diff --git a/module2/exo1/toy_document_orgmode_python_en.org b/module2/exo1/toy_document_orgmode_python_en.org index bec678ace6968d5c22333d15498f150b4920fe3d..e9e120d0f7abab4cc74158e3203edcc3708319d0 100644 --- a/module2/exo1/toy_document_orgmode_python_en.org +++ b/module2/exo1/toy_document_orgmode_python_en.org @@ -27,7 +27,7 @@ pi #+RESULTS: * 2. *Buffon's needle -Applying the method of [[https://en.wikipedia.org/wiki/Buffon%27s_needle_problem][Buffon's needle]], we get the *approximation* +Applying the method of [[https://en.wikipedia.org/wiki/Buffon%27s_needle_problem][_Buffon's needle_]], we get the *approximation* #+begin_src python :results output :exports both import numpy as np np.random.seed(seed=42) @@ -42,8 +42,8 @@ theta=np.random.uniform(size=N, low=0, high = pi/2) * 3. Using a surface fraction argument A method that is easier to understand and does not make use of the sin function is based on the fact that if $X \sim U(0,1)$ and $Y \sim -U(0,1)$, then $P[X^2 + Y^2 \leq 1] = \pi/4$ (see [[https://en.wikipedia.org/wiki/Monte_Carlo_method][Monte Carlo method on -Wikipedia]]). THe following code use this approach: +U(0,1)$, then $P[X^2 + Y^2 \leq 1] = \pi/4$ (see [[https://en.wikipedia.org/wiki/Monte_Carlo_method][_"Monte Carlo method on +Wikipedia"_]]). THe following code use this approach: #+begin_src python :results output :exports both import matplotlib.pyplot as plt