{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# le pouvoir d'achat des ouvriers anglais du XVIe au XIXe siècle\n", "\n", "On utilise le [jeu de données de William Playfair](https://vincentarelbundock.github.io/Rdatasets/doc/HistData/Wheat.html) pour étudier l'évolution du pouvoir d'achat des ouvriers anglais du XVIe au XIXe siècle.\n" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Importation du jeu de données\n", "\n", "On importe le jeu de données d'après l'url suivant :" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0YearWheatWages
01156541.05.00
12157045.05.05
23157542.05.08
34158049.05.12
45158541.55.15
56159047.05.25
67159564.05.54
78160027.05.61
89160533.05.69
910161032.05.78
1011161533.05.94
1112162035.06.01
1213162533.06.12
1314163045.06.22
1415163533.06.30
1516164039.06.37
1617164553.06.45
1718165042.06.50
1819165540.56.60
1920166046.56.75
2021166532.06.80
2122167037.06.90
2223167543.07.00
2324168035.07.30
2425168527.07.60
2526169040.08.00
2627169550.08.50
2728170030.09.00
2829170532.010.00
2930171044.011.00
3031171533.011.75
3132172029.012.50
3233172539.013.00
3334173026.013.30
3435173532.013.60
3536174027.014.00
3637174527.514.50
3738175031.015.00
3839175535.515.70
3940176031.016.50
4041176543.017.60
4142177047.018.50
4243177544.019.50
4344178046.021.00
4445178542.023.00
4546179047.525.50
4647179576.027.50
4748180079.028.50
4849180581.029.50
4950181099.030.00
5051181578.0NaN
5152182054.0NaN
5253182154.0NaN
\n", "
" ], "text/plain": [ " Unnamed: 0 Year Wheat Wages\n", "0 1 1565 41.0 5.00\n", "1 2 1570 45.0 5.05\n", "2 3 1575 42.0 5.08\n", "3 4 1580 49.0 5.12\n", "4 5 1585 41.5 5.15\n", "5 6 1590 47.0 5.25\n", "6 7 1595 64.0 5.54\n", "7 8 1600 27.0 5.61\n", "8 9 1605 33.0 5.69\n", "9 10 1610 32.0 5.78\n", "10 11 1615 33.0 5.94\n", "11 12 1620 35.0 6.01\n", "12 13 1625 33.0 6.12\n", "13 14 1630 45.0 6.22\n", "14 15 1635 33.0 6.30\n", "15 16 1640 39.0 6.37\n", "16 17 1645 53.0 6.45\n", "17 18 1650 42.0 6.50\n", "18 19 1655 40.5 6.60\n", "19 20 1660 46.5 6.75\n", "20 21 1665 32.0 6.80\n", "21 22 1670 37.0 6.90\n", "22 23 1675 43.0 7.00\n", "23 24 1680 35.0 7.30\n", "24 25 1685 27.0 7.60\n", "25 26 1690 40.0 8.00\n", "26 27 1695 50.0 8.50\n", "27 28 1700 30.0 9.00\n", "28 29 1705 32.0 10.00\n", "29 30 1710 44.0 11.00\n", "30 31 1715 33.0 11.75\n", "31 32 1720 29.0 12.50\n", "32 33 1725 39.0 13.00\n", "33 34 1730 26.0 13.30\n", "34 35 1735 32.0 13.60\n", "35 36 1740 27.0 14.00\n", "36 37 1745 27.5 14.50\n", "37 38 1750 31.0 15.00\n", "38 39 1755 35.5 15.70\n", "39 40 1760 31.0 16.50\n", "40 41 1765 43.0 17.60\n", "41 42 1770 47.0 18.50\n", "42 43 1775 44.0 19.50\n", "43 44 1780 46.0 21.00\n", "44 45 1785 42.0 23.00\n", "45 46 1790 47.5 25.50\n", "46 47 1795 76.0 27.50\n", "47 48 1800 79.0 28.50\n", "48 49 1805 81.0 29.50\n", "49 50 1810 99.0 30.00\n", "50 51 1815 78.0 NaN\n", "51 52 1820 54.0 NaN\n", "52 53 1821 54.0 NaN" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data_url = \"https://raw.githubusercontent.com/vincentarelbundock/Rdatasets/master/csv/HistData/Wheat.csv\"\n", "data = pd.read_csv(data_url)\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Premier graphique \n", "\n", "Pour ce premier graphique, l'objectif est de reproduire quelque chose de similaire au [graphique produit par William Playfair](https://upload.wikimedia.org/wikipedia/commons/3/3a/Chart_Showing_at_One_View_the_Price_of_the_Quarter_of_Wheat%2C_and_Wages_of_Labour_by_the_Week%2C_from_1565_to_1821.png). \n", "On commence par créer les deux premier graphiques bruts :" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Evolution du prix du blé :" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADpBJREFUeJzt3X+sZGddx/H3x66tAla36W2zlNYtZlHXP6T02hQRxBbCD9GtmpI2QTemyUYCCEWUrSbe7h9NNoJEjYpZ+bUKtKy1cRuDSt1YiYm23pYKLUvTX9huu+5ewB9ISKH69Y85G4ft3N29c2buvfPs+5XcnDnPnJl5nvvs/cx3zpxzNlWFJKld37bWHZAkTZdBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWrchrXuAMC5555bmzdvXutuSNJMueeee75UVXMn225dBP3mzZtZXFxc625I0kxJ8q+nsp27biSpcQa9JDXOoJekxp006JN8KMnRJPcPtZ2T5I4kD3XLjUP33ZDk4SQPJnnNtDouSTo1p1LRfwR47XFtO4EDVbUFONCtk2QrcA3wQ91j/jDJGRPrrSRpxU4a9FX1aeArxzVvA/Z2t/cCVw2131JVT1fVY8DDwGUT6qskaQzj7qM/v6oOA3TL87r2C4AnhrY71LVJktbIpL+MzYi2kf9XYZIdSRaTLC4tLU24G5KkY8YN+iNJNgF0y6Nd+yHgwqHtXgA8NeoJqmpPVc1X1fzc3ElP7JIkjWncM2NvB7YDu7vl/qH2jyd5H/B8YAtwd99OStJ6smvXrpHtCwsLq9yTU3PSoE9yM/BK4Nwkh4AFBgG/L8l1wOPA1QBV9UCSfcDngWeAt1TV/0yp75KkU3DSoK+qa5e568pltr8JuKlPpyRJk+OZsZLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1LheQZ/k+iQPJLk/yc1JviPJOUnuSPJQt9w4qc5KklZuw7gPTHIB8MvA1qr6epJ9wDXAVuBAVe1OshPYCbx7Ir2VpFW0a9eute7CRPTddbMB+M4kG4DnAE8B24C93f17gat6voYkqYexg76qngTeCzwOHAb+s6o+BZxfVYe7bQ4D5416fJIdSRaTLC4tLY3bDUnSSYwd9N2+923AxcDzgecmedOpPr6q9lTVfFXNz83NjdsNSdJJ9Nl18yrgsapaqqpvArcBPwocSbIJoFse7d9NSdK4xv4ylsEum8uTPAf4OnAlsAh8DdgO7O6W+/t2UpKmrZUvXkcZO+ir6q4ktwL3As8AnwH2AM8D9iW5jsGbwdWT6KgkaTx9KnqqagFYOK75aQbVvSSdVpb7VLCwcHxMri7PjJWkxhn0ktQ4g16SGtdrH70kzZqWj65ZjhW9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcRvWugOt2bVr17PaFhYW1qAnkjRgRS9JjTPoJalxBr0kNc6gl6TG9Qr6JN+T5NYkX0hyMMlLk5yT5I4kD3XLjZPqrCRp5fpW9L8L/HVV/QDww8BBYCdwoKq2AAe6dUnSGhk76JOcDbwC+CBAVX2jqv4D2Abs7TbbC1zVt5OSpPH1qehfCCwBH07ymSQfSPJc4PyqOgzQLc8b9eAkO5IsJllcWlrq0Q1J0on0CfoNwEuA91fVJcDXWMFumqraU1XzVTU/NzfXoxuSpBPpE/SHgENVdVe3fiuD4D+SZBNAtzzar4uSpD7GDvqq+jfgiSTf3zVdCXweuB3Y3rVtB/b36qEkqZe+17p5G/CxJGcCjwK/yODNY1+S64DHgat7voYkqYdeQV9V9wHzI+66ss/zSpImxzNjJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnP85uCRN2a5du5a9b2FhYeqvb0UvSY2zotdYlqtQVqM6kbQyVvSS1DiDXpIaZ9BLUuMMeklqnEEvSY3zqBvpBDy6SC2wopekxlnRd6zcJLXKil6SGmfQS1Lj3HUjqUknupDY6cagH5P/iKT+Rv0d+b3Y5LnrRpIaZ0WvNeORTtLqMOglzQQLg/G560aSGtdsRe+7/2j+XqTTjxW9JDWu2YpeWk88jPDUeejy5FnRS1LjrOg18/zeYf2zSl9bVvSS1LjeFX2SM4BF4MmqekOSc4BPAJuBLwJvrKp/7/s6k2JlMV3ui9Zq82/65Cax6+btwEHg7G59J3CgqnYn2dmtv3sCr7Mm/Eckadb1CvokLwB+ErgJeGfXvA14ZXd7L3AnUw56w1iSlte3ov8d4NeA7xpqO7+qDgNU1eEk5/V8Dc0434iltTV20Cd5A3C0qu5J8soxHr8D2AFw0UUXjdsNaSJ8M1LL+hx18zLgp5N8EbgFuCLJR4EjSTYBdMujox5cVXuqar6q5ufm5np0Q5J0ImNX9FV1A3ADQFfRv6uq3pTkPcB2YHe33D+BfmqNWOmuH54voHFN4zj63cCrkzwEvLpblyStkYmcGVtVdzI4uoaq+jJw5SSeV5LUn2fGSlLjvNaNZobfF0jjsaKXpMYZ9JLUOINekhrnPnpJK+Yx/bPFoG+Af3SjeclkacBdN5LUOINekhpn0EtS49xHv4ZWum99pScMrWR7T0ZafX63otViRS9JjbOiX4dO9+p6lse/nvruJwYdY0UvSY2zope0rGl+L6TVY0UvSY2zopfGYOWqWWJFL0mNs6KX1hk/LWjSrOglqXEGvSQ1zl03ktxd1DiDfhX4R7R+OBf+Dk5H7rqRpMZZ0UszzgpdJ2NFL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWrc2EGf5MIkf5fkYJIHkry9az8nyR1JHuqWGyfXXUnSSvWp6J8BfqWqfhC4HHhLkq3ATuBAVW0BDnTrkqQ1MnbQV9Xhqrq3u/1V4CBwAbAN2Nttthe4qm8nJUnjm8g++iSbgUuAu4Dzq+owDN4MgPMm8RqSpPH0DvokzwP+HHhHVf3XCh63I8liksWlpaW+3ZAkLaNX0Cf5dgYh/7Gquq1rPpJkU3f/JuDoqMdW1Z6qmq+q+bm5uT7dkCSdQJ+jbgJ8EDhYVe8buut2YHt3ezuwf/zuSZL66nM9+pcBPw98Lsl9XduvA7uBfUmuAx4Hru7XRUlSH2MHfVX9A5Bl7r5y3OeVJE2WZ8ZKUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1Ljphb0SV6b5MEkDyfZOa3XkSSd2FSCPskZwB8ArwO2Atcm2TqN15Ikndi0KvrLgIer6tGq+gZwC7BtSq8lSTqBaQX9BcATQ+uHujZJ0irbMKXnzYi2+pYNkh3Ajm71v5N8GfjSlPqznpzL6TFOOH3G6jjbs2pjvfHGG/s8/HtPZaNpBf0h4MKh9RcATw1vUFV7gD3H1pMsVtX8lPqzbpwu44TTZ6yOsz2tjXVau27+GdiS5OIkZwLXALdP6bUkSScwlYq+qp5J8lbgb4AzgA9V1QPTeC1J0olNa9cNVfVJ4JMreMiek2/ShNNlnHD6jNVxtqepsaaqTr6VJGlmeQkESWrcNC+B8KEkR5PcP9R2Y5Ink9zX/by+a9+c5OtD7X809JhLk3yuu5TC7yUZdejmmho11q79bd1lIB5I8ltD7Td043kwyWuG2tf1WFcyzlme02X+7X5iaCxfTHLf0H0zOZ+wsrE2OKcvTvJP3VgWk1w2dN/MzulIVTWVH+AVwEuA+4fabgTeNWLbzcPbHXff3cBLGRyb/1fA66bV5wmP9SeAvwXO6tbP65ZbgX8BzgIuBh4BzpiFsa5wnDM7p6PGedz9vw385qzP5xhjbWpOgU8d6yfweuDOFuZ01M/UKvqq+jTwlT7PkWQTcHZV/WMNfst/Alw1if5N0jJjfTOwu6qe7rY52rVvA26pqqer6jHgYeCyWRjrCsc50gyPE4CugnsjcHPXNLPzCSse60izMNZlxlnA2d3t7+b/z/WZ6TkdZS320b81yWe7j1Ibh9ovTvKZJH+f5OVd2wUMTr46ZpYupfAi4OVJ7urG9CNd+3KXh5jVsS43TmhvTgFeDhypqoe69dbmc9jxY4W25vQdwHuSPAG8F7iha29uTlc76N8PfB/wYuAwg4+FdLcvqqpLgHcCH09yNqdwKYV1bAOwEbgc+FVgX1chLTemWR3rcuNscU4BruVbK9zW5nPY8WNtbU7fDFxfVRcC1wMf7Nqbm9OpHUc/SlUdOXY7yR8Df9m1Pw0c++h/T5JHGFSKhxhcPuGYZ11KYR07BNzWfcS7O8n/Mrh+xnKXh5jVsY4cZ1Ut0dicJtkA/Cxw6VBza/MJjB5rg3+n24G3d7f/DPhAd7u5OV3Vir7bx3XMzwD3d+1zGVzDniQvBLYAj1bVYeCrSS7vqsRfAPavZp97+AvgCoAkLwLOZHCRpNuBa5KcleRiBmO9e4bHOnKcjc7pq4AvVNXwx/fW5vOYZ421wTl9Cvjx7vYVwLFdVO3N6RS/5b6ZwUe9bzJ4J7wO+FPgc8BnGfwyN3Xb/hzwAINvuu8FfmroeeYZvCE8Avw+3Ule6+lnmbGeCXy06/u9wBVD2/9GN54HGfrWfr2PdSXjnOU5HTXOrv0jwC+N2H4m53OlY21tToEfA+7pxnMXcGkLczrqxzNjJalxnhkrSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjDHpJatz/AUF1+eKEYhVGAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.bar(data['Year'],data['Wheat'], 5, color='grey')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Evolution du salaire hebdomadaire :" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHO9JREFUeJzt3Xl4VPXd9/H3lz0hQEACRdEiitZ9i9QNFwQFsaLFDaxoa4vcrXXleQrKXVSeKkrR2/W2tIqpt7eUsghyiRQRxQXZxIVFRSzKEkhICISQhWS+zx8ztBETsk1yJief13XNNTNnzjCf33X0w+E358wxd0dERBq/ZkEHEBGR+FChi4iEhApdRCQkVOgiIiGhQhcRCQkVuohISKjQRURCQoUuIhISKnQRkZBo0ZAf1rlzZ+/Ro0dDfqSISKO3cuXKHe6eVtV6DVroPXr0YMWKFQ35kSIijZ6ZfVOd9TTlIiISEip0EZGQUKGLiISECl1EJCRU6CIiIVFloZtZGzNbZmafmNkaM3sgtryTmS0ws/Wx+471H1dERCpTnT30YqCvu58CnAoMMLOzgNHAQnfvBSyMPRcRkYBUWegetSf2tGXs5sBgICO2PAO4sl4Siog0Zlu3wp13Ql5evX9UtebQzay5mX0MZAEL3H0p0NXdMwFi910qee8IM1thZiuys7PjlVtEJLHt3AmjR+NHH03k6Wf4fPq8ev/IahW6u5e5+6lAd6C3mZ1Y3Q9w98nunu7u6WlpVZ65KiLSuO3dCxMm4D174o8+yvun9eW3D81g6cl96v2ja3Tqv7vnmdnbwABgu5l1c/dMM+tGdO9dRKRpKi2FP/8Zf/BBbNs2Pj71fKYO+TUbDuvVYBGqLHQzSwP2xco8CegHPALMAW4CJsTuZ9dnUBGRhFVaCkOHwvTprD/2NF655SE+O+qUBo9RnT30bkCGmTUnOkUzzd3nmtkSYJqZ3QJ8C1xTjzlFRBJTJAIjRsD06fzvdXcw85IbwSyQKFUWurt/CpxWwfIc4OL6CCUi0ii4w113wZQpzBj8K2ZeOjzQODpTVESktsaNgyef5PVLhvHKFbcGnUaFLiJSK5MmwfjxvH3+YF647u7AplnKU6GLiNTU5MkwahRLe/fn2eH3JUSZQwNfsUhEpNGbOhUfOZJPTzmXx385nkiz5kEn+hftoYuIVNfcufiNN/Llsafz6MhHKG3RMuhE36FCFxGpjkWL8Kuv5psfHstDtz9GceukoBN9jwpdRKQqS5fiV1zBti6HM/7OJylokxJ0ogqp0EVEDubTT/GBA8lN6ciD9zzDrrapQSeqlApdRKQy69fjl1zC7mateGDUs2S37xx0ooPSUS4iIhXZtAnv14/CohLGj/4LWzsdGnSiKmkPXUTkQJEIPngwJTk7GX/PM2zs2iPoRNWiQhcROdDcudiqVTz/s9+xvvuxQaepNhW6iEh57vDww+R2OYy30/sHnaZGVOgiIuUtXgwffsjsAcOJNG9cXzOq0EVEynv4YfakHsKCcy4POkmNqdBFRPZbtQrmz2duv6GUtGoTdJoaU6GLiOw3YQJFySnMu/DqoJPUigpdRASiJxFNn878i66hILld0GlqRYUuIgIwcSJlLVowt//1QSepNRW6iMjWrXhGBovOG8zOBD+9/2BU6CIijz2Gl5by2oAbg05SJyp0EWnacnPxP/2JJT++lK2dDws6TZ2o0EWkaXvmGWzPHuYMujnoJHXWuE6DEhGJp8JC/Ikn+PjUPmw49Oig09RZlXvoZna4mS0ys3VmtsbM7ogtv9/MtpjZx7HbZfUfV0Qkjl59FcvJYd6lNwSdJC6qs4deCtzj7h+ZWTtgpZktiL32uLv/sf7iiYjUoxdfJDftUFb1OiPoJHFR5R66u2e6+0exx/nAOqBxf3MgIrJpE75gAYvOGYQ3C8fXiTUahZn1AE4DlsYW3WZmn5rZC2bWsZL3jDCzFWa2Ijs7u05hRUTi5qWXMHfeboQ/wlWZahe6maUAM4A73X038N/AUcCpQCYwqaL3uftkd0939/S0tLQ4RBYRqSN3fMoU1v3oDDLTugedJm6qVehm1pJomb/s7jMB3H27u5e5ewT4M9C7/mKKiMTRBx9gX33F4j5XBJ0krqpzlIsBzwPr3P2xcsu7lVvtKmB1/OOJiNSDKVMoaZPMu6f1DTpJXFXnKJdzgRuBz8zs49iye4GhZnYq4MBG4NZ6SSgiEk8FBfjf/sYH6RdT1CY56DRxVWWhu/t7gFXw0uvxjyMiUs9mzsT27OHd8wcHnSTuwnGsjohIdU2Zwo6u3fnkqFODThJ3KnQRaTo2boRFi1h07k/AKpp4aNxU6CLSdGRk4GYsOmdQ0EnqhQpdRJqGSAR/8UXWHn8mWZ26Vb1+I6RCF5GmYfFibONG3ukTvi9D91Ohi0jTMGUKRckpvHfKBUEnqTcqdBEJv/x8fPp03j+zPyWtk4JOU29U6CISfhkZ2N69LA7hsefl6YpFIhJu+/bhEyfy1TGnsubIk4JOU6+0hy4i4TZ1Kvbtt8we9POgk9Q77aGLSHhFIviECWw9/Gg+PPHcoNPUO+2hi0h4vfYatnZtdO88hGeGHkiFLiLh5A4PP0xO1+68fUa/oNM0CBW6iITTO+/A0qXMHnAjkeZNY3ZZhS4i4TRhAntSD+HNs8NzzdCqqNBFJHw++gjmz+e1/sMoadUm6DQNRoUuIuEzYQJFySm8ccGQoJM0KBW6iITL+vX49OnMv+gaCpLbBZ2mQanQRSRcHn2UspatmNt/aNBJGpwKXUTCY8sWPCODt/pcwc72hwSdpsGp0EUkPB58EI9EeG3A8KCTBEKFLiLh8N57MHky8/oPJfOQQ4NOE4imcbS9iIRbSQl+663kpXVj6hW3Bp0mMFXuoZvZ4Wa2yMzWmdkaM7sjtryTmS0ws/Wx+471H1dEpAITJ2Jr1/KXG8dQ2CY56DSBqc6USylwj7sfB5wF/MbMjgdGAwvdvRewMPZcRKRhrV+Pjx/P0t79WdoEflHxYKosdHfPdPePYo/zgXXAYcBgICO2WgZwZX2FFBGpkDuMHElxi1ZMGXZP0GkCV6MvRc2sB3AasBTo6u6ZEC19oEu8w4mIHNRLL8Fbb/Hy1b9lR/u0oNMErtqFbmYpwAzgTnffXYP3jTCzFWa2Ijs7uzYZRUS+b8cO/O67+arXKbzR56qg0ySEahW6mbUkWuYvu/vM2OLtZtYt9no3IKui97r7ZHdPd/f0tDT9DSoicTJqFJ63i8k334c30xHYUL2jXAx4Hljn7o+Ve2kOcFPs8U3A7PjHExGpwFtvQUYGrw28ka+7HRV0moRRnePQzwVuBD4zs49jy+4FJgDTzOwW4FvgmvqJKCJSzvr1+LBh5PzgcKZd/sug0ySUKgvd3d8DKrsY38XxjSMichCbNuH9+lFYVMKE0c9S3IR+67w6NPEkIo3D9u14v34U5+xk/D3PsLFrj6ATJRyd+i8iiW/nTvzSSyn9dhOPjHqW9d2PDTpRQtIeuogktj174LLLiKxdxx9vf4zPep4cdKKEpT10EUlcRUVw5ZVEli/nyV8/ysof9Q46UULTHrqIJKbiYrj2Wli4kD/9Yhzvn3Zh0IkSnvbQRSTx7N0LP/0pzJ/PC8PHsPDsQUEnahRU6CKSWPLz4fLL8XffZfItv2fBuYODTtRoqNBFJHHs3AkDBhBZuZJnRj7EO2deEnSiRkWFLiKJISsLv+QSImvX8cRtE/nglAuCTtToqNBFJHhbtuD9+lH2z41MvOsJHc1SSyp0EQlWZibepw/7tmcz4Z6n+fTo04JO1Gip0EUkOAUF+E9+Qum27Yz/P8+xrscJQSdq1FToIhKMsjL42c9g1SqeuONxlXkc6MQiEQnG734Hr75KxrBRfHjSeUGnCQUVuog0vOeeg0mTmN//eub2vS7oNKGhKRcRaVjz5+O33cYnp53P89fdHXSaUNEeuog0nM8+w6+5hs2H92LSiD8QadY86EShokIXkYaxaRM+aBD5rZKYcPvjFLZODjpR6KjQRaT+LV+O9+5NSe5OJtzxX2xP7RJ0olBSoYtI/ZoxA7/gAnZGmjP23il8qasN1RsVuojUD3eYMAGuvpqvux/D6LEv8s9uPYNOFWo6ykVE4q+kBEaOhClTWHLWpTz183GUtGwddKrQU6GLSHzl5MCQIfDOO8wY/CteueJWMAs6VZOgQheR+FmyBL/+eiKZ23ju1v/Hoh8PDDpRk1LlHLqZvWBmWWa2utyy+81si5l9HLtdVr8xRSShRSLw6KN4nz7kFke4/97nVeYBqM4e+ovA08BfD1j+uLv/Me6JRKRxyc6G4cPhjTdYfmY/nr15LHuS2gWdqkmqstDdfbGZ9aj/KCLS6LzzDj5sGGU7cvjr8DG8fsEQzZcHqC6HLd5mZp/GpmQ6xi2RiCS+XbtgzBi8b1+yacXvx2bw+oVXq8wDVttC/2/gKOBUIBOYVNmKZjbCzFaY2Yrs7OxafpyIJITCQpg0Ce/ZEyZMYPG5lzNq7F/5snuvoJMJtTzKxd23739sZn8G5h5k3cnAZID09HSvzeeJSMBKS+HFF/EHHsA2b+azk85h6h2/4cvDfxR0MimnVoVuZt3cPTP29Cpg9cHWF5FGyj166v7YsdgXX/D10ScxdfTvWXXMGUEnkwpUWehm9gpwIdDZzDYD44ALzexUwIGNwK31mFFEgvDmm/jo0djKlWzrfhSv3PEYH5x8vubJE1h1jnIZWsHi5+shi4gkgmXLYMwYeOst8tK6Me1XD7DwxwP12+WNgM4UFZGodetg7FiYOZOC9h2ZccMoXj9/CKUtWwWdTKpJhS7SlLnDm2/CU0/hc+dSktSWOVeNZE6/YRQmtQ06ndSQCl2kKcrPh4wM/OmnsS++YE+HTiy4/BfM7TeUXe10WkljpUIXaSoiEVixAl56Cc/IwPLz2XjUCbxx63jeOb2fplZCQIUuEmalpbB4Mcyahc+ahW3ZQlmLlnzQuz//6Hc963qcEHRCiSMVukjYFBbCggXREp8zB8vNZV/rNnx8wtmsvHwkS048j4K27YNOKfVAhS4SBrt2weuvw8yZ+Lx5WEEBhW3bseLkPnx0Zl+WHXcWxa2Tgk4p9UyFLtJYlZXBtGnROfE338T27WN3x84s7T2Qlel9+bjX6ZS2aBl0SmlAKnSRxsYdXnsNv+8+bPVqdnTpzocXX8/y9L6s7XEi3kzXfm+qVOgijcnixTB6NCxZQna3HzL1N4/w7ml9VeICqNBFGodPPomejj9vHrs7dWHaz/+TBWcPokxTKlKOCl0kkbnDE0/go0ZRlJzCrOvuYO5F11LSqk3QySQBqdBFEtXevTBiBLz8MivPuIhnfv578pN1uKFUToUukog2bsSvugo++YS///TX/P2yn2ueXKqkQhdJNAsW4NdfT3HxPp68+wmWnXBu0ImkkdBf+SKJwh0mTsQHDCCzbSfGjHtJZS41oj10kURQUAC/+AVMm8byM/vx1C/GUdg6OehU0sio0EWC9tVX0fnytWuZeu3tzLh0uC7zJrWiQhcJ0rx5+LBhFJXBf416mpU/+nHQiaQR0xy6SBAiEfjDH/BBg9jSoSu/G/eSylzqTHvoIg0tPx9uuglmzWLJ2QN5Zvh9+iVEiQsVukhD2rsXLr+cyPvv8/LQu5ndb5jmyyVuVOgiDaWkBIYMwd99l6f/4yEWp18SdCIJGc2hizSE0lK44QZ44w3+fPNYlbnUiyoL3cxeMLMsM1tdblknM1tgZutj97pMuEhlIpHob7JMn87/DL2bf/S5MuhEElLV2UN/ERhwwLLRwEJ37wUsjD0XkQO5w113wZQpzLhyBK/2vyHoRBJiVRa6uy8Gcg9YPBjIiD3OALTLIVKRcePgySeZd+kNvPKTEUGnkZCr7Rx6V3fPBIjdd4lfJJGQmDQJxo/n7fMH8/y1d+loFql39f6lqJmNMLMVZrYiOzu7vj9OJDFMngyjRrG0d3+eHX6fylwaRG0LfbuZdQOI3WdVtqK7T3b3dHdPT0tLq+XHiTQir7yCjxzJJ6ecy+O/HE+kWfOgE0kTUdtCnwPcFHt8EzA7PnFEGrm5c/Hhw/ny2NN5dOQjlOqan9KAqnPY4ivAEuBYM9tsZrcAE4D+ZrYe6B97LtK0LVqEX3013/zwWB66/TGdzi8NrsozRd19aCUvXRznLCKN19Kl+BVXsK3L4Yy/80kK2qQEnUiaIJ0pKlJXn32GDxxIbkpHHrznGXa1TQ06kTRRKnSR2tq9G8aNw88+m93NWvHAqGfJbt856FTShOnHuURqqqgInn0Wf+ghLCeHZb378/K1t7O106FBJ5MmToUuUl2lpZCRgd9/P7Z5M6tPOpupv/0NXxxxXNDJRAAVukjV3GHmTHzsWOzzz/nnUSfyyuj/ZNUx6UEnE/kOFbrIwSxciI8Zgy1fzrbuPZl6+yTeP+UCnfkpCUmFLlKR5cvh3nvhzTfJS+vGtF89wMIfD9RZn5LQVOgi5S1fDo88AjNmUNChIzNuGMXr5w+htGWroJOJVEmFLlJcDH//O/7UU9iyZRQnt+W1K29ldv8bKExqG3Q6kWpToUvTtWULPPccPnkylpVF1qE9eONn/5eFZw9ib5LO9JTGR4UuTcv27TBnDsyahS9YAGVlrDqlD/+46X5WHnsm3kzn2knjpUKX8Nu4EWbNipb4e+9h7mR37c6SS27gzQuHsLXzYUEnFIkLFbqEjzusXRs9dnzWLGzVKgA2HXEMywb/imVn9GXDoUfr0EMJHRW6hEMkEj1CZdYsfOZMbP16ADb0Opnl193JB6dfSGba4QGHFKlfKnRJfO6wY0f0S8zyt82bYcsWfMsWfNMmmu3aRVnzFqw9Lp0VN1/DByefz85UXSVLmg4VugRj1y74/HPYtCn6q4W7d0N+/r/vd+7Et27FN23GMrdiJSXfeXvEjN2pnclNTWNHahq70o9nw9EnseTE8yho2z6gQYkES4Uu9cMd8vL+vSe9YQOsWwfr1hH5/HOabd1a4dtKWrWhKCmZvUkp5HRIY2e348g78UJ2dkwjp2MXstqnkdMxjbz2h1Cmy7uJfIcKXapWVga5uZCdDVlZ0fuK9qp37YJt24jEpkSaFRZ+548pSmrLlm5HsunIM9h+3hC2dDuSLZ0OpSAphcKkthS1TlJJi9SBCr0pKij4dznvL+icnO/dIjt2QFY2lrMDi0Qq/eOKWydR1CaZojbJ7Gx/CLmdepJ39FnkdepKTmoaWR06s73zYeSmpunIEpF6pEIPk6Ki6PRG7MvC8jffsgXP3AbZWTTbu7fCt5c1b8GelA7sSenA7rYdyE9JI//EH7GnfUd2t+9EXrtO7Gzbgbx2HdmblMLepBSKWicRaa7/jEQSgf5PTHSRSHQu+sA96B07ol8ofvstvmkT/s23NMva/r23FyankJvahZzUNPIOO4E9x59HfvtO7GrfibyUjuS2TWV3u47kp3SgsE1b7UGLNGIq9ERRXAxffglr1sDq1bBmDb5mDWzYUOl0R3GbJHIO6UZWx67kHncOuX26kXNIV7JSu5DdIY3c1C4U6celRJoMFXp9co/OV5efq962LXrLzIRt2/DMTDxzG7Z5E1ZWBkCkWXO2/+AIvjm0J1mD+pDfriO726WyO7kDecntyU9JJT+lAwXJ7bRHLSL/okKvrcxMePfdaFEfMB3iOTl4VnZ0vvqAIz32K0jpwM7UzuS2P4Rdhx5P7ikXs7n7UXzdtSdbfvBD/f62iNRYnQrdzDYC+UAZUOru4b3Ionv0OOrZs/HZs7GlS7/z8t7kduxJ6UB+29gXioefxJ4Tol8m7m7fiby2qeSmpJLX4RDy2h+iwhaRuIvHHvpF7r4jDn9O4ti797tHiaxaFS3xr74CYGPPE1gx5NesOvEctnXsSkFyOx0/LSKBa7xTLqWl0ZNZ8vOjh+tVdCsoqPi2//XCwn899qIiPCcnekJMXt53P6plS9YcdyYf3XwtH57ch5zULgENWkSkcnUtdAf+YWYO/MndJ8ch0/dNnIhPnYrv2o3n52P5uyudmz6YsmbNKWndhpJWbdjXsjUlLVuxr2UrimOP9yankZd+Inkd08jt2IUdqWlkdUhjR6cfUNI6qR4GJiISP3Ut9HPdfauZdQEWmNnn7r64/ApmNgIYAXDEEUfU7lOSklhn7diZ1oWiI9pSlNSWojbR+8I2SRS3bB29tWhFSYtWlMQKurhVEsWt21DcKomi1kmUtmipo0JEJLTqVOjuvjV2n2Vms4DewOID1pkMTAZIT0/3Wn3QbbfxRNoF5OzdV5e4IiKhVusLKJpZWzNrt/8xcAmwOl7BRESkZuqyh94VmGXRKYwWwP+6+xtxSSUiIjVW60J396+BU+KYRURE6qDWUy4iIpJYVOgiIiGhQhcRCQkVuohISKjQRURCQoUuIhISKnQRkZBQoYuIhIQKXUQkJFToIiIhoUIXEQkJFbqISEio0EVEQkKFLiISEip0EZGQUKGLiISECl1EJCRU6CIiIaFCFxEJCRW6iEhIqNBFREJChS4iEhIqdBGRkFChi4iERJ0K3cwGmNkXZvaVmY2OVygREam5Whe6mTUHngEGAscDQ83s+HgFExGRmqnLHnpv4Ct3/9rdS4CpwOD4xBIRkZqqS6EfBmwq93xzbJmIiASgRR3eaxUs8++tZDYCGAFwxBFH1PrDDu3QmoKSslq/X0QkSGkprer9M+pS6JuBw8s97w5sPXAld58MTAZIT0//XuFX17gBx9T2rSIiTUJdplyWA73M7EgzawVcD8yJTywREampWu+hu3upmd0GzAeaAy+4+5q4JRMRkRqpy5QL7v468HqcsoiISB3oTFERkZBQoYuIhIQKXUQkJFToIiIhoUIXEQkJc6/1uT41/zCzbOCbBvvAYHUGdgQdIgAad9OicTeMH7p7WlUrNWihNyVmtsLd04PO0dA07qZF404smnIREQkJFbqISEio0OvP5KADBETjblo07gSiOXQRkZDQHrqISEio0KvJzF4wsywzW33A8t/GLpS9xsweLbd8TOzi2V+Y2aXllp9hZp/FXnvSzCq6UEjCqMm4zayHmRWa2cex23Pl1m/04zazv5Ub20Yz+7jca6Hd3pWNuwls71PN7MPY2FaYWe9yryXm9nZ33apxA84HTgdWl1t2EfAm0Dr2vEvs/njgE6A1cCSwAWgee20ZcDbRKz7NAwYGPbY4jrtH+fUO+HMa/bgPeH0S8PumsL0PMu5Qb2/gH/tzA5cBbyf69tYeejW5+2Ig94DF/wFMcPfi2DpZseWDganuXuzu/wS+AnqbWTegvbsv8ejW/ytwZcOMoHZqOO4KhWjcAMT2uq4FXoktCvv2Biocd4VCNG4H2sced+DfV2RL2O2tQq+bY4A+ZrbUzN4xszNjyyu7gPZhsccHLm9sKhs3wJFmtiq2vE9sWVjGvV8fYLu7r489D/v23u/AcUO4t/edwEQz2wT8ERgTW56w27tOF7gQWgAdgbOAM4FpZtaTyi+gXa0LazcClY07EzjC3XPM7AzgVTM7gfCMe7+hfHcvNezbe78Dxx327f0fwF3uPsPMrgWeB/qRwNtbhV43m4GZsX9eLTOzCNHfeKjsAtqbY48PXN7YVDhud88G9k/DrDSzDUT35sMybsysBfBT4Ixyi8O+vSscd2zKLczb+ybgjtjjvwN/iT1O2O2tKZe6eRXoC2BmxwCtiP5gzxzgejNrbWZHAr2AZe6eCeSb2Vmx+cjhwOxgotdJheM2szQzax5b3pPouL8O0bghuof2ubuX/6d12Lc3VDDuJrC9twIXxB73BfZPNSXu9g762+XGciP6T81MYB/Rv4lvIVpk/wOsBj4C+pZb/z6i335/QblvuoH02PobgKeJndyVqLeajBsYAqwhegTAR8BPwjTu2PIXgZEVrB/a7V3ZuMO+vYHzgJWx8S0Fzkj07a0zRUVEQkJTLiIiIaFCFxEJCRW6iEhIqNBFREJChS4iEhIqdBGRkFChi4iEhApdRCQk/j95Ntx6rdoTjgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(data['Year'],data['Wages'], color='r')\n", "plt.fill_between(data['Year'], data['Wages'], color='#539ecd')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On peut maintenant superposer les deux graphiques, en ajoutant un échelle à droite et les légendes." ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0,0.5,'The price of the quarter of wheat in shillings')" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEWCAYAAAAzcgPFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3XmYXFWd//H3p9d0mgRIgCwQSNghQAARBBEDiGwCbjA4MoOK4o67guMIQZ1hnNGRcfypcUUZVkUBZ0CUJYqoECCBAKJAAgnZyEb2pJfv749zKqk03Z3qpbqruz+v56mnqu6959S5S91vnXNPnauIwMzMrNJU9XcBzMzM2uMAZWZmFckByszMKpIDlJmZVSQHKDMzq0gOUGZmVpF6FKAkXSHp2t4qTDc+f62kvfvw8xok3S7pZUk3l5jmPknvLXfZBgNJB0h6VNIaSZf0IJ95kt7Qm2XrD5LeJen+/i5HuUn6oKQl+fs8us28iZJCUk0J+UyVtKB8Jd3u55ftuOvvc21X5X22b0/z6TRA5QOm8GiVtKHo/Tt7+uE9FRE7RMRzffiRbwfGAKMj4ty2MwfaQdSZrpwYetFngfsiYkRE/Fcffm5JhkrA6EuSaoGvA2/M3+fl/V2m/tbfgbaSdBqg8gGzQ0TsALwAnFU07X/6poiv1McnzWJ7AX+NiOZ++vw+0Rvbt5t57AU80dPPtgFlDDCMAbTflfjySB/ojY1cJ+knuVnmCUlHFWZIGi/p55JekjS3s2YbST+W9B1Jv8l5zZC0V9H8kPRhSX8D/lY0bd/8ukHS1yQ9n5vg7pfUkOe9RtIDklZJmi1paiflOCg3y63K63N2nj4N+CLwd7kGeVGbdKcBny+aP7to9l6S/pDX6y5JuxSl60rZjpD0SM7nRkk3SPpynveKX/dtts+ZuflstaT5kq4oWq5QW7pI0gvAPcDv8uxVeX2Ozcu+R9JTklZK+vX29lE763B23q6r8nY+KE+/BzgR+O/8efu3SXeipMeL3v9W0oNF7++X9OaiJIdLeiwfCzdKGla07JskzcpleEDSYUXzLpX0bN7GT0p6S55+EPAd4NhcvlUdrN+78/ZZI+k5Se8vmjdV0gJJn5K0VNIiSe8umj9a0m15Hz0I7NPeZ+Rlr5H0qfx697ztP5Tf7ytphZKdJf1K6Tu4Mr/eoyifSZJ+l8v7W0nfUlErQGfHZz7mnstp56qDVhVJ9ZK+IWlhfnwjT9sfeDovtiofA53qbPsWLfN5ScuUmtzeWTR9R6Vz1UtK54kvKAcatWn9UJsWhHysfkXSH4D1QEeXFl6dj5uVkn5UOO4kzZF0VlH+tbmMh7cpeyNwBzBeW1urxufZPT7X5v29qmi9vy9padH8ayV9vGh7/SAfpy9K+rKk6qJlOzwXtPnM45XOOSd2sM06FhElPYB5wBvaTLsC2AicAVQD/wr8Kc+rAh4mndTrSDv0OeDUDvL/MbAGOAGoB64G7i+aH8BvgFFAQ9G0ffPrbwH3AbvnshyX89kdWJ7LWAWckt/v2k4ZaoFnSIGmDjgpl+mAovW9tpNt9Ir5uUzPAvsDDfn9VXleV8pWBzwPfCKX8+1AE/DlPP9dxdurne0zFTg0f85hwBLgzXnexLzsT4DGXM7CtJqi/N6ct89BQA3wBeCBzvZRm/LsD6zL61lLatJ7Bqgr2lbv7WDbDgM2ALvkz14MLARG5PJuIDW9QjpWHwTG57I8BXwgzzsSWAock4+TC/Py9Xn+uTldFfB3ubzjOtrG7ZTzTFJgEfB60snsyKJ90Axcmdf/jDx/5zz/BuCmvA8OAV7s6POA9wC359d/TzrGbiyad2t+PRp4GzA8b6ubgV8W5fNH4D9Ix9fxwGryMUwnx2cu42q2fjfGAZM7KOuVwJ+A3XLaB4AvtTn2ajpIu838Erfv10nf/dfn/Vco40+AW/N2mAj8Fbiove9uO597H6kVaTLp+Kvt4Bw5B5hAOu7+wNbv52cL+ye/Pwd4vIN1ngosKOO59gXgVfn103nZg4rmHZFf/xL4bt7Xu5G+U+/vwrlgX+BUYD5wdGffmw6/TyUv2HGA+m3R+4OBDfn1McALbZa/DPhRB/n/GLih6P0OQAswoWiFT2qTprARqkgnqCnt5Ps54Kdtpv0auLCdZV9HOvFVFU27HriivYO4nfSvmJ8P7C8Uvf8QcGc3ynYC6YSsomkPUGKAaie/bwD/2ebLuHdHX9A87Q7yF7roi7Ee2KujfdTmM/8ZuKlN+heBqUXbqt0Alef/Hngr8BrgLtLJ/DRSzeuxNsfqBUXvvwp8J7/+NvnkWDT/aeD1HXzmLOCcjrZxCd+bXwIfy6+n5uO0eJsuzetTTfrBcWDRvH/p6PNIJ+lVeRt+B3g/+aQGXAN8soN0hwMr8+s9SSf04UXzr2VrgOrw+CSdtFaRgt8rfoy0SfMscEbR+1OBeR0dZ23Sbm9+2+3bDDQWzb8pH3fVwCbg4KJ57ydd84TSAtSV21nPeeQfQvn9GcCz+fV40o/dkfn9z4DPdpDPVNoPUL11rv0p8ElgLOnY/yrwAWBS0TE1Jm+vhqJ07wDujdLPBZeRflQf2pXvTPGjN5r4Fhe9Xg8My9XivUjV1