFFLmYtdMYUdDs/N7cpTNDHx4Hdu+l+FEHXWhx6QzIyQm4vL6vYAMB//ifwj//o3yZT0LN2ImP3abpWvhTnIlW2gPKQxQULkolcnnySOkM7OsorAlZDXx8VpFq61HPoXJCK83Nb0GfOLF0arZEEfds26vA8d2LVBT9B57VJZ8+mz5Dbbjt0ztBdgh41Q9+/3yupHCVy4deKoDcYeVvFBvBGF/iNMsiyQw9axWbGDLcj5n28cCEJo1Lx7W+tyaGfdho9nj7df/ZqVPr6KD6xOwcBf4duZ8lJC3rQMnTbtlHRrRkzgOXL3SNdbIcOeM65Goce1m6zIzSKQ3e1OU5E0CPS00O3eXLoLOR+44B37CD3M3169k5kLocetCwZUOrQlYq38uBrrwH79tEIF6B08ku1sLjNmlU6fA/wz9DN/BxIz6G7TMUrr3gzQFevLnfohw7RdvoJuunQeTRNrZELd4h2dkYTdB7XLhl6g8G5WdaELYgwQd++HVi5Mv6SqnHgEnRup5+gmw4diLfd9oxUV52VSnn9dW+CTdTIpZbRHpVSSeQyPl4q6CedRLNGR0e919ijdDh64SjEr1O0HoL+9reToLuGW5qIQ29QWNDz5ND5IAqKXFaupBwzj5GLLSIssvPn022cBZtYMPlAr4egmw49K5GLn6B3d9Pruc756tXkdrmjFCgvXRAWufT20vc4KEOPErk0N9OV1fAwXWUFIYLeoHDkkjWnGkSQQx8fp8glTw7djFz4Etykt5dEgS+P42w3H+gsJPUS9DlzvMhF68oFPc7OYJe4mYWzTFi4zcgFKI1dbIceFLmYsWGtDn3hQjouzP/lhwh6g5LnyMXl0PfsoS9jZ2c2BZ0P9koydJ4lyiQh6HE49NmzaRLOwIBb0A8f9lZmsjP0lhb6ScqhNzdTHGQLOo9BZ0E/4QS6NTtGwwTddOh8JQDULuhLlnhRWdhIFxH0BoUd+thYaY6XZYIcOo9wyWrkwkLuilyCOkWTEvR6Ry6HD9MIGY5cAHLprgwdoOhA63KHDsTXbj9xcxXoeuUVGmnESwG2tdF30eXQub0dHdSZzeaL2wyUinstgt7VRcNCly+nx2EOXTpFU2J4OLiDg78k/NqsMz7uHUQuQecaLklELmNjpQsX1wMW9KEhb3/Zgm6323bocS96ANQvcrGrDvJzLocOePu3EQS9o8Pt0FeuLB0jb490sR16UxOJ+/g4iXmToW5hgh41Q2eHPnMmfaYSuTQgWtOl3S23+L8mb4JuTmJxRS7s0JOIXD71KTpAzj8fuPlmr3OyFvr6PFfE4h7m0Ht6gEWLvMdZilzMUrimQ2dBnzat9P9wVFCroB844K6x4iLIodvfwW3bvLiFWb2aat/wZJ2+Pm+haYbbbubnQH0c+sAAnXiWLKErgRUrJHJpSI4coUupl192/35khHqz+WDPWp7swjyA/CKXhQspbok7ctm1iw64HTuAq68GzjmntvcbGyMxc60E39JCB9eMGbTf+ZJ4cJDcfFKCbkcuLED1duhDQ7T/2Onagm5n6ED0do+M0Gd8883RtnF4mD5/03UD5ZGL1hS58P5j1qyh/8mLXXBhLqW813Db/QS9qYnMg00UQechi0uX0u3y5eLQGxK+3HdVfAO88clHHUW3eRN0P4fOPflxO/ThYer02roV+PM/9w6cannzTRKFY46hx6ZDnz7dq77HzwFeH0nSDp0v9ZuaKCaoh6DbDt0e7QHUx6F3ddFnu3lztG30q2liC/q+ffQ52A793e+mfXffffTYNUqHH5uOnP8HQCewJofqTZrkbaMf/L3kap0rVkiG3pCECTof7CxweYhcojh0bm/cDp2r0SlFY8AHBqJfxrtgcfMTdKB8uJxL0JPI0O0hfPUUdM7QXYIelKFPmRJN0DmWi1p1MKqg2yNcmPnzgXe8A7j7bnocJOh+Dt0VtwDRZgbbgr58OU1UCur/EYeeArxD/A4mzs9Z4PLk0KdOLRf00VGKQTo76XHcDt0sL8q1PWqdMQkAxx5Lt0ELB6fl0Pl9TedWi6CbpXCnTaP3jeLQXfFD1AWTWdB37Yq2jVEF3R6DbvLhD1Pksm1baWEuxs+hhwk6EH4C5zoupqADwe0XQU+BMIduC3qeHPqyZeWRS1cXOeQkIxf+wrOg17IodSUOPc3IZfLk8pEYQYL+29968Z8NV1psayO3yZOLeLUi838AtI/tSotM1Habgh6lSqSfoPMoF36PrVtpu9hQmHzoQ3T74x+7HXpYp2gtgt7dTe/PHcw8Fj3oCkUEPQWiRC5NTd6Y2Dw59OXLyx26OQYdSC5yAeoj6CzgS5fSgeQSdLsYVk8PbYPp+KJGD9XgErcgQe/vB848E/iLv3D/nsWNOwi54qKfQ+eVgFxUKuiDg9RvEUaQQ9faOw6fe46urly58/LlVD/+7rsry9DrJejsznlbgOCRLpyhi6AnSBSHvnCh53TyJOjLlpULOl9CsgNpbSUBiGtCVVyCPmcO/USJXPbsoX1sjpiIGj0A1JG3fn30bTx8uDJBv+MO+p7+/OfesD0TW9zYoduC3trquXJXfs6vifId5xweiBa7BAk64O3z554DTj7Z/30+/GHgf/6HvrdRM/TmZup4D3rfsHbzpCJm8WJ63ygOXTpFEyRKhr5oUbwL6MbJli3Ao4+WPnfgAH0ZFy6k++YlMxcc4iJVcbc7jshFKYoU5syJ3ilqxi2Ad4BHiRNuugl473ujT5CqxKFrTXMkWlvp9489Vv4aruPCsEO3IxdzhE+tgr59O3DiiXS/HoLe30/t2749XNCZqA4dAH73O5rz4EelDr2lhR5L5NJg8KICQZHL4sXxlhaNk+uuA/7kT0qf6+8n8ezooLzcjFT27aM8lg+KqVPpNq7YJQ6HPmsWxWSzZ0fP0F2CrrXbEdvs3EkzFCtZOJhPlIyfoD/1FPDss8D119Pn9MAD5a/h0rmMn0Pn/wPUJuiHDtFndtZZ9DjqYg9hgs61Wtas8X+f447zTiRRHXoUggR9ZIQmvJmCDlDsErTPxaGngBm5uNxY1h363r108JltO3DAE3R+zOzfD8yb58UPca+vGYegs1vlyEXrygW9moWDowp6JZHLLbdQR9yVVwJnnw3cf3/5a1yRiytD5/8D1Jahczvf9jZyqvVy6DymPcihA55Lr6egB0VsfPyYkQsQPhZ9eJjMkWvsexyIoMMT9LGx8h3Ks0STduiDg8CXvhR9jG8Qr79O22yKBQu6qx71vn2lnUcs6HE69Eoil54e4Ctf8R+rbi9Lxu0fG/PEbNIkL8I4coRe43LoQLT9zYJm5spB+EUuBw+WtuvAAeCHPwQuvZT21YUXUoRmLg8IlAv67Nm0Tw8eLI1c+P/wa1xE6Qzm/3/00eRaaxF0cxm6557zlpwL4rLLgLVry4V/xQpafOL008O3xyao3fYYdGb5cm9UmAvTrCSBCDpKc0+/VWwWL05mJXiALpXf/W7gy18G7r239vfjyGHvXu8526Gbgs4OneHIJe4hfAB9xpMnBwv6LbcAX/wiDeNz4XLofivB9/d7+7haQde6cofuF7kApdHfHXeQKF95JT2+6CK6NWOX4WH6DpuO2xytE0fkYo6EWrasvg59zZrSzmkXq1YBzzxTLrDTpgGPP04jYSolKHLxE/RFi8j08WIbNn5tjgsRdJQKup2j8xj0pCKXPXuolsmmTfTYb3m4qGjtCbpZ9Mp26KaA+jn0OASdM2rTxbjKqZr86ld06yfoZgfhnDnkkli0XQsH20vPMVHb3dfnvSaqQ/eLXIBSU/Gd75ATZYE65hgSM1PQ7aqD9v1qBD2sTPSOHbT9CxeSoNcjQz9wgAQ9LG6JC1vQf/pT4JOfpIiLZ6/akUvYFaUIegoECTpPOEkicjl0iDqZtm2jL9HkybUL+sGD3pfUFvQZM9yRi+3Q44xcuMPRFPSODv8D5PBhGrIGkENzYXYQ8i0LrUvQXZOKgMpqZDOVOPQwQT90iE5aH/5wqWO96CLgkUe8znyXoEdx6EEZOm+jH9u3U7zR1OTFDlHW13SJG2/PCy/Qfg/qEI0TO0O/+Wbg298G3vc+4HOfo223T4KZE3Sl1PeVUnuVUs8bz12nlOpWSv124ufCeDczXqI6dK4UF5dDf+klqvj4zW9S5OJaJq1SzBV7XA7d/kLy5aPp0OOMXFzDuoIE/cknvY4ml0M/coQ+M9OhA25B58/XT9CjOnSOG1avrixD94tceJ/z+/IEL+bCC2mb+EolzKFXmqFHabdZ62fZMvremJGeCz9xa2mhqISHY6bp0M0279lDJZ1//nPgqquAv/mb8igoTNDN/qEkiOLQbwNwgeP5b2it1078OAZSZYegDH33bnIh5sLBcVfg40UWXIswVIpL0LX2hi3aDp3FIanIxVWNLkjQN2ygg+ojH6GhfLYr5CzTFnR2zq4MvafHKwxmUsnCwQDN5NyzJ9rnFCVy4W22OwjPPpsEkPtXzFroTK0ZOm+jH7agA9FKyfqJ24wZwIsv0v2TTgp+n7iwI5c9e+izf897yKlff33530Rx6A3VKaq1fhRAX9jrsszQkPehuyKXhQu92XVx1vewxS0sS46CKejsoIaGKCN1CTpPKnJ1isYRuVQj6GvWAO96F+2rV18t/T23t9LIZf58coomUSM2XgmeR1ZUmyfbgs7vYwv6lCnAJZcAt99Or6k0cuF9Xq2g9/fT/7QFPaxjNEzQAYpxWCSTxhT0sTE6Xux+FZvMRS4BfEoptXkikpkV/vLGZWjIc8WuyMUu2JRUSdV6Ri6TJnkOnb98HR3e5S4/t38/3Sbl0CuJXI4cAX79a3Koa9fSc3aObk77N2/DBN2OW4DoneBdXfT3XC8/SuwSJXLZuZOuDu2RFQDw939PV1rXXVd+EgNKBd2OXC65BPj618MzdN7f/f10snriCXps1/qJUnUQCBY3Fsa04hag9Njev59EvSiC/m0ARwNYC6AHwP/ye6FS6gql1Eal1MZ9bP9SYmAAeOtbgaefLn0+SNDtgz3OyCUOh84CfeyxbkG3/4/LocfZKVqJQ9+4kbbhnHMor25pKc/R7fiBRc4vcmFBdx24lWToy5Z51QGjdIxGiVxee40643nxBZPly2l1p9tvp+y5paXUiU+e7Am57dBXrgT++q/9hwba7X7xRRLzL32JHvMJi9s7ezZdxQVdmYyOUjwW5tDT6hAFvGNba/+RTzauUWImmRB0rXWv1npMaz0O4DsATg147a1a63Va63XzTJVIgVdfJTF/8snS501Btx2xa8RHUg69nhn68cf7C7opoC6HHmenqJ+g9/eX5+MbNtDtWWfRfjjhhHJBt93q5MkkaPy83Sk6NERjjIMcepTIZelSr1hTVIceRdC5QJqLv/s7atu999IJzBboamdN2lETf2/Wr6d+C9uhKxU+Fj2spgkLY5oOfcoUEvPR0eiCPmlS6RWuTSYmFimlzK//hwA87/faRoJLfNof/tAQCZhS5Q6d1y1kks7Q6xG5zJhBl+2VOPS0Ixety/fFhg3kzHnb1q4Nd+jm/dbW0pycBXTPHregR8nQeVLR0qX03suWRXPorshl6lSKWMzIJWjG5Ny55LQBdx7uVxs8DHt/c99LczNwww0k6O3tpZ/x8uX1EfS0HTpA2xpV0IHgPp+Gc+hKqTsB/AbAcUqpLqXU5QC+rpR6Tim1GcA7AXwm5u2sCzwCwiXo7e30Y4rI8DCN9U2yRjb/D6B+naJz5tAVyMAARRZBgr5/Pz1vXubz9kSJXLSm4km33BJt+/wcOlC6n0ZGaAbg2Wd7z61dS30c5nC511+nbTdFjIXHr0Y2UH2G/uab9B3hjsHOznCHPjpK+ax9oHMlxIEBujrZtSt8CvynP0371h6hA3giz1dYUbHbzZ/vn/4plSF47DFy5+YVQa0Ofc4c2k5eZSoNzHbnVtC11pdqrRdprSdprZdqrb+ntf5jrfUarfXJWusPaK17ktjYWgly6G1tdDCZgs4nANuhxxW52OI2fTqJaC11yE1BB+jgZPF2RS779pVGTEC09RaZ3l4aT//449G2L6qgP/007Rtb0IFSl86TilwrwVcr6EHtZhHjGYQrVoQ79CBxM2evjowERy4AnbjWr6e5CzazZtH3utLCUC6H3t5Ok2u0pn1hrya0bBn1RfD+tAkT9M9+ltphjzRKEvOKbM8e2hd2h7KLGTMyJOh5wuXQuSBXW1u5Q+fL9zQdOlD7+pqmoPf2hjt016oula5iYxeP8sO1oouro+k3v6FbLtcKuAXdrgsO1O7QwxY9ADxB7+ykTN5P2ABvP9uRC2/TwID/kEUXJ5/sjioWLy4/OUfBJegLFtDJ5ZJL6Dl7stPy5ST2PBHPJkzQFy+mcfxpYkcuUdw5EOzQG3FiUW5gh27GGDypiAXdFE8+AZiCnqRDd03LrxQ/QVfKiyXCHDpA7Y4SuXDcUMmMScDt0M12v/Yaba95kM2eTUJiO/Sogs6fL+AWdI6doiwcbDp0s1iXCxbKIIdeiaD7cd11wM9+Vvnf2YLe2+tFOn/1V3R7/PGlfxM2Fj3phR6qwRR0v5FPLrgT30XDTSzKE67IhethBDn0pDpFXaNcgPoIOh+Qe/d6dVw4luDO1/Fxf4c+dWplDr27O9qJL2rk0t1NLs7G7hi1F3oAokUuroM3StTU1UWRBp8QOIoIOqFFiVw4tgmLXIKYO7dceKPgcuj8/Vm7lka6fOITpX8TNls0C4JuZ+j1cOgSuTh47jn3Ki2V4opcTIful6EnFbn4OfRqI5fRUWqry6Gbs/F4kd7BwWCHXomgax1txmRUQd+921/Qt24tLVRVaeTS0eHfcRjW7l27vDo/gCfAUQQ9LHIxZ/ImSZCgAxTx2NueJ4fOGboIekz8278BH/947e/jcuh25BLFocc5Dr2pyROHWiMXcwhfayu9n0vQ+T5nv34ZepTIZft2b/uj5Oh+wxaBcofumjF52ml0ZXHzzfS4ksiFH7viFqbShYOXLqV9GNQxGjVyqcWd14KBTGLoAAAf7UlEQVQpbOPjdJJ3jaIxaW+n/VZtht4I8LYdOEA/lQj60FD54IXxcerYFkG3CFoNvRLCHLpfhm6KX9wO3XSqtUYu9jT4BQv8HToAvPIK3bocetTIZccOElkgmqC7HPq0aTTmmfcTd7a5HPp730vlZf/2b4Gf/IS2MWrkwu0OEvSwhYO7ujx3yu1YvLg+kUst+Xkt8L44fJhMwfh4uKADwfMmsiTofDKuRNCB8uPUVRo6bjIj6EeOBI8ciILZKcrra7KgT5tW7tDfeINWjufCXED8Dt012qPakxkLOjtuP0Hn+1zoqlqHPjZGzvKMM6hDMUrHqEvQlSq9jO3ro8/G5dCVAm67jbJiHoER1aG3ttK+rdaha00Rg73oQWdntIWD/SKX/n76HNMSdO47GB72JqNxZBdEW1tp5VKTLAg6749qBd2OXdJocyYEnUdj2DMHK4UFfWzM++K5MnQW+76+0vwc8A5w12LStWI79FojF9uhz5/vdYrG4dC7u8mVHH00xQXVRi5AqaDzZbzLoQO03+691/vsogq6UpQHBy1XFiToBw7Q98e1cHDQySwscuGa9GlFLoDXbp5UFMWhZ13Qedt43wWd6E1E0CvEtTRXNbzxhjdRgD98O3IZH/cOOHvaP+DVe+DLqXpiO3Q+kVUr6FyXpdLIpdpx6GaNj87O6iMXoFTQ/dZzNFm1CrjzTtpfJ5xQ+rslS2ibTjml/O+efhr4TMA856CIjYcmmpELQG3v6vKfEBYWuTBpOXSgOkG3r3BNsiTo4tBjph6CPjJC4s3DyvwE3fw/fg4diCd2sR06l7atNXIxBf311+lKxRW5BDn0KJELC3hnJwlovQQ9zKEzF1xAJzFb0KdNozjp/PPDt8cmKGKzx6AzixfTVaBfcdGwyIXJmqDnyaErFX1Sll/FRdekubgpjKBz3MKXsUGCzi7Dz6ED8RWqsnd+LfVcXn+9tIwq56C8uIX5PwAS4EmTyqMJIFrkwgfC8uUk6Pv2hcdkw8N04rKnp5vTqdmhR7kEDlstvlKCrkzsaf8Mf35+4hYWuTCNErk0NfkvhmGSdUHnE+zu3STmUcsQhDl06RS1qKegBzl0/j8sQmk7dMC/hO7YGPDf/00lVH/5S/f78RA+FjmzY8sUdG738DB9kV2iGDVyWbKEDlqeGh5W18SvvKjt0OfOTUcMgtrd1UWflX2i4RNoNeLG+6KlJfolfxyYgj5vXunAAD/yErloXdln30iRS4qlcKJTj07RIIfe0uLVzeb/ozU5dD9BT9Kh2yeyL36RqhnyJf0DD7gXTLbHZJuXzaagNzV5w+Vc+TkQPXJhIefb7dup5K0fUQTdb5ZoEvhl6FoD99xDNVTsBSjCvq9RIpdly6KJaFywoJvT/sPIukM3ty2rgl4Yh85jylnQ2fVypUWgNEMfHKROrSQjF5e42ZHL+DjwT/9Ey539x38AX/0qTcV+4YXy97MF3XTo9gxEfuyXG3LkEjS6xxR0vhIKy9GDBJ2Hl+7eHdwhGid+GfpDDwGbN1P5Wpswhx4UufB+SDM/B7wTmT1LNIgoDt21+lKjYH4PKxH0KVPoRzL0iMQdudiCPjjonvYPxBu5+K1iYwo6r3X4sY8Bf/AHwOWXk5O7447y9wsSdHshXn4c5NC1Di6P2t3tCfr8+dQZGSboflOjOzqonQcPpuvQ/SKXf/kXilr+6I/Kf1ePyCVtQTcjl0oc+siIewQY7+d693HUk6YmT9QrjbtcBbokQ/chiqC/8grwh39Yvgo8wwLNU7Ndgm5m6K5a6EA6Dt1st114f8EC4LzzgB/8oHzJNlvQ29u9miW2oIc59LCoadcuEnw+YSoVbehikEPnNvT2puvQ7TY//TTwi1+QO3eJctTIJUjQ0+wQBbwrk0oFHXCfyJKuaVItvI1Rx6AzrnouErn4MGUK5dxBgn7nncBdd1FN5ecdC+KxQ581q3QEhZ9Dd9VCB5J36Hbk4lpJ5aMfpc7HX//ae07rckFXyjs4K3XoYeuK2utM8v2w2aJhgv7SS9SWNDN0e1/fcAMJ75VXuv8mSuQyebLbrc6aBVx7LXDppdVvcz1obSVTMzAQbZYoEHwiy5qgV+PQRdAjwrW7gzpFN22is6pStKqNvRD0m2/SQTR1arigDwz4O/Q4O0VdxfDtyMUl6B/8ILXLjF0GBqgPwJ41yQdntQ7dr2PUJehRHHpQ5AIAv/sd3aYduXDfwc6dZByuuKL8M2SiOHS/g1wp6iM58cTatrtWWlu94aJFdOgi6DETVqBr40bgnHNoKN/MmcC555ZWfuO6LHadEFPQW1spjgly6HGPQ3dFLiMj3pfDJejTp5Oo33WXl3Hbk4oYFnS/QlW1OPRJk0qjkZUr6XPmk6OLMIe+ZQvdphm5jI97sz6/9S36Dl1zjf/fTJtGt0EZumuESyPR2kp9GEDlgp5lh877pR6CLp2iAQQJ+t69NCZ43Toa/fHv/05fqo0bvde8+SYJOlD64R886H0ReZHeoAw97nHorsgF8Fz6nj3egtYmH/0onYQefJAe+wn6woXUfntIHAtotRn6jh3UkWe+rzl00Y8wQU/bodsn8GeeAX7v98qn+5s0N9PnFRS5NLq4mSecSka5AMV06K51RaVTNIAgQd+0iW7f+la6XbWKbs1JLeaYcj+HDnjRTl8f5fb2IrFJO3S7hK5f4f3zzyd3/f3v02M/Qf/sZ6k6oU2YQ48SudjrTEYR9LDIZcsWEsioolJv7BP4zp3lCyS7CBvC1+jiVo2g5yVymTLFP07zQyKXCoki6G95C93On09fSLNDzs+huwSdM3R79XigMof+gx9Q5cGoZX+DHDq33U/QJ00Crr6aJrts3FhemIs57jiKZ2zMei8uokQuttCxoAd1jPo5dG73vn3UN1LpyvX1wrwyGR+PLuhhk2waPXIxv4eVOvQsRy5TptDxVenwyo4OOkY5pgJE0AOxF58w2biRhIpFQCka9mU69CBB58yT/w87dDs/ByrrFL3rLhpGWcmCya4MHfAcetDitX/5l+Swr73W36H78bGPAffd53/w+jn0kRHga1+j2IuvjJiZM+mzrkbQ29u9gyqt/Bwo3d+9vbS9UYYUtrfnI3Jpayu/SvUjDw59xozy2jxRYEdvalQaGXompv4D5et9mmzaBJx1VulznZ2lQuKKXLQud+j8f44ccRckihq5jI9TBy0AbNsGHHts8Ot50o5rlAtQ6tDPO8/9HjNmAF/4Ao2PPnyYBNF1UnIxcybw/vf7/951IvvNb2i0x/PPAx/6EN13va/feouA/6roTU1eLplWfg6U7m8utRDVoechcqkk6goT9EpjjDS46aby+RxRMKf/s3FMY3ZsZhy6X+TCHaKcnzPmqjFalzv00VESea39M3SXGPKBGBa5PP+8N1Jm27bQ5vkuV2U69MOHqR1BHTZXXUUO8vHHqb1RK8aFYUcue/cC73wnbc899wB33+3+vIKcKuA+iTF8kDSCQx8e9r5PURx61iOXagQ9D5HLcceVl1+OgqueC5uVJGfHZl7Q7Q5RZsUKypGHhmgky8hIqUMHvGGNfhm6S6CamuiMG+bQN2yg25YWr854EH55mynovBxYkKBPmQJcfz3djxq3RMGOXF5+mbb5O98BLr7Y/++ChA3wj1wAbz+l6dDNKxO+4osaufg59CxFLpUI+tSpJF5ZjlyqxU/Qk25zpgTdta7oxo30JeIOUYYvi3fu9GaJmg4doDwacDt0Vy10Jsq6ohs20IF/0knRHLrfQg9m5OIag+7iox+lpdXqWQ/Ejlx40klY3pg3QZ8zp3zIqIswh97o4laNoCvlHzVloc210CiCnpkM3ZzFaTrPTZson7arB7KL4vHRQLmguxz69Om0Uw4e9M+fw2qDaw08+iitSD80BDz3XGjzfB16WxsdKP39nqCH1ZlobgYeeaS0x71W7MiFV+sJi0Pa2jzxdxH0pW+EyMXM0KOOcAGCo6YsRS5Rp/0zfieyIgp6UJwYF5ly6EB57LJpU3ncArgdetTI5eBBuu/n0IPWmQRo7PS+fVSCYNUqGtIXJq5+Dp1rlZuCHmXSw5w59R27bUcu3d00OohPkn7kxaEPD5M5iFo0K6hTNK+RCyCCbpbp8Ovwj5PMCbp5kPT2ejNEbRYupA9zxw7/yMVP0Jkghx4UuXB+zoI+MuItV+ZHWAU+jlwqWeuwnvAycWbksmRJeIdPPQS9ETpFDx2qzKFzu13147MgbtUKul/fQRbaXAuudUUlQw/A5dD9OkQBEp/ly+kgtGub84cfJujVOvQNG0iEjjqKJhYB4Tm6n0Pn7e3vp8x/7tx0FglQqnRd0a6uaEIbJOhjY/Tj96U/4QT6DO04LUl423btIlGP6tDb26ltrhN/FiKXFSvou3jSSZX9XVEd+tSpZHpE0CPiEnSu83Hyye6/4bHolTh0s2hVNQ5da+BXvyJ3rpQ32SZspEuQQ2dB95slmhTmMnTd3dEmYAQJetBJDAA+9SkaTZPmoggsvFu30m0lDh1wtz0LkctRR9G+XrOmsr9zRU1+cyzyhF30D5AMPRCzU5Tp7aUzo9+EhRUrSNDZofPrWLSrdehBnaIvvUTbdfbZ9JgXTa7FoZuRS5qCzg59fDz6snC8io2r/EGYoCuV3pR/plpBz0Ohqmo+e1dncBozJtPAFnTJ0ANwOfTeXuqF93NwnZ30mp4e+qJxVNHcTO/nN2yR8XPoQZGLmZ8DdFAcdVS4oGfJoe/fTwdpVEEH/IUNaOwDnQX9xRfptpJOUaDcrY6O0gmx0SOXanFdkWVhP9cDl6CLQ/fBr1M0qNOGD77Nm8tHY3R0eLMz69kp+otf0LBCc6r/qlXhkUuUDL0RBP3w4ehj0IFgQQ9z6I0AbxvX0486fd2v3UELROcBV6eoCHpyZE7QXQ7dD7483ry5XJz5wOTOPvv/TJvmvzP8HPrICNUjv/DC0quGo48mh+4a8cCEjXLp6aHXVLrWYT3hyCXqGHQgOHrIgqAr5e2TStb59JsGn3dxE4fuPRZBD8C1rmiYoPMBODjodugACbcpvnwgBhW18nPojz9OTvqii0qfX7WKogqOeFyEOXReMSdth37okOfQ6xW5NLKgA148EjU/B/zbzW3Oc+Ry8GBpgauiCrp0igbAqwmxoI+P0+SdIEFfvNgrThUk6CYs6H4dooB/p+gDD1BOb1dDjDLSJSxDZ9IWdI5cmpujbUuUyKXRD3QW32ocehEjF61LyywXVdClUzQEsyZ6Xx+N8w3K0FtavKXC/CIXu9ZzFIfuF7ncfz+V8bXX64wyFj1slAvTCKNcurpoO+xl7FxkPUMHPCGqxqEXMXIBSvd33tvMdHTQFTpfnTRk5KKU+r5Saq9S6nnjudlKqYeUUi9P3Easul0bpkPnyoNhtSbYVfk5dNcScy0t4Q7djlx27KBx8XbcwtvQ3JwPh86RS9RFAPIUuVTi0MMil7yKm+tElvc2MzNm0NUJt70hBR3AbQAusJ67FsDDWutjADw88Th2zEUuogo6u6qoDl0pcumVOvQHHqDbCy8sf/2kSbQd1Tp0FvTJk8Nrp8SJGblEnY6fp8ilEoceFrnkNUN3tbsogs6awhMZGzJD11o/CqDPevpiALdP3L8dgGOVyvpjOvS9e+m23g4doCXVrrrK/z1bW2lnmaNWHniAohW/lYl4pIsfYaNcgOrWOqwnU6eSQ4867R/IR+RSjUOfPJmuyiRyyX+bmeOOo9tnn6XbLGXoC7TWPQAwcZvImuzVRC7sqioR9CuuAE491f897YWiDx2icrX2cEWTVauChy5Gcehpxi0AtfuNNygnrEfkkhVBnzKFnGdQDGfDtcGLFrm4hmvmvc3MaadRGzdsoBx9dLQBHXqtKKWuUEptVEpt3MeLMlaJ2Sna20tZd1gEwYJuH4wsklEXwDWxl6H75S9J1F35OXP00dQD3mdf66D0vVyFt3hb0xyDDpBD58lYUR06jyLK6kxRgNrQ2Vn51ZFrkk3eI5ciO/TWVhL1DRvSa3O1gt6rlFoEABO3e/1eqLW+VWu9Tmu9bl6NdV9thz5/fni9iXe8A/jWt4D3vKf0+SCHHoa9es+DD5LY8XR/F9x0ritjw2VkXaJhRi5pYopQVEFvbqa/c5VUzYpDv/56+g5VShEdepE7RQHSgKef9hYUz4qg3wfgson7lwG4tz6bE4wt6FFWU2luBj75yfIPthZBN1exAajOx+rVwa4raAFdIHzlnqamdOuCA6Xtixq5AP4VF7Mi6KeeSsNRK8VVqCrv4lbkTlGABH18nK7agQZcgk4pdSeAcwDMVUp1Afh7AP8M4C6l1OUAXgPwkTg3kpk+3avct3dv5ctjmdTDofMXdft2YO3a4L/xG5fMBC300NoK/Oxn7rrvSWKWSKjk5OK3HFtWhi1Wi6uUrEQu+eZtb6PYdP16epz0dztU0LXWl/r86tw6b0soZj2X3l5aAKFa6hW5jI/TIhofDBnnE1TTBAgfs3r++ZVvZ73hds+aVSruYYQ59Lwe6G1t5RFb3sWt6JHLtGl0RffQQ/Q4K5FLKpg10aNGLn7MmUNn0mpifbNTtKeHhGnlyuC/CYtcghx6o8CCXkncAmQ/cqmWIlYenDSJ9mdRHTpAsUvWMvRUYIfe3U1fkloEfcYM4KmngMsuC3+tjenQt2+n+7UKehYWPWBXXmmWH7QsGZBfQXe1O++RC1De7iIKOiOCHgALOk/QqUXQAeCUU6o7sMxO0aiCXkuG3ijwZ1UvQWeHnsYaqUkQ1Cna6Pu6Fuwrk+FhGmIcpfZPHnj72722ZmViUSqwoHNNlFoFvVrMTlEW9LBZhLVm6I1AHJGL31DNPODqFOXZg3ltM+B26I3+3a4n7e3AunV0Xxx6ALagB1VajBMzctmxgyb8hDn9qVPpIM6yQ48jcmn0NtdCWxt9R8bGvOcOH8533AKUn8iKJuiAF7uIoAfALrdekUu1mJ2i27eHxy0AjSOfNi3bGfqyZXTpfMoplf1dkENv9DbXgt+Y7Dy3GSiPmorQZpv3v5+OlaTnjoQOW2wkzAxdKWDu3HS2w+4UPfPMaH/nNx4bIHGrZghlkqxYQSOMKnWYYZFLXjHHZHP5hiKIW1ubV2sJKEabbc48k2oeVTK8tx5kyqGzoPf1kZi3pHQ64i/n4CCwa1c0hw64h7ExWfnSVxMXtLWReHMdGCbvgu5y6EWIXFydoln4btebpMUcyJig8+ITQHr5OeAdkC+/TBOL6iHoeRa3oMUe8tpmwH+STd7FreidommSKUHndUWB9PJzwBP0F1+k26gLH7hGPTB5/tL7CXreM3S/afB5bjMgnaJpkilBB7zL2DQFncdNs6BX4tCDMvS8ulW/IZt5bjNQ7MilaCexRiFzgt4IDl0pOii7u2kCAS9EHUYeMvRqkMjFey7P+5lpa/OK6AHFaHOjIIJeJeyyeChfFIIilzy71aJGLkUdtmjub61pJFjatfyLQqaGLQKeoKfZKQp4B2XUuAUIjlzyfKAHCTqLXh5xOfSiRC4A7e/+fmD3bpoOL8SPOPQqqXYleHHoHkWJXIrs0B9/nO6LoCdD5gS9ETpFgeoduj0VHKDFZMfH83ugFzVyca2nWgRBNyuLPv44PV6zJt1tKgqZE/RGc+iVCHqQUwXy61aDBD2vbQaow3zq1OJFLub+/vWvgdNPL06lxbTJnKDzFOoa15uumWoE3a8mehFW7gGKF7kAxRzCx/u7pwfYvBk444x0t6dIZK5T9BOfAI46Kn2XU23kAvivYpNXcStq5AIUc5INf88feYSiRMnPkyNzgn7ssfSTNq2tdGBWMhyrqA69uZna5mp3Xk9ijDkNXutiRS7r11OV0dNPT3d7ikTmIpdGob2d3HlTBZ9gWIaeV0EH3BUXiyDoZuQyOkqinuf9DHjGZccO6gzlmFSIn8w59Ebhy1+mUrKVEObQ8yxufsux5bnNQGnkUoQTN1BaBlrilmQRQa+S1asr/5uwDD3PB7rt0LUuRobe3k7lnoFiLBANeKtzaS0dokkjkUuCBHUOAvl2q7agj47SbZ7bDJS2uwgnboDEnL/r4tCTRRx6gohD9x7nfWQPU8TIBaB2T59e2UxqoXZE0BOkyBm6vSxZ3kf2MGbfQVEiF4BGf61eTW5dSA4R9ARpbaVRMTLKpRgnMcBz6FoXYz8z99/f+Gvk5hER9AThbLGoDr2IkUt7O02uGR4ulqAnvdq9QEinaMK4Ki4W4UD3c+h5bjNQ2hG+bx/dL0LkIqSDOPSEcQl6ER16EdoMeIL+jncAW7bQVVraheWE/CIOPWFcMyaL4tCHh73hikWJXI49lkofzJwJfO1rwNatwIknpr1VQl4Rh54wRXboAJ3MOjqK0WYAOPNMOnlJ+VghCcShJ0yRM3TAuzopSoYOiJgLySGCnjCumiZFcKv2gslFaLMgJI0IesK4hi0WIU+2HXoR2iwISSOCnjB+GXpLS2WleLNGkSMXQUiKHEtIY+KXoedd2PwEXRy6INQPEfSEaW8nMRsZ8Z4rwkIPErkIQvyIoCeMq4RukR163tstCElS0zh0pdQOAAMAxgCMaq3X1WOj8oxZcXHmTLpfRIcukYsg1J96TCx6p9Z6fx3epxDYw/eAYjp0iVwEof5I5JIwLGxmx6g4dEEQ6kGtgq4BrFdKbVJKXVGPDco7rkUuiuDQW1pIvCVDF4T4qDVyOUNrvVspNR/AQ0qpF7XWj5ovmBD6KwBg+fLlNf677OOKXIrg0IHy5diammRavCDUk5ocutZ698TtXgA/BnCq4zW3aq3Xaa3XzZs3r5Z/lwuK6tCB0rIHRTmJCUKSVC3oSqk2pdR0vg/gfADP12vD8kpRM3SAFg3mRR6OHCnGSUwQkqQWh74AwGNKqWcBPAngfq31z+uzWfmlyA79vPOA9etJ1ItyEhOEJKk6Q9davwrglDpuSyEocoZ+xRXATTcBt91GJ7EitFkQkkSGLSbM5MnUEVhEh756NXDGGcCttxanzYKQJCLoCaNUeYGuojh0ALjySmDbNuCRR4rTZkFIChH0FLAXuSiSW/393wdmzQJ6ekTQBaHeiKCnQJEd+tSpwMc/TveLchIThKQQQU8Be9WiIjl0gDpHgeKcxAQhKepRnEuokCI7dAA48UTggguA2bPT3hJByBci6CnQ3g7s3Uv3x8eB0dFiOXQAuO8+mfYvCPVGIpcUMB16UcvITpqU7zVUBSEN5JBKATNDl6qDgiDUCxH0FDCHLRbVoQuCUH9E0FPAjFzEoQuCUC9E0FOgrQ0YGSExF4cuCEK9EEFPAbNAlzh0QRDqhQh6CpgldMWhC4JQL2QcegqwoN94I1UgBMShC4JQOyLoKXDGGcBZZwHf+AagNT0nDl0QhFoRQU+BpUuBDRtotuhPfgI88wxw+ulpb5UgCFlHBD1F5s8HLr887a0QBCEvSKeoIAhCThBBFwRByAki6IIgCDlBBF0QBCEniKALgiDkBBF0QRCEnCCCLgiCkBNE0AVBEHKC0jz3PIl/ptQ+ADur/PO5APbXcXOyQhHbXcQ2A8VsdxHbDFTe7hVa63lhL0pU0GtBKbVRa70u7e1ImiK2u4htBorZ7iK2GYiv3RK5CIIg5AQRdEEQhJyQJUG/Ne0NSIkitruIbQaK2e4ithmIqd2ZydAFQRCEYLLk0AVBEIQAMiHoSqkLlFJblVLblFLXpr09caCUWqaU+qVSaotS6gWl1DUTz89WSj2klHp54nZW2ttab5RSzUqpZ5RSP514XIQ2z1RK/ZdS6sWJff62vLdbKfWZie/280qpO5VSrXlss1Lq+0qpvUqp543nfNuplPrchLZtVUq9p5b/3fCCrpRqBvAtAO8FcCKAS5VSJ6a7VbEwCuCzWusTAJwO4OqJdl4L4GGt9TEAHp54nDeuAbDFeFyENv9vAD/XWh8P4BRQ+3PbbqXUEgB/AWCd1vokAM0ALkE+23wbgAus55ztnDjGLwGweuJvbp7QvKpoeEEHcCqAbVrrV7XWRwD8EMDFKW9T3dFa92itn564PwA6wJeA2nr7xMtuB/DBdLYwHpRSSwFcBOC7xtN5b/MMAGcB+B4AaK2PaK3fRM7bDVohbapSqgXANAC7kcM2a60fBdBnPe3XzosB/FBrPay13g5gG0jzqiILgr4EwC7jcdfEc7lFKdUJ4C0AngCwQGvdA5DoA5if3pbFwo0A/gbAuPFc3tt8FIB9AP7PRNT0XaVUG3Lcbq11N4AbALwGoAfAAa31euS4zRZ+7ayrvmVB0JXjudwOzVFKtQP4EYBPa637096eOFFKvQ/AXq31prS3JWFaAPwegG9rrd8CYAj5iBp8mciMLwawEsBiAG1KqY+lu1UNQV31LQuC3gVgmfF4KehSLXcopSaBxPwOrfXdE0/3KqUWTfx+EYC9aW1fDJwB4ANKqR2gKO1dSqn/h3y3GaDvdJfW+omJx/8FEvg8t/s8ANu11vu01iMA7gbwduS7zSZ+7ayrvmVB0J8CcIxSaqVSajKoA+G+lLep7iilFChT3aK1/lfjV/cBuGzi/mUA7k162+JCa/05rfVSrXUnaL8+orX+GHLcZgDQWu8BsEspddzEU+cC+B3y3e7XAJyulJo28V0/F9RPlOc2m/i18z4AlyilpiilVgI4BsCTVf8XrXXD/wC4EMBLAF4B8Pm0tyemNp4JutTaDOC3Ez8XApgD6hV/eeJ2dtrbGlP7zwHw04n7uW8zgLUANk7s73sAzMp7uwH8A4AXATwP4P8CmJLHNgO4E9RPMAJy4JcHtRPA5ye0bSuA99byv2WmqCAIQk7IQuQiCIIgREAEXRAEISeIoAuCIOQEEXRBEIScIIIuCIKQE0TQBUEQcoIIuiAIQk4QQRcEQcgJ/x/Tv/FjPuYe4AAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(my_data, linestyle='-', color='blue')\n",
"# Show the plot\n",
"plt.show()"
]
}
}
],
],
"metadata": {
"metadata": {
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment