{ "cells": [ { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "

__toy\\_notebook\\_fr__

\n", "\n", "

March 28, 2019

\n", "\n", "# propos du calcul de $\\pi$\n", "\n", "## En demandant à la lib maths\n", "\n", "Mon ordinateur m’indique que $\\pi$ vaut _approximativement_" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [], "source": [ "from math import *\n", "print(pi)" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "## En utilisant la méthode des aiguilles de Buffon" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "Mais calculé avec la méthode des ![aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "hideCode": false, "hidePrompt": false }, "outputs": [], "source": [ "import numpy as np\n", "np.random.seed(seed=42)\n", "N = 10000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "theta = np.random.uniform(size=N, low=0, high=pi/2)\n", "2/(sum((x+np.sin(theta))>1)/N)" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hideOutput": true, "hidePrompt": false }, "source": [ "## Avec un argument \"fréquentiel\" de surface" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si\n", "\n", "\n", "X\u0018U(0, 1)etY\u0018U(0, 1)alorsP[X2+Y2\u00141]=p/4 (voirméthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait :" ] } ], "metadata": { "hide_code_all_hidden": false, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }