"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas\n",
"import matplotlib.pyplot as plt\n",
"\n",
"data[\"Frequency\"]=data.Malfunction/data.Count\n",
"data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n",
"plt.grid(True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Logistic regression\n",
"\n",
"Let's assume O-rings independently fail with the same probability which solely depends on temperature. A logistic regression should allow us to estimate the influence of temperature."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
Generalized Linear Model Regression Results
\n",
"
\n",
"
Dep. Variable:
Frequency
No. Observations:
23
\n",
"
\n",
"
\n",
"
Model:
GLM
Df Residuals:
21
\n",
"
\n",
"
\n",
"
Model Family:
Binomial
Df Model:
1
\n",
"
\n",
"
\n",
"
Link Function:
logit
Scale:
1.0000
\n",
"
\n",
"
\n",
"
Method:
IRLS
Log-Likelihood:
-3.9210
\n",
"
\n",
"
\n",
"
Date:
Wed, 16 Dec 2020
Deviance:
3.0144
\n",
"
\n",
"
\n",
"
Time:
17:00:19
Pearson chi2:
5.00
\n",
"
\n",
"
\n",
"
No. Iterations:
6
Covariance Type:
nonrobust
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
coef
std err
z
P>|z|
[0.025
0.975]
\n",
"
\n",
"
\n",
"
Intercept
5.0850
7.477
0.680
0.496
-9.570
19.740
\n",
"
\n",
"
\n",
"
Temperature
-0.1156
0.115
-1.004
0.316
-0.341
0.110
\n",
"
\n",
"
"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Frequency No. Observations: 23\n",
"Model: GLM Df Residuals: 21\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -3.9210\n",
"Date: Wed, 16 Dec 2020 Deviance: 3.0144\n",
"Time: 17:00:19 Pearson chi2: 5.00\n",
"No. Iterations: 6 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
"Intercept 5.0850 7.477 0.680 0.496 -9.570 19.740\n",
"Temperature -0.1156 0.115 -1.004 0.316 -0.341 0.110\n",
"===============================================================================\n",
"\"\"\""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import statsmodels.api as sm\n",
"\n",
"data[\"Success\"]=data.Count-data.Malfunction\n",
"data[\"Intercept\"]=1\n",
"\n",
"logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], \n",
" family=sm.families.Binomial(sm.families.links.logit)).fit()\n",
"\n",
"logmodel.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The maximum likelyhood estimator of the intercept and of Temperature are thus $\\hat{\\alpha}=5.0849$ and $\\hat{\\beta}=-0.1156$. This **corresponds** to the values from the article of Dalal *et al.* The standard errors are $s_{\\hat{\\alpha}} = 7.477$ and $s_{\\hat{\\beta}} = 0.115$, which is **different** from the $3.052$ and $0.04702$ reported by Dallal *et al.* The deviance is $3.01444$ with 21 degrees of freedom. I cannot find any value similar to the Goodness of fit ($G^2=18.086$) reported by Dalal *et al.* There seems to be something wrong. Oh I know, I haven't indicated that my observations are actually the result of 6 observations for each rocket launch. Let's indicate these weights (since the weights are always the same throughout all experiments, it does not change the estimates of the fit but it does influence the variance estimates)."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
Generalized Linear Model Regression Results
\n",
"
\n",
"
Dep. Variable:
Frequency
No. Observations:
23
\n",
"
\n",
"
\n",
"
Model:
GLM
Df Residuals:
21
\n",
"
\n",
"
\n",
"
Model Family:
Binomial
Df Model:
1
\n",
"
\n",
"
\n",
"
Link Function:
logit
Scale:
1.0000
\n",
"
\n",
"
\n",
"
Method:
IRLS
Log-Likelihood:
-23.526
\n",
"
\n",
"
\n",
"
Date:
Wed, 16 Dec 2020
Deviance:
18.086
\n",
"
\n",
"
\n",
"
Time:
17:00:26
Pearson chi2:
30.0
\n",
"
\n",
"
\n",
"
No. Iterations:
6
Covariance Type:
nonrobust
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
coef
std err
z
P>|z|
[0.025
0.975]
\n",
"
\n",
"
\n",
"
Intercept
5.0850
3.052
1.666
0.096
-0.898
11.068
\n",
"
\n",
"
\n",
"
Temperature
-0.1156
0.047
-2.458
0.014
-0.208
-0.023
\n",
"
\n",
"
"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Frequency No. Observations: 23\n",
"Model: GLM Df Residuals: 21\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -23.526\n",
"Date: Wed, 16 Dec 2020 Deviance: 18.086\n",
"Time: 17:00:26 Pearson chi2: 30.0\n",
"No. Iterations: 6 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
"Intercept 5.0850 3.052 1.666 0.096 -0.898 11.068\n",
"Temperature -0.1156 0.047 -2.458 0.014 -0.208 -0.023\n",
"===============================================================================\n",
"\"\"\""
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], \n",
" family=sm.families.Binomial(sm.families.links.logit),\n",
" var_weights=data['Count']).fit()\n",
"\n",
"logmodel.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Good, now I have recovered the asymptotic standard errors $s_{\\hat{\\alpha}}=3.052$ and $s_{\\hat{\\beta}}=0.047$.\n",
"The Goodness of fit (Deviance) indicated for this model is $G^2=18.086$ with 21 degrees of freedom (Df Residuals).\n",
"\n",
"**I have therefore managed to fully replicate the results of the Dalal *et al.* article**."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Predicting failure probability\n",
"The temperature when launching the shuttle was 31°F. Let's try to estimate the failure probability for such temperature using our model.:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4VOXd//H3dyb7QmLYISA7yA5hEXEBrYK2KiriinVBpHWp7SNVn199tE+16oNt1VZxQ3GpgisupYJa44JbQBBkX8UEkJ0kkD33748ZMGAgQzLJLPm8rivXzDlzn3O+dwY+c3LmnPuYcw4REYkunlAXICIiwadwFxGJQgp3EZEopHAXEYlCCncRkSikcBcRiUI1hruZPW1mW83s28O8bmb2sJmtMbPFZjYw+GWKiMjRCGTPfTow+givnwl09f9MBKbWvSwREamLGsPdOfcxsPMITc4FnnM+XwDpZtY6WAWKiMjRiwnCOtoC31eZzvXP23xoQzObiG/vnsTExKx27drVaoOVlZV4PNHxdYH6Ep6ipS/R0g9QX/ZbtWrVdudc85raBSPcrZp51Y5p4Jx7AngCYNCgQW7+/Pm12mB2djYjRoyo1bLhRn0JT9HSl2jpB6gv+5nZd4G0C8bHYC5QdRc8E9gUhPWKiEgtBSPc3wKu8J81czywxzn3k0MyIiLScGo8LGNmLwEjgGZmlgvcCcQCOOceA2YDZwFrgH3AVfVVrIiIBKbGcHfOXVLD6w64PmgViUhEKCsrIzc3l+Li4gbZXlpaGsuXL2+QbdW3QPqSkJBAZmYmsbGxtdpGML5QFZFGKDc3l9TUVDp06IBZdedVBFdBQQGpqan1vp2GUFNfnHPs2LGD3NxcOnbsWKttRMd5RSLS4IqLi2natGmDBHtjY2Y0bdq0Tn8VKdxFpNYU7PWnrr9bhbuISBTSMXcRiVher5c+ffocmJ41axYdOnQIXUFhROEuIhErMTGRRYsWHfb18vJyYmIaZ8zpsIyIRJXp06dz4YUXcvbZZ3PGGWcAMGXKFAYPHkzfvn258847D7S955576N69Oz/72c+45JJLeOCBBwAYMWIE+4dH2b59+4G/BioqKpg8efKBdT3++OPAj8MJjB07lh49enDZZZfhO0sccnJyOOGEE+jXrx9DhgyhoKCAUaNGHfShNHz4cBYvXhzU30Pj/EgTkaD649tLWbYpP6jr7NmmCXee3euIbYqKiujfvz8AHTt25I033gDg888/Z/HixWRkZDB37lxWr17NV199hXOOc845h48//pjk5GRmzJjBwoULKS8vZ+DAgWRlZR1xe9OmTSMtLY2cnBxKSkoYPnz4gQ+QhQsXsnTpUtq0acPw4cOZN28eQ4YM4aKLLmLmzJkMHjyY/Px8EhMTueKKK5g+fToPPvggq1atoqSkhL59+wbht/YjhbuIRKzDHZY5/fTTycjIAGDu3LnMnTuXAQMGAFBYWMjq1aspKCjgvPPOIykpCYBzzjmnxu3NnTuXxYsX8+qrrwKwZ88eVq9eTVxcHEOGDCEzMxOA/v37s2HDBtLS0mjdujWDBw8GoEmTJgCcd955DB8+nClTpvD0009z5ZVX1u0XUQ2Fu4jUWU172A0tOTn5wHPnHLfffjvXXXfdQW0efPDBw55uGBMTQ2VlJcBB55o75/j73//OqFGjDmqfnZ1NfHz8gWmv10t5eTnOuWq3kZSUxOmnn86bb77Jyy+/TG1HyD0SHXMXkag2atQonn76aQoLCwHIy8tj69atnHzyybzxxhsUFRVRUFDA22+/fWCZDh06sGDBAoADe+n71zV16lTKysoAWLVqFXv37j3stnv06MGmTZvIyckBfFemlpeXAzBhwgRuuukmBg8efOCvjGDSnruIRLUzzjiD5cuXM2zYMABSUlJ44YUXGDhwIBdddBH9+/fn2GOP5aSTTjqwzC233MK4ceN4/vnnOfXUUw/MnzBhAhs2bGDgwIE452jevDmzZs067Lbj4uKYOXMmN954I0VFRSQmJvL+++8DkJWVRZMmTbjqqnoaa9E5F5KfrKwsV1sffvhhrZcNN+pLeIqWvtRnP5YtW1Zv665Ofn5+va7/zjvvdFOmTKnXbeyXn5/v8vLyXNeuXV1FRcVh21X3OwbmuwAyVodlREQa2IsvvsjQoUO555576u3WgTosIyIC3HXXXQ22rUsvvfQnX/AGm/bcRaTWnKv2dskSBHX93SrcRaRWEhIS2LFjhwK+Hjj/eO4JCQm1XocOy4hIrWRmZpKbm8u2bdsaZHvFxcV1CrtwEkhf9t+JqbYU7iJSK7GxsbW+S1BtZGdnH7jKNNI1RF90WEZEJAop3EVEopDCXUQkCincRUSikMJdRCQKKdxFRKKQwl1EJAop3EVEopDCXUQkCincRUSiUMSF+77Sct7bUEZ5RWWoSxERCVsRF+7vLN7MP1eUMu7xz/lux+HvXSgi0phFXLiPG9SOSX3jWbO1kDMf+oSZORs15KiIyCEiLtwBjm8Tw7s3n0z/dunc+toSbnhxIXuKykJdlohI2IjIcAdok57IC9cM5dbRPZizdAtnPfQJX2/cFeqyRETCQsSGO4DHY/xqRGde/dUJeDww7rHPefLjdTpMIyKNXkDhbmajzWylma0xs9uqeT3NzN42s2/MbKmZXRX8Ug+vf7t03rnxJE47rgX3zF7OxOcX6DCNiDRqNYa7mXmBR4AzgZ7AJWbW85Bm1wPLnHP9gBHAX8wsLsi1HlFaYiyPXZ7F//yiJx+u2Mq5//iUFVvyG7IEEZGwEcie+xBgjXNunXOuFJgBnHtIGwekmpkBKcBOoDyolQbAzLj6xI7MmHg8+0orGPPIPN76ZlNDlyEiEnJW0/FpMxsLjHbOTfBPjweGOuduqNImFXgL6AGkAhc55/5VzbomAhMBWrZsmTVjxoxaFV1YWEhKSsoR2+wuqeTRRSWs2lXJWR1jGdstFo9ZrbZXnwLpS6RQX8JPtPQD1Jf9Ro4cucA5N6jGhs65I/4AFwJPVZkeD/z9kDZjgb8BBnQB1gNNjrTerKwsV1sffvhhQO1Kyirc/3tjsTv21nfcFdO+dHuKSmu9zfoSaF8igfoSfqKlH86pL/sB810Nue2cC+iwTC7Qrsp0JnDosY6rgNf9217jD/ceAay7XsXFeLh7TB/uPb8P89Zs5/xHP9NVrSLSKAQS7jlAVzPr6P+S9GJ8h2Cq2gicBmBmLYHuwLpgFloXlwxpz/PXDGV7YQnnPjKPL9btCHVJIiL1qsZwd86VAzcAc4DlwMvOuaVmNsnMJvmb/Qk4wcyWAB8AtzrnttdX0bUxrHNT3rx+OE2T4xg/7UveWJgb6pJEROpNTCCNnHOzgdmHzHusyvNNwBnBLS34jm2azOu/Gs6kFxbw25nfsHFHETed1gULwy9aRUTqIqKvUK2NtKRYnr16COcPbMvf3l/Fba8t0fDBIhJ1AtpzjzZxMR7+cmE/MtMTefg/a9hWWMI/Lh1AUlyj/HWISBRqdHvu+5kZvzujO/ec15vslVu59Mkv2bW3NNRliYgERaMN9/0uG3osUy/PYtnmfC58/HM27S4KdUkiInXW6MMdYFSvVjx71RC27Clm7NTPWLetMNQliYjUicLdb1jnpsyYeDzF5ZWMe/xzlm/WoGMiErkU7lX0bpvGy9cNI8bj4aLHP2ehbv4hIhFK4X6ILi1SeGXSMNKT4hg/7StyNuwMdUkiIkdN4V6NdhlJvHzdMFo0ieeKaV/x2ZqwuthWRKRGCvfDaJWWwMyJw2ifkcRV03P4eNW2UJckIhIwhfsRNE+N56WJx9OxWTITnpuvgBeRiKFwr0FGchwvXns8nZunMOG5+XykgBeRCKBwD0BGchwvThhK5+YpTHxuPvN0DF5EwpzCPUDHJMfxzwlD6dA0mWuezdGY8CIS1hTuRyEjOY5/XjuUzGOSuHp6Dgu+02mSIhKeFO5HqVlKPC9eO5SWTRK48ukcvs3bE+qSRER+QuFeCy1SE/jnhKE0SYxl/LQvWbmlINQliYgcROFeS23SE3nx2qHExXi4fNqXuvG2iIQVhXsdHNs0mReuGUp5RSWXPfUlW/YUh7okERFA4V5nXVum8uzVQ9i9r4zLp+mGHyISHhTuQdA3M50nrxjExp37uHJ6DntLykNdkog0cgr3IBnWuSn/uGQAS3J3M+mFBZSW66bbIhI6CvcgOqNXK+47vy+frN7Of73yDZWVLtQliUgjFRPqAqLNuMHt2LG3lPvfXUHzlHju+MVxmFmoyxKRRkbhXg8mndKJrQXFPD1vPS2bxHPdKZ1DXZKINDIK93pgZtzx855sKyjh3n+voEWTeM4bkBnqskSkEVG41xOPx/jLuH7sKCzl968upkVqAsO7NAt1WSLSSOgL1XoUH+PlsfFZdGqWwqTnF7B8c36oSxKRRkLhXs/SEmN55qrBJMfHcNUzOWzeUxTqkkSkEVC4N4A26Yk8c9VgCkvKueqZHAqKy0JdkohEOYV7AzmudRMevWwgq7cWcv2LCymr0EVOIlJ/FO4N6ORuzfnzeb35eNU2/ufNpTini5xEpH7obJkGdtHg9ny3Yx+PZq+lY7MkuoW6IBGJStpzD4FbzujOz/u05t5/r2D+Fg0yJiLBF1C4m9loM1tpZmvM7LbDtBlhZovMbKmZfRTcMqPL/nPg+7dL54nFJSzO3R3qkkQkytQY7mbmBR4BzgR6ApeYWc9D2qQDjwLnOOd6ARfWQ61RJSHWyxPjB5EaZ0x4dr5OkRSRoApkz30IsMY5t845VwrMAM49pM2lwOvOuY0AzrmtwS0zOjVPjee3WQnsK63gmunzNQ68iASN1XTGhpmNBUY75yb4p8cDQ51zN1Rp8yAQC/QCUoGHnHPPVbOuicBEgJYtW2bNmDGjVkUXFhaSkpJSq2XDTWFhIeuKEvjbghL6t/By44B4PBE6imS0vS/R0Jdo6QeoL/uNHDlygXNuUE3tAjlbprqkOfQTIQbIAk4DEoHPzewL59yqgxZy7gngCYBBgwa5ESNGBLD5n8rOzqa2y4ab7OxsbvrFCJq0Wc9dby8jp6Q1t47uEeqyaiXa3pdo6Eu09APUl6MVSLjnAu2qTGcCm6pps905txfYa2YfA/2AVUhAfnlCB1ZvLWRq9lq6NE/hgiyNIikitRfIMfccoKuZdTSzOOBi4K1D2rwJnGRmMWaWBAwFlge31OhmZtx1Ti9O6NyU219fwoLvdoa6JBGJYDWGu3OuHLgBmIMvsF92zi01s0lmNsnfZjnwLrAY+Ap4yjn3bf2VHZ1ivR4evWwgrdMTuO75BeTt1hk0IlI7AZ3n7pyb7Zzr5pzr7Jy7xz/vMefcY1XaTHHO9XTO9XbOPVhfBUe79KQ4pv1yECVllUx4VmfQiEjt6ArVMNSlRSoPXzqAlVvy+a+XdaNtETl6CvcwNbJ7C/77rON4d+kWHv7P6lCXIyIRRgOHhbFrTuzIii0FPPj+arq3TOXMPq1DXZKIRAjtuYcxM+Oe83ozsH06v3v5G5Zt0m36RCQwCvcwt/8+rGmJsVz73Hx2FJaEuiQRiQAK9wjQIjWBJ67IYnthCb/+59e6i5OI1EjhHiH6ZqZz/wV9+XL9Tv749tJQlyMiYU5fqEaQMQPasnxzPo9/vI6erdO4dGj7UJckImFKe+4R5veje3BKt+bc+da3zN+gIQpEpHoK9wjj9RgPXzyAzGOSmPTCAjZpiAIRqYbCPQKlJcXy5BVZFJdVct3zCyguqwh1SSISZhTuEapLi1T+dlF/luTt4fbXl1DTTVdEpHFRuEew03u25Hend+ONhXlM+3R9qMsRkTCicI9wN4zswuherfjz7OV8snpbqMsRkTChcI9wHo/xwLh+dGmRwg0vLmTjjn2hLklEwoDCPQqkxMfw5BW+++Ve+5zGgBcRhXvUOLZpMv+4dACrtxZwyyvf6AtWkUZO4R5FTuranNvO7MG/v93CIx+uCXU5IhJCCvcoc+1JnRjTvw1/eW8V7y/7IdTliEiIKNyjjJlx3wV96dWmCTfPXMSarYWhLklEQkDhHoUSYr08Pn4Q8TEeJj43nz1FZaEuSUQamMI9SrVNT2Tq5Vls3LmP38xYSIVusi3SqCjco9iQjhnceU4vsldu44G5K0Ndjog0II3nHuUuH9qeZZvymZq9lp6tm3B2vzahLklEGoD23KOcmfHHc3ox6NhjmPzqN3ybtyfUJYlIA1C4NwJxMR6mXp7FMUlxTHxuPtt1k22RqKdwbySap8bz5BWD2LG3lF+9sIDSct1kWySaKdwbkd5t0/i/sX3J2bCLO99aqiEKRKKYvlBtZM7t35blmwt47KO19GydyvhhHUJdkojUA+25N0KTR3Xn1B4t+OPby/hs7fZQlyMi9UDh3gh5PcZDF/enQ7Nkrv/n1xoDXiQKKdwbqdSEWJ66YhCVDiY8l0NBsYYoEIkmCvdGrEOzZB69bCBrt+3l5hmLNESBSBRRuDdyw7s0486ze/LBiq1MmaMhCkSihc6WEcYffywrt/jOoOnWMoXzB2aGuiQRqaOA9tzNbLSZrTSzNWZ22xHaDTazCjMbG7wSpb6ZGXed04thnZpy22tLWPDdzlCXJCJ1VGO4m5kXeAQ4E+gJXGJmPQ/T7n5gTrCLlPoX6/Uw9fKBtElPYOJzC8jdpTNoRCJZIHvuQ4A1zrl1zrlSYAZwbjXtbgReA7YGsT5pQOlJcUy7cjClFZVMeHa+zqARiWBW0yXo/kMso51zE/zT44GhzrkbqrRpC7wInApMA95xzr1azbomAhMBWrZsmTVjxoxaFV1YWEhKSkqtlg034diXpdsr+MuCYno383LzwHg8ZgEtF459qa1o6Uu09APUl/1Gjhy5wDk3qKZ2gXyhWt3/7EM/ER4EbnXOVdgRgsA59wTwBMCgQYPciBEjAtj8T2VnZ1PbZcNNOPZlBJCW+R1/mPUtnxS24M6zewW0XDj2pbaipS/R0g9QX45WIOGeC7SrMp0JbDqkzSBghj/YmwFnmVm5c25WUKqUBnf58ceybttenp63nk7NkjUGjUiECSTcc4CuZtYRyAMuBi6t2sA513H/czObju+wjII9wv2/nx/Hdzv2cudbS8nMSGJk9xahLklEAlTjF6rOuXLgBnxnwSwHXnbOLTWzSWY2qb4LlNDxeoyHLxnAca2bcMM/v2bZpvxQlyQiAQroPHfn3GznXDfnXGfn3D3+eY855x6rpu2V1X2ZKpEpOT6Gab8cTGpCLNc8m8OWPcWhLklEAqDhB6RGrdISmHblIPKLyrh6eg6FJeWhLklEaqBwl4D0apPGI5cNZOUPBdzw4teUV+g2fSLhTOEuARvRvQV/Orc32Su3cceb3+o2fSJhTAOHyVG5dGh7cnft49HstbRNT+SGU7uGuiQRqYbCXY7a5FHd2bKnmAfmrqJVWiJjszSKpEi4UbjLUTMz7rugL1sLSrjttcU0T43nlG7Na7WuWQvzmDJnJZt2F9EmPZHJo7ozZkDbIFcs9UXvX/jSMXeplbgY3yiS3Vqm8qsXFvDN97uPeh2zFuZx++tLyNtdhAPydhdx++tLmLUwL/gFS9Dp/QtvCneptdSEWKZfPZimKXFcPT2HLXuP7gyaKXNWUlRWcdC8orIK3REqQuj9C28Kd6mTFqkJPHvVEBzwwPxifsgP/CKnTbuLjmq+hBe9f+FN4S511ql5CtOvGkxhqeOKaV+xZ19g48C3SU88qvkSXvT+hTeFuwRF38x0bhqYwPrte7n62Rz2ldZ8FevkUd1JjPUeNC8x1svkUd3rq0wJIr1/4U3hLkHTs6mXBy/uz8KNu5j0wteUlh/5GPyYAW259/w+tE1PxIC26Ynce34fnW0RIfT+hTedCilBdVaf1tx3fl9+/9pifjtzEQ9fMgCv5/A3cBkzoK3CIILp/QtfCncJunGD25FfXMbd/1pOcryX+87vi+cIAS8iwadwl3ox4aROFBSX89AHq0mM9XLXOb040i0YRSS4FO5Sb27+WVf2lZbz5CfrSYjzctvoHgp4kQaicJd6Y2b891nHsa+0gsc/Wkd8jJffnd4t1GWJNAoKd6lXZsafzu1NaXklD3+wmliPceNpGklSpL4p3KXeeTy+gcYqKh1/eW8VMV4PvxrROdRliUQ1hbs0CK/HmHJhP8orHfe/uwKH49cjuoS6LJGopXCXBuP1GH8d1w8z+L93V+IcXD9SAS9SHxTu0qBivB7+Oq4/hm9UwfIKx02nddFZNCJBpnCXBuf1GH8Z1x+vx8Pf3l9FSXkFk0d1V8CLBJHCXULC6zGmjO1LXIyHR7PXUlxWyR2/OE4BLxIkCncJGY/H+PN5vYmP8fD0vPXsKy3nnvP6HHEsGhEJjMJdQsrMuPPsnqQmxPD3/6yhsKScv47rT1yMBiwVqQuFu4ScmfFfZ3QnJT6Ge/+9goLicqZePpCkOP3zFKkt7R5J2LjulM7cd34fPlm9jUuf/JJde0tDXZJIxFK4S1i5eEh7Hr0si2Wb87nw8c/J0/04RWpF4S5hZ3TvVjx71RB+yC/mvEfmsWxTfqhLEok4CncJS8M6N+WVScPwmDHu8c/5ZPW2UJckElEU7hK2erRqwhvXn0DmMYlc9UwOM3M2hrokkYihcJew1jotkVcmDWNY56bc+toS7n93BZWVLtRliYQ9hbuEvdSEWJ6+cjCXDGnP1Oy1/OqfC9hXWh7qskTCWkDhbmajzWylma0xs9uqef0yM1vs//nMzPoFv1RpzGK9Hv58Xm/u+EVP3lv2A2Onfs4mnUkjclg1hruZeYFHgDOBnsAlZtbzkGbrgVOcc32BPwFPBLtQETPjmhM7Mu3KwXy/cx9n//1Tvlq/M9RliYSlQPbchwBrnHPrnHOlwAzg3KoNnHOfOed2+Se/ADKDW6bIj0Z2b8Eb1w8nLTGWS5/8guc/34BzOg4vUpXV9J/CzMYCo51zE/zT44GhzrkbDtP+FqDH/vaHvDYRmAjQsmXLrBkzZtSq6MLCQlJSUmq1bLhRX2pvX5nj8cUlfLOtguFtYriiVxzx3uAMOhYt70u09APUl/1Gjhy5wDk3qMaGzrkj/gAXAk9VmR4P/P0wbUcCy4GmNa03KyvL1daHH35Y62XDjfpSNxUVle5v7610HW57x43620du/bbCoKw3Wt6XaOmHc+rLfsB8V0O+OucCOiyTC7SrMp0JbDq0kZn1BZ4CznXO7QhgvSJ15vEYN/+sG89cOZjNe4o5+++f8q/Fm0NdlkjIBRLuOUBXM+toZnHAxcBbVRuYWXvgdWC8c25V8MsUObIR3Vvwr5tOpHOLFK5/8WvumPUtxWUVoS5LJGRqDHfnXDlwAzAH3yGXl51zS81skplN8jf7H6Ap8KiZLTKz+fVWschhZB6TxMvXDePakzry/BffMeaReaz+oSDUZYmEREADZjvnZgOzD5n3WJXnE4CffIEq0tBmL9nM7CVbAFj1QwFnPfwJY/q3Zd6a7WzeU0yb9EQmj+rOmAFtg77tWQvzmDJnJZt2F9XrdgLxh1lLeOnL77m5dxnX3D6bS4a24+4xfUJSi4SG7oYgUWPWwjxuf30JRf7DMZUOXIXjlQW5B9rk7S7i9teXAAQ1eA/ddn1tJxB/mLWEF774cRyeCucOTCvgGw8NPyBRY8qclQfCdb/qTvQtKqtgypyV9b7t+thOIF768vujmi/RSeEuUeNohiMI9k1ADrftUAyRUHGYa1cON1+ik8Jdokab9MSA23oM3lyUF7QrWw+37aOpKVi8Vv2FXIebL9FJ4S5RY/Ko7iTGeg+aF+sxYg+5ajU+xkPmMUn8ZsYiJjw7n9xd++pl24mxXiaP6l7ndR+tS4a2O6r5Ep0U7hI1xgxoy73n96FteiIGtE1PZMqF/Zgytt9B8+6/oC8f3jKCP/z8OD5bu4PT//oxT3y8lrKKyqBu+97z+4TkbJm7x/Th8uPbH9hT95px+fHt9WVqI6OzZSSqjBnQttpArW7ehJM6Mbp3K+56ayl/nr2C1xbk8cdze3F8p6ZB3XYo3D2mD3eP6UN2djZrLxsR6nIkBLTnLo1a5jFJPPXLwTwxPovCknIufuILbnppITuLa78XLxIOtOcuApzRqxUndW3O1I/W8thHa3m3spLvvKu47pROJMXpv4lEHu25i/glxnn53end+OB3p9C/hZeHPljNyAeymZmzkQrdt1UijMJd5BDtMpL4df8EXpk0jNZpidz62hLOfOhj3lv2g24KIhFD4S5yGIM7ZPDGr0/g0csGUlbhuPa5+Yx59DM+Xb1dIS9hT+EucgRmxll9WvPeb0/m/gv6sC2/mMunfcm4xz9n3hqFvIQvhbtIAGK8Hi4a3J7/3DKC/z23F9/vLOKyp77kgqmf8Z8VOlwj4UfhLnIUEmK9XDGsA9mTR/Cnc3vxQ34JV0+fz1kPf8obC3PrdCGUSDAp3EVqISHWy3h/yD9wYT/KKir57cxvOPn/PuTxj9ayZ19ZqEuURk4n8IrUQazXw9isTM4f0JbsVVt54uN13PvvFTz4/mouyGrLFcM60K1laqjLlEZI4S4SBB6PcWqPlpzaoyVLN+1h+rwNvDw/lxe+2MjQjhlcfvyxnNGrJfEx3ppXJhIECneRIOvVJo0pF/bj9rOO4+X53/PCF99x40sLyUiO44KBbRk3qB1dtTcv9UzhLlJPMpLjmHRKZyae1IlP12znpa828sy8DTz5yXr6ZaYxNiuTn/dtQ0ZyXKhLlSikcBepZx6PcXK35pzcrTnbC0uYtTCPVxfkcsebS/nj28sY0b05Z/drw8+Oa0lyvP5LSnDoX5JIA2qWEs+Ekzox4aROLN+cz6yFeby5aBPvL99KQqyHU3u04MzerRnZowUpCnqpA/3rEQmR41o34bjWTbh1dA/mf7eLt7/ZxL+/3cLsJVuIi/FwUpdmnN6zJacd15LmqfGhLlcijMJdJMQ8HmNIxwyGdMzgrnN6seC7Xcxespn3lv3AByu2YraEvpnpnNajBSO6N6d3mzQ8Ht0PVY5M4S4SRrxVgv7Os3uyfHMBHyz3hfzf3l/FX99bRUZyHCd2acaJXZtxYpc9/m12AAANA0lEQVRmIbkJt4Q/hbtImDIzerZpQs82TbjxtK5sLyzh09XbyV65lU/XbOetbzYB0LFZMsd3yuD4Tk0Z0jGD1mkKe1G4i0SMZinxB+7T6pxj5Q8FfLp6O5+v3cE732zmpa++B6BdRiKDj81g4LHH4Aoqqah0eHUYp9FRuItEIDOjR6sm9GjVhAkndaK8opLlmwv4asNOvlq/g49Xb+P1hXkA3Jczh76Z6fRrl06/zDT6tkunTVoCZgr8aKZwF4kCMV4PfTLT6JOZxjUndsQ5x8ad+3jh3c8oSWnNwo27mfbpOsoqfEMTH5MUS++2afRs7Tvsc1zrJnRslkysV2MJRguFu0gUMjOObZrM8LaxjBjRG4CS8gpWbC5gce5ulm7K59tNe3hm3gZK/cMUx3k9dGqeTPdWqXRtkULXlql0aZFC+4wkhX4EUriLNBLxMV7foZl26QfmlVVUsm7bXpZvzmfFlgJWbMln/oZdvLlo04E2sV6jfUYSHZul0Kl5Msc2TaJj02TaN02idVqijueHKYW7SCMW6/XQvVUq3VsdPJBZYUk5a7YWsnZrIWu2FbJ+217Wb9/Lx6u3UVpeWWV5o216Iu0yksg8JonMYxJpm55I22MSaZOeSMvUeGK01x8SCncR+YmU+Bj6t0unf5W9fIDKSseW/GI2bN/Lhh37+H7XPjbu2Efurn3M3bSFHXtLD2rvMWiRmkCrtARaNfE9tmgST4vUBFqkxtOiSTzNUuLJSIrThVlBpnAXkYB5PEabdN9e+Qldfvr6vtJyNu0uIndXEZv3FLN5dxGb9hTzQ34xa7YVMm/tdgqKy3+ynNdjZCTH0TQ5jmYp8TRNiSMjOY6MpDgyUuI4JimO73ZU0HJzPsckxZGWGEtCrEdn/ByBwl1EgiYpLoYuLVLp0uLw49XvKy1na34JWwtK2FpQzPaCErYXlrKtoIQde0vZXljCxp372LW3lIKSgz8I7s/55MDzOK+HtKRYmiTEkJYYS5PEWJokxJKaEEPqgccYUuJ//En2//iee0mKi4na7wwCCnczGw08BHiBp5xz9x3yuvlfPwvYB1zpnPs6yLWKRK1ZC/OYMmclm3YX0SY9kcmjuvPK/I3MW7vzQJvhnTO4cFD7n7QDfjJv/nc7eenL77m5dxnX3D6bS4a24+4xfQLa7pgBbQ87P5Dl92+7wjm8Zj/ZdlJcDB2axbDo+9019uXOs3tycrfm7NxXyofzcujQrSe79pXx2drtZK/cxraCEgqKy/B6jLIKx4bte8kvLqeguOzAaZ81iY/xkBTnC/qkOC+JcV4SY70kxXlJiPU9T4jzkhDjJSHWQ0Lsj4/xMR7iY/yPsT8+j9v/4/3xebzXS2yMEev14FxgtdVFjeFuZl7gEeB0IBfIMbO3nHPLqjQ7E+jq/xkKTPU/ikgNZi3M4/bXl1BUVgFA3u4ibp656Cft5q3deVDY5+0uYvKr34CDskp3YN7vZi6isspyFc7xwhcbAQ4K2eq2e/vrS5j/3U5eW5D3k/nAQQFf3fJ12fbkV74B40Ao5+0u4o43l3Lv+X0YM6AtW5p6GdGnNbMW5vHB8q0Hli0uq+T7nUUH2u1XXFZBYUk5hcXlFBSXU1hSzt6ScvaWlrO3pIK9JeXsK61gb2k5+0p9z4tKKw487thbemC6pLyC4rJKisoqqKisezCf2TGWkSPrvJojCmTPfQiwxjm3DsDMZgDnAlXD/VzgOef7OPrCzNLNrLVzbnPQKxaJMlPmrDwQVEerur3TymraAbz05fcHBWx12y0qqziw133o/ClzVh4UntUtX5dtl1UTmoFut7p2vj1sL81SgjtccllFJcVlFZSUV1JS7nte6n/ue6ygpKyS0grf9IHH8krKKnw/nl0bg1pTdaymPw/MbCww2jk3wT89HhjqnLuhSpt3gPucc5/6pz8AbnXOzT9kXROBif7J7sDKWtbdDNhey2XDjfoSnhqsL3GtumTV17or9u3Bm5R2YLp0y5oFddluXZYPwrLNgO1HWrbqNsJcXf59Heuca15To0D23Kv7tuHQT4RA2uCcewJ4IoBtHrkgs/nOuUF1XU84UF/CU7T0xczml+/ZGvH9gOh5T6Bh+hLI1QW5QLsq05nAplq0ERGRBhJIuOcAXc2so5nFARcDbx3S5i3gCvM5Htij4+0iIqFT42EZ51y5md0AzMF3KuTTzrmlZjbJ//pjwGx8p0GuwXcq5FX1VzIQhEM7YUR9CU/R0pdo6QeoL0elxi9URUQk8mhEHxGRKKRwFxGJQmEf7maWYGZfmdk3ZrbUzP7on59hZu+Z2Wr/4zGhrjUQZuY1s4X+awMiuR8bzGyJmS0ys/n+eZHal3Qze9XMVpjZcjMbFol9MbPu/vdj/0++md0coX35rf//+7dm9pI/ByKuHwBm9ht/P5aa2c3+efXel7APd6AEONU51w/oD4z2n5FzG/CBc64r8IF/OhL8BlheZTpS+wEw0jnXv8r5upHal4eAd51zPYB++N6fiOuLc26l//3oD2ThO7nhDSKsL2bWFrgJGOSc643vRI6LibB+AJhZb+BafFf69wN+YWZdaYi+OOci5gdIAr7GN27NSqC1f35rYGWo6wug/kz/G3kq8I5/XsT1w1/rBqDZIfMiri9AE2A9/pMLIrkvh9R/BjAvEvsCtAW+BzLwndH3jr8/EdUPf50X4htscf/0HcDvG6IvkbDnvv9QxiJgK/Cec+5LoKXzn0vvf2wRyhoD9CC+N7bqEByR2A/wXYE818wW+IeVgMjsSydgG/CM/3DZU2aWTGT2paqLgZf8zyOqL865POABYCOwGd91M3OJsH74fQucbGZNzSwJ3ynj7WiAvkREuDvnKpzvT81MYIj/T52IYma/ALY65yJl7IuaDHfODcQ3Iuj1ZnZyqAuqpRhgIDDVOTcA2EsE/Ll/JP6LDc8BXgl1LbXhP/58LtARaAMkm9nloa2qdpxzy4H7gfeAd4FvgJ/eraQeRES47+ec2w1kA6OBH8ysNYD/cWsISwvEcOAcM9sAzABONbMXiLx+AOCc2+R/3IrvuO4QIrMvuUCu/69BgFfxhX0k9mW/M4GvnXM/+KcjrS8/A9Y757Y558qA14ETiLx+AOCcm+acG+icOxnYCaymAfoS9uFuZs3NLN3/PBHfG78C35AHv/Q3+yXwZmgqDIxz7nbnXKZzrgO+P5n/45y7nAjrB4CZJZtZ6v7n+I6HfksE9sU5twX43sy6+2edhm8464jrSxWX8OMhGYi8vmwEjjezJDMzfO/JciKvHwCYWQv/Y3vgfHzvTb33JeyvUDWzvsCz+L4x9wAvO+f+18yaAi8D7fH9Y7jQObfz8GsKH2Y2ArjFOfeLSOyHmXXCt7cOvsMaLzrn7onEvgCYWX/gKSAOWIdv+AwPkdmXJHxfRnZyzu3xz4u498V/yvNF+A5hLAQmAClEWD8AzOwToClQBvzOOfdBQ7wnYR/uIiJy9ML+sIyIiBw9hbuISBRSuIuIRCGFu4hIFFK4i4hEoUBukC3SoPyniX3gn2wFVOAbIgBgiHOuNCSFHYGZXQ3M9p83LxJyOhVSwpqZ3QUUOuceCINavM65isO89ilwg3Nu0VGsL8Y51yCXokvjo8MyElHM7JfmG99/kZk9amYeM4sxs91mNsXMvjazOWY21Mw+MrN1ZnaWf9kJZvaG//WVZvaHANd7t5l9hW9coz+aWY5/fO7HzOcifMNRz/QvH2dmuVWurD7ezN73P7/bzB43s/fwDVYWY2Z/9W97sZlNaPjfqkQjhbtEDP+AcecBJ/gHkovBN5QDQBow1z+YWSlwF77L1i8E/rfKaob4lxkIXGpm/QNY79fOuSHOuc+Bh5xzg4E+/tdGO+dmAouAi5xvPPWaDhsNAM52zo0HJuIbUG4IMBjfIGzta/P7EalKx9wlkvwMXwDO9w05QiK+S+0Bipxz7/mfL8E3TGy5mS0BOlRZxxzn3C4AM5sFnIjv/8Hh1lvKj0MtAJxmZpOBBKAZsAD491H2403nXLH/+RnAcWZW9cOkK75L0kVqTeEukcSAp51zdxw00ywGXwjvV4nvDl77n1f9d37ol0yuhvUWOf8XU/5xW/4BDHTO5ZnZ3fhCvjrl/PiX8aFt9h7Sp1875z5AJIh0WEYiyfvAODNrBr6zampxCOMM890zNQnfmOHzjmK9ifg+LLb7R8W8oMprBUBqlekN+G51xyHtDjUH+LX/g2T/fVATj7JPIj+hPXeJGM65Jf7RAt83Mw++UfYmAZuOYjWfAi8CnYHn95/dEsh6nXM7zOxZfMMbfwd8WeXlZ4CnzKwI33H9u4AnzWwL8NUR6nkc38iAi/yHhLbi+9ARqROdCimNhv9MlN7OuZtDXYtIfdNhGRGRKKQ9dxGRKKQ9dxGRKKRwFxGJQgp3EZEopHAXEYlCCncRkSj0/wHRUJwHFwSFegAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n",
"data_pred['Frequency'] = logmodel.predict(data_pred)\n",
"data_pred.plot(x=\"Temperature\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n",
"plt.scatter(x=data[\"Temperature\"],y=data[\"Frequency\"])\n",
"plt.grid(True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false,
"scrolled": true
},
"source": [
"This figure is very similar to the Figure 4 of Dalal *et al.* **I have managed to replicate the Figure 4 of the Dalal *et al.* article.**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Computing and plotting uncertainty"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Following the documentation of [Seaborn](https://seaborn.pydata.org/generated/seaborn.regplot.html), I use regplot."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/conda/lib/python3.6/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n",
