{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Incidence de la varicelle" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Les données de l'incidence de la varicelle sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1990 et se termine avec une semaine récente." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "data_url = \"https://www.sentiweb.fr/datasets/all/inc-7-PAY.csv\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020252675946326786259513FRFrance
120252575917366181739612FRFrance
220252474580255866027410FRFrance
320252374911266371597410FRFrance
4202522768373940973410614FRFrance
520252174693265367337410FRFrance
62025207308315354631537FRFrance
720251975084199781718313FRFrance
820251875003271872887410FRFrance
920251776246342490689513FRFrance
1020251676151319391099513FRFrance
1120251575557326278528511FRFrance
1220251474984285871107410FRFrance
1320251375964360883209513FRFrance
142025127385519955715639FRFrance
1520251175878274790099414FRFrance
162025107292114214421426FRFrance
172025097338114685294528FRFrance
182025087283512864384426FRFrance
1920250774502238266227410FRFrance
202025067345519584952537FRFrance
212025057208710563118315FRFrance
22202504768954466932410614FRFrance
232025037246211613763426FRFrance
2420250275966275791759414FRFrance
2520250176059245196679414FRFrance
2620245274356177669367311FRFrance
2720245174670223971017311FRFrance
282024507736344381028811715FRFrance
2920244976077363185239513FRFrance
.................................
17741991267176081130423912312042FRFrance
17751991257161691070021638281838FRFrance
17761991247161711007122271281739FRFrance
1777199123711947767116223211329FRFrance
1778199122715452995320951271737FRFrance
1779199121714903897520831261636FRFrance
17801991207190531274225364342345FRFrance
17811991197167391124622232291939FRFrance
17821991187213851388228888382551FRFrance
1783199117713462887718047241632FRFrance
17841991167148571006819646261834FRFrance
1785199115713975978118169251832FRFrance
1786199114712265768416846221430FRFrance
178719911379567604113093171123FRFrance
1788199112710864733114397191325FRFrance
17891991117155741118419964271935FRFrance
17901991107166431137221914292038FRFrance
1791199109713741878018702241533FRFrance
1792199108713289881317765231531FRFrance
1793199107712337807716597221529FRFrance
1794199106710877701314741191226FRFrance
1795199105710442654414340181125FRFrance
17961991047791345631126314820FRFrance
17971991037153871048420290271836FRFrance
17981991027162771104621508292038FRFrance
17991991017155651027120859271836FRFrance
18001990527193751329525455342345FRFrance
18011990517190801380724353342543FRFrance
1802199050711079666015498201228FRFrance
18031990497114302610205FRFrance
\n", "

1804 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202526 7 5946 3267 8625 9 5 \n", "1 202525 7 5917 3661 8173 9 6 \n", "2 202524 7 4580 2558 6602 7 4 \n", "3 202523 7 4911 2663 7159 7 4 \n", "4 202522 7 6837 3940 9734 10 6 \n", "5 202521 7 4693 2653 6733 7 4 \n", "6 202520 7 3083 1535 4631 5 3 \n", "7 202519 7 5084 1997 8171 8 3 \n", "8 202518 7 5003 2718 7288 7 4 \n", "9 202517 7 6246 3424 9068 9 5 \n", "10 202516 7 6151 3193 9109 9 5 \n", "11 202515 7 5557 3262 7852 8 5 \n", "12 202514 7 4984 2858 7110 7 4 \n", "13 202513 7 5964 3608 8320 9 5 \n", "14 202512 7 3855 1995 5715 6 3 \n", "15 202511 7 5878 2747 9009 9 4 \n", "16 202510 7 2921 1421 4421 4 2 \n", "17 202509 7 3381 1468 5294 5 2 \n", "18 202508 7 2835 1286 4384 4 2 \n", "19 202507 7 4502 2382 6622 7 4 \n", "20 202506 7 3455 1958 4952 5 3 \n", "21 202505 7 2087 1056 3118 3 1 \n", "22 202504 7 6895 4466 9324 10 6 \n", "23 202503 7 2462 1161 3763 4 2 \n", "24 202502 7 5966 2757 9175 9 4 \n", "25 202501 7 6059 2451 9667 9 4 \n", "26 202452 7 4356 1776 6936 7 3 \n", "27 202451 7 4670 2239 7101 7 3 \n", "28 202450 7 7363 4438 10288 11 7 \n", "29 202449 7 6077 3631 8523 9 5 \n", "... ... ... ... ... ... ... ... \n", "1774 199126 7 17608 11304 23912 31 20 \n", "1775 199125 7 16169 10700 21638 28 18 \n", "1776 199124 7 16171 10071 22271 28 17 \n", "1777 199123 7 11947 7671 16223 21 13 \n", "1778 199122 7 15452 9953 20951 27 17 \n", "1779 199121 7 14903 8975 20831 26 16 \n", "1780 199120 7 19053 12742 25364 34 23 \n", "1781 199119 7 16739 11246 22232 29 19 \n", "1782 199118 7 21385 13882 28888 38 25 \n", "1783 199117 7 13462 8877 18047 24 16 \n", "1784 199116 7 14857 10068 19646 26 18 \n", "1785 199115 7 13975 9781 18169 25 18 \n", "1786 199114 7 12265 7684 16846 22 14 \n", "1787 199113 7 9567 6041 13093 17 11 \n", "1788 199112 7 10864 