diff --git a/module2/exo1/toy_document_orgmode_python_en.org b/module2/exo1/toy_document_orgmode_python_en.org index 058e29b1a91c8b17cc72fc54dbdd27dd01869fde..a7082eafc2e96332152e5982dbaff42eb57515ac 100644 --- a/module2/exo1/toy_document_orgmode_python_en.org +++ b/module2/exo1/toy_document_orgmode_python_en.org @@ -24,8 +24,6 @@ from math import * pi #+end_src -#+RESULTS: - * 2. *Buffon's needle Applying the method of [[https://en.wikipedia.org/wiki/Buffon%27s_needle_problem][_Buffon's needle_]], we get the *approximation* #+begin_src python :results output :exports both @@ -37,7 +35,7 @@ theta=np.random.uniform(size=N, low=0, high = pi/2) 2/(sum((x+np.sin(theta))>1)/N) #+end_src -#+RESULTS: + * 3. Using a surface fraction argument A method that is easier to understand and does not make use of the sin @@ -65,7 +63,7 @@ plt.savefig(matplot_lib_filename) print(matplot_lib_filename) #+end_src -#+RESULTS: + It is then straightforward to obtain a (not really good) approximation of \pi by counting how many time, on average, $X^2$ + $^{}Y^2$ is smaller