" return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8VPW9+P/XmS2ZTPaQBUgIW1hFVBBFRRQFlF2RKlC1KlZttd/Weq96a73VXrXeX6+9te1tRWtdSyu4sETRCgpuKLhFAmEPhCWTkD2TWc85vz8mGQgZYBIymSXv5+MRMufMmZPPhyzv+Wzvj6Lruo4QQghxAkOkCyCEECI6SYAQQggRlAQIIYQQQUmAEEIIEZQECCGEEEFJgBBCCBFU2ALEgw8+yMSJE5k1a1bQ53Vd57/+67+YOnUqs2fPprS0NFxFEUII0QVhCxDXXnstzz333Emf37hxI+Xl5bz33nv8+te/5le/+lW4iiKEEKILwhYgzj//fNLS0k76/Lp165g3bx6KonDOOefQ2NhIVVVVuIojhBCik0yR+sJ2u528vLzAcV5eHna7nZycnFO+zunycvzSb0VRUAD/P8eOldaTitL6lKJgUPzPCyGEOL2IBYhgGT5C+ePd1OLFXt10Rl87EEAUBUPr11WUjp8NxwUVg6JgMLQ+NviPwyE7O4XqM6xfNJP6xa54rhv0jvp1VsQCRF5eHpWVlYHjysrK07YeuosO6K3/aIEznaNAIFAYDApGw7HPRoOC0ahgNMgkMSFE7IpYgJgyZQqvvPIKM2fO5NtvvyUlJaXHAkR30AFV01HRQQ1+jQIYjQomowGT0YDRoGA2+R8LIUS0C1uAuPfee/niiy+oq6vj0ksv5Z577sHn8wGwcOFCJk+ezIYNG5g6dSpWq5XHH388XEWJGB3wqTo+VeX4KKIAJqMBs+nYhwQNIUS0UWIt3XdVbcsZj0FEI4NBwWIy0L9vGo0NLXHbPdUb+nnjtX7xXDfoHfXrrIh1MYn2NE3H5VGpa3JTW+/CZFRItJhIMBsxm+IzWAghopsEiCjlU3WanV6anV5MBoXEBBPWBGPctiyEENFHAkQM8GnHgoXFZMCWaCbBYox0sYQQcU4CRIzx+DQ8zW5MBoWkRBPWBJMs/hNChIUEiBjl03QaW/ytiqREM0mJprAt3hNC9E4SIGKcpkOz04vD5cWWaMaWKC0KIUT3kBHPOKG3BoqaRhde30lW7gkhRCdIgIgzPlWnptFNY4snaL4rIYQIlQSIONXi8lHX5EbVtEgXRQgRoyRAxDGPT6OmwYXHK11OQojOkwAR5zQd6prctLh8kS6KECLGSIDoBXSgscVDU4sn0kURQsQQCRC9iMPlo77ZLYPXQoiQSIDoZdoSAmoSJIQQpyEBohfy+DRqG1wyw0kIcUoSIHopn+ZfL+H1SZAQQgQnAaIX0zSd2iaXBAkhRFASIHo5XYc6CRJCiCAkQIjWtRIufKoECSHEMRIgBOAPErVNbgkSQogACRAiQNN0WSchhAiQACHa8ak6jQ5ZcS2EkAAhgnB6VFpc3kgXQwgRYRIgRFBNLV7JAitELycBQgSlA/UOD5om4xFC9FYSIMRJaZpOo2SAFaLXkgAhTsnlUXG6ZS8JIXojCRDitBpbPJLYT4heSAKEOC1dh4Zm6WoSoreJuQDxyHOb+GbXUVnM1cM8Pk26moToZUyRLkBnHbA3ccDexNe7qpk3aRAZKYmRLlKv0ez0kmgxoihKpIsihOgBMdeCMBn9f5x2HWzgf5eX8Ml3R2R3tB6iajoOl7QihOgtYi5A/GrJRAbmpQDg9WkUf7afZ1dv42iDM8Il6x0cLq8MWAvRS8RcgOjbx8aS2aOYN2kQCWYjAPsrm/jDiu+kNdEDdB2aWyQNhxC9QcwFCACDojBhZC7/b8HZFOWnAeBV/a2J54u3U9/sjnAJ45vTo8oGQ0L0AmENEBs3bmT69OlMnTqVpUuXdni+qamJO++8kzlz5jBz5kxef/31Tt0/PTmBH1w9gmsvHRxoTew93MjTK0r4ZrfMdAonhyTzEyLuhS1AqKrKo48+ynPPPUdxcTFr1qxh9+7d7a559dVXGTJkCKtWreLll1/mySefxOPp3Hx7RVEYPyKHn1x3NgP7+scmXB6V19bv5rUPduPyyKBqOLg8qmwuJEScC1uAKCkpobCwkIKCAiwWCzNnzmTdunXtrlEUBYfDga7rOBwO0tLSMJm6NvM2IyWBJTNHcfUFAzAa/DOdvt1dwx9f/46KquYzro/oSGY0CRHfwrYOwm63k5eXFzjOzc2lpKSk3TWLFy/mrrvuYtKkSTgcDn73u99hMJw+ZmVm2k763NzLixg3Ko/nVm2lsqaF2iY3z6wqZd7kIVw5YQCGGJjDf6r6RRMFyMxMwmjs3PuM7OyU8BQoSsRz/eK5bhD/9eussAWIYP3/Jy6w+vjjjxk5ciQvvfQSBw4c4JZbbmH8+PEkJyef8t61tY5TPp9kNnDnnNEUf7afzWVVaJrOGx/sZtueo1x32VCSEqN3fWBmpu209YsmrhY3KUmWkK/Pzk6huropjCWKrHiuXzzXDXpH/TorbF1MeXl5VFZWBo7tdjs5OTntrnnjjTeYNm0aiqJQWFhIfn4+e/fu7ZavbzEbuebSwSy8sigwgF12oJ4/vlFCRVX8/hD0tBa3T6YWCxGnwhYgxowZQ3l5ORUVFXg8HoqLi5kyZUq7a/r27ctnn30GwNGjR9m3bx/5+fndW47BWdw9fwz9spIAqG/2sHTVNjaVVsosp26g60iOJiHiVNj6WkwmEw8//DBLlixBVVXmz59PUVERy5YtA2DhwoX86Ec/4sEHH2T27Nnous59991HZmZmt5clKzWRO+aexdub9vP5NjuqprPqk3IqqpqZN2kwZlNMLgeJGg6Xj6QEk+RoEiLOKHqMvY2uqm3Bfgb9hN/sOsqbG/fibZ2i2S8ricXThkVN0r9YG4Nok2azYE04/fuN3tDPG6/1i+e6Qe+oX2f1urfO5xT14c55o8lMSQDgcE0Lf3pjK3sPN0S4ZLGtRaa8ChF3el2AAOibZePH145hWEE64B9ofb64jE3bKk/zSnEyXlXD61MjXQwhRDfqlQECwJpg4qbpw7l0bD8ANF1n1cflvPXRXslW2kWycE6I+NJrAwSAwaBw1QUD+N6UoYF9Jr7YXsUL75TJzJwucHtUCa5CxJFeHSDanDO0Dz+cM5rUJDMAew418ue3tlLT6IpwyWKLjoxFCBFPJEC0ys9O5q5rjq2XONrg4s9vbqW8sjHCJYstTrdP1pcIESckQBwnzWbhh3NGM2pgBtA2eL2d7/bWRLhksUPTwemWwWoh4oEEiBNYzEYWTR3GpLP7AuBTdf7x/i4+Ljki74xD1CJ7RQgRFyRABGFQFK6+sJDZFw9EUfx9629v2k/xZ/sl71AIfJqO2yutCCFinQSIU5g4Oo/FU4dhbk1n/enWSl5bv1s2ygmBDFYLEfskQJzGqIGZLJk9kqTWNBIle2p4ae0O3B55h3wqbq/sOCdErJMAEYKCnBTumDua9GT/vge7DzXw7JptNDulr/1UZOGcELFNAkSIstOt3DH3LHIzrAAcPupg6apS6pvdES5Z9HK5fWiajNkIEaskQHRC2zTYwjx/VsSjDS6eWVnK0XpnhEsWnXT8U4WFELFJAkQnWRNM3DJjRCDRX4PDwzOrSjl8NPZSdPcESVkiROySANEFFpOR708bxpjBWYC/r/25NdtkK9MgVE2XAX0hYpQEiC4yGQ1cP2Uo54/w77Pt8qj8tXg7ew9Lao4TSTeTELFJAsQZMBgU5k0axMVn5QHg8Wq8+E4ZOyvqI1yy6OL2SpZXIWKRBIgzpCgKMyYWctm5/QH/xjkvv7uDsgN1ES5ZdJH8TELEHgkQ3UBRFKadX8C08wsAf7/7q+/tZHt5bYRLFj1aJMurEDFHAkQ3uuzc/lx9wQCgNUj8axel+yRIAGiSn0mImCMBoptNGtuPmRMLAf82psve38VWSRcOSH4mIWKNBIgwuHhMX2ZfNBDwB4l/rNstLQnA49MkP5MQMUQCRJhMPCuPORcPBI61JLbJmIS0IoSIIRIgwujC0XntWhLL3t/V6weuZTMhIWKHBIgwm3hWHrMu8o9JqJrO39/f1avXSagyWC1EzJAA0QMuOqtvYOBa1XReeW8Huw81RLhUkeOSldVCxAQJED3k4jF9mT7Bv07Cp+q8/O4O9h3pnWk5XB5Vtm4VIgZIgOhBk8/pzxXj8gHw+jReXFvWKxP86YBLVlYLEfUkQPSwKef1Z/I5/QB/7qa/vV3GkZrelypc0oALEf0kQPSwtrQcbQn+XB6V54u3U9XLNh3yqrImQohoJwEiAtoS/I1vTRXucPl4vng7tY2uCJesZ7lknwghopoEiAhRFIV5lwzi7CH+TYcaHR6eL95OQy/a41pmMwkR3SRARJDBoLDg8iGMLMwAoLbJze//+XWvWW3s03S8PulmEiJahRQgbrvtNj744INOp2veuHEj06dPZ+rUqSxdujToNZ9//jlz585l5syZfP/73+/U/eOB0WDghiuKGNwvFYDD1Q5eeGd7r9mm0+XpHcFQiFgUUoC4/vrrefHFF7nyyitZunQpdXWn3wxHVVUeffRRnnvuOYqLi1mzZg27d+9ud01jYyOPPPIIf/7znykuLub3v/9912oR48wmAzdOG05BTjIAB6sdvPzejl7x7lrGIYSIXiEFiGnTpvHCCy/w7LPPUlVVxaxZs/j3f/93tm7detLXlJSUUFhYSEFBARaLhZkzZ7Ju3bp216xevZqpU6fSr59/2mdWVtYZVCW2JViM3HzVCPpl2wDYe7iR19bvRtPie0GZqul4fRIkhIhGpq68yGw2k5CQwP3338+kSZN44IEHOlxjt9vJy8sLHOfm5lJSUtLumvLycnw+HzfeeCMOh4ObbrqJefPmnfbrZ2baulLsqJcJ/L/rz+X/e+VLjtY7KS2v5Z3NFXz/qhEoihLp4nWbE79/NquZtOSECJWm+2Vnp0S6CGETz3WD+K9fZ4UUIN577z1eeeUVampqWLRoEcXFxdhsNnw+H9OmTQsaIIKNV5z4R05VVUpLS3nhhRdwuVzccMMNjB07lkGDBp2yPLW18buwLDPTxs1XDeeZlaU0O7188u1hjMBVrTvVxbrMTFuH71+9QcGTbo1QibpXdnYK1dXxuTo+nusGvaN+nRVSgFixYgW33347kyZNav9ik4mHHnoo6Gvy8vKorKwMHNvtdnJycjpck5GRQVJSEklJSYwfP56ysrLTBoh4l5WayC0zRvDs6m24PCobvz2MzWpi0tn9Il20sNA0HY9XxWI2RrooQojjhDQG8cwzz3QIDm2mTJkS9PyYMWMoLy+noqICj8dDcXFxh2uvuOIKtmzZgs/nw+l0UlJSwpAhQzpZhfjUN8vGTVcNx2T0t7re2XSAr3ZWR7hU4SOD1UJEn5ACxKJFi2hoOJaeur6+nsWLF5/yNSaTiYcffpglS5YwY8YMrr76aoqKili2bBnLli0DYMiQIUyaNIk5c+awYMECrrvuOoYNG3YG1YkvA/NSWXjlMAytPXNvbNjDjgOnn0EWi2SPCCGij6KHsLhh7ty5rFy58rTnekJVbQv2OO4nDNZH/+WOKl7fsBcAs9HAbbNGMiA3NgfTgtWvTZ+0REzG2F67Gc/92PFcN+gd9euskH4bNU2jpaUlcOxwOFBVecfXU8YNz+GqCf5Baq+q8eLaHVTVxV9yP2lFCBFdQgoQs2bN4tZbb2XlypWsXLmS2267jTlz5oS7bOI4k8b25ZIxfQF/quy/vR1/eZt6y+pxIWJFSLOY7rjjDnJycli/fj26rnPDDTeEtF5BdB9FUbjqwgE0O718s/soDQ4Pf3unjDvmjMaa0KXlLFHH69PQdB1DHK35ECKWhfyX5ZprruGaa64JZ1nEaRgUhWsnD8bh8rLrYANVdU5eencHt84YidkU23334N9pzu1R4ybgCRHrQvpNrKmp4eWXX6aiogKf71hytd6aOymSTEYDi64cxnNrtnHoqIP9lU38c/0uFl05DIMh9t95e7wSIISIFiH9Jt5zzz0MGTKEiRMnYjTKYqZIS7AYufnqEfxl5VZqG91sK69j9aflzLl4YMyn5JCBaiGiR0gBorGxkV//+tfhLovohGSrmVtmjOQvb23F4fLx+TY7aTYLl53bP9JFOyOajqyqFiJKhNRxXVRUhN1uD3dZRCdlpSZy89UjsLSOP7y3uYIvd1RFuFRnTloRQkSHkFsQc+bM4dxzzyUh4VjWTRmDiLz87GQWTR3GS2t3oOk6b27cS7LVzPABGZEuWpe5vSqxuQxQiPgSUoCYNWsWs2bNCndZRBcNK0jn2smDWfHhHjQdlr2/iyWzR5GfnRzponWJT9XxqVrMr6oWItaFFCBkemv0O29YNo0OD+9trsDj86+2vnPuaLJSEyNdtC5xun2kJFkiXQwherWQ3qKVl5ezcOHCQDbW0tJS/vCHP4S1YKLzJp/TjwtH5QLgcHp54e0ymp3eCJeqa5yyqlqIiAspQPzqV7/irrvuIiXF3zM8cuRI1q5dG9aCic5TFIVZFw1k1ED/+ENNo4uX1pbhicFBX03TZbBaiAgLKUA0NTVx6aWXBubYGwwGzGZzWAsmusZgULh+ShGFrdleD1Y7WLZuF2oM7m3tcvtOf5EQImxCChBGoxGv1xsIEHa7HYNBBhCjldlk4Mbpw+iT5h9/2HGgnlUf7wu6DWw0c3lVtBgrsxDxJOQNg+6++27q6ur4wx/+wKJFi7j11lvDXTZxBpISzdwyYwQpVn9Lb3NZFeu/OhThUnWOrkuGVyEiKaRZTPPmzSM/P58PPvgAp9PJk08+yfjx48NdNnGGMlL8C+mWri7F49VY9+VB0mwWxo/IOf2Lo4TT7ZPcTEJESMi/eePHj5egEIP69bGxeOowXnzHv5DurY/2kpIUOwvpPD4NVdMwSpemED0upAAxf/78oEngVqxY0e0FEt2vKD+d+ZMHszxGF9I53SrJVgkQQvS0kALE/fffH3jsdrspLi4mJyd2uikEnDssm4YYXUjX4vJiSzTFfKZaIWJNSAFiwoQJ7Y4vueQSGaSOQZPP6UeDw8Pn2+yBhXR3zB1NsjW6pyxrur8VkZQoYxFC9KQutdubm5upqKjo7rKIMFMUhdkxupCuxR2bK8KFiGWdHoPQNI2DBw9yyy23hLVgIjzaFtL9tXgbB+zNgYV03582HGMU70jnU/0rqxNknwghekynxyCMRiP5+fnk5uaGrVAivMwmAzdNH84zq0qprnex40A9Kz/ayzWXDo7qfv4Wl08ChBA9qEtjECL2JSWa+cHVI/nLyq00tXjZsqOaVJuFK8cXRLpoJ+X2qpIGXIgeFFKAuPDCC4O+s9R1HUVR+Oyzz7q9YCL8MlIS+MHVI1i6ahtur8r6rw6RkmThglHR2zpscflItUkacCF6QkgBYuHChdTX13P99dej6zqvv/46ubm5zJgxI9zlE2HWN8vG96cN44V3ylA1nVWf7CMlycyogZmRLlpQTo+PlCRzVHeFCREvQmqrb968mf/8z/9kxIgRjBw5koceeogNGzbQv39/+vfvH+4yijAb0j+N6y4bAvjzH/1j3S72VzZFuFTB6Tq4JD+TED0ipABRVVVFbW1t4Li2tpbq6uqwFUr0vLFD+zBzYiHgnzH04toy7LUtES5VcE5JAy5Ejwipi+nmm29m7ty5XH755QBs2LCBO+64I6wFEz3v4jF9aXR4+KjkCC6Pygvv+BfSpScnRLpo7Xh8mgxWC9EDQgoQixcvZty4cWzevBld11m8eDHDhw8Pd9lEBEy/YADNTi9f7zpKg8PDC++U8cPZo6NuFbPLI/mZhAi3kH/r8/PzUVWV0aNHh7M8IsIMisK1kwfT7PSy62ADVXVOXnq3jFtnjsRiip41CE63L+pThAgR60J6C7ZhwwZmzpzJPffcA8B3333HnXfeGdaCicgxGgwsmjqM/GwbAAfszSx7fxeqpkW4ZMeosme1EGEXUoB4+umnWbFiBampqQCMGTOGAwcOhLVgIrISzEZuvnpEu21L39y4N6q2LZU9q4UIr5A7cbOzs9sdWyyyWCne2RLN3DJjZGBh2lc7j/LO5weiJki4PLJntRDhFFKAsNlsHD16NLA46fPPPyclJeW0r9u4cSPTp09n6tSpLF269KTXlZSUMHLkSNauXRtisUVPaVttbU3wjz98XHKEjd8ejnCp/HTA5ZZuJiHCJaQA8fOf/5zbb7+dgwcPcuONN3Lfffe1S+AXjKqqPProozz33HMUFxezZs0adu/eHfS63/72t1xyySVdq4EIu7zMJG6aPgJz67TSd7+oYHNZVYRL5SdrIoQIn5BmMY0dO5aXXnqJr776CoBzzz03MB5xMiUlJRQWFlJQ4E/+NnPmTNatW8fQoUPbXffyyy8zffp0vvvuu66UX/SQwrwUFk0t4uV3dwb2trZajJw1OCui5fKqGl6fhtkkU16F6G6nDRCqqvK9732P119/ncmTJ4d8Y7vdTl5eXuA4NzeXkpKSDte8//77vPjii50KEJmZtpCvjUXRWr+JmTZMFhPPrypF1+G1D3bTJ8vGqEGdCxLdXb+kRDPpKdGzmC87+/Tdr7EqnusG8V+/zjptgDAajWRkZOB2u0lICP2XMNhA5okJ1h577DHuu+8+jMbOza+vrXV06vpYkplpi+r6DclLYdbFA1n9STk+VefPr5dw28yRDMgN7RcrHPWrV8DjtEZFAr/s7BSqq6Mzj9WZiue6Qe+oX2eF1MU0cOBAFi9ezPTp00lKSgqcX7x48Ulfk5eXR2VlZeDYbreTk5PT7pqtW7dy7733AlBXV8eGDRswmUxceeWVnaqE6FkTR+fhdPt4f8tBvD6NF94p4/bZo+ibFZmWj9aawM+aEF2rvYWIdSH9RjkcDoqKiti7d2/INx4zZgzl5eVUVFSQm5tLcXEx//M//9PumvXr1wceP/DAA1x22WUSHGLE5ef2x+VW+fg7f96mv71dxg9nj6JPujUi5XG6fRIghOhmp/yN+s1vfsMDDzzAE088wSeffMLFF18c+o1NJh5++GGWLFmCqqrMnz+foqIili1bBvj3mBCxS1EUrr5wAE6Pjy93VNPs9PLX4u38cM5oMiIwHiAJ/ITofop+ilVP11xzDW+++WaHx5FUVduCPY77CaN9DOJEmqbzz/W7+G6vPx18Vmoit88ZRWpS8IWU4ayfLdFEykm+bk+J537seK4b9I76ddYp324dHzuiZfWsiC4Gg8KCy4cyfEA6ADWNLp4v3o7D5e3xsrS4fWia/JwK0V1OGSA8Hg979uxh9+7d7R63fQgBYDIaWHTlMAb386+Nqapz8rfi7T2+iE3X/UFCCNE9TtnFNGXKlJO/UFFYt25dWAp1KtLFFL3cXpW/vb2dA/ZmAApykrl1xkgSLMemMYe7fooC2elWDBGa8hrP3RTxXDfoHfXrrFMOUh8/y0iI00kwG/nB1SP465rtHDrqoKKqmRfXlvGDq0dgMffMXhK6Di0u2StCiO4gUz5Et0q0mLhlxgjyMv3rZcorm3jp3R14fD2XVK/F5ZUsr0J0A5k4LrpdUqKZW2eO5NnV26iud7L3cCOvvLuTG6ef2Ta1uw7Ws6WsiromNxkpCYwfkUNRfnqH6zTdvy7CliitiFi0dV8NH5ccobreSXa6lUvO7stZnUznIrqHtCBEWCRbzdw2a2Rgw6Hdhxp45b0deLvYkth1sJ53v6igptGNpkNNo5t3v6hg18H6oNc7XD6ZeReDtu6r4fUNe7HXOdF0sNc5eX3DXrbuq4l00XolCRAibFKTLCyZNYqs1iCx62ADf3njO7y+zm9duuUk6cVPdl7TdFwe2Ssi1nxccqRT50V4SYAQYZVq8weJzFT/6urSvTWtLYnOBYm6JnenzoPsFRGLquudJznv6uGSCJAAIXpA2glBYtfBBl7u5MD1ydJ3nCqth8endam1IiIn+yS5vLLTE3u4JAIkQIgekp6cwO2zRpGT4f8DsPtQAy+t3YHHG1qQGD8ip1Pn28jCudhyydl9O3VehJcECNFj0pITuHfRuMDA9d7DjbzwThnuEMYKivLTmT6hgKzUBAwKZKUmMH1CQdBZTMdzeXwy5TWGnDUoi/mTB5Ob4V/smJthZf7kwTKLKUJOuZI6GslK6tiWmWmj/GAdf12zLdCvXJCTzA+uHhG2dN2pSWaSemjKazyvxo3nukHvqF9nSQtC9LjUJAu3zx4dWExXUdXMc2u20ewMT4K/Fpd0MwnRFRIgREQkW80smTWK/tn+XeiO1LTw7OptNDg83f61fJoeUjeWEKI9CRAiYpISTa37WScD/imOS1eVUtPY/VMaG1s8snBOiE6SACEiyp+7aSRD+6cB/nUNS1eWUlnb0q1fR9V0msLUhSVEvJIAISIuwWzkpquGM2pgBgBNTi/Pri7lgL17BwydLp+sixCiEyRAiKhgMhpYeOUwzhvWBwCnW+Wva7az40Bdt30NHWgMwxiHEPFKAoSIGkaDwrWTh3DxmDwAvKrGy+/u4Oud1d32NbyqFpHtUIWIRRIgRFQxKAozLixk+oQCwJ+6e/mHe9j4zeFuG2RubvHiU6WrSYjTkQAhoo6iKEw+pz/zJw/G0Lpz6NovDrD6k3I07cyDhHQ1CREaCRAiao0bnsP3pw3HbPL/mG7aZufVf+3slt3pPD6NFulqEuKUJECIqDaiMIMls0ZhS/Sn4di+v46/rtlOU8uZtwCanNLVJMSpSIAQUa8gJ5k7550V2HiooqqZv6wsxX6GayV0XbqahDgVCRAiJmSlJnLn3NEU5voTjtU1ufnLytKTbjkaKo9P65bWiBDxSAKEiBm2RP8+1+cM9a+VcHtVXnynjM9KK89ohpPD5ZPd54QIQgKEiCkmo4EFlw/hinH5gH8a7OpPyln58b4zGk9odHhC3rxIiN5CAoSIOYqicMW4fG64Yigmo38e7Bfbq3j+7e1dThmuA/XNbhm0FuI4EiBEzDp7SB/LMdNAAAAeOUlEQVTumDOaVJsFgPIjTfzfm99xqLq5S/fTdH+QkB3ohPCTACFiWv/sZH58zVkU5PhThtc3e3hmVSlfdTE9h0/VaWiWQWshQAKEiAMpSRZunz2K80fkAP4/8is+3NPlcQm3Vw3b7nZCxBIJECIumIwGrrl0MNdMGoSxNT/H59vsLF1VSl2Tu9P3a3Z6ZRc60etJgBBx5fyRufxwzijSWsclDlY7+OMbJZR1IW14vcMtQUL0amENEBs3bmT69OlMnTqVpUuXdnh+1apVzJ49m9mzZ3PDDTdQVlYWzuKIXqIgJ4W754+hKN+/S53TrfLS2h28s2l/p7qcdB3qmt2Ss0n0WmELEKqq8uijj/Lcc89RXFzMmjVr2L17d7tr8vPzeeWVV1i9ejV33XUXv/zlL8NVHNHL2BLN3HzVCK4Yl09rQlg+KjnC0lWl1HZyz+vGFq+k5BC9UtgCRElJCYWFhRQUFGCxWJg5cybr1q1rd815551HWpr/Xd4555xDZWVluIojeiGDwb9e4paZI0mxmgF/l9MfXv+Ob3Yf7dS9Wtw+6ppkCqzoXUzhurHdbicvLy9wnJubS0lJyUmvX7FiBZdeemlI987MtJ1x+aKZ1K97Tci0MWJwH14s3kbp3hrcXpXX1u9mX2UTC6cNJynRHPK9FKOBzLREjMaTv7fKzk7pjmJHpXiuG8R//TorbAEiWG4cRVGCXAmbNm1ixYoV/P3vfw/p3rW1jjMqWzTLzLRJ/cJk4RVD+TQnmXe/OICq6WzeZmfn/joWXD6Ewf3SQr5PdU0zGckJgX0qjpednUJ1dVN3FjtqxHPdoHfUr7PC1sWUl5fXrsvIbreTk5PT4bqysjIeeugh/u///o+MjIxwFUcIDIrCJWf35UfXnEVOhhWABoeHv67ZzppPy0PeiEjTdGobXbK3tYh7YQsQY8aMoby8nIqKCjweD8XFxUyZMqXdNYcPH+aee+7hv//7vxk0aFC4iiJEO32zbPz4mjFcdJa/C1QHPt1ayR9WfMf+ytDeQepAU4uX2kaX5G8ScStsXUwmk4mHH36YJUuWoKoq8+fPp6ioiGXLlgGwcOFC/vSnP1FfX88jjzwCgNFo5I033ghXkYQIMJsMzLpoICMKM3hjwx7qmz3UNLpYuqqUiWflMfX8AhLMxtPex+PTqGlwYbOaA7veCREvFP1MEulHQFVtC/Y47ieUMYieV7qvhnc2HaD2uBXXyVYTfdIS8ak6GSkJjB+RQ1F++invYzQoDBqQSXOjs9Nl2Lqvho9LjlBd7yQ73colZ/flrEFZnb5POKz5rJwPvz6Ew+XDlmjisnP7M2viwEgXq9vJGERH8pZH9Gq7DtbzwdeHSUwwkalAQ7MHVdNpdvpodjZjTTDiVXXe/aIC4JRBQm0dm2hudJGSZAk6iB3M1n01vL5hb+DYXucMHEc6SKz5rJw1n5QD/kkmzS3ewHE8BgnRnqTaEL3alrKqwONEi4nsDGsglxP4V2FX1bXgcHrZvN0e0j09Po2aRhcNzW5U7fTjEx+XHOnU+Z704deHOnVexBcJEKJXOzGRn0FRMBjAaPQnAAR/yo0Gh4cdFQ1UVIXeBeH0qBytd9HY4kHTTt6TW10fvEuqur5zK77D4WRZbR2S7bZXkAAherWMlIQO54wGA2ajkez0RFJtFtqW73h9Gn9+q5QVH+6hqSW01Bs60OLyUd3gpOkkgSI73Rr0tdnpiSHXI1ySrcEXEdpOcl7EFwkQolcbP6Lj2pykRBO2RBOKopBsNZOTbiXRcmxG01c7q3nqn9+y4ZtDeH2hTXHVdXC0BorGFk+7rqdLzu4b9DUnO9+TLju3f6fOi/gig9SiV2sbdN5SVkVdk7t1xlJBu3NZGVZmTCzEYFBY80k59jonbq/Ku19U8Pk2O9MmDODsIVkYTpIp4Hi67m9ROF0+EhNMJCUYAwPR/llMLrLTE6NmFlPbQPSHXx+ixeXDZjXH7Swm0ZFMc40y0TgNtDvFev1UTeeLbXbe//IgTrcvcL5/to3p5w9gwtn9Ol0/k0EhMcGENcGI0RC9jfreMA003uvXWRIgokys/wE9nXipn9Pt48OvD/Hp1krU48YVhhdmMOXc/oE9sjtDASxmI0mJppAW6fW03vAHNN7r11nSxSREF1gTTFx9YSEXjMrlX1sq+HZ3DQA79texY38dIwZkcMW4/vTPDj1Q6Pj3w3Z7VYwGhUSLEWuCKTCbSoieJgFCiDOQmZrI9VOKuHRsP97bXMGOA/UAlB2oo+xAHSMLM7j8vP7kdyJQgL8ry+Hy4XD5MBkVEi3+VkWoi++E6A4SIIToBn2zbNx81QhqW7y8sX4Xew83ArB9fx3b99dRlJ/G5HP6M6hvyknT3p+MT9VpdnppdnoxGhQSzEYsZgMWszGkgXEhukoChBDdaGh+OktmjWLfkUbWfXkwECh2HWxg18EGBuQmM+nsfowszMBg6Pwfd1XTaXH7aGld32c2GkiwGEm0GKUrSnQ7CRBChMGgvqmBQLHhm8PsrPB3PR2wN/Pqv3aSlZrIxWPyOG9YNpYzGJD2qhpep0az04vJoGCxGEkw+VsYnW2pCHEiCRBChNGgvqkM6pvK4aMONnxziK37atF1qGl0seqTct7bXMH4ETlcOCqXzNQzWznt03R8Lh8t+FDwpzQ3GQ3tPgvRGRIghOgB/frYWHjlMGobXXyytZIvy6rw+DRcHpWPS47wSckRhg/IYMKoHIblp3ep++l4Ov6kgR6fBq3dUYoCFpN/oLvtQ8YwxKlIgBCiB2WmJjL7ooFcOS6fLWVVfFZaSX2zB51jM5/Sky2MH5HDuGHZpCV3zBXVVbp+bBptG6NBCbQwTEal9bO0NISfBAghIsCaYGLS2H5cPKYvZQfq2FRqZ/ehBgDqmz28v+Ug67YcZGh+GuOG5zCyMCMsXUSqpqN6VOBY0FAU/+C3xWyUoNHLSYAQIoIMBoVRAzMZNTCTmgYXX2y38+XOalpcPnSOzX5KtBg5a3AW5xb1oTAvJaxdQ7p+XPdUK0UB3WSkvsmNwaBgNCgYFP9no9H/WQbF448ECCGiRFZaIldfWMjU8wvYvr+OL3dUs+tgPboOLo/KlrIqtpRVkWazMGZIFmcPyaJ/H1uP/GHWdX+68+O7p05kUPyp0g0GBYMCKAqK4u/GMhkMGFtbIyJ2SIAQIsqYjAbGDM5izOAsGhwevtlVzde7jlJV599YqMHh4eOSI3xccoTMlARGD8rkrMGZ9M9Ojuigs6aDpmrH91YFpSj+jZmU1oBiNCjHWiXHtUzOdKBenDkJEEJEsTSbhcnn9OfSsf04UtPCN7uO8t3eGhoc/g2LapvcfFRyhI9KjpBqszCyMIORhRkM7pcate/WdR3U1hyhPvXk0USBdsHDaDQEdvxTUAIXGRR/N5fMyOp+EiCEiAGKotCvj41+fWxcdeEAKuzNlOypYeu+Gppa/Nt/Njo8fL7Nzufb7FhMBobmpzG8IJ1hBendOhuqp+j413YQyJZ76qZJW8sk0BJpbY0YFP//3/FjJ93ROtF1Pe7HXSRACBFjDIpCYV4KhXkpzLyokINVzZTuq6V0Xy21rXtse3wa28rr2FZeB0BuhpWi/HSG5qcxMC/ljFZvR6u2lol6iv2/2ygQCBhKa3eXKcFMg8PTrgtMwR+fdF3331/TUVUNtfW47V60BSGOBSOl7VyHz/7n2l9z8kCjaTo6+mmv6/j/oaMD6ND6qNNibj8IVdOx2xvRNB3thKL7v6H+72rrGBmt377AvsInXgOg6Tqa5v/BUjUdn9r6Q6D5/1v1434Ygjnpt0w57lNrAZTjrw88rwTKl5WV3GG/BEU5/jVKh9f7fwAAXW/3w9z2AxK06PqxH5me/AmIl/0gTiaS9dN1nap6J2WtCQIrqpqDfm+NBoWC3GQG901lcL9UCnJSQppCK9+78Ar8nrf+juutv8/truHY3zKODxbtgkFwY4bndrpMMdeCaFvY0633VBSMBoiGbdj7pFvRvb7TX9jNNF1vF1jaBxr/OxBdb7uOE671/1RqnD6YivBRFIXcjCRyM5KYfE5/Wlw+dh+qZ2dFPbsqGmhy+ruiVE2n/EgT5UeaWP/VIUxGhfzsZArzUhiYl8KA3BSsCTH3pyHm6ce90TvpNcc/3QO/aPJTIAB/k5pONF9Ppy1QHN/K0/XjAqB+LCipWseWT9v1bY5vrp/4zknT/c1wVdfRta42puNPUqKJs4f04ewhfdB1HXudkz2HGth9sIHyyqbAlFWfqlNe2UR5ZRMbWl+bnW5lQG4yA3KSyc9JJicjKXIVEREjAUKERVu/ruGEDjiL2Rj27TTbugx1XUfTWo9bz2nHBSPgWCuIYwEq0Kd8rDLHugbbuijx93drIfR3RwNFUcjLTCIvM4mLx/RF1XQOH3Ww93AD5Uea2G9vwuU5NghcXe+kut7JlzuqAf/K6gF9U8hJt9K/dbA8O92KUaaixjUJECLuGBQFg7Fn/nC1tYBUVcenaSQlmmgyGvCq2ulfHEFGg0JBTjIFOclMPscfRO21LeyvbOKAvZkDVU3UNroD13tVjT0HG9hzsCFwzmRUyMlIom9mEnlZSeRmJpGbYSXZao772T29hQQIIc6Aoiit+YogASMZKYn4XF40TcftVfF4VVxeNerHZQyKQt8sG32zbFw42n+u2enlUHUzFVXNHKp2cLjGEZhSC/6uqcNHHRw+2n5gNynRRE6GlZx0K9mBj0TSkhNkrUKMkQAhRBgYDArWBBPWBBOpuo7Lo+LyqHh9aoeZKdEq2Wpm+IAMhg/IACAjI4nyijoOH3Vw6KiDytoWjtS0UNfkbve6FpcvMAh+PJNRoU+alazURLLSEshKTSQzNZHM1ARSbQnSXRWFJEAIEWaKcixYtGmbVu3y+HB51JDm7keaoiikJSeQlpzAyIGZgfMujw97rZPK2hbsdS3Ya/3jF81Ob7vX+1SdytoWKmtbOtzboCikp1hIT04gIyUh8Dkt2X8uzWaJ2pXh8UwChBAR0LbS12yykJIEHq+Kx6fhU/0fqho7s7ESLabAwr3jtbh8gcHuow1OqutdHG1wUdvo6hAQNV2nttHdbtzjRLZEE2k2C6k2CylJ/s+pSWZSkiwkt322mjAaJJB0FwkQQkQBi9nYbnWzrut4W1Nue30aXlWLmRlTbZISgwcOTdNpbPFwtMFFXZOb2kZ/0Khv9lDX5O7Q8mjjcPlwuHwcrunYAjmeNcFEstVMstWMzWrCluh/nJRowpZoIinRTFKCiaRE/4fZKPt3n4wECCGikKIoHYKGpumBYOH1aTE1nnE8g0EhPdnfjRSMx6dS3+yhodlNQ7OH+mY3DQ4PjQ4PDQ4PDc2eU6Ydd7p9ON3+1ksoTEZ/F2BykgWLyYDVYsKaYCTRYiIxwUiipfWxxRj4SDCbSDAbSLAYsZiMcZt5VgKEEDHCYFBIsBhJ4FjQUDUNn0/He1zXlKppMRk42lhMRnLS/bOgTsbjVWlq8dLg8NDs9NDU4qWpxUuzs/2Hw+k97fiOT9UDr+8qs8lAgtmIxdz22YjFZOjw2WwydNgXvO3DZGx93PrZ1PrYZDRELFttWAPExo0beeyxx9A0jQULFvDDH/6w3fO6rvPYY4+xYcMGEhMT+c1vfsPo0aPDWSQh4orRYMBo8U+x3bqvho9LjlBd76RPWiIXjenL6IGZ/O3t7Wwpq8Kr6piNCucOy+a8YX3YVGrnaIOLzNQExg3PoSg/nV0H69lSVkVdk5uMlATGj8jhYHUzX2yz0+JRSbIYmTAql8vPzT9pmYLdA+hwrig/PeTXF+Wn88HXB/3lcPtISjCdshxt96htdPkH1QszyE63svtQA2X762hq8WIxG8hMScRsMuD0+PD6dJpaPDjdPtwetVNjQN7WrkBCa7R0idGgtNs7vG0DJlNrKnSj8djGTEaDgtHgv7YtVXpXcjGFLVmfqqpMnz6dv/3tb+Tm5nLdddfx1FNPMXTo0MA1GzZs4OWXX+bZZ5/l22+/5bHHHmP58uWnvXd1ddNpr4lV2dkpUr8YFqn6bd1Xw+sb9nY4b0s0sb01o2sbHf/4QPYJ79DPG9YnsHK6LfFbg8ONw+ltzUCqBFagXzG+gCnn9g+sQG9LErfrYD3vflHR7r4ujw8FSLC0fz86fUJBhyAR7PUAeZlWvttT0+H8Zef17xAkTnaP0YMyKN1X1+F8WzmOT9a3s6KOtZ9XBNLBaDroms5ZgzNJT07A5VFxe1s/Wh+37bjn9qiBLVs9reejwer/mdvp14StBVFSUkJhYSEFBQUAzJw5k3Xr1rULEOvWrWPevHkoisI555xDY2MjVVVV5OTkhKtYQsSlj0uOBD1ftr/jH0QAp6tjQsgN3xwmJckCHEsr4nD6/OlHTthz+ovtdr53+dB2r9d1nTc37sF0wip2p9v/tZIS26fDLNl9lHHDcmhLRq3r8O3uo8f15x977xosOABs3l7FjAsK273b/3pnddC0Ypu3V2GzdkzJ+fXOakYPzPR3DbUmAv1611H/O/ETUsU0ODzMuXjQcXUOWqx2NF3H1xos2iYdeHzHHnf4UP1Bxafq+NRjkxTU4459qoavNfV4W/Zpn6a362b0qaGlPj+VsAUIu91OXl5e4Dg3N5eSkpJTXpOXl4fdbj9tgMjOTjnl87FO6hfbIlG/umZP0CzHmh4kB2Pru/0Tr3e4fGSmJp7wev8fmLbg0Pa5xeULWs96h7fDXhOaBiiQYGl/vsnlo7Ago/05p49ES8dcXT5Nx2LqeN7lURk6qE/7erjVoNlojza46BNkXKPFozJ8SDZA4PkW97ag93Aed21vELYAEazn6sSpZKFcI4Q4vad+OjnSRQDOvBzdUY9ouUc8CNuKkry8PCorKwPHwVoGJ15TWVkp3UtCCBElwhYgxowZQ3l5ORUVFXg8HoqLi5kyZUq7a6ZMmcJbb72Frut88803pKSkSIAQQogoEbYuJpPJxMMPP8ySJUtQVZX58+dTVFTEsmXLAFi4cCGTJ09mw4YNTJ06FavVyuOPPx6u4gghhOikmNuTWgghRM+QrFZCCCGCkgAhhBAiqKjOxeR2u1m8eDEejyewMvsnP/kJ9fX1/OxnP+PQoUP079+f//3f/yUtLS3Sxe2StvGZ3Nxcnnnmmbiq25QpU7DZbBgMBoxGI2+88UZc1a+xsZGHHnqInTt3oigKjz/+OIMGDYqL+u3du5ef/exngeOKigp+8pOfMG/evLio3wsvvMDy5ctRFIVhw4bxxBNP4HQ646JuAC+++CLLly9H13UWLFjAD37wgy797kV1C8JisfDiiy+yatUq3nrrLT766CO++eYbli5dysSJE3nvvfeYOHEiS5cujXRRu+yll15iyJAhgeN4qhv4f1BXrlzJG2+8AcRX/R577DEmTZrE2rVrWblyJUOGDImb+g0ePJiVK1cGvndWq5WpU6fGRf3sdjsvvfQSr7/+OmvWrEFVVYqLi+OibgA7d+5k+fLlLF++nJUrV/Lhhx9SXl7epfpFdYBQFAWbzQaAz+fD5/OhKEogRQfAvHnzeP/99yNZzC6rrKzkww8/5Lrrrguci5e6nUy81K+5uZnNmzcHvncWi4XU1NS4qd/xPvvsMwoKCujfv3/c1E9VVVwuFz6fD5fLRU5OTtzUbc+ePYwdOxar1YrJZOL888/nX//6V5fqF9UBAvzfyLlz53LRRRdx0UUXMXbsWGpqagLrJXJycqitrY1wKbvm8ccf59/+7d8wHLcDVrzUrc1tt93Gtddeyz//+U8gfupXUVFBZmYmDz74IPPmzeMXv/gFLS0tcVO/4xUXFzNr1iwgPr5/ubm53HrrrVx++eVccsklJCcnc8kll8RF3QCGDRvGli1bqKurw+l0snHjRiorK7tUv6gPEEajkZUrV7JhwwZKSkrYuXNnpIvULT744AMyMzM566yzIl2UsFm2bBlvvvkmzz77LK+++iqbN2+OdJG6jc/nY9u2bSxcuJC33noLq9Uas10Sp+LxeFi/fj1XXXVVpIvSbRoaGli3bh3r1q3jo48+wul0snLlykgXq9sMGTKEJUuWcOutt7JkyRKGDx+O0dgxj1Uooj5AtElNTeWCCy7go48+Iisri6qqKgCqqqrIzMw8zaujz1dffcX69euZMmUK9957L5s2beK+++6Li7q1yc3155/Pyspi6tSplJSUxE398vLyyMvLY+zYsQBcddVVbNu2LW7q12bjxo2MHj2aPn38CfHioX6ffvop+fn5ZGZmYjabmTZtGl9//XVc1K3NggULePPNN3n11VdJT0+nsLCwS/WL6gBRW1tLY2MjAC6Xi08//ZTBgwcHUnQAvPXWW1xxxRWRLGaX/PznP2fjxo2sX7+ep556igsvvJDf/va3cVE3gJaWFpqbmwOPP/nkE4qKiuKmftnZ2eTl5bF3r38Phs8++4whQ4bETf3aFBcXM3PmzMBxPNSvX79+fPvttzidTnRdj8vvXU2NPz364cOHee+995g1a1aX6hfVK6nLysp44IEHUFUVXde56qqruPvuu6mrq+OnP/0pR44coW/fvvz+978nPT347lSx4PPPP+f555/nmWeeiZu6VVRU8OMf/xjwjyPNmjWLu+66K27qB7B9+3Z+8Ytf4PV6KSgo4IknnkDTtLipn9Pp5LLLLuP9998nJcWf2jtevn9PP/00b7/9NiaTiZEjR/LYY4/hcDjiom4AixYtor6+HpPJxIMPPsjEiRO79L2L6gAhhBAicqK6i0kIIUTkSIAQQggRlAQIIYQQQUmAEEIIEZQECCGEEEFFdTZXIU5lwYIFeDwevF4v5eXlFBUVATBq1CieeOKJCJcuNKWlpVRUVMTVSmURP2Saq4h5Bw8eZP78+Xz++eeRLkoHPp8Pk+nk78OWL1/Op59+yu9+97tuv7cQZ0p+ukRcWrFiBf/4xz9QVZXU1FQeeeQRBg4cyPLly1m7di02m42dO3fSt29f/uM//oMnn3ySiooKxo4dy5NPPomiKNx3331YrVYOHDhAZWUlF1xwAb/85S8xm800NTXx+OOPs2vXLtxuNxdddBH3338/BoOBhQsXMmHCBL7++muSkpJ4+umnA4sE3W43Y8eO5ZFHHqGxsZE//elPOBwO5s6dywUXXMDixYtZtGgRn3zyCQD79+8PHO/fv5+FCxdy/fXXs2nTJq699lrmzp3LU089xZYtW/B4PIwcOZJf/epXWK3WCH8HRFzQhYhxFRUV+oQJEwLHmzZt0u+44w7d7Xbruq7r69at0xcvXqzruq6/9tpr+oQJE/TKykpd13X91ltv1efNm6c3NTXpHo9HnzFjhr5p0yZd13X95z//uT537lzd4XDoHo9Hv+mmm/S///3vuq7r+v3336+vXr1a13VdV1VV/8lPfqKvWLFC13Vdv+GGG/Qf/ehHus/nCzxfX18feHzvvffqr732WqA8P/3pTwNlLy8v1y+66KKgx+Xl5fqwYcP0tWvXBp5/+umn9WeeeSZw/MQTT+i///3vz+w/VIhW0oIQcWf9+vVs27aNBQsWAKDrOg6HI/D8uHHjAokER40ahcvlIjk5GYDhw4dz4MABLrjgAgBmzJhBUlIS4M+h/+GHH7Jw4UI++OADSktLefbZZwF/rrABAwYEvsbs2bMDGTQ1TWPp0qV8/PHHaJpGfX19l3cqS0pKYvr06e3q6nQ6KS4uBvzZV0ePHt2lewtxIgkQIu7ous73vvc97r777qDPJyQkBB4bDIYOxz6f76T3VRQF8P/Rf+aZZ+jXr1/Qa9uCCsDKlSspKSnh73//OzabjT/+8Y8cOXIk6OuMRiOapgWO3W73Se/bVqZf//rXnH/++UHvJ8SZkGmuIu60Za202+2AP1ng1q1bu3Svd955B6fTidfrZfXq1YGWxZQpU1i6dCmqqgL+zMMVFRVB79HU1ERGRgY2m42GhobAu30Am81GU1NT4DgnJweXyxW415o1a05b1+effz4QSJqbm9mzZ0+X6irEiSRAiLhz4YUXcvfdd3PHHXcwZ84cZs+ezYcfftile40bN4677rqLWbNmUVBQENhi9Je//CWapjF37lxmz57N7bffTnV1ddB7XHPNNdTX1zNr1izuvffedu/2L774YpqampgzZw6PP/44FouFBx54gJtvvpkbb7wRs9l8yvLdeeedDBkyhOuuu47Zs2ezePFi9u3b16W6CnEimeYqxEncd999jBs3joULF0a6KEJEhLQghBBCBCUtCCGEEEFJC0IIIURQEiCEEEIEJQFCCCFEUBIghBBCBCUBQgghRFD/P0seHXAZ6XsMAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.set(color_codes=True)\n",
"plt.xlim(30,90)\n",
"plt.ylim(0,1)\n",
"sns.regplot(x='Temperature', y='Frequency', data=data, logistic=True)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**I think I have managed to correctly compute and plot the uncertainty of my prediction.** Although the shaded area seems very similar to [the one obtained by with R](https://app-learninglab.inria.fr/moocrr/gitlab/moocrr-session3/moocrr-reproducibility-study/tree/master/challenger.pdf), I can spot a few differences (e.g., the blue point for temperature 63 is outside)... Could this be a numerical error ? Or a difference in the statistical method ? It is not clear which one is \"right\"."
]
}
],
"metadata": {
"celltoolbar": "Hide code",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}