7331 14397 19 13 \n", "1789 199111 7 15574 11184 19964 27 19 \n", "1790 199110 7 16643 11372 21914 29 20 \n", "1791 199109 7 13741 8780 18702 24 15 \n", "1792 199108 7 13289 8813 17765 23 15 \n", "1793 199107 7 12337 8077 16597 22 15 \n", "1794 199106 7 10877 7013 14741 19 12 \n", "1795 199105 7 10442 6544 14340 18 11 \n", "1796 199104 7 7913 4563 11263 14 8 \n", "1797 199103 7 15387 10484 20290 27 18 \n", "1798 199102 7 16277 11046 21508 29 20 \n", "1799 199101 7 15565 10271 20859 27 18 \n", "1800 199052 7 19375 13295 25455 34 23 \n", "1801 199051 7 19080 13807 24353 34 25 \n", "1802 199050 7 11079 6660 15498 20 12 \n", "1803 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 13 FR France \n", "1 12 FR France \n", "2 10 FR France \n", "3 10 FR France \n", "4 14 FR France \n", "5 10 FR France \n", "6 7 FR France \n", "7 13 FR France \n", "8 10 FR France \n", "9 13 FR France \n", "10 13 FR France \n", "11 11 FR France \n", "12 10 FR France \n", "13 13 FR France \n", "14 9 FR France \n", "15 14 FR France \n", "16 6 FR France \n", "17 8 FR France \n", "18 6 FR France \n", "19 10 FR France \n", "20 7 FR France \n", "21 5 FR France \n", "22 14 FR France \n", "23 6 FR France \n", "24 14 FR France \n", "25 14 FR France \n", "26 11 FR France \n", "27 11 FR France \n", "28 15 FR France \n", "29 13 FR France \n", "... ... ... ... \n", "1774 42 FR France \n", "1775 38 FR France \n", "1776 39 FR France \n", "1777 29 FR France \n", "1778 37 FR France \n", "1779 36 FR France \n", "1780 45 FR France \n", "1781 39 FR France \n", "1782 51 FR France \n", "1783 32 FR France \n", "1784 34 FR France \n", "1785 32 FR France \n", "1786 30 FR France \n", "1787 23 FR France \n", "1788 25 FR France \n", "1789 35 FR France \n", "1790 38 FR France \n", "1791 33 FR France \n", "1792 31 FR France \n", "1793 29 FR France \n", "1794 26 FR France \n", "1795 25 FR France \n", "1796 20 FR France \n", "1797 36 FR France \n", "1798 38 FR France \n", "1799 36 FR France \n", "1800 45 FR France \n", "1801 43 FR France \n", "1802 28 FR France \n", "1803 5 FR France \n", "\n", "[1804 rows x 10 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data = pd.read_csv(data_url, skiprows=1)\n", "raw_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Question**: Y a-t-il des points manquants dans ce jeux de données ?" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", "Index: []" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Pas de points à éliminer." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Conversion des semaines:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Définition des périodes d'observation" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Trie des points par période:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
period
1990-12-03/1990-12-091990497114302610205FRFrance
1990-12-10/1990-12-16199050711079666015498201228FRFrance
1990-12-17/1990-12-231990517190801380724353342543FRFrance
1990-12-24/1990-12-301990527193751329525455342345FRFrance
1990-12-31/1991-01-061991017155651027120859271836FRFrance
1991-01-07/1991-01-131991027162771104621508292038FRFrance
1991-01-14/1991-01-201991037153871048420290271836FRFrance
1991-01-21/1991-01-271991047791345631126314820FRFrance
1991-01-28/1991-02-03199105710442654414340181125FRFrance
1991-02-04/1991-02-10199106710877701314741191226FRFrance
1991-02-11/1991-02-17199107712337807716597221529FRFrance
1991-02-18/1991-02-24199108713289881317765231531FRFrance
1991-02-25/1991-03-03199109713741878018702241533FRFrance
1991-03-04/1991-03-101991107166431137221914292038FRFrance
1991-03-11/1991-03-171991117155741118419964271935FRFrance
1991-03-18/1991-03-24199112710864733114397191325FRFrance
1991-03-25/1991-03-3119911379567604113093171123FRFrance
1991-04-01/1991-04-07199114712265768416846221430FRFrance
1991-04-08/1991-04-14199115713975978118169251832FRFrance
1991-04-15/1991-04-211991167148571006819646261834FRFrance
1991-04-22/1991-04-28199117713462887718047241632FRFrance
1991-04-29/1991-05-051991187213851388228888382551FRFrance
1991-05-06/1991-05-121991197167391124622232291939FRFrance
1991-05-13/1991-05-191991207190531274225364342345FRFrance
1991-05-20/1991-05-26199121714903897520831261636FRFrance
1991-05-27/1991-06-02199122715452995320951271737FRFrance
1991-06-03/1991-06-09199123711947767116223211329FRFrance
1991-06-10/1991-06-161991247161711007122271281739FRFrance
1991-06-17/1991-06-231991257161691070021638281838FRFrance
1991-06-24/1991-06-301991267176081130423912312042FRFrance
.................................