FWFB6lmMqaTvOYXXkTEWmAFace+Yn4bu5B+YT/bzry9gHPblON40i++tsYD8yOitWja86Rfkj3Rdhvt0M2yvRh57xeVrSSSjpF0b24CeJl0QO7SZrGOtm/BXsDVRWVdQfolW7x9OstjfHGZ83aeT+nbdwbpy3tCfn0f6Vfy6/P7Yp1t80+12eYTctmQ9I/a2vy3ilSTabudOiTpdEl/UmpiW0U6SRWnXx7bXsMslG1X0i/R4u3X4f6NiGeBtaSA8zrgV8BCSQdQtD0kDZf03dyktZrUdLtTbqoZD6yIiPVFWRd/fofHZ0SsI9UwPwAskvS/kg7soLjb7Pf8enwHy3aqhO27Mpet7WftwtZWiOJ5Xflub+/70XaZLesZEQtJNaq3SdoJOB3o6nX83jrXFn+Pfse236Pf5+/lXqRa/qKiPL9LqklBaeeCj5N+kD5ON5XzQt98YG5E7FT0GBERZ3SSZkLhhaQdSNXkhUXz4xUpkmWk6m97bfbzSb8Ci8vRGBFXtbPsQmCCtr0AuifpV34pOipfR7pStkXA7pLUpmwF60jNOABIGtsm/XXAbaQa6Y6kX91qs0x08Lq4vO9vU96GiHhgO+kKFpIO7EIZRdrnpW7ftgFqBh0HqI7MB77SZh2GR8T1uQ39e8BHSM2FO5GabArbqdP9K6ke+DmpyWxMTv9/vHI7t+cl0q//CUXT9uxg2YIZpKbeuoh4Mb//R2BnUs0P4FPAAcAxETGStO3IZVoEjJI0vCjP4s/v9PiMiF9HxCmkH1R/IW279myz3/N6Lexg2Q6VuH13ztdx2n7WMlINtW05CsfeNt8fUu2irVK+3233X/F6XgNcQGpG/mPeZ+3pznmkK+faGaQfNVPz6/uB17Lt92g+qQa1S1GeIyNictH87Z0LzgXeXLim1R3lDFAPAqslfU6pA0O1pEMkvbqTNGfkC2p1wJeAP0fEdn+15Ij/Q+Dr+WJhtaRj8wF9LXCWpFPz9GFKF6v3aCerP5MO1M/mi5hTgbNI1wZKsQSYqNJ7+HSlbH8kncAukVQj6a3A0UXzZwOTJR2udGH2ijbpR5B+LW+UdDTpukVnXgJa2fZi8HeAyyRNhi0XUV/R3b4TNwFnSjpZqXvxp0hfggc6T7bFA6ST7dHAgxHxBOmEcwxbO3Vsz/eAD+QapSQ1KnUgGUFqtgrSuqPUgeGQorRLgD3y8dmeOtK1j5eAZkmnA28spVAR0QLcAlyRaz0Hk5rSOjODFEwL634f8FFSs2BLnjaC1Ky4StIo4PKiz3wemJk/s06pI8yWC/l0cnxKGqPU4aWRtA/Xkprk23M98AVJuyp1EPpizrurSt2+0/L6vA54E3Bz3h43AV+RNCL/GPlkUTlmASdI2lPSjqTmqe74cN4+o0i1mBuL5v2SdA30Y6TrYR1ZAozO5ShFl861EfE30jFxAfC7iFidP/Nt5AAVEYtIzehfkzRSUpWkfSS9PmdTyrlgIXAy6Zz1oRLXZRtlC1D5gDiL1AQxl/QL5vtAZxv9OtIXaAXwKqAr/7X6NPA48FBO/2+ka0nzSRckP086sOcDn6GddY+IzcDZpOr3MuD/Af8YEX8psQyFP+8ul/TI9hbuRtneSroOspLUvHJL0fy/ki5G/5bUg67t/3U+BFwpaQ3pBHHTdsq2HvgK8IdcjX9NRPyCtF1vyM1Fc0jbqiQR8TTpS/FN0vY9i/TXhc0lpl8HPAI8UZTmj8DzEbG045Tb5DETeB/w36Tt+AxpmxIRTwJfy3kuIXUq+UNR8ntI3aEXS1rWTt5rgEtI23Yl6UfAbaWUK/sIqblvMema7I+2s/wMUgAqBKj7SbWA4mD9DVInkmWkjgp3tsnjncCxpM4PXyadUDfl9ens+Kwi/cBYSPq+vZ50jLXny6RA+BjpO/pIntYlJW7fxXneQlIT2geKvr8fJf0AfY60ra4j/bAlIn6T1/0xUoeDX3W1fNl1pBP7c/mxZT0jYgOpBjiJou9uO+v5F1JQfy5/9zptDu3muXYGqbn5haL3Ah4tWuYfST8KniRt05+RLz+Uei7I+Z8MfE7dGLBA217S6D+Sfky6MPiF/i7LQOFtZr1N0o3AXyLi8u0ubF0m6YvA/hFxQX+XZSDwn83MhjBJr85NN1VK/+U7h9QUZb0sN/tdBEzv77IMFA5QZkPbWNK1q7XAfwEfjIhHO01hXSbpfaQm0jsiotTrpX1C0g+V/jg+p2jaKKVBE/6Wn3cumneZpGckPS3p1LKWrVKa+MzMrO9JOoH0A+UnEXFInvZVUqeqqyRdSvoz+edy553rSR2VxpOuee9f1CmnV7kGZWY2hOUa3Yo2k88hdYsnP7+5aPoNEbEpIuaSOhkdTZn016CrXVZVVRUNDQ39XQwzswFl/fr1Qeo5WTA9IrZ3HWxM7mpORCySVPiD7u6k3qAFC+jkz86SXgvMioh1ki4gdbO/Ov/FYbsGTIBqaGhg3bp121/QzMy2kLQhIo7a/pKlZdfOtM6uE30bmCJpCmk8wh+Q/gP2+k7SbOEmPjMza2uJpHEA+bnwP8MFbDtaxh50PipIcx6e7RxSzelq0n/3SuIAZWZmbd3G1pFMLiSNAl+Yfr7S7VImAfuRRrLoyBpJl5H+oP+/SmNA1pZaCAcoM7MhTNL1pNFTDlC6X9lFwFXAKUr3djslvycPL3YTaXSJO4EPb6cH39+RRia5KCIWk65X/XvJZeuNbuaSfkga82ppUTfFUaShQyaShqE/LyJW5nmXkf6w1gJcEhG/3t5nNDY2hq9BmZl1jaT1EdG4/SUrT2/VoH5Mui9PsUuBuyNiP+Du/J7cj/580o2/TgP+n4ru0mhmZoOD0t1/V7d5zJf0C0kd3ZV4i14JUJXcj97MzPrN10kDDO9O6lDxadIdBW4gD9TbmXJeg9qmHz1bb3S1O9ve1KvTfvRmZjZgnRYR342INRGxOv//6oyIuJF037JO9UcniZL70Uu6WNJMSTObm5vbW8TMzCpXq6Tz8mDEVZLOK5q33Q4Q5QxQPe5HHxHTI+KoiDiqpmbA/KfYzMySdwL/QDr/L8mvL5DUQLr/WafKedYv9KO/ilf2o79O0tdJgw1urx+9mdmAM23atHanX3750LnVVkQ8x7Z3aS7W9qaqr9ArASr3o58K7CJpAemuuFcBN+U+9S+Q7k9PRDwhqdCPvpnt96M3M7MBSNKupDtYT6Qo3kTEe0pJ3ysBKiLe0cGskztY/iuk24mbmdngdSvwe9JtObpcEfGFHTMzK5fhEfG57ib2UEdmZlYuv5J0RncTO0CZmVm5fIwUpDbkUSTWSFpdamI38ZmZWVlERMm31miPA5SZmfUqSQdGxF8kHdne/Ih4pL3pbTlAmZlZb/sUqXv519qZF8BJpWTiAGVmZr0qIt6Xn0/sST4OUGZm1qskvbWz+RFxSyn5OECZmVlv62h4I0hNfA5QZmbW9yLi3b2RjwOUmZn1Kkmf7Gx+RHy9lHwcoMzMrLf16P9PBQ5QZmbWqyKi/XuNdJEDlJmZ9SpJn42Ir0r6Ju3cOTciLiklHwcoMzPrbU/l55k9ycQByszMelVE3J6fr+lJPg5QZmZWFpL2Bz7NK++o66GOzMysX90MfAf4Pr6jrpmZVZDmiPh2dxM7QJmZWa+SNCq/vF3Sh4BfAJsK8yNiRSn5OECZmVlve5jUvVz5/WeK5gWwdymZOECZmVmviohJvZFPVW9kYmZm1pakcyWNyK+/IOkWSUeUmt4ByszMyuWfI2KNpOOBU4FrSL36SuIAZWZm5VLoWn4m8O2IuBWoKzWxA5SZmZXLi5K+C5wH/J+keroQdxygzMysXM4Dfg2cFhGrgFFs26OvU+7FZ2Y2xEn6BPBeUhfwx4F3A8OBG0nDFM0DzouIlV3JNyLWU3R794hYBCwqNb1rUGZmQ5ik3YFLgKMi4hCgGjgfuBS4OyL2A+7O7/uUA5SZmdUADZJqSDWnhcA5pF535Oc393WhHKDMzAa3Gkkzix4XF8+MiBeB/wBeIDW/vRwRdwFjcpNcoWlutz4veF9/oJmZ9anmiDiqo5mSdibVliYBq4CbJV3QGx8s6a3Av5GCm/IjImJkKekdoMzMhrY3AHMj4iUASbcAxwFLJI2LiEWSxgFLu5H3V4GzIuKp7S7ZjrI38Un6hKQnJM2RdL2kYZJGSfqNpL/l553LXQ4zM2vXC8BrJA2XJOBk0i3bbwMuzMtcCNzajbyXdDc4QZlrUEW9Qw6OiA2SbiL1DjmY1DvkKkmXknqHfK6cZTEzK4dp06b1dxF6JCL+LOlnwCNAM/AoMB3YAbhJ0kWkIHZuN7KfKelG4Jdse7uNWzpOslVfNPEVeoc0sbV3yGXA1Dz/GuA+HKDMzPpFRFwOXN5m8iZSbaonRgLrgTcWfxxF/43qTFkDVES8KKnQO2QDcFdE3CVpm94hktrtHZJ7m1wMUFdX8vBNZmZWASLi3T1JX+4mvh71DomI6aSqJo2NjVGWQpqZWa+S9NmI+Kqkb5JqTNuIiEtKyafcTXzl7B1iZmaVqdAxYmZPMil3gNrSO4TUxHcyqcDrSL1CrqL7vUPMzPrMQO8M0Zci4vb8fM32lu1Mua9BlbN3iJmZDWKKGBiXdhobG2PdunX9XQwzG6LKXYO6/PK2neh6h6T1EdFYlszLzGPxmZlZWUh6bSnTOuIAZWZm5fLNEqe1y2PxmZlZr5J0LKnH9q6SPlk0ayTpflMlcYAyM2vDPfZ6rI7UGa4GGFE0fTXw9lIzcYAyM7NeFREzgBmSfhwRz3c3HwcoMzMrl/WS/h2YDAwrTIyIk0pJ7E4SZmZWLv8D/IU03N00YB7wUKmJHaDMzKxcRkfED4CmiJgREe8BXlNqYjfxmZlZuTTl50WSziTdbmmPUhM7QJmZWbl8WdKOwKdI/38aCXyi1MQOUGZmVhYR8av88mXgxK6m9zUoMzMrC0n7S7pb0pz8/jBJXyg1vQOUmZmVy/eAy8jXoiLiMeD8UhM7QJmZWbkMj4gH20xrLjWxA5SZmZXLMkn7kG/7LuntwKJSE7uThJmZlcuHSTepPVDSi8Bc4IJSEztAmZlZWUTEc8AbJDUCVRGxpivpHaDMzKwsJNUDbwMmAjWSAIiIK0tJ7wBlZmblcivpP1APA5u6mtgByszMymWPiDitu4ndi8/MzMrlAUmHdjexa1BmZtarJD1O6lpeA7xb0nOkJj4BERGHlZKPA5SZmfW2N/VGJg5QZmbWqwq3eZd0JfB74IGIWNfVfHwNyszMymUe8A5gpqQHJX1N0jmlJnaAMjOzsoiIH+a76J4IXAucm59L4iY+MzMrC0nfBw4GlpCa+t4OPFJqetegzMysXEYD1cAqYAWwLCJKHs3cNag+Nm3atHanX3755X1cEjOzRNJOwPeBQ0jdw98DPA3cSBqmaB5wXkSs7Eq+EfGWnP9BwKnAvZKqI2KPUtI7QJmZ2dXAnRHxdkl1wHDg88DdEXGVpEuBS4HPdSVTSW8CXgecAOwM3ENq6iuJA5SZ2RAmaSQpgLwLICI2A5tzb7upebFrgPvoYoACTgd+B1wdEQu7WjYHKDOzwa1G0syi99MjYnrR+72Bl4AfSZpCGtj1Y8CYiFgEEBGLJO3W1Q+OiA/3oNwOUGZmg1xzRBzVyfwa4EjgoxHxZ0lXk5rz+l3Ze/FJ2knSzyT9RdJTko6VNErSbyT9LT/vXO5ymJlZuxYACyLiz/n9z0gBa4mkcQD5eWlfF6wvupkXLr4dCEwBniJF57sjYj/gbiokWpuZDTURsRiYL+mAPOlk4EngNuDCPO1C0r2dSiLp7vz8bz0pW1mb+Mp88c3MzHrHR4H/yT34ngPeTarA3CTpIuAF0igQpRon6fXA2ZJuII1ivkVElPRn3XJfg+rRxTdJFwMXA9TV1ZW5qGZmQ1NEzALau051cjez/CKpZWwP4OttPw44qZRMyh2genTxLfc0mQ7Q2NgY5SmimZn1poj4GfAzSf8cEV/qbj7lDlDtXXy7lHzxLdee+uXim5mZlVdEfEnS2aRLPQD3RcSvSk1f1k4S5bj4ZmZmA4OkfyVd1nkyPz6Wp5WkL/4H1dsX38zMbGA4Ezg8IloBJF0DPApcVkrisgeoMlx8MzOzgWMn0kjmADt2JaFHkjAzs3L5V+BRSfeSupqfQIm1J3CAMjOzMomI6yXdB7yaFKA+l/smlMQByszMyib/5/W27qT1HXXNzKwiOUCZmVlFcoAyM7NeJ6lK0pye5OEAZWZmvS7/92m2pD27m4c7SZiZVYBp06Z1OO/yyy/vw5L0qnHAE5IeBNYVJkbE2aUkdoAyM7Ny6TjqlsABysqmo1+EA/jXoJl1QUTMkLQXsF9E/FbScKC61PS+BmVmZmUh6X2ku1h8N0/aHfhlqekdoMzMrFw+DLwWWA0QEX8D2r1BbXscoMzMrFw2RcTmwhtJNaQ76pbEAcrMzMplhqTPAw2STgFuBm4vNbEDlJmZlculwEvA48D7gf+LiH8qNbF78Zn1kHsrmnXooxFxNfC9wgRJH8vTtss1KDMzK5cL25n2rlITuwbVBf6lbGa2fZLeAfw9sLek4lttjACWl5qPA5SZmfW2B4BFwC7A14qmrwEeKzUTBygzM+tVEfG8pAXAuoiY0d18HKDMbMjqbIBW65mIaJG0XtKOEfFyd/JwgCojH/xmPdfe98jXfQeMjcDjkn7DtqOZX1JKYgcoMzMrl//Nj25xgLKK5p6TZgNXRFzTk/QOUGY2aPgHTWWRtB/wr8DBwLDC9IjYu5T0/qOumZmVy4+AbwPNwInAT4Cflpp4SNeg/Gurfd4uZtZLGiLibkmKiOeBKyT9HijpZDKkA5SZmZXVRklVwN8kfQR4kS7cD8oByqxCuDt16fwXjgHj48Bw4BLgS8BJtD8+X7scoMzMrCwi4qH8ci3w7q6md4CyIcHX1Sqfa0X9R1I1MBN4MSLeJGkUcCMwEZgHnBcRK7uR7720cwfdiDiplPQOUGZm9jHgKWBkfn8pcHdEXCXp0vz+c93I99NFr4cBbyP16CuJA1Q7/EuuvHytxfqav9Mdk7QHcCbwFeCTefI5wNT8+hrgProRoCLi4TaT/iCp5MFj+yRAlav6WCl88JtZBauRNLPo/fSImF70/hvAZ0n3aioYExGLACJikaSSe94Vy+f6girgVcDYUtP3VQ2qXNXHkjiAmNkQ1hwRR7U3Q9KbgKUR8bCkqWX47IdJ16BEatqbC1xUauKyB6hyVh9t8PCPCLN+8VrgbElnkK4RjZR0LbBE0rhcexoHLO1O5hExqSeF64saVLerj5IuBi4GqKurK3c5zTrlIGqDTURcBlwGkGtQn46ICyT9O+n/Slfl51u7k7+kt27n82/pbH5ZA1RPq4+5nXQ6QGNj4yu6KpqZWVlcBdwk6SLgBeDcbuZzEXAccE9+fyKpxexlUtNf/wUoylx9tMrgmkXl8P+9rLsi4j5S8CAilgMn90a2wMGFFrN8vv9WRJT0p92yjmYeEZdFxB4RMRE4H7gnIi4AbmPrcBfdrj6amVlFm1gITtkSYP9SE/fX/6B6q/poZmaV6z5JvwauJ9WmzgfuLTVxnwWoMlUfzcysQkXERyS9BTghT5oeEb8oNb1HkrBBxdfDzCpLDkglB6VivqOumZlVJAcoMzOrSA5QZmZWNpIaJB3QnbS+BmVmZeH/ZJmks4D/AOqASZIOB66MiLNLSe8ANUT4Fhft83YxK6srgKPZ2oN7lqSJpSZ2E5+ZmZVLc0S83N3ErkGZmVm5zJH090C1pP2AS4AHSk3sGpSZmZXLR4HJwCbSaBKrgY+Xmtg1qArX1QvNXfmjalf/1Oo/wfY9dzSwgSwi1gP/lB9d5gBlZmZlIWl/4NPARIriTUScVEp6B6gBaqjXZgby+ldS2V1DK7/GtWtpXLeOpWPG9HdR+sPNwHeA7wMtXU3sAGVm1hsiGL1sGWMXL97yGLNkCSPWrmXh2N2Z/oH3of4uY99rjohvdzexA5SZ9chQv5a508qVTJk9mymzZrPzqpUANFfXMH/8JB6aMpUX9tiXZ/c6GKqWUdO6uZ9L2zckjcovb5f0IdJgsZsK8yNiRSn5OECZmXVR3aZNHPzEE0yZPZuJzz9Pq8ScA4/ihnNO4ZlJh/Di+L1prqndsrxaWzhw4W/7scR97mHS/Z8KlcbPFM0LYO9SMnGAMiuTwVZTGPJaW5k0bx5TZs3ioKeeoq6piYVjJnDdWz7IjOPOYPno8f1dwooREZMAJA2LiI3F8yQNKzUfBygzs06MWr6cKbNmMWX2Y+y4+mXWNTQy47g3cd9xZ/L0voeDhuCVpdI9ABxZwrR2OUCZDUCunZXfrkuXcuavfsVeL7xAq6qYPflo7jvuTB468iQ215VcCRiSJI0FdgcaJB3B1qa+kcDwUvNxgDIzKxbB4Y8+yul33MGGYY389G0f4XfHnsHKUUOym3h3nQq8C9gD+BpbA9SJlGWJAAAT30lEQVRq4POlZuIAZWaW1W7axJn/+79MeewxHj/wVVx98ZdYtZMDU1dFxDXANZLeFhE/724+DlBmVpLB3qy42+LFnHvzzYxasYIbz7mYn5/1Xlqrqvu7WANaT4ITOEBVjMH+5R9IvC+G3jY44uGHOf2OO1jbOJJpn/oWTxx8TH8XyfBo5mY2lEUw9Z57OPv223ly/yP41BXXOTj1Aknn5udJPcnHNSizIWCo1YhK0trK6XfeydEPPsjdx5/Nd9/1BTfp9Z7LSOPw/ZwSu5S3xwHKzIacqpYWzr71VqY89hi3vfHv+cnffdL/Z+pdyyXdC0ySdFvbmRFxdimZOECZ2ZBS09TE22++mQP++leue8sHueVNFzk49b4zSTWnn5K6mXeLA5SZDRl1GzfyjuuvZ88XXuB77/wsvz757/q7SINSRGwG/iTpuIh4SdKINDnWdiUfBygzGxJGLV/OuTfdxK4vLeO/3juN+489s7+LNBSMkXQXMAqQpJeACyNiTimJHaDMbNCb/PjjnHX77TTV1HPVJV/j0cNe199FGiqmA5+MiHsBJE3N044rJbEDlJkNWjVNTZx255286uGHeXqfQ/nP9/8Ly3bxqON9qLEQnAAi4j5JjaUmdoAys0Fp9LJlvP3mmxm7ZAm/OP1CbnjLB2kpukeT9YnnJP0zqbMEwAXA3FITO0CZ2aCi1laOfOQRTrnrLjbXDeMrH/+Gm/Q6IWkC8BNgLNAKTI+Iq/NdcW8EJgLzgPMiYmUXs38PMA24Jb//HfDuUhM7QJnZoLHPM89wyl13MWbpUuYccCTffO+VLB89rr+LVemagU9FxCO5t93Dkn5DGo387oi4StKlwKXA57qScQ5ol3S3YGUNUGWOzGZmAOy6ZAlvvOsu9n32WZbsMo6vfeBf+OOr3+j/N5UgIhYBi/LrNZKeIt3L6Rxgal7sGuA+uhigeqrcNaiyRWYzs51WruT4++/niEceYcOw4Vxz3se44+Tzaa6t6++iVZIaSTOL3k+PiOntLShpInAE8GdgTA5eRMQiSbuVu6BtlTVAVXJkNrOBqXbTJg5+8kkOnzWLic8/T0tVNXeedB43nfVe1o4c1d/Fq0TNEXHU9haStANp7LyPR8RqVUDts8+uQXUnMku6GLgYoK7Ov4jMhiq1trLXvHlMmT2bg598krqmJhbvtjvXv/kDzDjuTHcd7yFJtaTg9D8RUejQsETSuHyOHgcs7Ua++wPfJp3zD5F0GHB2RHy5lPR9EqC6G5lzNXQ6QGNjY5SvhGZWcVpbmTB/PpOfeIKDnnyKkWvXsH7YcH537Jnce9yZPL3fEb7G1AuUTsg/AJ6KiK8XzboNuBC4Kj/f2o3svwd8BvguQEQ8Juk6oDICVLkis5kNQhHssWABk+fM4eAnn2TkmjVsrq3jkUNfyx+POomHjjyJzXXD+ruUg81rgX8AHpc0K0/7PCkw3STpIuAF4Nxu5D08Ih5sUylpLjVxuXvxlTMym9kgUb9xI4fNns1RM2ey20sv0VRTy6OHHscfjzqZhw6fysaGkgcfsC6KiPuBjqqiJ/cw+2WS9gECQNLbyf0SSlHuGlQ5I7OZDXBjFy3iqIce4pA5c6jfvJln9zqQn194MQ8c/UY2NOzQ38Wznvsw6TLNgZJeJI0icUGpicvdi6+ckdnMBpoIxixZwv5PP82Bf/kL4xctYlNtHX845lR+PfVtPLv3of1dQutFEfEc8IY8/l5VRKzpSnqPJGFmZVXT1MTEuXM54K9/Zb+//pUdV68G4G+TDuZH55/Pfce9iXU77NTPpbRykPQvwFcjYlV+vzPpv7FfKCW9A5SZ9Sq1tDB+4UL2njuXiXPnMmH+fGqbm9lQ38Dsya/hkcNey8OHHc/LO+3a30W18js9Ij5feBMRKyWdAThAmVn5Na5Zw9jFixm7ZAkTXniBvZ5/nmGbNgEwb499ufPE83hs8jE8ftDRHuFh6KmWVB8RmwAkNQD1pSZ2gDKzkqilhdHLlzN2yRLGLl7MmMWLGbNkCSPWbr2L96Ld9uD3rzmDOQe+iscPeg2rR+7cjyW2CnAtcLekH5F68r2HNHpQSRygzGxbra2MXLOG0cuXs8tLLzF2yRLGLF7MbkuXUtuc/sLSVFPLgvGTeGjKiTw/YV/mTTiAeXsewLrGkf1ceKskEfFVSY+TOsUJ+FJE/LrU9A5QZkNNBMM2bmTkyy+z4+rVW55HLV/O6OUrGLViOXVNTVsWX9M4krl7HsAjk6cyb8/9mLvnQbw4bqJv/mcliYg7gDu6k9YBymywaW1l1IoVjFq5kpEvv8zI1au3eez48svbBCCAlqoqlu4ynhfH7svMw05k0ZgJLByzFy+O35sVO+3qIYWsSyTdHxHHS1pD/pNuYRYQEVFSVdsBymwAq25uTh0U8qPQFFe/efOWZVpVxcodR7N81Bie2WsSy0ftxvKdd2PZqDEsGzWO5aPHsmrkKFqrfTqw3hERx+fnET3Jx0ek2UASwajly9n3mWfY59lnmThv3pba0LqGRuZNOIDHTjie5/fYlxfHTWTZ6HGs3HEXBx/rc5KqgMci4pDu5uGj1qzC1W3cyKS5c9n32WfZ55ln2HnVKiD1mPvtCW/hiQOO5LmJk3lp9Dg3xVnFiIhWSbMl7RkRL3QnDwcos0rT2srYJUtSLemZZ5gwfz7Vra1sqG9gzkGvZtbkY3j00ONYutue/V1Ss+0ZBzwh6UFgXWFiRJxdSmIHKLNKEMHYxYuZMmsWk594Yst/i+ZO2I/bTv0HZk0+hqf3P5Jm95yzgWVaTxI7QJn1o8a1azn0sceYMns2Y5csoammhoennMDMKccz65DjWOXhgGwAi4gZksYCR5N68z0UEYtLTe8AZdbHqpub2f/pp5kyezb7PvMM1a2tPDPpYL73zgv5w9FvZO0Ij75gg4Ok9wJfBO4hdTH/pqQrI+KHpaR3gDLrCxGMX7iQw2fNYvKcOQzfsIEVO47m9jdewH3HncmCPfbt7xKalcNngCMiYjmApNHAA4ADlFm/iWBEHkR1/MKFTJ4zh12XLWNzbR0PHjGVGcedyexDjqW1qrq/S2pWTguA4ntArQHml5rYAcqsh6paWhi9bNnWP8vmwVQb16/fsszT+xzKLWe8lz+8+jTWN/bov4tmA8mLwJ8l3Uq6BnUO8KCkTwJExNc7S+wAZVaqokFUd126dJtBVGtaWgDYXFPL/N335U+vOoV5E/Zl7p4H8PyEA3z7chuqns2Pglvzc0m/0hygzIrUb9yYxqzLY9jttGoVozsYRPXlETsxb8IBPHTYyWkQ1QkHsnDcRI/aYJZFhLuZm3WkqqWFmqYmapuaqG1upnbzZkasWbNlFO8tg6i+vJqRa1ZvudFeQUeDqC4Yvw8rd9rFIzeYlZEDlPWNCBRBVUsL1a2tVLW2Ul0IHs3N1DY1bQkkdU1N1G/atO1j40Zqm5q2pCt+rmlupqa5mdqmnE9zDkhNTVS3tnZYpFaJl0fszPJRY5m752SW77wby0eNYfnOu/HSqHEsHzWWlTvt4ttKmPUTB6ihJAeIQhCobWqidvPmLSfz2naCReHkv+XR0kJ1fl3d0rLlubqlhermlq3zW16Zrrs219axYVgjG+sbaKmuobm6hpbqGlqqa2murmFjQy0b6xpoqqtnU109m2vr2VxXz6a6YVufa+vZXNfAxvphrNpxlzSI6k67emQGswrmANWfci2gumXrib3wuqa5eUsgKLyvaW6mJgeN2qLX9Zs3U79xI8Pyo1DrqG1qTk1cLT0LEi1VVTTV1tNUU0tTbR1NNXU01dTSXFtHU80wNtbW0tRQmFZLU00dm2vraKqto7mwbE1tDirVtFTl5+oaNtUNS0GlriG9rm9gc90w1jXswIaGRjY07OAgYjZASdof+DYwJiIOkXQYcHZEfLmU9A5Q29PaSlUEVblZqqq1FRVeR6TXRc+FIFJcG6nbvJkd1qzZ5qZxI9asZYd1a3tePImN9cNZ39DI+uEjWNewIytGjmBDw3A256BSHCSaamrZXDeMjfVbA8LG+gY21w/PwaKo1lE3jM21db7ob2bd9T3Sn3W/CxARj0m6DnCAauvAp57ixHvuLQo2LVS1tFLd2pLfB4ochArXTCK2n3GJ1jSOZMXOu7Fw131Yuf8uvDxyFJtr6mmqrc21jVqaquvy+9RU1bTlUbel6WrL69r6VLvwhXozq0zDI+JBbXuOai418ZAKUBvr65k/fm821o3ITU3VtNTk6xlV1bRWVdFaVU2rqmitqiKqqmhVFc3VNbRWV9Oqalqq03Jp+cIjLd+qKjbXDmNzfT2b6lJTVaGWsmrH0WyuG9bfm8DMrC8tk7QP+bbvkt4OLCo18ZAKUPP23psZR5/L6uHj+7soZmZDwYeB6cCBkl4E5gIXlJp4SAUoMzPrOxHxHPAGSY1AVUSs2V6aYg5QZmZWFpLqgbcBE4GawrWoiLiylPQOUGZmVi63Ai8DDwObtrPsKzhAmZlZuewREad1N3FVb5bEzMysyAOSDu1uYtegzMysV0maA7SSYsy7JT1HauITEBFxWCn59FuAknQacDVQDXw/Iq7qr7KYmQ1lZTgf7w4c3tNy9UuAklQNfAs4hXRL4Ick3RYRT/ZHeczMhqoynY/nRsTzPS1bf9WgjgaeyX3kkXQD6VbADlBmNvhU9mhk5Tgf71a4rXt7tner94L+ClC7A/OL3i8Ajmm7kKSLgYvz25DURBfGcWpP/cjRtfUjdvK1NzPrM9HaGj9bPG8j3Rzb84orrujJxzdImln0fnpETC96X9L5uIuqgR3oYWjurxN1e4V+xZ7LG3HLhpQ0MyKOKmfBKoHXc/AZKuvq9RyQSjofd9GiUv+M25n+6ma+AJhQ9H4PYGE/lcXMbCgrx/m4Vxo1+ytAPQTsJ2mSpDrgfOC2fiqLmdlQVo7z8ck9L1Y/NfFFRLOkjwC/JrVV/jAinigh6fTtLzIoeD0Hn6Gyrl7PAaYH5+PO8lzRG2VT9OIN+czMzHqLhzoyM7OK5ABlZmYVqV8DlKQfSlqax20qTLtC0ouSZuXHGXn6REkbiqZ/pyjNqyQ9LukZSf+lwk1HKkh765qnf1TS05KekPTVoumX5fV5WtKpRdMrel27sp4DeZ92cOzeWLQu8yTNKpo3aPZnR+s5kPcndLiuh0v6U16fmZKOLpo3IPfpgBIR/fYATgCOBOYUTbsC+HQ7y04sXq7NvAeBY0ldG+8ATu/P9erCup4I/Baoz+93y88HA7OBemAS8CxQPRDWtYvrOWD3aXvr2Wb+14AvDsb92cl6Dtj92dG6AncVygqcAdw30PfpQHr0aw0qIn4H9Ki3h6RxwMiI+GOko+MnwJt7o3y9qYN1/SBwVURsyssszdPPAW6IiE0RMRd4Bjh6IKxrF9ezXQN4PQHIv5jPA67Pkwbb/gTaXc92DYT1hA7XNYCR+fWObP1/0IDdpwNJpV6D+oikx3KVe+ei6ZMkPSpphqTX5Wm7k/5oVrAgTxsI9gdeJ+nPeZ1enae3N/TI7gzcde1oPWHw7VOA1wFLIuJv+f1g258FbdcTBt/+/Djw75LmA/8BXJanD9Z9WlEqMUB9G9iHNFT7IlITAvn1nhFxBPBJ4DpJIynPMB19pQbYGXgN8BngpvyrtKN1Gqjr2tF6DsZ9CvAOtq1VDLb9WdB2PQfj/vwg8ImImAB8AvhBnj5Y92lFqbhBUyNiSeG1pO8Bv8rTN5HvaR8RD0t6lvTLfAFpaI6CgTRs0gLgltwU8KCkVmAXOh56ZKCua7vrGREvMcj2qaQa4K3Aq4omD7b92e56DtLv6IXAx/Lrm4Hv59eDbp9WooqrQeU23IK3AHPy9F2V7luCpL2B/YDnImIRsEbSa/Kv8n8Ebu3jYnfXL4GTACTtD9QBy0jDjJwvqV7SJNK6PjiA17Xd9Ryk+/QNwF8ioriZZ7DtT2hnPQfp/lwIvD6/PgkoNGcOxn1aefqzhwapeWAR0ET65XER8FPgceAx0kEwLi/7NuAJUs+ZR4CzivI5ihTIngX+mzxCRiU9OljXOuDaXPZHgJOKlv+nvD5PU9QLqNLXtSvrOZD3aXvrmaf/GPhAO8sPmv3Z0XoO5P3ZybF7PPBwXqc/A68a6Pt0ID081JGZmVWkimviMzMzAwcoMzOrUA5QZmZWkRygzMysIjlAmZlZRXKAMiui5H5JpxdNO0/Snf1ZLrOhyN3MzdqQdAhp1IAjSLfAngWcFhHP9iDPmoho7qUimg0JDlBm7VC6Z9U6oBFYExFfknQh8GHSH48fAD4SEa2SppNu09AA3BgRV+Y8FgDfBU4DvkEa9uZ9pD+CPh4RF/TxapkNKBU3Fp9ZhZhGGg1hM3BUrlW9BTguIppzUDofuA64NCJW5PHp7pX0s4h4MuezLiJeCyBpEbBXRGyWtFOfr5HZAOMAZdaOiFgn6UZgbURskvQG4NXAzHyD1Aa23m7hHZIuIn2fxpNuZlcIUDcWZfsEcK2kW0njE5pZJxygzDrWmh+QbqPww4j45+IFJO1HGu366IhYJelaYFjRIuuKXp9KGnj0HOALkg6JiJayld5sgHMvPrPS/BY4T9IuAJJGS9qTdLfVNcDqPBL/qe0lzqN87xER95DuibUrMLxPSm42QLkGZVaCiHhc0jTgt5KqSB0dPgDMJDXnzQGeA/7QQRY1pBv4jSD9MPy3iFhT/pKbDVzuxWdmZhXJTXxmZlaRHKDMzKwiOUCZmVlFcoAyM7OK5ABlZmYVyQHKzMwqkgOUmZlVpP8P0rrNQIRq4ZwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig1, ax1 = plt.subplots()\n", "ax1.set_title(\"The price of the quarter of wheat and wages of labour by the week\")\n", "ax1.bar(data['Year'], data['Wheat'],5, color='grey')\n", "ax1.set_xlabel(\"Years\")\n", "\n", "ax2 = ax1.twinx()\n", "ax2.set_ylim((0,100))\n", "ax2.plot(data['Year'],data['Wages'], color='r')\n", "ax2.fill_between(data['Year'], data['Wages'], color='#539ecd')\n", "ax2.set_ylabel(\"The price of the quarter of wheat in shillings\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Amélioration de la présentation des données\n", "On ajuste les unités du graphique, on remplace shillings par shillings par quart de boisseau de bé ou shillings par semaine." ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0,0.5,'Weekly wages (in shillings by week)')" ] }, "execution_count": 52, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa0AAAFECAYAAACUHWF9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XecXFX9//HXe2s2mwQSAimQQgu9SC/SQZqAIkUFwQoIomAD/akBUb+IgmADg4KAghSVpiiI9GoCCQQCCaRCCunZkLCb3f38/jhnkpvNzOyd2Z2tn+fjMY+Zufeeez/3zsw9c889RWaGc8451x2UdXYAzjnnXFqeaTnnnOs2PNNyzjnXbXim5ZxzrtvwTMs551y34ZmWc865bsMzLeecc91GRZqFJA0EhgOrgZlm1lzSqJxzzrkslKtxsaSNgAuATwFVwEKgDzAEeB74rZk91kFxOuecc3mvtO4BbgUOMrNlyRmS9gLOlLSVmf2hlAE655xzGTmvtJxzzrmuptWKGJIeTTPNOeecK7WcxYOS+gB9gcGxIobirAGEShnOOedch8p3T+tc4CJCBjWBdZnWCuA3JY7LOeec20Cr97QkXWhmv+qgeJxzzrmcUlXEkLQzsCOhyjsAZnZrCeNyzjnnNpDmSmsscCgh0/oncCzwtJmdUvLonHPOuYQ03TidAhwBzDezzwG7AdUljco555zLIk2mtTp229QoaQDwHrBVacNyzjnnNpSm78HxkjYGbiTUIlwJvFjSqJxzzrksCuoRQ9JoYICZvVKqgJxzzrlc0vSIIUlnSvqBmc0Elknap/ShOeecc+tLU3vweqAZONzMdoi9YzxsZnt3RIDOOedcRpp7Wvua2R6SXgYws6WSqkocl3POObeBNLUH10gqBwxA0qaEKy/nnHOuQ6XJtH4J/B3YTNKPgaeBn5Q0Kueccy6LtN04bU9oYCzgUTObUurAnHPOuZbSZlrlwBAS98DMbHYJ43LOOec20GpFDEkXAmOBBUAT4WrLgF1LG5pzzjm3vjRV3t8i1CBc3DEhOeecc9mlqYgxB1he6kCcc8651uS80pL09fhyJ2A74B9AfWa+mV1T8uicc865hHz3tPrH59nxURUfzjnnXKdIc09rKzOb3kHxOOecczmlybSeBDYH/gc8CTxlZq92QGzOOefcetK206oC9gYOBc4F+pnZoNKG5pxzzq0vzdAkHwa+Afw/4HjgQeCCPMtfJulP7RZhgSStlNRhIytLqpH0gKTlku5OmeZxSV8sdWw9gaTtJL0sqU7SV9uwnpmSjmzP2DqDpM9Kerqz4yg1SV+WtCD+njdpMW+0JJOUpp3poZLeKV2krW6/ZN+7zj7XFip+Ztu0dT1pqrw/AXwMGEe40joLuDF+mZolrY6vV0o6o60BtZWZ9evge3CnEHoL2cTMTm05s7t9sfIp5GTRjr4NPG5m/c3slx243VR6SybSkSRVAtcAH4m/517fRrSzM9+uJE2mtQnwQ2B/4F/A88AvzKwfoVbhCfGL1c/M/ly6UPPr4BNp0ihgqpk1dtL2O0R7HN8i1zEKeK2t23bdyhCgD93oc4+D5aY5n7o2avUgm9kyYDowA5gHbA0c3EqyKkm3xiKd1yTtlZkhabikv0paKGlGviIfSX+UdIOkR+K6npA0KjHfJF0gaRowLTFtm/i6RtLVkmbF4runJdXEeftJelbSMkmTJB2aJ44dYpHesrg/J8bplwM/AE6PV5pfaJHuGOC7ifmTErNHSXom7tfDkgYn0hUS24ckvRTXc6ekv0j6UZy3wVVAi+NzfCx6WyFpjqTLEstlrqq+IGk28F9CRRwIo1evlLR/XPbzkqZIWirp3619Rln24cR4XJfF47xDnP5f4DDg13F7Y1qkO0zSq4n3/5H0YuL905I+lkiyu6RX4nfhTkl9Est+VNLEGMOzknZNzLtU0tvxGL8u6eNx+g7ADcD+Mb5lOfbvc/H41EmaLuncxLxDJb0j6RuS3pM0T9LnEvM3kXR//IxeJPz+spJ0i6RvxNebx2N/fny/jaQlCgZKelDhN7g0vt4isZ4tJT0Z4/2PpN8oUVqQ7/sZv3PTY9oZylH6Iqla0rWS5sbHtXHaGODNuNiy+B3IK9/xTSzzXUmLFIrrzkhM30jhXLVQ4TzxPcXMRy1KSdSipCF+V38s6RlgFZDrtsTe8XuzVNLNme+dpMmSTkisvzLGuHuL2GuBh4DhWleqNTzObvO5Nn7eyxL7/XtJ7yXm/0nSRYnj9Yf4PX1X0o8U+qbNLJvzXNBimx9WOOccluOY5WZmeR/A28A/ge8ABwFViXkzgSNbLH8Z8AFwHFAO/B/wfJxXBkwgnOirCB/ydODoHNv+I1BHyCSrgeuApxPzDXgEGATUJKZtE1//BnicUPuxHDggrmdzYHGMsQw4Kr7fNEsMlcBbhMynCjg8xrRdYn//lOf4bTA/xvQ2MAaoie+vjPMKia0KmAVcHOM8BVgD/CjO/2zyeGU5PocCu8Tt7EroX/Jjcd7ouOytQG2MMzOtIrG+j8XjswOh3d/3gGfzfUYt4hkDvB/3s5JQHPgW8XsWj80XcxzbPsBqYHDc9nxgLqGNYU2ct0niu/oiMDzGMgU4L87bA3gP2Dd+T86Oy1fH+afGdGXA6THeYbmOcZY4jydkNgIOIZzg9kh8Bo2E0ozK+LmvAgbG+X8B7oqfwc7Au7m2B3weeCC+/jThO3ZnYt598fUmwCeAvvFY3Q3cm1jPc8DPCd+vDwMriN9h8nw/Y4wrWPfbGAbslCPWHxJKbTaLaZ8Frmjx3avIkXa9+SmP7zWE3/4h8fPLxHgrcF88DqOBqcAXsv12s2z3cUJp006E719lllhnApOBEYTv3TOs+31+O/P5xPcnAa/m2OdDgXdKeK6dDewZX78Zl90hMe9D8fW9wO/iZ70Z4Td1bgHngm2Aowk9Le2T73eT8/fU6gJQlmfeTLJnWv9JvN8RWB1f7wvMbrH8d4Cbc6z/j8BfEu/7ETrtHZE4CIe3SJM5MGWEk9ZuWdZ7CXBbi2n/Bs7OsuxBhJNhWWLaHcBl2b7YWdJvMD9+2b+XeH8+8K8iYjuYcJJWYtqzpMy0sqzvWkLRL6z7gW6V60cbpz1E/JEnfiyrgFG5PqMW2/w+cFeL9O8ChyaOVdZMK85/CjgZ2A94mHCCP4ZwhfZKi+/qmYn3VwE3xNfXE0+YiflvAofk2OZE4KRcxzjFb+pe4Gvx9aHxe5o8pu/F/Skn/AnZPjHvJ7m2RzhxL4vH8AZCTd934rxbgK/nSLc7sDS+Hkk4yfdNzP8T6zKtnN9PwolsGSFD3OAPSos0bwPHJd4fDczM9T1rkba1+S2PbyNQm5h/V/zelRN6+dkxMe9cwj1USJdp/bCV/ZxJ/HMU3x8HvB1fDyf8AR4Q398DfDvHeg4le6bVXufa24CvA0MJ3/2rgPOALRPfqSHxeNUk0n0KeMzSnwu+Q/ijvUshv5nkI03xYDGjFM9PvF4F9ImX1KMIl7jLMg/CFcyQPOuak4hlJbCE8GFvML+FwYR/4m9nmTcKOLVFHB8m/DNsaTgwp8VxmEX4x9kWLY9RvyJje9fiNyIRWyqS9pX0WCw+WE74kg5usViu45sxCrguEesSwj/e5PHJt47hyZjjcZ5D+uP7BOEHfXB8/Tjh3/Qh8X1SvmP+jRbHfESMDUlnaV3R4TLCFU/L45STpGMlPa9QPLeMcOJKpl9s698TzcS2KeEfa/L45fx8zextYCUhEzqIUNN3rqTtSBwPSX0l/S4Wh60gFPtuHIt5hgNLzGxVYtXJ7ef8fprZ+4Qr0fOAeZL+oTAWXzbrfe7x9fAcy+aV4vgujbG13NZg1pVWJOcV8ttu7ffRcpm1+2lmcwlXXp+QtDFwLFBovYD2Otcmf0dPsv7v6Kn4uxxFKA2Yl1jn7whXXJDuXHAR4U9q0W19O/rG4RxghpltnHj0N7Pj8qQZkXkhqR/hEntuYr5tkCJYRLh0znYPYA7h32IyjlozuzLLsnOBEVr/JutIwtVAGrniy6WQ2OYBm0tSi9gy3icUAQEgaWiL9LcD9xOuXDci/DtXi2Usx+tkvOe2iLfGzJ5tJV3GXMKXPROjCJ952uPbMtN6gtyZVi5zgB+32Ie+ZnZHLJO/EfgKoahxY0JxT+Y45f18JVUDfyUUtw2J6f/Jhsc5m4WEq4QRiWkjcyyb8QShmLjKzN6N788CBhKuECE0YdmOMHrDANbdoxbhOzVIUt/EOpPbz/v9NLN/m9lRhD9ZbxCOXTbrfe5xv+bmWDanlMd3YLwv1HJbiwhXsi3jyHz31vv9EK5CWkrz+275+SX38xbgTEIR9HPxM8ummPNIIefaJwh/dA6Nr58GDmT939EcwpXW4MQ6B5jZTon5rZ0LTgU+lrlHVoycmZakr8XnA4tdeRYvAiskXaJQSaJc0s6S9s6T5rh4064KuAJ4wcxa/XcT/xncBFwTb0iWS9o/fsn/BJwg6eg4vY/CDfEtsqzqBcKX99vxRumhwAmEew1pLABGK33NokJie45wUvuqpApJJwP7JOZPAnaStLvCzd/LWqTvT/hX/YGkfQj3QfJZCDSz/g3nG4DvSNoJ1t6o3aDqfx53AcdLOkKhqvM3CD+MZ/MnW+tZwgl4H+BFM3uNcBLal3UVR1pzI3BevPKUpFqFSir9CUVeRth3FCpJ7JxIuwDYIn4/s6ki3EtZCDRKOhb4SJqgzKwJ+BtwWbw62pFQDJfPE4QMNrPvjwMXEooUm+K0/oQiyWWSBhHGy8tscxYwPm6zSqGyzdrKAuT5fkoaolCpppbwGa4kFOdncwfwPUmbKlRC+kFcd6HSHt/L4/4cBHwUuDsej7uAH0vqH/+gfD0Rx0TgYEkjJW1EKNoqxgXx+AwiXO3cmZh3L+Ge6tcI99dyWQBsEuNIo6BzrZlNI3wnzgSeNLMVcZufIGZaZjaPUAR/taQBksokbS3pkLiaNOeCucARhHPW+Sn3ZT35TqSZGky/KmbF2cQvyQmE4osZhH86vwfyfRC3E35US4A9gULagn0TeJXQBdUS4KeEe1NzCDc9v0v4ss8BvkWW42FmDcCJhEv3RcBvgbPM7I2UMWQaHC+W9FJrCxcR28mE+ypLCUUzf0vMn0q44f0fQs29lu2Jzgd+KKmOcNK4q5XYVgE/Bp6JRQD7mdnfCcf1L7GoaTLhWKViZm8Sfii/IhzfEwjNKBpSpn8feAl4LZHmOWCWmb2XO+V66xgPfAn4NeE4vkU4ppjZ68DVcZ0LCBVXnkkk/y+havZ8SYuyrLsO+Crh2C4l/DG4P01c0VcIRYXzCfd4b25l+ScImVIm03qacLWQzMCvJVRUWUSoDPGvFus4g9DEZTHwI8JJtj7uT77vZxnhT8dcwu/tEMJ3LJsfETLHVwi/0ZfitIKkPL7z47y5hOK38xK/3wsJf0qnE47V7YQ/u5jZI3HfXyFUaniw0Pii2wkn++nxsXY/zWw14UpxSxK/3Sz7+QYho58ef3t5i1KLPNc+QSiqnp14L+DlxDJnEf4ovE44pvcQb12kPRfE9R8BXKIiOlnINzTJHYQv7qasf19IYbtW8pGLJf2RcPPxe6XeVk/hx8y1N0l3Am+Y2dhWF3YFk/QDYIyZndnZsXQHORt7mtmn4j2QfxOuNJxzvUAsQlpC+If+EcKVVbZ7qq6NYpHhF4DPdHYs3UXe+yxmNt/MdiPcnO0fH3NjubdzrmcaSrgXthL4JfBlM3s5bwpXMElfIhSvPmRmae+/dghJNyk0dp+cmDZIoaOHafF5YGLedyS9JelNSUeXNLZcxYOJYA4h3CCcSSgaHEFoM9SlDrJzzrn2Ielgwp+WW81s5zjtKkLFrSslXUpoAH9JrCB0B6Ey1HDCPfQxiYo/7SpNjbZMx5WHmNnBhEaAvyhFMM455zpfvChZ0mLySYQq+sTnjyWm/8XM6s1sBqEi0z6USJpMqzLW8ALW1kirLFVAzjnnuqQhsdp7pvp7plHx5qzfgPod2t75Qk5pet0eL+kPhG4+IFSHnVCqgApRVlZmNTU1nR2Gc851K6tWrTJCM4OMcWY2rsjVZWsoX2hj6NTSZFpfJgz6+FVCcE8S2ip1upqaGt5///3WF3TOObeWpNVmtlfrS65ngaRhZjZP0jBCH5kQrqySvX5sQRG9m6SVpu/BejO7xsxONrOPm9kvzKy+VAE555zrku5nXY8sZxN6x89M/6TC0DJbAtsSeuQoic4aONE551wXFTuXOBQYrDBi8lhCW727FMYNnE3oRxAze03SXYReMhqBC0pVcxBSVHnvympra82LB51zrjCSVplZbetLdj15iwdjJ4s/K2bFXblxmnPOue6ptR4xmoA9JaUZRqGlPxIG40u6FHjUzLYFHo3viY3TPkkYAfQY4LdKDOHsnHPOQbp7Wi8D90m6m9AbMgBmlrNH4jj/SUmjW0w+iVBOCqFx2uOEkVDXNk4DZkjKNE57LkV8zjnneok0mdYgwhAFhyemGXm60c9jvcZpkpKN055PLJezcZqkc4BzAKqqcg1h5JxzridqNdMys8+1tkw7SN04LTaAGwehIkYpg3LOOde1tJppSRoDXE+4StpZ0q7AiWZW8IBtdJHGac451xkuv/zyrNPHjvWhytJK0/fgjYRhptcAmNkrhEoTxegSjdOcc851T2nuafU1sxdbVCBsbC1RV26c5pxzrntKk2ktkrQ18R6TpFMIg0LmZWafyjHriBzL/xj4cYp4nHPO9VJpMq0LCBUftpf0LmEI7jNKGpVzzjmXRZpMy8zsSEm1QJmZ1cX7Ts4551yHSlMR468AZva+mdXFafeULiTnnHMuu5xXWpK2J3SrtJGkkxOzBgB9Sh2Yc84511K+4sHtgI8CGwMnJKbXAV8qZVDOOedcNjkzLTO7T9KDwCVm9pMOjMk555zLKk0v70d1UCzOOedcXmlqDz4r6dfAnazfy/tLJYvKOedcjyNpC0KPSgcBw4HVwGTgH8BDZtbc2jrSZFoHxOcfJqYZ6/f67pxzzuUk6WbC6B0PAj8l9D3bBxhDGEfx/0m61MyezLeeNL28H9b2cJ1zzvVyV5vZ5CzTJwN/k1QFjGxtJWmutJB0PKH6+9qq7mb2w9wpnHPOuXUyGZakPc1sQnKepBPM7AHgrdbW02rjYkk3AKcDFxLGvToVGFVM0M4553q9GyXtknkj6VPA99ImTtMjxgFmdhaw1MwuB/Zn/bGvnHPOubROAW6RtIOkLwHnAx9JmzhN8eDq+LxK0nBgMeB9DzrnnCuYmU2X9EngXmAO8BEzW91KsrXSZFoPStoY+BnwEqHm4O+LCdY551zvJOlV4hBX0SCgHHhBEma2a5r1pKk9eEV8+dfYQ0YfM1teaMDOOed6tY+2x0pazbQknZVlGmZ2a3sE4Jxzruczs1mZ15I+DGxrZjdL2hTol3Y9aYoH90687kMYefglwDMt55xzBZE0FtiL0Cn7zUAl8CfgwDTp0xQPXthigxsBtxUcqXPOOQcfBz5EuPjBzOZK6p82cZoq7y2tArYtIp1zzjnXYGZGrJQhqbaQxGnuaT3AuhofZcCOwF0FBumcc84B3CXpd8DGsZ3W54Eb0yZOc0/r54nXjcAsM3unsBidc845MLOfSzoKWEG4r/UDM3skbfo097SeaEN8zjnnXEtTATOz/0jqK6m/mdWlSZimeLCO9RuErZ0VNzqgsFidc871VrFI8BxC4+KtCcOV3EComd6qNMWDvwDmE2oMCjgD6G9mVxUTsHPOuV7tAmAf4AUAM5smabO0idPUHjzazH5rZnVmtsLMrgc+UVyszjnnerl6M2vIvJFUQfbSvKzSZFpNks6QVC6pTNIZQFMRgTrnnOsmJF0s6TVJkyXdIamPpEGSHpE0LT4PLGLVT0j6LlATK2TcDTyQNnGaTOvTwGnAgvg4NU5zzjnXA0naHPgqsJeZ7Uzo2PaTwKXAo2a2LfBofF+oS4GFwKvAucA/KWA8rTS1B2cCJxURmHPOue6rgnA1tAboC8wFvgMcGuffAjwOXFLgeg8F/mxmqdtmJRXTI4ZzzrkezMzeJbTRnQ3MA5ab2cPAEDObF5eZB6SuQJHwWWCipOckXSXphEKKGT3Tcs653qdC0vjE45zkzJiJnEQY8Hc4UCvpzPbYsJmdZWZjCBX63gF+QyguTBd4awtIKjczr3jhnHM9R6OZ7ZVn/pHADDNbCCDpb8ABwAJJw8xsnqRhwHuFbjhmfgcBuwCLgF8DT6VNn6ad1luS7gFuNrPXCw3QOedctzMb2E9SX2A1oeHveOB94Gzgyvh8XxHrvhZ4m9Cg+LFYbyK1NMWDuxK63Pi9pOclnSOpTb1glLAqpXPOuTYysxeAewjDh7xKyCvGETKroyRNA46K7wtd92BCJ7l9gB9LelFS6uGuFHqIT7mwdDBwB7AxYYeuMLO3Cgk4VqV8GtjRzFZLuotQ5XFHYImZXSnpUmCgmeWtlVJbW2vvv/9+IZt3zrmSu/zyywtafuzYsSWKJDtJq8ysoCFB2nHbAwgDPh5CKCYcDDxvZmenSd/qlVZsVHyipL8D1wFXA1sRGoP9s8i4M1UpK1hXlfIkQhVK4vPHily3c865rutp4ATgFeB0M9subYYF6e5pTQMeA35mZs8mpt8Tr7wKYmbvSspUpVwNPGxmD0taryplrr6oYi2XcwCqqqoK3bxzzrlOZGa7tiV9mkxrVzNbmWPjXy10gy2qUi4D7i6kKqWZjSOUrVJbW5u+bNM551y3lybT2kzSHcD+QDPwHHCxmU0vcpslq0rpnHMdrdD7V65t0tQevB24CxhKaGR2N6EyRrHWVqWUJEJVyinA/YQqlFB8VUrnnHNdmKRBbUrfWu1BSS+Y2b4tpj1vZvsVvVHpcuB0oBF4Gfgi0I+QOY4kZGynmtmSfOvx2oPOuc5WyiutUtUq7OTag9OAicDNwENWSBV28hQPJnLDx2IV9L8Qxjw5HfhHceEGZjYWaPlp1JNy5ErnnHPd1hjCbaLPA7+SdCfwRzObmiZxvntaEwiZlOL7cxPzDLii8Fidc871ZvHK6hHgEUmHAX8Czpc0CbjUzJ7Llz5npmVmW7ZrpM4553o9SZsAZwKfIYzReCGhTsPuhDoTefOeNLUHnXPOufbyHHAb8DEzeycxfbykG1pL7JmWc86l4FXb2812ZmaSBkjqb2Z1mRlm9tPWEvt4Ws455zrSnpJeJXTjNFnSJEl7pk2cpu/BAyXVxtdnSrpG0qji43XOOdeL3QScb2ajzWwUcAGh+nsqaa60rgdWSdoN+DYwC7i1mEidc871enVmtnbQRzN7GqjLs/x60tzTaozljycB15nZHySl7pHXOeeck7RHfPmipN8RelbKtP19PO160mRadZK+Q6iieLCkcqCysHCdc871cle3eJ/sYCJ1rxhpMq3TgU8DXzCz+ZJGAj9LuwHnnHPOzA5rj/W0mmmZ2XzgmsT72fg9Leecc52g1UxLUh0bXrotB8YD32jDECXOOedcQdIUD14DzCUMUSLgk4RhSt4kVF08tFTBOeecc0lpqrwfY2a/M7M6M1sRRw4+zszuBAaWOD7nnHM9iKRTJfWPr78n6W+JmoWtSpNpNUs6TVJZfJyWmOfD3TvnnCvE982sTtKHgaOBWwjtgVNJk2mdQeiN9z1Cj7yfAc6UVAN8pfB4nXPO9WJN8fl44Hozuw+oSps4Te3B6cAJOWY/nXZDzjnnHPBubFx8JPBTSdUU0A9umtqDmwJfAkYnlzezzxccqnPOud7uNOAY4OdmtkzSMOBbaROnqT14H/AU8B/WXdY555xzxehD7LZJ0iCgHngsbeI0mVZfM7ukqNCcc8659b0EjACWEppRbQzMk/Qe8CUzm5AvcZpyxAclHdfmMJ1zzjn4F6HZ1GAz2wQ4FrgLOB/4bWuJ02RaXyNkXKslrZBUJ2lFm0J2zjnXW+1lZv/OvDGzh4GDzex5oLq1xGlqD/ZvW3zOOefcWkskXQL8Jb4/HVgaRxBpbi1xzkxL0vZm9kaulspm9lIx0TrnnOvVPk0YluRewj2tp+O0ckLNwrzyXWl9g1DVveUYKBB6wji80Eidc871bma2CLgwx+y3WkufM9Mysy/F53YZA8U555yTNAb4Jhu2/U11IZSvePDkfAnN7G/pQnTOOefWuhu4Afg9RbT9zVc8mKvrJgjFg55pOedcDyVpY0LGsjPhnP95wpBUdxKukmYCp5nZ0gJX3WhmqTvIbSlf8eDnil2pK9zll1++wbSxY8d2QiTOOQfAdcC/zOwUSVVAX+C7wKNmdqWkS4FLgUI7n3hA0vnA3wm9YQBgZkvSJM5XPPj1fAnN7Jq0ETrnnOs+JA0ADgY+C2BmDUCDpJNYN/DvLYTumArNtM6Oz8n+Bg3YKk3ifMWD3j7LOed6p62AhcDNknYDJhA6mhhiZvMAzGyepM0KXbGZbdmWwPIVD25YXuWcc64nqJA0PvF+XByVfu18YA/gQjN7QdJ1hKLAokk63Mz+m6uSX9rKffmKB79tZldJ+hVZRig2s6+mjnbDdZfqBp9zzrnWNZrZXnnmvwO8Y2YvxPf3EDKtBZKGxausYYTBgdM6BPgv2Sv5pa7cl694cEp8Hp9nmWKV6gafc865NjKz+ZLmSNrOzN4EjgBej4+zgSvj830FrHNsfG5TJb98xYMPxOdb2rKBlkp8g88551z7uBD4c7ywmA58jtDJ+l2SvgDMBk5Nu7L2qtyXZuTiNrVezqJkN/icc861DzObCGQrQjyiyFW2S+W+NINAtqn1co5tFn2DT9I5wDkAVVVV7RCOc865Umuvyn1pMq02tV7Ook03+GINl3EAtbW1G1QQcc451/VI+mW++Wkr9+WrPTgovmxT6+UsgbX7DT7nnHNd3oT2WEm+K60JhGqIiu+Lar2cQ7ve4HPOOde1tVelvny1B9vUajmfEtzgc84514VJutbMLpL0ANnb/p6YZj1pag+eSmhTVSfpe4RKFFeY2cuFBu2cc67Xui0+/7wtK0lTEeP7Zna3pA8DR8cN3gDs25YNO+ec6z3MbEJ8fqIt6ylLsUyqHDrWAAAgAElEQVSmmvvxwPVmdh/gdc2dc84VTNKBkh6RNFXSdEkzJE1Pmz7Nlda7kn4HHAn8VFI16TI755xzrqU/ABcTKvu168jFGacBxwA/N7NlsQ3Vt1pJ45xzzmWz3MweKjZxq5mWma0i0ftu7GppXrEbdM451/tI2iO+fEzSzwj5SrLt70tp1pPmSss555xrq6tbvE82ezIgVX+2nmk555wrOTM7rD3W45mWc851UZdfnruP2bFjx3ZgJO1H0teAm4E64EZC299LzezhNOlbrQUo6WRJ0yQtl7RCUp2kFW2K2jnnXG/1eTNbAXwE2IzQjd+VaROnudK6CjjBzKa0uqRzrcj1z7G7/mt0zhUs05/tccDNZjZJkvIlSErT3mqBZ1jOOefayQRJDxMyrX9L6g80p02c5kprvKQ7gXtZv3ri33Incc4557L6ArA7MN3MVknahFBEmEqaTGsAsIpQ/phhJNpuOeecc2mYWTPwUuL9YmBx2vRpGhenzgGdc865Uso3cvG3zewqSb8i+9gnqYZGds4559pLviutTOWL8R0RiHM9ideSdC43SeXAEBJ5kJnNTpM238jFD8Tndhki2TnnnJN0ITAWWMC6WoMG7Jomfb7iwXHAr8zs1SzzaoHTgXoz+3OhQfck/o/aOecK8jVgu1gBo2D5igd/C3xf0i7AZGAh0AfYllCj8CagV2dYzjnnCjYHWF5s4nzFgxOB0yT1I/TGOwxYDUwxszeL3aBzzrlebTrwuKR/sH7b32vSJE5T5X0l8Hix0TnnXHeSr5Na1y5mx0dVfBTEe3nvYP6DcK7tsv2O/D5y92BmbToJeqbluh2v/OJc9yPpWjO7SNIDZG/7e2Ka9bSaaUk61czubm2ac851Rf4np8u4LT7/vC0rSXOl9R2gZQaVbZpzzjmXlZlNiM9PtGU9+dppHUvoOn5zSb9MzBoANLZlo12Z/yvLzo+Lc64tYrHgOOBfZramxbytgM8CM83spnzryXelNZfQhdOJwITE9Drg4iJids4513t9Cfg6cK2kJaxr+zsaeBv4tZnd19pK8rXTmgRMknR7y1zROdcxvJZcel4zt2szs/nAt4FvSxrNura/U81sVdr1pLmnNVrS/wE7EnLFTABbFRKwc845B2BmM4GZxaQtS7HMzcD1hPtYhwG3sq4WiHPOuR5KUrmklyU9GN8PkvSIpGnxeWBHx5TmSqvGzB6VJDObBVwm6SlCL73OdVteuaTr8yK/Tvc1wjBVA+L7S4FHzexKSZfG95d0ZEBprrQ+kFQGTJP0FUkfBzYrcVzOOec6kaQtgOOB3ycmnwRkhqu6BfhYG7cxUFKqIUky0lxpXQT0Bb4KXEEoIjy78PDWFwcBGw+8a2YflTQIuJNQk2QmcJqZLW3rdtqL/+MrLa9w4Dqa/6ZbdS2h4kT/xLQhZjYPwMzmSSr4AkbS44Ra6RXARGChpCfM7Otp0qfpMPd/cUNmZp8rNMA8utxlZ3vyH4RzrgurkJQclX6cmY3LvJH0UeA9M5sg6dB23vZGZrZC0heBm81srKRX0iZO043T/sAfgH7ASEm7Aeea2fnFRpy47Pwxod4+hMvOQ+PrWwg9y5c00/KMxTnXSzWa2V555h8InCjpOEKt8QGS/gQskDQsXmUNA94rYtsVMe1pwP8rOHGKZa4Fjgbuh9B+S9LBhW4oyzrb/bLT9Sz+p8K5zmFm3yF010e80vqmmZ0p6WeE20NXxudWGwNn8UPg38AzZva/2BvGtLSJU/XybmZzJCUnNRUUYkJbLzslnQOcA1BVVfBQLM61K89YXS9zJXCXpC8QxsQ6tdAVxM7W7068nw58Im36NJnWHEkHACapilAhY0qhgSa06bIzlruOA6itrd2ge3vnnHPtx8weJw4EbGaLgSPasj5JYwhtf4eY2c6x9uCJZvajNOnTZFrnAdcBmwPvAA8DFxQZb6kvO10X4VcgXYe3R3NdzI3At4DfAZjZK5JuB9on0zKzRcAZbYkwpTZfdjrnnOvy+prZiy1uOaUeOSRN7cFNCb3zjk4ub2afTx9jdu192emcc67LWyRpa+LoxZJOAealTZymePA+4CngP7ShAoZzzjlHuL00Dthe0rvADODMtInTZFp9zazbNvJ1zu+vOdd1xNqCR0qqBcrMrK6Q9GkyrQclHWdm/ywqQueccy6S9PUW7wGWAxPMbGJr6XNmWpLqCGWOAr4rqR5YE9+bmQ3IldY555zLYa/4eCC+Px74H3CepLvN7Kp8ifONXNw/1zznnCuGV793wCbAHma2EkDSWOAe4GBgAlBcppUh6VZCRYynzOyNNofrugw/gWTnPc47V1IjgYbE+zXAKDNbHUv08kpzT+uPwIeBX8U+oiYCT5rZdUUE65xzrne7HXheUqYDiROAO2LFjNdbS5ymcfF/JT0B7E0YS+s8YCdCLxnOOedcamZ2haSHCF36CTjPzDLDpLTakUWa4sFHgVrgOUIx4d5mVkx39M455xxmNl7SbEL/s0gaaWaz06RNUzz4CrAnsDOhWuIySc+Z2epiA3ZtU+i9qELbKRWyvLeB6nh+L9J1Z5JOBK4GhhM6Rh8JvEEowWtVWWsLmNnFZnYw8HFgMXAzsKzYgJ1zzvVqVwD7AVPNbEvgSOCZtInTFA9+BTiIcLU1C7iJUEzonHPOFWqNmS2WVCapzMwek/TTtInTFA/WANcQWiun7onXdbzeXlTXnfe/K8XuxY+lo6YmBi9ezJD58+m7ejUv7rtvZ4fUGZZJ6gc8CfxZ0nu0Zy/vZvazNgTnnHO91kZLlzJm6lSGzp/P0Pnz2XThQiobw/l5Zd/+PL/PAZSp1/VDfhKwGriYUFtwI+CHaROnudJyzrmClLLyT1dXWV/PjlOmsNvEiWw5cyYAdbUDmDFyO8bvchizRmzL9JE7MG/ISLZc9Cx9Gld2bsAd73RCZxXTgFsKTZyv78FqM2u1dbJzzvV6zc2MmjWL3SdOZIcpU6huaGD+ppvzl5PO4an9jmXBZiNg/UEPKWte00nBdrrRwJmSRgPjWdfjUqud5UL+K63ngD0k3WZmn2ljkM45etYVhYOBixez26RJ7DbpFTZevozVfWp4at9jefyA43ljzB4bZFQOzOwHAJJqCAMMfwu4FihPkz5fplUl6WzgAEknZ9nw3woP1znnurfqDz5gx9deY7dJkxg1ezbNEq/suA9PnHYcL+xxBA3VNZ0dYpcm6XuE3jD6AS8D36SAGun5Mq3zCDfJNib0DZVkgGdaznUhfhVXeju9+iofffBB+tTXM3fISP588vk8sf9xLNlkWGeH1p2cTKgt+A/gCeB5M/sgbeJ8Q5M8DTwtabyZ/aHNYTrnXDdVsWYNx/zrX+w5YQJTt9qZP55+MVO32c2L/4pgZntI6k/oiP0o4EZJC8zsw2nSp6k9eJukrxLGOoGQM95gZr32LqJzrvfYZNEiTrn7boYuWMC9x3yGO06+gKaKys4Oq9uStDOhw4pDCINBzqGdigczfgtUxmeAzwDXA18sKFLnXI/T04skd3nlFY5/8EEaKvvwk69ew0u7H9LZIfUEPyVc/PwS+F+hF0BpMq29zWy3xPv/SppUyEZccXr6CaE78c+idx2DsqYmjvvnP9lzwgSmbLsb137pRywePLyzw+oRzOz4tqRPk2k1SdrazN4GiANB9rom3M653qF8zRpOuecetn/zTf5+7FnccfIFNJd7PwxdRZpP4lvAY5KmEwbsGgV8rqRROedKrjddOaVVVV/PJ++4gy1nzuT3n/4W/zryk50dkmshTd+Dj0raFtiOkGm94T1lOOd6mpr33+eMP/+ZofPnc90XL+epAz7a2SH1SJJ2NrPJxaZPdc0bM6lXit2Ic851Zf1XrOAzt97KxsuW87Pzr2L8Hod1dkg92Q2SqoA/ArebWUHjM7Y6CKRzzvVkAxcv5nM33US/uvf50UXXeYZVYrE91hnACGC8pNslHZU2fd4rLUkCtjCzOW0L0znnup7t3niDE++7j6aySi771vW8vdUunR1Sr2Bm02J3TuMJVd8/FPOb77bWRWDeTMvMTNK9hFGLnXOuRyhrbOSoRx5hvxdeYPqo7bjm3P9j/tBRnR1WryBpV0JlvuOBR4ATzOwlScMJHbUXn2lFz0va28z+1+ZonXOuk228dCmn3H03m8+dyz8PP41bT7uIxqrqzg6rN/k18HvCVdXqzEQzmxuvvvJKk2kdBpwnaSbwPqEGoZnZrsXF65xznWOH11/nhPvvx1TOz758JS/snfpWSq8iaQRwKzAUaAbGmdl1kgYBdxLGxJoJnGZmSwtZt5kdnGfeba2lT5NpHVtIQM4519X0X7GCwx99lN0nTeKt0Tvwi3N/woIhIzs7rK6sEfhGLLbrD0yQ9AjwWeBRM7tS0qXApcAlaVYo6VXCCCEbzKKAC6E07bRmSfowsK2Z3SxpU8I4KEUpZQ7unHNJlfX1HPjMM+z/3HOo2fjbcZ/lrpPOpbGyqrND69LMbB4wL76ukzQF2Bw4CTg0LnYL8DgpMy2gXRq+tZppSRpL6Il3O+BmQue5fyIM4lWMds/BnXMuSc3N7D5xIof997/0X7mSZ/Y+kttPvsCvroogaTTwIeAFYEjM0DCzeZI2S7seM5sV13esmT3UYhvnATekWU+a4sGPx4BfihueGzObopQoB3fOOSrr69lhyhT2f+45hi5YwNStd+b/LryIqdt+qLND62oqJI1PvB9nZuNaLiSpH/BX4CIzW6H2GT/s+5Lqzey/cRuXEM797ZZpNcSq7xY3UFtspC21Vw7unOvFmpsZNWsWu02axI6vv051QwNzh4zg6vN+wnN7f8QHasyu0cz2yreApEpChvXnRNupBZKGxXP0MOC9IrZ9IvCgpG8BxwDbx2mppMm07pL0O2BjSV8CPk+ortgmxebgks4BzgGoqvJyaed6q8ELF7Lz5MnsOmkSA5ctY3WfGp7a91geP+B43hizh2dWbRAb+v4BmGJm1yRm3Q+cDVwZn+8rdN1mtkjSicB/gAnAKWaWrYJGVmkqYvw8drGxgnBf6wdm9kihgSa1JQePl7DjAGpra1PvqHOu+9tk0SJ2eu01dnztNYa89x7NEq/usDe3nno8L+xxBA3VNZ0dYk9xIGHA31clTYzTvkvIrO6S9AVgNnBq2hVKqmP92oNVwFbAKZLMzAakWU+aihg/NbNLCC2XW04rWClzcOdcz9Ovro7dJ05kp8mTGbpgAc0Sb26zG/844kye2/NIlg4a0tkh9jhm9jShKno2RxS5zqLrQiSlKR48ig0rRBybZVpa7Z6DO+d6GDNGz5jBXuPHs/0bb1De3Mwb2+zKQ4edwXN7HcGSQUM7O0JXpHjhcgawpZldEZtBDTOzF9Okz5lpSfoycD6wtaTksCT9gWeKDbgUObhzrmfos3o1u02cyF7jxzN48WJW1vbnH0d+iocP/Tjzh27Z2eG59vFbQhvdw4ErgJXAb4C90yTOd6V1O/AQ8H+ENlMZdWa2pKhQnXOuhYGLF7Pd1KlsO3Uqo2bNory5malb7cRfTvoKz+7zERqq+nR2iK597Wtme0h6GcDMlsbxtVLJmWmZ2fJ442yXTKMw55xrq/I1axgxZw7bTpvGmKlTGbx4MQBzhm/J/Ud/hmf3PpIZo3fs5ChdCa2RVE6slBF7WWpOm7i1oUmaJU2SNNLMZrctTudcb6SmJobPm8eW06ez5YwZjJgzh8rGRhrLK5i8/Z7c/5GzGb/bwby32YjODtV1jF8CfweGSPoxcArQau/uGWkqYgwDXpP0IqGXdwDMLHVjMOdc71DW1MQmixYxdP58hs6fz5AFC9j83XfpU18PwKwttuHfh53KqzvsxWvb7c0HNe3WV4HrJszsz5ImEOowCPiYmU1Jmz5NpnV5scE553qu6g8+YMiCBesyqPnz2XThQiobGwFoqKhkzuZb89R+xzF5uz14dcf9WDFgUCdH7bqIwcCqTCfskrY0sxlpEqZpXPxEm8NzznVPZvRdtYpNFi9e91i0iCELFjBo6bpBGJb335hZI8bwv12PYNaIbZg+cgfmDhtNc3ma/8WuN2lrJ+xpGhfvB/wK2IHQgrkceD9t62XnXNelpib619UxYMUKNlqxggHLlzNgxYrwfvlyBi1ZQs0HH6xdvrG8ggWbbs6UbfZi1ohtmDFiDDNG7cCyjQZ7t0kurTZ1wp7mb9CvgU8CdxNyx7OAbQuP0znXGSrr6xny3nsMnT+fQYsXr82Q+tfV0b+ujrIW3b6trq5h8aAhLBo4gslj9mfekBG8O3QUc4dtycJNhvnVk2urNnXCnurbZ2ZvSSo3sybgZknPFhGoc67Eypqa2GLOHEbNns2Q+fMZMn8Bg5YuWZsxfVDVh8WDNmPxwOFMGzUkvt6MRYOGsmiTYSweNIRVNf38qsmVUrZO2G9MmzhNprUqNvyaKOkqwlhYXuXHuS5io6VL2ebtt9n6rbfYcsaMtTX15m+6OW+N3pVZB23LjBFjmDlqexYNGuoZkutUbe2EPU2m9RnCfayvABcDI4BPFBGrc64dVDQ0MHrWLLZ+6y22eettBi9eBMDCTYbw5H7HM2mnfXh1x/1Y1bdd+id1rl1IuojQBeDLMZMqarSQNLUHM71hrMarvzvXKQYvXMg206axzVtvMXL2bCobG2morOK17fbkgaM+w8u7HMDcoVv6VZTryrYArgO2j/3ZPkvIxJ4rpGvANLUHZ7D+GCgAmNlW6WN1zhWq78qV7PLqq+w+cSJDFywA4J1ho/nX4acxcad9mbLdXt4vn+s2zOybAPF2017AAcT7WZKWmVmqvrvSFA8mh2TuQxgyxFsIOlcCZY2NjJk6ld0mTWLbadMob27m7VHbc9OnzuTFDx3KosHDOztE59qqBhgAbBQfc4FX0yZOUzy4uMWkayU9DfyggCCdc7mYMWzevLUDHdauWsXSjTbhwY98msf3P545I8Z0doTOtZmkccBOQB3wAqF48BozW5o3YQtpigf3SLwtI1x5+R1e59qoX10du7zyCrtPnMhmCxeypqKS/+1+CI8feBwTdz7Q20O5nmYkUA1MA94F3gGWFbqSNL+KqxOvG4GZwGmFbsi53qyssZFNFy1iSOynb9i8eYyYM4fy5mbe3Hpn7j3m8zyz99G832+jzg7VuZIws2PiqMU7Ee5nfQPYWdISQmWMsWnWk6Z48LA2RepcL9Nn9eq1mVOmp/NNFy6koqkJgPrKamZvsTX3HXMWjx94PHOHeZ0m1zuYmQGTJS0DlsfHR4F9gPbJtCR9vZUgrkmzIed6FDNqVq1icKIj2cELFzJkwQIGLltX4rF0wCBmjRzD8x/6CLNGbMv0kdszf+gomsvKOzF45zqepK8SrrAOBNYQq7sDN9GeFTEI97D2Bu6P708AngTmFBCvc92KmpupXblybSeyG8VOZAcsX762I9m+q1evXb6xvIL5m23B5O32ZdYW2zBj5BhmjtyB5Rtt0ol74VyXMhq4B7jYzOYVu5I0mdZgYA8zqwOQdBlwt5l9sdiNOldSzc1UNDVRuWYNFWvWULlmDZWNjeE5x7R+K1cmejivo3/dCsqb1x8BvL6ymsWDNmPRoOG8tu1+zBsygrlDRvLu8K28I1nnWmFmeUvt0krzKxsJNCTeNxByTOeyM6OsqYnypiYqmpoob2ykorGRiqYmKhob174vb2qirLmZ8ubmsHx8rmxsXJexZDKXhgaq6+vXPqri+6qGBsqbmilrblq7vpa9lqfRUFnF4oGbsXjQUKaP2IUlG28aejofNIRFg4axeNBQVtYO8B4nnOtkaTKt24AXJf2d0DPGx4FbShqVa1dqaqJPfT3VH3xAZcw01stQmpqoWLOGqkwm0dBAZXyfyTwqElcllWvWhPSNyQxpXUaUGbm2PTRLNFRVU1/Vh9V9allV04+6mk1ZPaiW1X1q+aC6hqbychrLK2gqr6CprJymigrWVFTRUFVNQ1U1H1TV0FDVh/qqPtRX1dBQHV43VFbTUB2evWdz57qHNLUHfyzpIeCgOOlzZvZyacPqZczos3o1A1asoN/KlWuvSsqzPWe5YslkKBWJ91UNDfT5oJ4+H3xA1ZqG1mPIor6yeu3JPpMB1FfVsqq2mobKahorK0PmUFnFmsoqGisqaawI09ZUVNJYWUVjeQVrKqtoqKhmTVyuobKaNZXVNFZU0lxWTmNFyHAyGU9DZZ+1GVVjRaVnJs65tdKOp/UScZTJnqZ8zRr6rl69rngqWVQVHzJDsdgp87x2XmK5TNFUy+UrGhvX3j9JFntlBuEbsGJFQVcnjeUViYyiKmYu1ayp7MP7fUKG8kF1Datq+rGqppZVffuH55p+fFBdQ2N55dq0mcymvqqG+uo+a58bKquxsrISHnnnnCtcr79zvNX06Xz6jjs6ZFsNFZU0VK27ili20Sa8s812LBm4abiHMnAzlm68GfXVfVhTsf6VS2NFyGjWVFR5ZuKc67V6faa1YMgQbjv9HJb3HUpzWVkspqqkqaKcprIKmsvKaS4ri8/rXjeVV4Tly8ppKi9ff77KEmnKWFMZisa8bY5zzrVNqkxL0ihgWzP7j6QaoCJTBb67W7Hxxrwx+kAWD/BeCZxzrqtrtZxJ0pcIDcJ+FydtAdxbyqCcc865bNLcHLmA0O3GCgAzmwZsVsqgnHPOuWzSZFr1Zra2zrSkCrKMZOycc86VWppM6wlJ3wVqJB0F3A08UNqwnHPOuQ2lybQuBRYSeuE9F/gn8L1SBuWcc85l02qmZWbNZnajmZ1qZqfE1yUrHpR0jKQ3Jb0l6dJSbcc551xuXfVcnKb24IGSHpE0VdJ0STMkTS9FMJLKgd8AxwI7Ap+StGMptuWccy67rnwuTtNO6w/AxcAEoKm04bAP8JaZTQeQ9BfgJOD1Em/XOefcOl32XJwm01puZg+VPJJgc9YfXPIdYN8O2rZzznUYU5fujq3LnotzZlqS9ogvH5P0M+BvQH1mfuxEt71l6857vftnks4BzsnMk7QGaNNYGOVVNWWVtf27dh9LRhmiufUFe4Desq++nz1PIftqxgfLF62hyCoCl112WVHpohpJ4xPvx5nZuMT7Vs/FnSXfldbVLd7vlXhtwOHtHw7vACMS77cA5iYXiAd27cGVNN7MkrH1SL1lP6H37KvvZ8/Tg/a11XNxZ8mZaZnZYQCStsqUa2ZIKlVHff8DtpW0JfAu8Eng0yXalnPOuey67Lk4TaHqPVmm3d3egQCYWSPwFeDfwBTgLjN7rRTbcs45l11XPhfnu6e1PbATsJGkkxOzBgB9ShWQmf2T0IA5rXGtL9Ij9Jb9hN6zr76fPU+P2dcizsUdQrnaCUs6CfgYcCJwf2JWHfAXM3u29OE555xz6+TMtNYuIO1vZs91UDzOOedcTmm6cerQDEvSTZLekzQ5Me0ySe9Kmhgfx8XpoyWtTky/IZFmT0mvxi5IfikpWxXOTpVtX+P0C2P3Ka9Juiox/Ttxf96UdHRiepfe10L2szt/pjm+u3cm9mWmpImJed3y84TC9rUHfqa7S3o+7st4Sfsk5nXbz7TbMLMu9QAOBvYAJiemXQZ8M8uyo5PLtZj3IrA/ob3BQ8Cxnb1vKff1MOA/QHV8v1l83hGYBFQDWwJvA+XdYV8L3M9u+5lm288W868GftDdP88i9rVHfabAw5k4geOAx3vCZ9pdHjmvtCR9LT4fmGuZUjCzJ4ElbVmHpGHAADN7zsI35lbC/bkuJce+fhm40szq4zLvxeknEe4l1pvZDOAtYJ/usK8F7mdW3Xg/AYj/rE8D7oiTuu3nCQXva1bdYV9z7KcRKqQBbMS69kvd+jPtLvIVD34uPv+qIwJJ4SuSXomX6wMT07eU9LKkJyQdFKdtTmgcl/FOnNYdjAEOkvRC3Ke94/Rs3apsTvfd11z7CT3vMwU4CFhgYeRv6HmfZ1LLfYWe9ZleBPxM0hzg58B34vSe/Jl2Gfl6xJgiaSawqaRXEtMFmJntWtLI1nc9cAXhH84VhKKHzwPzgJFmtljSnsC9knaiC3dBkkIFMBDYD9gbuEuhMXeufequ+5prP3viZwrwKda/8uhpn2dSy33taZ/pl4GLzeyvkk4jdCp+JD37M+0y8vWI8SlJQwmNy07suJCyxrIg81rSjcCDcXo9sT9EM5sg6W3CP/h3CN2OZHSZLkhSeAf4WyxGeFFSMzCY3N2qdNd9zbqfZraQHvaZSqoATgb2TEzuaZ8nkH1fe+Dv9Gzga/H13cDv4+se+Zl2NXlrD5rZfDPbjfBPqX98zDWzWR0RXEYsE874ODA5Tt9UYdyXTNdS2wLTzWweUCdpv1i+fhZwX0fG3Ab3Evt1lDQGqAIWEdrKfVJStULXKtsCL3bjfc26nz30Mz0SeMPMkkVEPe3zzNhgX3vgZzoXOCS+PhzIFIP21M+0a2mtpgbhw5kFPAE8CcwADi5VzRBCscI8YA3hH8oXgNuAV4FXCF+MYXHZTwCvEWrsvASckFjPXoTM7W3g18Q2aV3pkWNfq4A/xdhfAg5PLP//4v68SaL2UVff10L2szt/ptn2M07/I3BeluW75edZ6L72tM8U+DBhfMFJwAvAnj3hM+0ujzSNiycAnzazN+P7McAdZrZn3oTOOedcO0vTYW5lJsMCMLOpQGXpQnLOOeeySzNy8XhJfyAU0QGcQbg0ds455zpUmuLBauACQjmuCPe1fmuxUahzzjnXUVrNtJxzzrmuIs09Leecc65L8EzLuVYoeFrSsYlpp0n6V2fG5VxvlLp4UFKtmb1f4nic65Ik7Uzo/eBDQDkwETjGzN5uwzorLAxr7pxLqdUrLUkHSHodmBLf7ybptyWPzLkuxMwmAw8AlwBjgVvN7G1JZ0t6UWFspd9KKgOQNE5hrKXXJP0gsx5J70j6vqRngI9LurSjUxQAAAMISURBVFjS65ImSfpTp+ycc91ImirvvwCOJvREgZlNknRwSaNyrmu6nNCjQwOwV7z6+jhwgJk1ShoHfBK4HbjUzJbEvvgek3SPmb0e1/O+mR0IIGkeMMrMGiRt3OF75Fw3kybT+v/t3c+LTXEYx/HPR5NQpvzayI8SKSEpFpZSUsqKsmVjxcqOhYWFhT+BUlJTSspy2Igku8ESY7ZCBqWJj8X3XHNw73EW7jE371fduud27unZ3J5zvvf5Po+SzPjnQZtfhxMOsHAl+WR7QtLHJF9sH1DpUP+k+n0s1fxoiuO2T6r8xtaqDAjsJa2J2mWfSbpu+7ZKP0YADdokrRnb+yTF9mJJp1UtFQL/oW/VSyr7Fq8mOV8/wfYWlS7ge5O8r5b9ltROqf83fFClv+cRSedsb0/CTSEwQJvqwVMqm4t7g8x2VcfA/25S0jHbqyXJ9irbG1Sm2s5K+lBNKDjY78tV5/N1Se5JOitpjaRlnUQOjKg/PmkleaPSuglATZIp2xckTVYFGHMqN3lPVJYCn0p6IenBgEuMSbphe7nKDeSlJLPDjxwYXW3aOF2TdCbJ++p4haTLSU50EB8AAD+0WR7c2UtYkpTkncpeFQAAOtUmaS2qnq4kSbZXqmXVIQAAf1Ob5HNZ0kPbN6vjo5IuDi8kAAD6a9XGyfY2SftVSnzv1jZJAgDQmYFJy/Z4kg/VcuBvkrwdamQAAPyiKWndSXLY9ktJ9ZMsKUk2dREgAAA9jcuDLr1p1id53V1IAAD011g9mJLRbnUUCwAAjdqUvD+yvWfokQAA8AdtOmI8l7RV0iuVRp+9/7R2Dj06AABq2iStjf0+TzI9lIgAABhg4OZi20tUmn9uljQl6QqjwQEA/1JTyfuEStfq+5IOSZpOcqbD2AAA+ElT0ppKsqN6PybpcZLdXQYHAEBdU/XgXO8Ny4IAgIWg6Unrq+bHglvSUkmfNV89ON5JhAAAVFo1zAUAYCFos7kYAIAFgaQFABgZJC0AwMggaQEARgZJCwAwMkhaAICR8R3yNbbtPQOShAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig1, ax1 = plt.subplots()\n", "ax1.bar(data['Year'], data['Wheat'],5, color='grey')\n", "ax1.set_title(\"The price of the quarter of wheat and wages of labour by the week\")\n", "ax1.set_xlabel(\"Years\")\n", "ax1.set_ylabel(\"Price of the quarter of wheat (in shillings by quarter of wheat)\")\n", "\n", "ax2 = ax1.twinx()\n", "ax2.set_ylim((0,100))\n", "ax2.plot(data['Year'],data['Wages'], color='r')\n", "ax2.fill_between(data['Year'], data['Wages'], color='#539ecd')\n", "ax2.set_ylabel(\"Weekly wages (in shillings by week)\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Ajustement des données pour observer l'évolution du pouvoir d'achat\n", "\n", "On souhaite représenter le pouvoir d'achat au cours du temps, défini comme la quantité de blé qu'un ouvrier peut acheter avec son salaire hebdomadaire. \n", "On crée une nouvelle colonne au tableau : la colonne Power qui représente le pouvoir d'achat de l'année, la quantité de quart de boisseaux de blé qu'un ouvrier peut acheter par semaine." ] }, { "cell_type": "code", "execution_count": 55, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0YearWheatWagesPower
01156541.05.000.121951
12157045.05.050.112222
23157542.05.080.120952
34158049.05.120.104490
45158541.55.150.124096
56159047.05.250.111702
67159564.05.540.086563
78160027.05.610.207778
89160533.05.690.172424
910161032.05.780.180625
1011161533.05.940.180000
1112162035.06.010.171714
1213162533.06.120.185455
1314163045.06.220.138222
1415163533.06.300.190909
1516164039.06.370.163333
1617164553.06.450.121698
1718165042.06.500.154762
1819165540.56.600.162963
1920166046.56.750.145161
2021166532.06.800.212500
2122167037.06.900.186486
2223167543.07.000.162791
2324168035.07.300.208571
2425168527.07.600.281481
2526169040.08.000.200000
2627169550.08.500.170000
2728170030.09.000.300000
2829170532.010.000.312500
2930171044.011.000.250000
3031171533.011.750.356061
3132172029.012.500.431034
3233172539.013.000.333333
3334173026.013.300.511538
3435173532.013.600.425000
3536174027.014.000.518519
3637174527.514.500.527273
3738175031.015.000.483871
3839175535.515.700.442254
3940176031.016.500.532258
4041176543.017.600.409302
4142177047.018.500.393617
4243177544.019.500.443182
4344178046.021.000.456522
4445178542.023.000.547619
4546179047.525.500.536842
4647179576.027.500.361842
4748180079.028.500.360759
4849180581.029.500.364198
4950181099.030.000.303030
5051181578.0NaNNaN
5152182054.0NaNNaN
5253182154.0NaNNaN
\n", "
" ], "text/plain": [ " Unnamed: 0 Year Wheat Wages Power\n", "0 1 1565 41.0 5.00 0.121951\n", "1 2 1570 45.0 5.05 0.112222\n", "2 3 1575 42.0 5.08 0.120952\n", "3 4 1580 49.0 5.12 0.104490\n", "4 5 1585 41.5 5.15 0.124096\n", "5 6 1590 47.0 5.25 0.111702\n", "6 7 1595 64.0 5.54 0.086563\n", "7 8 1600 27.0 5.61 0.207778\n", "8 9 1605 33.0 5.69 0.172424\n", "9 10 1610 32.0 5.78 0.180625\n", "10 11 1615 33.0 5.94 0.180000\n", "11 12 1620 35.0 6.01 0.171714\n", "12 13 1625 33.0 6.12 0.185455\n", "13 14 1630 45.0 6.22 0.138222\n", "14 15 1635 33.0 6.30 0.190909\n", "15 16 1640 39.0 6.37 0.163333\n", "16 17 1645 53.0 6.45 0.121698\n", "17 18 1650 42.0 6.50 0.154762\n", "18 19 1655 40.5 6.60 0.162963\n", "19 20 1660 46.5 6.75 0.145161\n", "20 21 1665 32.0 6.80 0.212500\n", "21 22 1670 37.0 6.90 0.186486\n", "22 23 1675 43.0 7.00 0.162791\n", "23 24 1680 35.0 7.30 0.208571\n", "24 25 1685 27.0 7.60 0.281481\n", "25 26 1690 40.0 8.00 0.200000\n", "26 27 1695 50.0 8.50 0.170000\n", "27 28 1700 30.0 9.00 0.300000\n", "28 29 1705 32.0 10.00 0.312500\n", "29 30 1710 44.0 11.00 0.250000\n", "30 31 1715 33.0 11.75 0.356061\n", "31 32 1720 29.0 12.50 0.431034\n", "32 33 1725 39.0 13.00 0.333333\n", "33 34 1730 26.0 13.30 0.511538\n", "34 35 1735 32.0 13.60 0.425000\n", "35 36 1740 27.0 14.00 0.518519\n", "36 37 1745 27.5 14.50 0.527273\n", "37 38 1750 31.0 15.00 0.483871\n", "38 39 1755 35.5 15.70 0.442254\n", "39 40 1760 31.0 16.50 0.532258\n", "40 41 1765 43.0 17.60 0.409302\n", "41 42 1770 47.0 18.50 0.393617\n", "42 43 1775 44.0 19.50 0.443182\n", "43 44 1780 46.0 21.00 0.456522\n", "44 45 1785 42.0 23.00 0.547619\n", "45 46 1790 47.5 25.50 0.536842\n", "46 47 1795 76.0 27.50 0.361842\n", "47 48 1800 79.0 28.50 0.360759\n", "48 49 1805 81.0 29.50 0.364198\n", "49 50 1810 99.0 30.00 0.303030\n", "50 51 1815 78.0 NaN NaN\n", "51 52 1820 54.0 NaN NaN\n", "52 53 1821 54.0 NaN NaN" ] }, "execution_count": 55, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data['Power'] = data['Wages']/data['Wheat']\n", "data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "On représente maintenant l'évolution de ce pouvoir d'achat dans le temps" ] }, { "cell_type": "code", "execution_count": 61, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0,0.5,'Buying power')" ] }, "execution_count": 61, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8W9WZ+P/PY3mJ9ySOszq2sxmS4LCFPSmFQNlK6QKU1PDtzNAJdKZM6Wv6mqFNB4bpK6XThdKylKbLwPzqQqEDDTShLCm0CUsgTgAncTYn8RI7xHbiJXbiTef3h3SFZEn2la0rS/bz7ssv7Kurq3Mr0KNzznOeI8YYlFJKKYCk0W6AUkqp+KFBQSmllI8GBaWUUj4aFJRSSvloUFBKKeWjQUEppZSPBgWllFI+GhSUUkr5aFBQSinlkzzaDYjUlClTTHFx8Wg3QymlEkpFRUWzMSZ/qPMSLigUFxezdevW0W6GUkolFBGpsXOeDh8ppZTy0aCglFLKR4OCUkopHw0KSimlfDQoKKWU8tGgoJRSNpRXllP8UDFJ9ydR/FAx5ZXlo90kRyRcSqpSSsVaeWU5q15cRVdvFwA1bTWsenEVAGWlZaPZtKjTnoJSSg1h9cbVvoBg6ertYvXG1aPUIudoUFBKqSHUttVGdDyRaVBQSqkhFOYWhjxekFMQ45Y4T4OCUkoNYc2KNaS6UoOO97n7+P7m74+pCWgNCkopNYSy0jIuL74c8f6vKLeIby37Fp29nXxr47eoaavBYHwT0IkcGDQoKKUSxqimhQqcNf0s3Pe5OXT3Ib634nvkpOYEnZboE9CakqqUSgijnRZa1VTFxbMvDjh2uONwyHMTeQJaewpKKUdF69v9aKaFdvV2UdNWw8IpCwOOh5uADnc8EWhQUEo5xvp2H40x99FMC93TvAeAhfmBQWHNijVkpGQEHMtIyWDNijWOt8kpGhSUUo6J5rf70fxWXtVcBRDUUygrLWPt9WvJScvxtWXt9WsTepWzBgWllCPcxk1NW+jNvobz7X7NijUkJwVOg8bqW3lVUxVJksT8yfODHisrLeP+T94PwLZV2xI6IIAGBaVUlPjPHcz88UxOe/i0sOcO59t9WWkZS6Yu8f1dlFsUs2/lu1t2M2/SPNKS00I+np/h2fq4qavJ8bY4TbOPlFIjNjAzqPFEIwCXFV3GloYtAUNII/l2f6L3BABprjQOfv0gIjLClttT1VQVNJ/gLz/TGxQ6mzh9yukxaZNTtKeglBqxUHMHAAdaD7D2+rUU5RYBIAgPX/PwsL7dd/d1U32smsnpk+nu747Zt/I+dx97W/Zyel74D/ux1FPQoKCUChJpGulgmUFlpWUcuvsQr3/5dQyG7NTsYbVp37F99Jt+rpx75aCvGW0Hjh+g1907aE9hauZUwNNTSHQaFJRSAYaTRmonM2h54XKmZU7jmV3PDKtdVU2eDKCr5l0FQE1r6EnsaNvdvBsIzjzyNyVjCgBHO4/GpE1O0qCglAownDTSUAXjBs4duJJcfGHhF1i/dz2dPZ0Rt6uquQpBuHJebHsKVjAabK4gLTmNnLQcHT5SSo09w1kkVlZaxlVzPd/grYJxoTKDbl58Myf7TrJ+3/qI21XVXEXxxGJmZc8iMyUzdkGhuYoZWTPInZA76Hn5GfkaFIYiIleLyB4R2S8i94R4/JMi0iYi73t/7nWyPUqpoQ13kZjL5WLhlIW+gnGhJpOXFS5jWuY0nt31bMTtsjKARITC3EJq22MTFHY37x50PsGSn5mvcwqDEREX8ChwDbAIWCkii0KcuskYc5b357+cao9Syp7hlm7Y07yH06aEX5sAniGkGxfdGPEQUr+73/Ph7B3XL5pYFJOegjGGquaqQecTLFMzp2pPYQjnA/uNMQeMMT3A08ANDr6eUioKrNINGcmewJDqSh1ykVhvfy/7j+0fNG3TctOimyIeQjrUeoju/m7fh3NhTmFMgkLjiUbau9ttrT3Iz8jXieYhzALq/P6u9x4b6CIR+UBEXhKRxQ62RyllU1lpGefNOg+AlKQUVp6xctDzD7YepNfda+vDc1nhMqZnTeeZnfazkKzaQ4vyPYMNhbmFHO08ysnek7avMRzWJLOdnkJ+Rj7NXc0YYxxtk9OcDAqhlhoO/H9rG1BkjDkTeBj4Y8gLiawSka0isrWpKfG7Z0olAmsopLO3c8hv5VYV0aGGj+DjLKQN+zZwoueErbb4Ppy9Y/vW/EZde13Y50SDLx3V5pxCn7uP1lOtjrbJaU4GhXpgtt/fBUCD/wnGmHZjzAnv7xuAFBGZMvBCxpi1xpilxpil+fn5DjZZKWVp7mrmjKlnALDz6M5Bz7U+PE/LGzoogF8W0l57Q0hVzVVMz5rOxAkTgY+DgtNDSFXNVWSnZjMja8aQ546VVc1OBoX3gAUiMkdEUoFbgBf8TxCR6eItXiIi53vb0+Jgm5RSNriNm5auFi4tuhSAnU1DB4VpmdOYlD7J1vUvmX0J07Om285C2tW0K2AIJ5ZBwcp4GspYWdXsWFAwxvQBXwNeBqqAZ4wxO0XkThG503vajcAOEfkA+Blwi0n0ATmlxoDjJ4/Tb/qZP3k+M7NnDhkU9rQMnXnkz5Xk4saFN7J+3/ohh5BCZQAV5BQgiONBwT/jaShWUbxEn2x2tEqqd0how4Bjj/v9/gjwiJNtUEpFzhoCyc/IZ3H+YlvDR19Y+IWIXmPihImc6jtFzgM5FOYWsmbFmpAZTlYGkDXJDJDiSmFm9kxHg0LbqTYaOhrsBwUdPlJKjVXWEEh+picoVDVX4TbukOc2dzXTcrIlop5CeWU5D77zIMCQ9ZUGTjJbCnMLw27iEw3WPIndUtj+5bMTmQYFpVSQ5q5mwNtTmLqYrt4uDrUeCnmulXkUyT4CkdRXCrcVZmGus2sVfK9rI/MIYELyBLJSs7SnoJQae3zDR5n5vmGbXU27Qp4b6TdqiKy+0q6mXeSm5TI9a3rA8cLcQura6sL2YEZqd/NuUpJSmDtpru3njIVVzRoUlFJBrCGQKRlTfEEh3LzCnpY9pLnSfBvp2BFJfaVwGUCFuYWezXYcGq6paq5iQd6CoH2hB5Ofkfj1jzQoKKWCNHU1kZWaxYTkCUycMJFZ2bPCZiDtbt7NgrwFuJJctq8fqr5SenJ6yPpKVU1VLJoSXDbNCkJODSFVNdmreeQvPzPxS11oUFBKBWnqavJl0wAsnrp40KAQ6b7EVn2lotwixFv84JYzbgnKPjp+8jgfdX4UclzfybUK3X3dHDh+IPKgMAbKZ2tQUEoFae5q9mXTAJ4MpKbgDKSe/h4OHD9geyWzP2ubzv57+zl9yulUH68OOifcJDN8HBScyEDaf2w//abf9iSzxRo+SuTlVhoUlFJBmjoH9BTyF3Oy7yQHjx8MOK/6WDX9pj/inoI/EWHlGSvZVLOJ+vb6gMesye1QH84TJ0wkKzXLkZ6CFYwiva/8zHx63b20d7dHvU2xokFBKRWkqaspsKcw1VPAeOAQ0nAyj0JZecZKDIbf7/h9wPGqpiomJE8IOYnt22zHiaDgXRsRaQ/IV+oigYeQNCgopQIYY2jqbGJK+se1KcNlIO1p8axRKMkrGdFrLshbwNKZS3lqx1MBx6uaqzh9yulhJ7GdCgq7W3ZTlFtEZmpmRM+zeleJPNmsQUEpFeBEzwm6+7sDego5aTkU5BSE7CnMzJ5JTlrOiF935RkrqWisYF/LPt+xoXY9K8qN/g5s5ZXlPLvzWWraaih+qDjkKutwxsKqZg0KSqkA/quZ/S3OXxy0gG1Py54RDx1Zvrj4iwji6y109nRS01ozaFAozC2kqaspapvtlFeWs+rFVfS6ewEGLb8Ryliof6RBQSkVwH81sz+rBlK/ux/wDDPtbt49rMyjUGblzOITRZ/gqR1PYYxhT8seDGbQDKBop6VGUn4jFO0pKKXGHF8xvIE9hamLOdV3ioOtngyko51HaT3VGrWeAniGkHY37+aDjz6wtRVmtINCJOU3QslIySAzJVN7CkqpscP6QJuSEbgJ4uJ8bwaSd7LZmmSOZlC4cdGNJCcl87vK31HVXIVLXCzIWxD2/GgGhSMnjoQtaRGuLEcoib6qWYOCUiqAf9lsf74MJO9kc6RbcNqRl5HHp+Z9iqd3PM2upl3MnzyfVFdq2PNnZc8iSZJGHBQOHj/Ist8sAyDNlRbwWEZKRsjyG+Ek+qpmDQpKqQBNXU2kulLJTs0OOJ6dlk1hbmFAUEhPTmd27uxQlxm2wtxC6trreH7389S21Q46yevbbKc9sqBQXllO8UPFJN2fxMwfz+TsX5zN8VPH+dvf/41f3/BrX/mNotwi1l6/NuTmP+HkZyZ2UTxHd15TSiWe5q5m8jPyQ+5LvCh/UcDwUUleCUkSve+W5ZXlPPn+k76/T/adZNWLqwDCfjBHulbByjCyJpQbTzQiCN+/4vtcWHAhFxZcGFEQGCg/I58PP/pw2M8fbdpTUEoFGLia2d/i/MXsbt5Nv7t/WIXwhrJ642pO9gWmlw6V/VOYW0hNq/36R6EyjAyGx957LLLGhjE1c2pC1z/SoKCUCtDU2RQ0yWxZnL+Y7v5udjXt4uDxg1EPCsPJ/inM8Qw32d1sZ6QZRkPJz8inu7+bjp6OqFwv1jQoKKUCDCyb7c+qgbRuzzoMJqqTzBDZ5jv+j/X099jO+BnOa0Qi0dcqaFBQahzwn1gdqnTDwAqp/qwMpOeqngOim44KoTffGSr7J9K01DUr1jDBNSGi14hEoq9q1qCg1BhnTazWtNVgMIOWbuju8wx7hJtTyErNoii3iO1HtgMjL4Q30MDNd+xk/xRNjGwHtrLSMq5dcC3AsDOMBpPoPQXNPlJqjBusdMPAD8JwdY/8LZ66mJq2GmbnzI64iqgdZaVlEX1A+zbbiWCyuba9lotnX8yb//BmxO0bSqKXz9aeglJjXCQTq+HqHvmzts+sa6+LuIqoE3LTcslOzbbdUzhy4ghbG7Zy7fxrHWlPopfP1qCg1BgXycSqNeQRLvuovLKcVw+86vs70iqiTvBttmNzAdtL+14C4LqS6xxpT2ZqJunJ6Qk7fKRBQakxbs2KNbZLN/h6CmGGj1ZvXE1Pf0/AsUiqiDolkgVsG/ZvYFb2LM6cdqZj7cnPTNxSFxoUlBrjykrLuHnxzb6/p2dODzux6ptTCDN85HSO/3DZDQq9/b28Uv0K1y64NuSK7WhJ5PpHGhSUGgeSk5JxiWdLyx9c+YOwE7lNnU0kSRKT0yeHfNzpHP/hKsotormrOWhCfaDNtZtp727nugXODB1ZrFXNiUiDglLjwLbGbVxafCkucbG3ZW/Y85q6mshLzwtbz2g46whiwe5ahfX71pPqSmXF3BWOtieRy2drUFBqjOvu62Zn007On3k+cybNYe+xwYNCuElmGN46gliIJChcWnQpWalZjrbHGj5KxPpHuk5BqTFux9Ed9Ln7OGfGOXx49MPBewqd4YvhWSJdRxAL2xq3AXDVb6+iKLeINSvWBLXxwPED7G7ezZ3n3ul4e/Iz8jnVd4rO3k7HA1C0aU9BqTHOWn189oyzKZlcwt6WvWG/wVplsxNJeWU53/7Lt31/h0uT3bBvA+BcKqq/RF7VrEFBqTFue+N2ctJymDtpLiV5JXT1dtHQ0RDy3MGK4cWrwVZs+1u/bz0leSXMnzzf8TYl8qpmR4OCiFwtIntEZL+I3DPIeeeJSL+I3Ohke5Qaj7Yd2cZZ088iSZJ8tYpCDSH1u/tp6WoZcvgo3thJk+3s6eT1g687nnVkSeRVzY4FBRFxAY8C1wCLgJUisijMef8NvOxUW5Qar/rd/Xxw5APOmX4OwKBB4djJYxhMwvUUwqXD+m8T+peDf6G7v9tXCM9pOnwU2vnAfmPMAWNMD/A0cEOI8+4C/g9IvJCqVJzb07KHk30nOXvG2QDMyplFenJ6yKBgDXUMln0Uj0KlyQIU5RT5Nt5Zv289WalZfKLoEzFpUyKXz3YyKMwC6vz+rvce8xGRWcDngMcdbIdS49b2Ru8k83RPUEiSJBbkLQiZljrUauZ4FSpN9vMLP8+muk18uvzTFD1UxC8qfkG/u59ndz0bkzZlpWaR5kpLyJ6CkympodaQD0x5eAj4d2NM/2BLzkVkFbAKoLBwdFdOKpVItjVuY0LyBBbmL/QdK8krCbmxvPUBlmjDRxCcJmuM4ZrfXsNL1S/5jp3sO8mqF1f5zneSiHhWNWtPIUA9MNvv7wJgYMrDUuBpETkE3Ag8JiKfHXghY8xaY8xSY8zS/PzE+xdWqdGy/ch2SqeWkpz08fe/ksklHDh+gN7+3oBz7ZTNThQiQlVLVdDxWBbvS9RVzYMGBRFxicg3hnnt94AFIjJHRFKBW4AX/E8wxswxxhQbY4qBPwD/ZIz54zBfTynlxxjD9iPbOWfGOQHHS/JK6HP3caj1UMDxocpmJ5q6trqQx2NVvC9Ri+INGhSMMf2EnhwekjGmD/ganqyiKuAZY8xOEblTRJxfUqjUOHeo9RCtp1p98wmWcBlITV1N5KTlkOpKjVkbnTTaxfvyM/MTck7BzvDRmyLyiIgsF5FzrB87FzfGbDDGlBhj5hlj1niPPW6MCZpYNsb8nTHmDxG2XykVhlX6IVRPAYKDQiKuZh7MaBfvS9Segp2J5ou9//wvv2MGuDz6zVFKRcv2I9txiYvSaaUBx/My8picPjlkT2EszCdYrMnk1RtXU9tWS2FuYciaSE7Jz8inq7eLzp5OR/aydsqQQcEYc1ksGqKUiq5tjdtYlL+ICckTgh4rySsJSktt6mwa9X0Rom00i/f5l7pIpKAw5PCRiEwTkV+LyEvevxeJyO3ON00pNRLbj2z3LVobqCSvJHRPYQwNH422RF3VbGdO4Qk8k8UzvX/vBe52qkFKqZFr7GjkyIkjvvIWA5VMLqG+vd5XSM4YY6tstrIvUVc12wkKU4wxzwBu8GUV9TvaKqXUiPiXyw7Fmmzef2w/AB09HfS6e8dMOmo8GMs9hU4RycO7GllELgTaHG2VUmpErPIWZ00/K+TjAzOQEnk1c7xK1J6Cneyjf8Wz6GyeiLwJ5ONZfayUilPbjmxj/uT55KTlhHzc2lPAFxTG0GrmeGGt+Ui0Vc1D9hSMMRXApXhSU+8AFhtjggunKKXixvbG4JXM/jJTMynIKdCegoNEJOK1CuWV5RQ/VEzS/UkUP1QctHtcLNjJPtoE3I+njlGNMaZ3iKcopUbR8ZPHOdh6MGgl80D+GUjaU4i+8spyjnYe5Yn3nwj4gA/3wV9eWc6qF1dR01aDwYTdVtRpdoaPvgwsA74A/FBEuoFNxpjh1kRSSjno/SPvA8ErmQdaMHkBf9jlKSIw1uoejTbrA77X7fkObX3Av1n7Jk9+8KQv68s6frj9MP/95n+H3VY0lmst7AwfHQBeBTYCfwMygIWDPkkpNSrKK8v5/DOfB+D2F24f9FtmSV4JLSdbaOlqobmrmQnJE8hMSZxFVvEs3L7Rj299POTxf3/t3zl28ljIa8WqgJ/FzvBRNfBHYBrwa+AMY8zVTjdMKRUZ69tp66lWAOrb6wcdfrAykPYd2+dbuDbYvibKvnAf5CZoS5mPzcyeGfJ4rFeZ20lJ/RlQC6wE/gX4sojMc7RVSqmIhft2Gm7/AP+01LFW92i0hfsgd4kr5PGi3CJ+cOUPRrWAn8XO8NFPjTE3AVcAFcB/4lnVrJSKI+G+nYY7PmfiHFzi8gSFTi1xEU3hKrSuOndV2A9+a1vRKemeeZ3pWdNZe/3amNdusjN89GMR2QJsAc4C7gUWON0wpVRkIt0/IMWVwtxJc309BZ1kjp5Q+0avvX4tj133WMjj1gd/WWkZ2+/0LDy855J7RqWYn53so3eAHxhjPnK6MUqp4VuzYg23r7ud7v5u37Ghhh+stNSxtpdCPAhXoXWoyq0FOQUU5RaxqXYTX7/w6042MSQ7w0fPAheIyI+8P9fHoF1KqQiVlZZx8+KbAUJ+Cw2lJK+E3c27OdFzQucU4sjyouVsrt2MMeEnpp0yZE9BRB4AzgesFIZ/EZGLjTHfcrRlSqmITU6fTGZKJh3f6rCVSVSSV+LrWWhPIX4sL1zObz/8LfuP7WdBXmxH6+0MH10HnGWMcQOIyJPAdkCDglJxpvp4NXMnzbWdWmplIIGuZo4nywqXAbCpdlPMg4KdlFSAiX6/5zrREKXUyFUfq2beZPsZ4wFBQXsKcWPhlIXkpeexuXZzzF/bTlB4ANguIk94ewkVwPecbZZSKlJu4+bA8QPMm2Q/KLxx6A0ET6/i5mdvHpUCbCqYiLCscBmbajfF/LXtTDQ/BVwIPAf8H3CRMeZppxumlIpMQ0cD3f3dtoNCeWU5d/zpDt8q24YTDaNSgE2FtqxwGfuP7efIiSMxfV27w0cXAZ/EU0L7Isdao5Qatupj1QC2h48iXQGtYmt54XKAmA8h2Vm89hhwJ1AJ7ADuEJFHnW6YUioy1ce9QcFmTyHSFdAqts6ecTbpyelsqontEJKd7KNL8RTBs7bjfBJPgFBKxZHqY9W4xGW7gFphbiE1bTUhj6vRl+pK5cKCC9lcF2c9BWAP4P9vyWxAd15TKs5UH6+maGIRKa4UW+eHq88T6wJsKrzlhct5/8j7tHe3x+w17QSFPKBKRN4QkTeAXUC+iLwgIi842jqllG3Vx6sjyjwKV59nNOrtqNCWFS7Dbdy8Xfd2zF7TzvDRvY63Qik1YgeOH+DmRTdH9Jyh6vCo0XXR7ItwiYvNtZu5av5VMXnNIYOCMeavsWiIUmr4Wk+1cuzksYgWrqn4l5Waxdkzzo7pegW7KalKqRgLt8F7KL501AiGj1RiWDZ7GVsOb6Gnvycmr6dBQak4ZG2tWdNWg8H4NngPFxh86ajaUxhzlhct51TfKSoaKmLyehoUlIpDkS4ss3oKcyfNdbxtKrb8i+PFgp3Fa5Ui8uGAn00i8hMRyYtFI5UabyJdWFZ9vJppmdPISs1ysllqFEzNnEpJXknMVjbb6Sm8BKwHyrw/LwJ/A44ATzjWMqXGKWMMOWk5IR8Lt7Cs+nhk1VFVYpmRNYP1e9fbml8aKTspqZcYYy7x+7tSRN40xlwiIrcO9kQRuRr4KeACfmWM+f6Ax28Avgu4gT7gbmNM7GvFKjWKyivLWb1xNbVttczOnU1hTiFt3W24xEW/6fedN9jCsupj1Xyy+JMxarGKpfLKct6ufxs3bgDf/BLgSDqxnZ5ClohcYP0hIucDVh+1L9yTRMQFPApcAywCVorIogGnbQTONMacBfwD8KsI2q5Uwhs4oVzbVsvmus3cuPBGnvzskxTlFgGQJEms/XTohWXdfd3Ut9dr5tEYtXrj6qDMIycLF9oJCl8BfiUiB0XkEJ4P7n8UkUw8ey2Ecz6w3xhzwBjTAzwN3OB/gjHmhPl4E9JMIPYbkio1ikJNKAO81/AeZUvKOHT3IX7x6V/gNm4uKLggxBXgYOtBDEaHj8aoWBcutLOfwnvGmFLgLDzbci4xxrxrjOk0xjwzyFNnAXV+f9d7jwUQkc+JyG488xb/EOpCIrJKRLaKyNampqahmqxUwrDzH/wlsz2jt2/WvhnyXF2jMLaFm0dyqnChneyjNBH5EvDPwL+IyL0iYqf0RahNYoN6AsaY540xpwOfxTO/EPwkY9YaY5YaY5bm5+uWgWrssPMf/ML8hUycMDFs9omuURjbYl240M7w0To8wz59QKffz1Dq8VRUtRQADeFONsb8DZgnIlNsXFupMcHOf/BJksTFsy/mzbrwPYWs1CzdY3mMinXhQjvZRwXGmKuHce33gAUiMgc4DNwCfMn/BBGZD1QbY4yInAOkAi3DeC2lElJZaRkYuPV5TyJfUW4Ra1asCfoPftnsZWzYt4GWrhbyMgKXB1nVUUVCdc7VWBDLwoV2egpviUhppBc2xvQBXwNeBqqAZ4wxO0XkThG503vaF4AdIvI+nkylL/pNPCs1Llw570oAfnb1zzh096GQ//FfUuiZV3ir7q2gx3SNgoomO0FhGVAhInu8q5krRcTWJjvGmA3GmBJjzDxjzBrvsceNMY97f/9vY8xiY8xZxpiLdI2CShSRFKsbSn17PQCzc2eHPee8meeRkpQSNITkNm4OHj+ok8wqauwMH13jeCuUSiDW2gIrlXSki4nq2jxJegU5BWHPSU9J59yZ5wYFhcPth+nu79agoKImbE9BRKx19h1hfpQalyItVjcUX08hJ3xPATypqe8dfo/uvm7fMc08UtE22PDR77z/rAC2ev9Z4fe3UuNStBcT1bXXkZKUQn7m4NlDl8y+hO7+bioaPy6hrGsUVLSFDQrGmE97/znHGDPX+0/rR+vzqnEr2ouJ6tvrKcgpIEkGn+KzJpv9F7FVH68mOSl50PkIpSJhZ/HaH0TkWpEh/o1VapyI9mKiuva6QecTLFMzp7Jg8gI2132cj1F9vJriicUkJ9mZHlRqaHY+6B/HUzJ7n4h8X0ROd7hNSsU1azGR9c0+JSllRIuJ6trqbH/Tv6TwEt6qewsrc7v6WLUOHamoslP76DVjTBlwDnAIeFVE3hKRvxeRFKcbqFQ8uqz4MtzGzcQJEwG4edHNw7qO27g53HGYguyhewrgWcTW3NXM3pa9wMcL15SKFltDQt4d1v4OT8XU7Xj2SDgHeNWxlikVx6z9cleesZJedy97WvYM6zpNnU309PdE1FMA2Fy7mWMnj9F6qlUzj1RU2ZlTeA7YBGQA1xtjPmOM+b0x5i4+3ldBqXFlW+M2BOG2JbcB8OFHttZzBrHSUe3MKQCclncaeel5vFn3pmYeKUfY6Sk8YoxZZIx5wBjT6P+AMWapQ+1SKq5VNFZw+pTTOXfmuSQnJVP5UeWwrlPX7lm4NtQaBYuIcEnhJZ6goGsUlANsFcQTkf838KAx5n8daI9SCaGisYLLii8j1ZXKwikL+fBobHoK4Fmv8MKeF3in/h0A5k7SDHEVPXaCwnl+v08AVgDbAA0Kalw6cuIIDR0NnDvjXABKp5WyqWbTsK5V11ZHqit1yIVr/qxNd57a8RQzsmYEpccqNRJDBgWFxa0wAAAZ00lEQVTv3IGPiOQC/59jLVIqzlmTzOfO9ASFJVOX8LvK33H85HEmpU+K6Fr1HfXMyp415MI1f0tnLiXNlcbRzqO+AKFUtAxnQVoXsCDaDVEqUVQ0ViAIZ08/G/D0FAB2HN0R8bUiWaNgSUtO862efrPuzRFXaVXK35A9BRF5kY+30UwCFgGD7c2s1JhW0VhBSV4J2WnZACyZtgTwZCAtL1oe0bXq2+u5ePbFET2nvLKcg60HfX+PtEqrUv7szCn8yO/3PqDGGFPvUHuUinsVDRVcWnyp7+9Z2bOYOGEilUcjy0ByG7ev7lEkVm9cTZ+7L+CYVaVVg4IaKTtzCn+1fvfun6zbZapx66MTH3G447Bvkhk8aaJLpi2JeK1CU2cTve5e2+molmhXaVXK32D7KVwoIm+IyHMicraI7AB2AB+JyHD2bFYq4W1r3AbAOTPOCTi+ZOoSdhzdgdu4bV/LWqMQaU8h2lValfI32ETzI8D3gKeAvwBfMcZMBz4BPBCDtikVd6y9DKxJZkvptFI6ejqoaa2xfS0723CGEu0qrUr5GywoJBtjXjHGPAscMca8A2CM2R2bpikVfyoaK1gweQG5E3IDjluTzZHMK9jZhjMUq0prUW4RglCUWzSiKq1K+RtsTsG/H3xywGMGpcahioYKX1E6f4vzFwOeDKTPnPYZW9eqb6/3LFzLsL9wzVJWWqZBQDlisKBwpoi0AwKke3/H+/cEx1umVJxp6myirr0uYJLZkp2WzdxJcyPrKXg31xGRaDZTqREJGxSMMa5YNkSpeGfNJ4QKCgClU0sjykCqb6+POPNIKafpFptK2WRlHp094+yQjy+ZtoS9LXs51XfK1vXsbsOpVCxpUFDKporGCuZNmufbbW2g0qmluI2bXU27hryW27g53H5Yewoq7mhQUMqmioYKXxG8UHwZSDb2VjjaeZRed6/2FFTc0aCglA0tXS3UtNWEnU8AmD95PhOSJ9iaV7DSUSNdo6CU0zQoKGXDUJPMAK4kF4vzF9vKQBrO5jpKxYIGBaVssPZQGFjeYqDSafYykCLdhlOpWNGgoMak8spyih8qJun+pKjsN1DRWMHcSXOH3ERnydQlfNT5EUc7jw56Xn17PWmuNKZkTBlRu5SKNg0Kaswpryxn1YurqGmrwWB8+w2MJDBUNFYMOnRksTbcGWqyWReuqXilQSEORftb7nizeuNqunq7Ao5Z+w1EqryynNk/mc2h1kO8euDVId8LuzWQhrOPglKxYGeTHRVD1rdc60NNd9WKXLT2Gxj4XrSeah3yvZiaOZVpmdOGnFeoa6uLeJc2pWJBewpxJprfcseraO03MNz3onRa6aA9Bbdxc7jjMAXZ2lNQ8cfRoCAiV4vIHhHZLyL3hHi8TEQ+9P68JSJnOtmeRKC7ao3cmhVrcElg6a705PSI9xsY7nuRIilsbdgadvjvoxMf0efu0zUKKi45FhRExAU8ClwDLAJWisiiAacdBC41xiwBvgusdao9iUJ31Rq5stIyslOzyUjJQPBM5F4z/5qIh9+G816UV5az8dBGgLCT3LpGQcUzJ3sK5wP7jTEHjDE9wNPADf4nGGPeMsYc9/75DjDu/ytZs2INE5IDK5PrrlqRqW+vp7W7lQdWPID7Pjc3LbqJP1f/mYaOhoius2bFGlKSUgKODfVerN64mp7+noBjA4ecdI2CimdOBoVZQJ3f3/XeY+HcDrwU6gERWSUiW0Vka1NTUxSbGH/KSsu467y7Ao7d+4l7dZI5AlvqtwBwwawLAHhgxQP09vfyH3/5j4iuU1ZaxvzJ80lOSra9w5mdISftKah45mRQCJWAHXLHNhG5DE9Q+PdQjxtj1hpjlhpjlubnR75LVaKZO3kuANvv2E6qK9X3IRKP4jF9dsvhLaS6Ujlr+lkAzJs8j7vOv4v/ef9/+ODIB7av09LVwt6Wvfzbxf+G+z43h+4+NGRwtjPkVNdWpwvXVNxyMijUA/794wIgqP8uIkuAXwE3GGNaHGxPwqhtqyU5KZnSqaXctOgm/vfD/+VEz4nRblYQJxaJRcOWw1s4a/pZpCWn+Y595xPfYeKEiXzz1W9ijL3dZF/c+yL9pp/PLfyc7ddes2INGSkZAccGDjnVd9TrwjUVt5wMCu8BC0RkjoikArcAL/ifICKFwHPAbcaYvQ62JaHUtNVQkFOAK8nFV5d+lfbudp6qfGq0mxUkHtNn+9x9bG3Y6hs6skxKn8S9l97LawdeY/qPptvq2Ty/+3lm58y2tZLZUlZaxtrr11KUW+Q79sCKBwJ6GHVtdZp5pOKWY0HBGNMHfA14GagCnjHG7BSRO0XkTu9p9wJ5wGMi8r6IbHWqPYmktq3W96Fy8eyLKZ1ays+3/tz2N9yRiGQ4KB7TZ3ce3UlXb1dQUABPYBCEo11Hh+zZdPZ08kr1K3z29M9G/I2+rLSMQ3cfoubuGpKTktnXsi/gcV3NrOKZo+sUjDEbjDElxph5xpg13mOPG2Me9/7+FWPMJGPMWd6fpU62J1HUtNb4xqBFhK8u/Srbj2zn3cPvOvq6kQ4HxWP67JbD3knmguCgcN/r92EGTGuF69n8ef+fOdV3is+dbn/oaKDC3EK+fOaX+eW2X3LkxBEA+t39HO7QHddU/NIVzXGmt7+Xwx2HA4Yfbl1yK1mpWfx8689DPmewb/eRfPOPdDhozYo1pCenBxxLSUoZ1fTZLfVbyEvPY96keUGPRdKzeX738+Sl5424FMU9y+6h193Lj9/6MeDZca3P3ac9BRW3NCjEmYaOBtzGTdHEj4NCdlo2t5beyu93/p5jJ48FnB/q2/0/vvCPPPH+E5R/GNk3/0iHg8pKy7hj6R0ACMKE5AmkulK5vuT64dx6VGw5vIULCi4IOeRjt2fT09/Dn/b+ietPu57kpJGVB5s/eT63nHELP9/6c1q6WnSNgop7GhTiTE1bDRD8QfXV877Kqb5TPPn+kwHHQ327P9l3kr9f9/fc+vyttr/5v1r9atg2DTYcdKr3FFmpWZz6zin+9nd/o7O3k5+8/ZOw5zupvbudXU27Qs4nQOjMoDRXWlDP5o1Db9DW3TaioSN/3172bTp7O/nplp/qGgUV9zQoxBnrW7n/8BF4SjIvmLyAf3vt33xDQQ++/aAviET6Gv7DSlN/OJVryq+hIKcgaDhoqBW8rxx4hcvnXE6qK5XzZp3H5xd+nh+//WOau5ojbtdIbW3YisGEDQr+mUGC4BIX+Rn5fHHxFwPOe77qeTJTMrly7pVRadfiqYv5/MLP8/C7D7Pz6E5A92ZW8UuDQpypafV8yA/80CivLKemrYY+d59vKOhfX/nXsNcpyi0KCiyWJEniKy98xTes1NTVhMHwnU98h19+5pe+5wnCY9c9FnbB1v5j+zlw/ACfmvsp37HvXvZdOns7+f7m70d039HwTv07AJw/6/yw51iZQe773Dx707PUd9Tzsy0/8z3uNm7W7VnH1fOvJj0lPex1IvXtZd+m9VQr971xHwDnrj131NdzKBWKBoU4U9NWQ35GftAwR6iaOgAT0yaGXSwVargkJSkFt3Fzqu9UwHG3cfO9Td/zfWiuu2UdBsOs7PCVSV6pfgWAq+Zf5Tu2KH8Rty25jUfefSTmK7G3HN5CSV7JkFtmWj57+me5dsG13PfGfb62bqnfQuOJxqgNHVl2t+wmSZJ82U+1bbVxsdBPqYE0KMSZ2rbakGP44SZ727rbAoZE/OvzDBwuKcot4n8++z+DvrblirlXkJ6czrrd68Ke/0r1K8yZOCco0+c/P/mfuI2b7/71u0PdbtQYY9hSvyXs0FEoIsLD1zxMn7uPb7z8DcCTdZSclMx1JddFtX2rN67GbdwBx0Z7oZ9SoWhQiDM1bTUBmUeWwTJn/IdEBtbnCfWYnSycjJQMrpx3Jev2rAu5aK63v5e/HPwLn5r3qaBMn+KJxdxx7h38ctsvmfXgrBHXRbKTVlvbVstHnR9FFBQA5k6ay+rlq/nDrj8w7YfT+OFbPyQ5KZn1+9YPq63hxONCP6VC0aAQR4wxAauZ/dmpqWOX3WvdcNoN1LXX8cFHwUXk3ql/h46eDq6ad1XQYwAL8xdiMDR0NIyoLpLdBXWDLVobyuyc2b6VzgCn+k5FfWgnHhf6KRWKBoU40nKyha7erpAfFKGGgoYq4xyO3Wtdt+A6BAk5hPRy9cu4xMXlcy4P+Ro/ePMHQceGM1xid0HdlvotpLnSWDJtSUTXB7jvDfsrnYcrmkFdKSeNbGWOiior8yhc1pA1TxANdq41LWsaF82+iBf2vsB9n7wv4LFXql/hwoILyZ2QG/K50RousXudLYe3cM6Mc0h1pUZ0/UheYySs/69Xb1ztmzdas2KN7pOh4o72FOKI9SEUT0MKnyn5DNsat1HX9vF+SS1dLWxt2Mqn5n0q7POGu5WlNXcw+8HZXP7E5UHf4ENdp7e/l4rGiojnE0bS1uEYbO5HqXihQSGOWAvRQk00j5YbTvfsoPri3hd9x1478BoGM2hQiHS4ZODcQX1HPa/XvE7p1NKgBXUA/3z+P/t+rzxayam+U8OaTxhOW5UayzQoxJHatloyUjLIS88b7ab4nJZ3GgsmL2Ddno/nFV6pfoWJEyZy3szzwj7PmrewavxkpWQNOgcSau4APKUrrAV1gjArexbZqdn8atuvaD3VCgRvvxmpaM7XKJXodE4hjtS0eUpmx9OOXCLCDafdwE+3/JT27nayU7N5ufplrph7Ba4k16DPteYtbn3uVjbs28BNi24Ke+5g4/oD5z82127m8icvZ+X/reRPK//ElsNbyM/Ip3hi8bDu0b+tSo132lOII+HSUUfbZ077DL3uXv68/89UNVdxuONw2FTUUFaesZLjp47z8v6Xw54Tybj+ssJlPHLtI/x5/5+Z/IPJPPnBk5zoOcHvdvzOdpuUUqFpUIgj/pvrxJOLZ19MXnoe6/as85W2iKRY3JXzrmRy+mSe2hF+S9F7Lrkn6Nhg4/qZqZkkJyXT3t0OeCrDatkIpUZOg0Kc6OrtoqmrKS57Cq4kF58u+TQb9m1g/b71nJZ3WkST4amuVG5ceCPr9qyjs6cz5DktJ1sAmJE1w9a4/uqNq+lz9wUc07IRSo2cBoU4YaV8xlPmkb9JEybReqqV1w68RkNHQ8TfyFeWrqSrtysgi8nS09/Do+89ylXzrqLhXxtspWxq2QilnKFBIU6E21wnHpRXlvOLil/4/u7o6Yh4qGZ54XJmZs8MOYT0zM5naDzRyN0X3m37elo2QilnaFCIE+E214kHqzeu5mTfyYBjkQ7VuJJcfHHxF3lp30scP3ncd9wYw0/e+QkLpyyMaPJa1xYo5QwNCnGiprWGJEliZvbM0W5KkGgN1aw8YyW97l6eq3rOd+zNujfZ1riNr1/w9YhScXVtgVLO0HUKcaKmrYZZ2bNIcaWMdlOCFOYWhtz2M9KhmqUzlzJv0jye2vEUt59zOwAPvfMQkyZM4rYzb4u4Xbq2QKno055CnKhtq43bSeZoDdWICF8q/RKvH3qdIyeOcKj1EM/vfp47zr0j6PpKqdGhQSFK7GwEMxhrNXM8iuZQzcozVuI2bp7Z+QwPb3mYJEkKqGOklBpd4yIoDOcDO5Ln2N0IJpx+dz/17fVxOclsiVaFz4X5C5mdM5tvvvJNHnznQVJdqfy15q9Rbq1SarjGfFAYzgd2pM+xuxFMOI0nGulz98VtTyGayivLOXLiCL3uXsDz/5OuRFYqfoz5oDCcD+xInzPS7JyhNtcZS1ZvXO0LCBZdiaxU/BjzQWE4H9iRPqcgpyDk8Unpk4ZoXeB1x0NPQVciKxXfxnxKarh0SoBH332U3Am5fOcv36G2rZYZ2TOYnjnd1m5fFmMMBTkF1LXXBRxPkiSOnTzGdeXXsaNpB3VtdWG3YIzHzXWcEq30VqWUM8Z8TyFUOmV6cjpnTD2Dr730Nb78xy/75g4aOhrYdmQbFxVcFPQcQVi9PHiI4zfbf8Pb9W9z48IbA7JznrjhCa6YcwUb9m+gtq120LmJ2rZaJqdPJis1K/r/B8QZXYmsVHwb80EhVDrlLz/zSz648wMmp0/GbdxBz2noaAh4ztTMqQjCUzueoruv23fezqM7ueulu1gxZwVP3/h0QHbObWfext5je4OuHWr8PJ7TUaNNVyIrFd/EmNBDJfFq6dKlZuvWrVG5VtL9SSGHigTBfV9gsPjth7/ltudv4+KCi6nvqKeurQ5Xkov05HT23rWX6VnTh3390p+XMm/SPP54yx+jcFdKKRVMRCqMMUuHOs/RnoKIXC0ie0Rkv4gE7aIiIqeLyNsi0i0i33SyLaFEUmnz1iW3ctOim3ir/i3fcFCfu4+e/h42Htw47OsbY+J2cx2l1PjjWFAQERfwKHANsAhYKSKLBpx2DPgX4EdOtWMwkY5vbzm8JehYd3932HTKUNd3iSvg+q2nWuno6RgX6ahKqfjnZE/hfGC/MeaAMaYHeBq4wf8EY8xRY8x7QG+oCzgt0vFtayOcgcKlUw68/sQJE+k3/eSl5wU9dzxkHiml4p+TKamzAP9P0XrgAgdfb1giqbQ5nHRK/+v39Pew+LHFfOPlb7BizgpSXClxvbmOUmr8cbKnEKo4/rBmtUVklYhsFZGtTU1NI2zW8I00nTLVlcqDn3qQ3c27+fnWnwPxvbmOUmr8cTIo1AOz/f4uABqGcyFjzFpjzFJjzNL8/PyoNG44opFO+emST3Pl3Cu57437aO5qpqa1hjRXGvmZo3dfSillcXL46D1ggYjMAQ4DtwBfcvD1YmKkG7uICD+56iec+fiZ3Pf6fTR1NVGYW0iSjPklI0qpBOBYUDDG9InI14CXARfwG2PMThG50/v44yIyHdgK5ABuEbkbWGSMaXeqXfFg8dTF/NN5/8TD73r2E3AbN8UPFYcsgaGUUrHkaO0jY8wGYMOAY4/7/X4Ez7DSuHPG1DMAfCuqrRIYgAYGpdSo0TGLUfK9Td8LOqYlpJVSo02DwijREtJKqXikQWGURFJiQymlYkWDwijREtJKqXikQWGUaAlppVQ8Gtels5VSaryIi9LZSimlEosGBaWUUj4aFJRSSvloUFBKKeWjQUEppZRPwmUfiUgTELzTzdg0BWge7UaMAr3v8UXvOzaKjDFD1uhPuKAwnojIVjspZGON3vf4ovcdX3T4SCmllI8GBaWUUj4aFOLb2tFuwCjR+x5f9L7jiM4pKKWU8tGeglJKKR8NCjEkIr8RkaMismPA8btEZI+I7BSRH/gd/5aI7Pc+dpXf8XNFpNL72M9ERGJ5H5GK5L5FpFhETorI+96fx/3OT6j7htD3LiK/97u/QyLyvt9jY/Y9D3ffY+k9D3PfZ4nIO9572yoi5/s9Fn/vtzFGf2L0A3wCOAfY4XfsMuA1IM3791TvPxcBHwBpwBygGnB5H3sXuAgQ4CXgmtG+tyjed7H/eQOuk1D3He7eBzz+Y+De8fCeD3LfY+Y9D/Pv+itWu4FrgTfi+f3WnkIMGWP+BhwbcPirwPeNMd3ec456j98APG2M6TbGHAT2A+eLyAwgxxjztvH82/O/wGdjcwfDE+F9h5SI9w1h7x0A77e/m4GnvIfG+nsOhLzvkMbQfRsgx/t7LtDg/T0u328NCqOvBFguIltE5K8icp73+Cygzu+8eu+xWd7fBx5PNOHuG2COiGz3Hl/uPTZW7tvfcuAjY8w+799j/T23DLxvGNvv+d3AD0WkDvgR8C3v8bh8v5Nj9UIqrGRgEnAhcB7wjIjMxdNtHMgMcjzRhLvvRqDQGNMiIucCfxSRxYyd+/a3ksBvy2P9PbcMvO+x/p5/FfiGMeb/RORm4NfAFcTp+61BYfTVA895u4nviogbT02UemC233kFeLqd9d7fBx5PNCHv2xjTBFhDShUiUo2nVzFW7hsAEUkGPg+c63d4rL/nIe/bO4Q4lt/zLwNf9/7+LPAr7+9x+X7r8NHo+yNwOYCIlACpeIpkvQDcIiJpIjIHWAC8a4xpBDpE5ELv2Oz/A9aNTtNHJOR9i0i+iLi8x+fiue8DY+i+LVcAu40x/sMEY/09hxD3PQ7e8wbgUu/vlwPWsFl8vt+jPVs/nn7wdJkbgV483wZux/Nh+FtgB7ANuNzv/NV4MhL24Jd9ACz1nl8NPIJ3EWK8/kRy38AXgJ14sjK2Adcn6n2Hu3fv8SeAO0OcP2bf83D3PZbe8zD/ri8DKrz3twU4N57fb13RrJRSykeHj5RSSvloUFBKKeWjQUEppZSPBgWllFI+GhSUUkr5aFBQahDisVlErvE7drOI/Hk026WUUzQlVakhiMgZeFaing24gPeBq40x1SO4ZrIxpi9KTVQqajQoKGWDePZ76AQygQ5jzHdF5MvAP+NZiPcW8DVjjFtE1uIpn5wO/N4Y81/ea9QDvwCuBh4yxjw7Crei1KC09pFS9tyPZ7VtD7DU23v4HHCxMabPGwhuAX4H3GOMOeat8/O6iPzBGLPLe51OY8wlo3EDStmhQUEpG4wxnSLye+CEMaZbRK7AU911q3dTrHQ+LoO8UkRux/Pf10w8m6lYQeH3sW25UpHRoKCUfW7vD3jKG//GGPMf/ieIyAI8FTHPN8a0ishvgQl+p3TGpKVKDZNmHyk1PK8BN4vIFAARyRORQjw7bHUA7d4dtK4a5BpKxR3tKSg1DMaYShG5H3hNRJLwVMW8E9iKZ6hoB3AAeHP0WqlU5DT7SCmllI8OHymllPLRoKCUUspHg4JSSikfDQpKKaV8NCgopZTy0aCglFLKR4OCUkopHw0KSimlfP5/2VjxyBOslw4AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(data['Year'],data['Power'], color='green', marker = 'o')\n", "plt.xlabel('Year')\n", "plt.ylabel('Buying power')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Dans un autre graphique, montrez les deux quantités (prix du blé, salaire) sur deux axes différents, sans l'axe du temps. Trouvez une autre façon d'indiquer la progression du temps dans ce graphique. Quelle représentation des données vous paraît la plus claire ? " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }