From 6631439657bddba30a063c0f840649978eaff8a9 Mon Sep 17 00:00:00 2001 From: 8517fa92e97b3a318e653caefbfde6b5 <8517fa92e97b3a318e653caefbfde6b5@app-learninglab.inria.fr> Date: Tue, 31 Mar 2020 10:26:11 +0000 Subject: [PATCH] 1.2 --- module2/exo1/toy_notebook_fr.ipynb | 63 +++++++++++++++++++++++------- 1 file changed, 49 insertions(+), 14 deletions(-) diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index 9201359..3015eed 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -3,10 +3,12 @@ { "cell_type": "markdown", "metadata": { - "hideCode": true, - "hidePrompt": true + "hideCode": false, + "hidePrompt": false }, "source": [ + "

__toy\\_notebook\\_fr__

\n", + "\n", "

March 28, 2019

\n", "\n", "# propos du calcul de $\\pi$\n", @@ -20,46 +22,79 @@ "cell_type": "code", "execution_count": null, "metadata": { - "hideCode": true, - "hidePrompt": true + "hideCode": false, + "hidePrompt": false }, "outputs": [], "source": [ - "from math import * \n", + "from math import *\n", "print(pi)" ] }, { "cell_type": "markdown", "metadata": { - "hideCode": true, - "hidePrompt": true + "hideCode": false, + "hidePrompt": false }, "source": [ "## En utilisant la méthode des aiguilles de Buffon" ] }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "Mais calculé avec la méthode des ![aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :" + ] + }, { "cell_type": "code", "execution_count": null, "metadata": { - "hideCode": true, - "hidePrompt": true + "hideCode": false, + "hidePrompt": false }, "outputs": [], - "source": [] + "source": [ + "import numpy as np\n", + "np.random.seed(seed=42)\n", + "N = 10000\n", + "x = np.random.uniform(size=N, low=0, high=1)\n", + "theta = np.random.uniform(size=N, low=0, high=pi/2)\n", + "2/(sum((x+np.sin(theta))>1)/N)" + ] }, { "cell_type": "markdown", "metadata": { - "hideCode": true, - "hidePrompt": true + "hideCode": false, + "hideOutput": true, + "hidePrompt": false }, - "source": [] + "source": [ + "## Avec un argument \"fréquentiel\" de surface" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false, + "hidePrompt": false + }, + "source": [ + "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si\n", + "\n", + "\n", + "X\u0018U(0, 1)etY\u0018U(0, 1)alorsP[X2+Y2\u00141]=p/4 (voirméthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait :" + ] } ], "metadata": { - "hide_code_all_hidden": true, + "hide_code_all_hidden": false, "kernelspec": { "display_name": "Python 3", "language": "python", -- 2.18.1