2024-12-02/2024-12-0820244976077363185239513FRFrance
2024-12-09/2024-12-152024507736344381028811715FRFrance
2024-12-16/2024-12-2220245174670223971017311FRFrance
2024-12-23/2024-12-2920245274356177669367311FRFrance
2024-12-30/2025-01-0520250176059245196679414FRFrance
2025-01-06/2025-01-1220250275966275791759414FRFrance
2025-01-13/2025-01-192025037246211613763426FRFrance
2025-01-20/2025-01-26202504768954466932410614FRFrance
2025-01-27/2025-02-022025057208710563118315FRFrance
2025-02-03/2025-02-092025067345519584952537FRFrance
2025-02-10/2025-02-1620250774502238266227410FRFrance
2025-02-17/2025-02-232025087283512864384426FRFrance
2025-02-24/2025-03-022025097338114685294528FRFrance
2025-03-03/2025-03-092025107292114214421426FRFrance
2025-03-10/2025-03-1620251175878274790099414FRFrance
2025-03-17/2025-03-232025127385519955715639FRFrance
2025-03-24/2025-03-3020251375964360883209513FRFrance
2025-03-31/2025-04-0620251474984285871107410FRFrance
2025-04-07/2025-04-1320251575557326278528511FRFrance
2025-04-14/2025-04-2020251676151319391099513FRFrance
2025-04-21/2025-04-2720251776246342490689513FRFrance
2025-04-28/2025-05-0420251875003271872887410FRFrance
2025-05-05/2025-05-1120251975084199781718313FRFrance
2025-05-12/2025-05-182025207308315354631537FRFrance
2025-05-19/2025-05-2520252174693265367337410FRFrance
2025-05-26/2025-06-01202522768373940973410614FRFrance
2025-06-02/2025-06-0820252374911266371597410FRFrance
2025-06-09/2025-06-1520252474580255866027410FRFrance
2025-06-16/2025-06-2220252575917366181739612FRFrance
2025-06-23/2025-06-2920252675946326786259513FRFrance
\n", "

1804 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 \\\n", "period \n", "1990-12-03/1990-12-09 199049 7 1143 0 2610 2 \n", "1990-12-10/1990-12-16 199050 7 11079 6660 15498 20 \n", "1990-12-17/1990-12-23 199051 7 19080 13807 24353 34 \n", "1990-12-24/1990-12-30 199052 7 19375 13295 25455 34 \n", "1990-12-31/1991-01-06 199101 7 15565 10271 20859 27 \n", "1991-01-07/1991-01-13 199102 7 16277 11046 21508 29 \n", "1991-01-14/1991-01-20 199103 7 15387 10484 20290 27 \n", "1991-01-21/1991-01-27 199104 7 7913 4563 11263 14 \n", "1991-01-28/1991-02-03 199105 7 10442 6544 14340 18 \n", "1991-02-04/1991-02-10 199106 7 10877 7013 14741 19 \n", "1991-02-11/1991-02-17 199107 7 12337 8077 16597 22 \n", "1991-02-18/1991-02-24 199108 7 13289 8813 17765 23 \n", "1991-02-25/1991-03-03 199109 7 13741 8780 18702 24 \n", "1991-03-04/1991-03-10 199110 7 16643 11372 21914 29 \n", "1991-03-11/1991-03-17 199111 7 15574 11184 19964 27 \n", "1991-03-18/1991-03-24 199112 7 10864 7331 14397 19 \n", "1991-03-25/1991-03-31 199113 7 9567 6041 13093 17 \n", "1991-04-01/1991-04-07 199114 7 12265 7684 16846 22 \n", "1991-04-08/1991-04-14 199115 7 13975 9781 18169 25 \n", "1991-04-15/1991-04-21 199116 7 14857 10068 19646 26 \n", "1991-04-22/1991-04-28 199117 7 13462 8877 18047 24 \n", "1991-04-29/1991-05-05 199118 7 21385 13882 28888 38 \n", "1991-05-06/1991-05-12 199119 7 16739 11246 22232 29 \n", "1991-05-13/1991-05-19 199120 7 19053 12742 25364 34 \n", "1991-05-20/1991-05-26 199121 7 14903 8975 20831 26 \n", "1991-05-27/1991-06-02 199122 7 15452 9953 20951 27 \n", "1991-06-03/1991-06-09 199123 7 11947 7671 16223 21 \n", "1991-06-10/1991-06-16 199124 7 16171 10071 22271 28 \n", "1991-06-17/1991-06-23 199125 7 16169 10700 21638 28 \n", "1991-06-24/1991-06-30 199126 7 17608 11304 23912 31 \n", "... ... ... ... ... ... ... \n", "2024-12-02/2024-12-08 202449 7 6077 3631 8523 9 \n", "2024-12-09/2024-12-15 202450 7 7363 4438 10288 11 \n", "2024-12-16/2024-12-22 202451 7 4670 2239 7101 7 \n", "2024-12-23/2024-12-29 202452 7 4356 1776 6936 7 \n", "2024-12-30/2025-01-05 202501 7 6059 2451 9667 9 \n", "2025-01-06/2025-01-12 202502 7 5966 2757 9175 9 \n", "2025-01-13/2025-01-19 202503 7 2462 1161 3763 4 \n", "2025-01-20/2025-01-26 202504 7 6895 4466 9324 10 \n", "2025-01-27/2025-02-02 202505 7 2087 1056 3118 3 \n", "2025-02-03/2025-02-09 202506 7 3455 1958 4952 5 \n", "2025-02-10/2025-02-16 202507 7 4502 2382 6622 7 \n", "2025-02-17/2025-02-23 202508 7 2835 1286 4384 4 \n", "2025-02-24/2025-03-02 202509 7 3381 1468 5294 5 \n", "2025-03-03/2025-03-09 202510 7 2921 1421 4421 4 \n", "2025-03-10/2025-03-16 202511 7 5878 2747 9009 9 \n", "2025-03-17/2025-03-23 202512 7 3855 1995 5715 6 \n", "2025-03-24/2025-03-30 202513 7 5964 3608 8320 9 \n", "2025-03-31/2025-04-06 202514 7 4984 2858 7110 7 \n", "2025-04-07/2025-04-13 202515 7 5557 3262 7852 8 \n", "2025-04-14/2025-04-20 202516 7 6151 3193 9109 9 \n", "2025-04-21/2025-04-27 202517 7 6246 3424 9068 9 \n", "2025-04-28/2025-05-04 202518 7 5003 2718 7288 7 \n", "2025-05-05/2025-05-11 202519 7 5084 1997 8171 8 \n", "2025-05-12/2025-05-18 202520 7 3083 1535 4631 5 \n", "2025-05-19/2025-05-25 202521 7 4693 2653 6733 7 \n", "2025-05-26/2025-06-01 202522 7 6837 3940 9734 10 \n", "2025-06-02/2025-06-08 202523 7 4911 2663 7159 7 \n", "2025-06-09/2025-06-15 202524 7 4580 2558 6602 7 \n", "2025-06-16/2025-06-22 202525 7 5917 3661 8173 9 \n", "2025-06-23/2025-06-29 202526 7 5946 3267 8625 9 \n", "\n", " inc100_low inc100_up geo_insee geo_name \n", "period \n", "1990-12-03/1990-12-09 0 5 FR France \n", "1990-12-10/1990-12-16 12 28 FR France \n", "1990-12-17/1990-12-23 25 43 FR France \n", "1990-12-24/1990-12-30 23 45 FR France \n", "1990-12-31/1991-01-06 18 36 FR France \n", "1991-01-07/1991-01-13 20 38 FR France \n", "1991-01-14/1991-01-20 18 36 FR France \n", "1991-01-21/1991-01-27 8 20 FR France \n", "1991-01-28/1991-02-03 11 25 FR France \n", "1991-02-04/1991-02-10 12 26 FR France \n", "1991-02-11/1991-02-17 15 29 FR France \n", "1991-02-18/1991-02-24 15 31 FR France \n", "1991-02-25/1991-03-03 15 33 FR France \n", "1991-03-04/1991-03-10 20 38 FR France \n", "1991-03-11/1991-03-17 19 35 FR France \n", "1991-03-18/1991-03-24 13 25 FR France \n", "1991-03-25/1991-03-31 11 23 FR France \n", "1991-04-01/1991-04-07 14 30 FR France \n", "1991-04-08/1991-04-14 18 32 FR France \n", "1991-04-15/1991-04-21 18 34 FR France \n", "1991-04-22/1991-04-28 16 32 FR France \n", "1991-04-29/1991-05-05 25 51 FR France \n", "1991-05-06/1991-05-12 19 39 FR France \n", "1991-05-13/1991-05-19 23 45 FR France \n", "1991-05-20/1991-05-26 16 36 FR France \n", "1991-05-27/1991-06-02 17 37 FR France \n", "1991-06-03/1991-06-09 13 29 FR France \n", "1991-06-10/1991-06-16 17 39 FR France \n", "1991-06-17/1991-06-23 18 38 FR France \n", "1991-06-24/1991-06-30 20 42 FR France \n", "... ... ... ... ... \n", "2024-12-02/2024-12-08 5 13 FR France \n", "2024-12-09/2024-12-15 7 15 FR France \n", "2024-12-16/2024-12-22 3 11 FR France \n", "2024-12-23/2024-12-29 3 11 FR France \n", "2024-12-30/2025-01-05 4 14 FR France \n", "2025-01-06/2025-01-12 4 14 FR France \n", "2025-01-13/2025-01-19 2 6 FR France \n", "2025-01-20/2025-01-26 6 14 FR France \n", "2025-01-27/2025-02-02 1 5 FR France \n", "2025-02-03/2025-02-09 3 7 FR France \n", "2025-02-10/2025-02-16 4 10 FR France \n", "2025-02-17/2025-02-23 2 6 FR France \n", "2025-02-24/2025-03-02 2 8 FR France \n", "2025-03-03/2025-03-09 2 6 FR France \n", "2025-03-10/2025-03-16 4 14 FR France \n", "2025-03-17/2025-03-23 3 9 FR France \n", "2025-03-24/2025-03-30 5 13 FR France \n", "2025-03-31/2025-04-06 4 10 FR France \n", "2025-04-07/2025-04-13 5 11 FR France \n", "2025-04-14/2025-04-20 5 13 FR France \n", "2025-04-21/2025-04-27 5 13 FR France \n", "2025-04-28/2025-05-04 4 10 FR France \n", "2025-05-05/2025-05-11 3 13 FR France \n", "2025-05-12/2025-05-18 3 7 FR France \n", "2025-05-19/2025-05-25 4 10 FR France \n", "2025-05-26/2025-06-01 6 14 FR France \n", "2025-06-02/2025-06-08 4 10 FR France \n", "2025-06-09/2025-06-15 4 10 FR France \n", "2025-06-16/2025-06-22 6 12 FR France \n", "2025-06-23/2025-06-29 5 13 FR France \n", "\n", "[1804 rows x 10 columns]" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sorted_data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Vérification de la cohérence des données: Le début d'une période suit la fin d'une période précédente." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Premier regard sur les données:" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEVCAYAAAALsCk2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXd4ZGd59/+5R6Peu7TS7mp73/V612uwccdgqkuwY8MLhkAc+JkAoSQY8r5AghNIMBATSug2wYCxDZhu425sbG/vvWjVey/Tnt8f55zRSDPqM9KM5v5cl64dPXPKM7NH53vu+ogxBkVRFEUJxTXfE1AURVHiDxUHRVEUJQwVB0VRFCUMFQdFURQlDBUHRVEUJQwVB0VRFCUMFQdFURQlDBUHRVEUJQwVB0VRFCUM93xPYKaUlJSYmpqa+Z6GoihKQrFr1642Y0zpZNslrDjU1NSwc+fO+Z6GoihKQiEi56aynbqVFEVRlDBUHBRFUZQwVBwURVGUMFQcFEVRlDAmFQcRWSwiT4nIERE5JCIftsc/KyL1IrLX/nljyD53ichJETkmIq8PGd8mIgfs9+4VEbHH00XkZ/b4SyJSE/2PqiiKokyVqVgOPuBjxph1wKuAO0Vkvf3eV4wxF9g/vwOw37sV2ABcB3xDRFLs7b8J3AGssn+us8ffC3QaY1YCXwG+OPuPpiiKosyUScXBGNNojNltv+4FjgBVE+xyPfBTY8ywMeYMcBLYISKVQJ4x5kVjLT93P3BDyD732a8fAq5xrApFcQgEDIGArlyoKHPBtGIOtrtnK/CSPfRBEdkvIt8XkUJ7rAo4H7JbnT1WZb8eOz5qH2OMD+gGiiOc/w4R2SkiO1tbW6czdWUB8MGf7OauRw7M9zQUJSmYsjiISA7wMPARY0wPlotoBXAB0Ajc42waYXczwfhE+4weMObbxpjtxpjtpaWTFvgpC4zTrf2cau2b72koSlIwJXEQkVQsYfixMeYRAGNMszHGb4wJAN8Bdtib1wGLQ3avBhrs8eoI46P2ERE3kA90zOQDKQuXAY+f3iHffE9DUZKCqWQrCfA94Igx5ssh45Uhm90IHLRfPwrcamcgLcMKPL9sjGkEekXkVfYx3wX8KmSf2+3XbwOetOMSihJkwOOnb1jFQVHmgqn0VroUeCdwQET22mOfAm4TkQuw3D9ngb8DMMYcEpEHgcNYmU53GmP89n4fAH4IZAK/t3/AEp8fichJLIvh1tl9LGUhMujx4fFpnoKizAWTioMx5nkixwR+N8E+dwN3RxjfCWyMMD4E3DzZXJTkxRjDgNeP2K81mU1RYotWSCsJwbAvgDEQMDDo9U++g6Ios0LFQUkIBjwjgqBBaUWJPSoOSkIw4BkRBBUHRYk9Kg5KQjAYYjloxpKixB4VByUhCHUr9anloCgxR8VBSQhGicOwdx5noijJgYqDkhAMekeshR61HBQl5qg4KAmBupUUZW5RcVASggENSCvKnKLioCQEmq2kKHOLioOSEDiWQ266W+scFGUOUHFQEoJBjw8RKMlNV8tBUeYAFQclIRjw+MlMTSE3w03vkKayKkqsUXFQEoIBr5+stBRy0t2araQoc4CKg5IQDHr8ZKZZloO6lRQl9qg4KAnBgMdHVqqbnPRUDUgryhyg4qAkBANqOSjKnKLioCQEg56QmMOwD11iXFFii4qDkhAMOOKQ4cYfMLoanKLEGBUHJSEY9PrJTHOTm2Ete64ZS4oSW1QclITACkhbbiWAXo07KEpMUXFQEoLQgDSo5aAosUbFQYl7jDEjMYf0VEDXkVaUWKPioMQ9Hn8Af8AEs5VAV4NTlFij4qDEPU677tCAtFoOihJbVByUuMdp150VGnPQgLSixBQVByXuCRWH7HQNSCvKXKDioMQ9QbdSagqpKS4yUl2ayqooMUbFQYl7BjyWEGSlWVaDNt9TlNij4qDEPQNeJyCdAqDN9xRlDlBxUOKewZCYA2Av+KOprIoSS1QclLhnYIw4qOWgKLFnUnEQkcUi8pSIHBGRQyLyYXu8SEQeF5ET9r+FIfvcJSInReSYiLw+ZHybiByw37tXRMQeTxeRn9njL4lITfQ/qpKoDNoxh8wQy0FjDooSW6ZiOfiAjxlj1gGvAu4UkfXAJ4EnjDGrgCfs37HfuxXYAFwHfENEUuxjfRO4A1hl/1xnj78X6DTGrAS+AnwxCp9NWSCMWA52QDpDxUFRYs2k4mCMaTTG7LZf9wJHgCrgeuA+e7P7gBvs19cDPzXGDBtjzgAngR0iUgnkGWNeNNZKLfeP2cc51kPANY5VoSgDIamsALnp6lZSlFgzrZiD7e7ZCrwElBtjGsESEKDM3qwKOB+yW509VmW/Hjs+ah9jjA/oBoojnP8OEdkpIjtbW1unM3UlgRn0+kl3u0hxWc8LORm6GpyixJopi4OI5AAPAx8xxvRMtGmEMTPB+ET7jB4w5tvGmO3GmO2lpaWTTVlZIAx4fMFgNFh1Dv6AYcgbmMdZKcrCZkriICKpWMLwY2PMI/Zws+0qwv63xR6vAxaH7F4NNNjj1RHGR+0jIm4gH+iY7odRFiZWu2538PeR5nuazqoosWIq2UoCfA84Yoz5cshbjwK3269vB34VMn6rnYG0DCvw/LLteuoVkVfZx3zXmH2cY70NeNKoz0CxGbQX+nEIioPGHRQlZrgn34RLgXcCB0Rkrz32KeALwIMi8l6gFrgZwBhzSEQeBA5jZTrdaYxxVoP/APBDIBP4vf0Dlvj8SEROYlkMt87ycykLCGehH4ccbb6nKDFnUnEwxjxP5JgAwDXj7HM3cHeE8Z3AxgjjQ9jioihjGfT4g5lKECIOajkoSszQCmkl7hnwjglI64I/ihJzVByUuGfA4ycrfcTIzctw1pHWgLSixAoVByXuGfT4yVK3kqLMKSoOStwzNiCtq8EpSuxRcVDiHiuVdcStlOZ2ke52qeWgKDFExUGJa3z+AB5/YJTlAFatg9Y5KErsUHFQ4o4hrx+f32qN4awCN1YctG23osQWFQcl7njTvc/xtSdPAiOrwGWGWQ6puhqcosQQFQclrggEDGfa+nn5jNVaa+wqcA452rZbUWKKioMSV/QO+wgYONbcizGGAWcVuNTRxfxF2Wm09g7PxxQVJSlQcVDiip5By1XU0e+htW846FYaazksLsqivmsQf0D7MypKLFBxUOKKroGROMKxpt5x3UpLirLw+g1NPUNzOj9FSRZUHJS4onswsjiMDUgvKcoCoLZ9YO4mpyhJhIqDEld0DXqCr4829TLotWIOoYv9wIg4nO9QcVCUWKDioMQVjuWwqixnQrdSZUEGKS6hVsVBUWKCioMSVzgxhx3Lijje3BvsnzTWrZSa4mJRQYaKg6LECBUHJa7oGfSS7naxpbqAYV+AY029AKO6sjosKcpScVCUGKHioMQVXQNeCrJSWVORC8Ce812kpbhwp4RfqkuKsjTmoCgxQsVBiSu6B73kZ6ayujwXETjT1h/mUnJYXJRFe79HK6UVJQaoOChxRdegh4LMNDLTUlhqZySNDUY7aMaSosQOFQclruge9JGXaS0D6riWxrMcgrUOKg6KEnVUHJS4onvAQ0GWIw55gFoOijIfqDgocYUTcwBYa1sOWWOa7jnkZ6aSm+FWy0FRYoCKgxI3eP0B+j1+CqboVhIRTWdVlBih4qDEDU51dL7tVqopzibd7RrXrQRa66AosULFQYkbnOpox62U4hLefWkNr11XPu4+S4qyqOsYJKCtuxUlqqg4KFEnEDC8crZjwm0GPD7edO9z/PlkW3AsaDnY4gBw1xvW8Vfbqsc9zuKiLDz+AM292rpbUaKJioMSdZ450crN33pxQoHYW9vFoYYe/nK6PTjWbXdkLchKm/K5tHW3osQGFQcl6jR1W0/xL55qH3ebXec6AajvHAyORbIcJkNrHRQlNqg4KFGno9+yACayHHbX2uLQNSIOTsyhYBrisKggE5dorYOiRBsVByXqtPdZ4rDrXCdefyDs/UDAsLu2CxgtDo7lkDcNcUhzu6jMz1TLQVGijIqDEnU6+ocBGPD4OdTQE/b+6bY+uge9lOel09Q9hN/ONOoa8JKb4SbFJdM6n6azKkr0mVQcROT7ItIiIgdDxj4rIvUistf+eWPIe3eJyEkROSYirw8Z3yYiB+z37hURscfTReRn9vhLIlIT3Y+ozDXt/R6qCjIBeOVMuGtp9znLanjTpkX4AoYWO9OoJ6Q6ejrUlGRzsqUPYzSdVVGixVQshx8C10UY/4ox5gL753cAIrIeuBXYYO/zDRFxKpi+CdwBrLJ/nGO+F+g0xqwEvgJ8cYafRYkTOvo9rKnIZVlJNi9FEIdd5zopyErlslUlwEhQumvQG+yrNB02VeXTM+TjfMfg5BsrijIlJhUHY8yzwMRJ6yNcD/zUGDNsjDkDnAR2iEglkGeMedFYj3f3AzeE7HOf/foh4BrHqlASk45+D0XZaeyoKeKVsx1hBWq7ajvZuriA6kLLunDiDt0ztBw2V+cDsL++a5YzVxTFYTYxhw+KyH7b7VRoj1UB50O2qbPHquzXY8dH7WOM8QHdQHGkE4rIHSKyU0R2tra2zmLqSqwwxtDe76E4O42LlhXRPejleEtv8P3uAS8nW/rYtrSQRQWjxaFrwFrLYbqsLs8lLcXFgbru6HwIRVFmLA7fBFYAFwCNwD32eKQnfjPB+ET7hA8a821jzHZjzPbS0tLpzViZE/o9fjy+AEXZaVy8rAgYHXfYfd5KYb1waSHZ6W4KslJpCFoOvmllKjmkuV2srczlQP3sxcGp0VCUZGdG4mCMaTbG+I0xAeA7wA77rTpgccim1UCDPV4dYXzUPiLiBvKZuhtLiTM67DTWouw0qgszqczPGBV32H2uE5fAluoCABblZ1LfOYgxhu5Bz4xiDmDFHQ7Ud8+qx9KZtn5e/YUneOa4WqWKMiNxsGMIDjcCTibTo8CtdgbSMqzA88vGmEagV0ReZccT3gX8KmSf2+3XbwOeNJp2krC022msxTlpiAgX1RTx8pmOYCbR7tpO1lXmkZ1urdFQVZhJfdcgg14/Xr+ZUcwBLHHoHfJxbhYprcebezEGdk3SF0pRkoGppLL+BHgRWCMidSLyXuA/7LTU/cBVwD8AGGMOAQ8Ch4E/AHcaY/z2oT4AfBcrSH0K+L09/j2gWEROAh8FPhmtD6fMPU51dKHdH2nHsiJaeof5998f5UcvnmVvbRcXLikMbl9VYFkOM6mODmWTHZSejWupzs6aOtzYO+F2H//5Pp482jzj8yhKIhB5ia0QjDG3RRj+3gTb3w3cHWF8J7AxwvgQcPNk81ASg3ZbHIqz0wG4am0Z1YWZfPe50zgen0tWjOQbVBVk0u/xB4vYZmo5rC7PJc3t4kBdF2/dsmhGx6jrtOZwpDG8cM9hwOPjoV11pLldXL12/FbiipLoTCoOijIdOm1xKMqxLIeqgkye/6er8QcM7f3D9A35WFaSHdy+yk5nPWxXUufPMOaQmuJiXWUe+2eRseRYDvVdg3QPeCPOxQmet/YOz/g8ipIIaPsMJap09HtIc7vIHrN6W4pLKMvNYHlpDqFlLE4662H7aX2mlgPA5qp8DjX0zDgoXd85GFx17khTZOuhvsvKZmrrU3FQFjYqDkpUcWocplrH6LTZcCyH6azlMJZN1fn0Dfs4094/o/3rOge4fJWVIj2ea0ktByVZUHFQoopTHT1VirPTSHO7OGEXys3KcnCC0jNwLXUPeukZ8rF1SQHF2WmTikNb37D2clIWNCoOSlRpn6Y4uFxCVUEmXr/B7ZIwd9R0WFmaQ0aqK2Lc4cmjzWz9l8foG/ZF3Nfp71RdmMW6yrygmytsO1schrwB+j3+iNsoykJAxUGJKh39wxRPQxwAFhVkAJbVMJu2Wu4UF+sr8zgYIZ113/luOge8o1aeC8XJVKouzGT9ojyON/fhi7AWRUPI+hPqWlIWMioOSc6Ax8ewL3pPwB19HorsNNap4sQdZpqpFMrGqnwON/aEuXyae6xAstMefCyORVBdmMm6ylw8vgCn28JjFw1dQxTa89SgtLKQUXFIct75vZf57KOHonKsIa+ffo+f4pzpWQ5VBdY60LOJNzgsLsyib9hHz9Bo91GTLQ7jPe3XdQ6SmZpCUXYa6yrzgJEguUMgYGjsHmTLYqv1R5taDsoCRsUhiekZ8rK7tpNz7dFZRc2pjp5OzAFG3EozrY4OpSLfOlZj92j3kdNQb3xxGKC6MBMRYUVpDmkprrCgdGvfMF6/CfaFalXLQVnAqDgkMXtruzAGeociB2mny9jWGVPFKYSLhuXgCE1j12j30YhbaXzLwZlHaoqLVeU5YUFpx/W0sSofl6jloCxsVBySmF3nrPbZPUPeqBwv2Dpj2m4l66Y8mxoHh8p861iNIa23h7x+Ou3eTRO5lZzFhwDWVeZxZEyPJScYvbgok6LsdLUclAWNikMSs7vWFofB6IhDh92Rdbpupcr8TDJTU4IuodlQlpuOS0a7lVp6Rm7ikcShd8hL96CX6sKs4Nj6yjza+oZHBbAdcVhUkElJThqtvZ5Zz1dR4hXtrZSk+AOGvbXWspq9Qz6MMbNKIwVo73Oa7k1PHNLcLn77odcEn/pngzvFRVluBg0hbiUnGJ2b4Y6YrRSaqeTgBKWPNPZSlmuJVkPXELnpbvIyUinNTddsJWVBo5ZDknKipZfeYR9rynPxBQyD3tmns3b0e0hxCXkZ048dLC/NIXMWBXChVBZk0NQzYjk44rBxUX5Ey6Guw9rWcW8BbKjKwyXW4kQO9V2DwV5QpTnpWuegLGhUHJIUJ95w5Rqrl1A0gtKdAx4Ks9JwuWZngcyWRfmZowLSzXb8YXN1Pj1DPobGCOFIAdyIWykvI5WNVfm8cKotOFbfORgMeJfYloO20FAWKioOScruc12U5KSxfpHlPolG3KG9zzNtl1IsqMjPoKF7MHjjbuoZIjM1heWlVqvwsU/8dZ2DpLtdlIwJpF+yooQ9tV0MeCzhbOgeyWgqzUln2BcYtx2HoiQ6Kg5Jyu7aTi5cUhhMHx1bNDYVnjneyg1f/zP99g1yuk33YkVlfgZD3kBwdbmmniEq8jOCsYOxWUb1XYPBGodQLllRjC9gePlMB/3DProGvEG3Ukmu9TnVtaQsVFQckpD2vmHOtPWzbWkhuRmOOEzfcnjhVBt7z3fxyJ56wBaHaaaxxgLnBu6ks7b0DFGel05prtXWI5LlEOpScriopoi0FBcvnGoPZj9VBWMOltC09WnGkrIwUXFIQnbbWUoXLi0kP9NKWJuJW8mpOr7vhbMYY4JrOcw3lWOqpJt6hqjIy6DMFoexhXB1nQNBd1EomWkpbF1SwAun2oKL/KjloCQLKg5JyO7aTlJThE1V+UHLYSYB6cauIdwu4WRLH88cb6V70BsnbiXrBt7QPYQxhuaeYcrzMyjKTkNk9A29b9hH54B3VBprKJesKOFQQ0+wz1JQHHIsodF0VmWhouKQhOw618mGRflkpKYE005n4lZq6B7k2vXlFGen8dU/nQCmXwAXC0pz03G7hKbuQToHvHh8AcpzM3CnuCjOThslDqHrOETi0pXFGAMP764jxSWU29ZHYVYaKS5RcVAWLCoOSciJ5t5gllJGqovUFJm25RAIGJp7hlhanM3bL17C3vOWqyoexCHFJZTnZdDYNRR0fTnV16W5GbSGFMKdaesDYGlRZHHYsriArLQUTrb0UZFnCYxzjqIxQqMoCwkVhyTDHzB0DXqDbhERITcjddoxh7Z+q0PpooIM3nHxUtx2bUM8iAOMpLM6DffK8xxxGF28drC+hxSXsKYiN+JxUlNc7FhWBIw09XMoydEqaWXhouKQZHQNeDBmdIuLvAz3tFNZnSKzirwMKvIzuG5jBQDF01zoJ1ZU5mfQ2D0UrI52LIeyseLQ0M2qshwyUsevzr50RQkwEm9wKM1Np1WzlZQFiopDktE5YLfVDhGH3IxUeqcZc3DSRJ0b5kdeu5qbLqxiWUl2lGY6OxYVZNLYPURj9xAiBDOVrBu6VdlsjOFgfTcbFuVPeKxXrygOHjOUkpw0bdutLFi08V6S0dFviUBRSHvsvEz3tN1KTpqokza6siyHL99yQZRmOXsq8zPw+AIcbeyhODudVDtWUJqTjtdv6Brw4vEHaOvzsLEqb8Jjra/M4z2X1vCmTZWjxkOFZrZNCxUl3lBxSDIitdXOy0gd1dZ6KjR2D5HmdsVNjGEsjmjtOd9FRf6Iq6sszy6E6xvmfIfVU2lj1cSWg8slfOYtG8LGS3PS8fgC9Az5orJQkaLEE+pWSjKClsMot5J72qmsjd1DVOZnxO0Ts1Pr0No7TEXeSCC5NGekSvpgfQ8iI+25p4vWOigLGRWHJMOxHAqzR5508zJS6RmcbkB6MPh0Ho9UhmQWlYeKQ7BKeoiDDd0sK8kmJ31mBrRzLI07KAsRFYcko6PfS066m3T3SHZObkYqg14/Xn9gysexLIfZL84TK0qy00lNsayaUMuhzH7d2jvMofpuNk4SjJ7wHDkjLipFWWioOCQZHf3Do6wGsALSMPUWGv6AoalnKK4tB5ddCAdQHjLP7LQUMlNTONrUS0P30KTB6IlQy0FZyKg4JBkdA16KxtQi5AX7K00t7tDWN4w/YKgsiF/LAaxFf2C0W0lEKM1N59njrQCzshwKMlPtFhpa66AsPCYVBxH5voi0iMjBkLEiEXlcRE7Y/xaGvHeXiJwUkWMi8vqQ8W0icsB+716xI5kiki4iP7PHXxKRmuh+RCWUzn4PRVmjLYfcDKcz69QshwZ7zeXKvPi1HGAk7lAxZp5luenBG/pkNQ4T4bJ7LZ1s6Zv5JBUlTpmK5fBD4LoxY58EnjDGrAKesH9HRNYDtwIb7H2+ISKOc/ubwB3AKvvHOeZ7gU5jzErgK8AXZ/phlMmxFuQZYzlkTq/5nlMAV1kQ3+LgVEWPFQfHHbS4KJP8rNmloL5hUyV/OtIcbNOhKAuFScXBGPMs0DFm+HrgPvv1fcANIeM/NcYMG2POACeBHSJSCeQZY1401tqN94/ZxznWQ8A1Eq/5kQsASxwiWw5TdSsFq6PjOCANcPO2xXz6jevCBMARh9m4lBze9eql+I3hxy/VzvpYihJPzDTmUG6MaQSw/y2zx6uA8yHb1dljVfbrseOj9jHG+IBuoDjSSUXkDhHZKSI7W1tbZzj15GXQ42fQ6x835jBVt1Jj1yAZqS4KZvnUHWtWluXwt5cvDxt3WmlMVvw2FZYWZ3PVmjIeeOkcwz7/rI+nKPFCtAPSkZ74zQTjE+0TPmjMt40x240x20tLS2c4xeSlw+6rNNZymIlbqTI/fM3lRMGxHDYsmnmmUii3X1JDW5+H3x1ojMrxFCUemKk4NNuuIux/W+zxOmBxyHbVQIM9Xh1hfNQ+IuIG8gl3YylRoLPfbrqXNbrlhVMENl5n1kDAMOQdeSpu7I7vArjJuGxVKTdurQq24p718VaWsLwkmx++cC4qx1OUeGCm4vAocLv9+nbgVyHjt9oZSMuwAs8v266nXhF5lR1PeNeYfZxjvQ140o5LKFGm3RaH4pzR4pDiEnLT3ePGHP7zsWNcc88zDHgs8Yj3ArjJWFSQyVf++gKy0qLTWszlEm6/pIZ957uCix4pSqIzlVTWnwAvAmtEpE5E3gt8AbhWRE4A19q/Y4w5BDwIHAb+ANxpjHEeOT8AfBcrSH0K+L09/j2gWEROAh/FznxSos94lgPY/ZXGiTnsO99Ffdcg33vuDD5/gOY4L4CbD/5qWzU56W7uuH8nn/j5Ph7eVRf8vhUlEZn00ckYc9s4b10zzvZ3A3dHGN8JbIwwPgTcPNk8lNkTtBwiLMiTl5k6bszhbFs/AN965hRXrS0jYOI/jXWuyUl38413XMiPXzrH40ea+fmuOl69vJif3PGq+Z6aoswIbdmdRHT2eywXUkb4f3tuRmS30qDHT0P3EDdcsIhf72/k07+0aiHjPY11Prh8dSmXry4lEDB84qH9PH64Sdd6UBIWbZ+RRLT3eyjMSsXlCr9ZjdeZ9Wy7ZTW8dn05t160mH22T71C3Urj4nIJm6ry6BnyjVqSVFESCRWHBczu2k76h0du+J39nnEX58nLTKV3ONxycFxKNcXZfPi1q8hKswre1XKYmFXluQAcb9bWGkpiouKwQDnd2sdN33iBH/z5THCsY8ATMRgN4wekT9visKwkm7LcDD567WrWVeYFO7kqkVlVngPAiZbeeZ6JoswM/QtfoPx8l1WQHppa2dHvYbV90xpLXkYqvUPeMB/5mbZ+yvPSybZrId532XLed1l41bEymtKcdAqyUtVyUBIWtRwWID5/gIdtcThQ3x0c7+yf2HIIGOj3jG4Bcaatn5ri7NhNdoEiIqwqy+GkWg5KgqLisAB59kQrLb3D7FhWRHPPMC29QwQChs6BiWMOAD2Do+MOZ9v6WV6q4jATVpXncry5D63pVBIRFYcFyM9eOU9JThofvmYVAAfru+ke9BIwjC8OwQV/RuIO3QNe2vs9LCtRcZgJq8py6B70asaSkpCoOCww2vqGeeJICzdurWLL4gJE4EBdT0jTvfHdSjC6+d6Z9pFMJWX6rLYzlk7oYkBKApLU4nCypZc7f7x7QbVa/uWeenwBwy3bF5OT7mZZSTYH6rvp6J9YHCK5lZw0VnUrzQwnY+l4s8YdlMQjqcXh2eNt/PZAI7XtA/M9lahgjOFnr5xn65KCYJ79pqp8DoaIw0QBaRjtVjrd1o9LYHFRVoxnvjApzUknPzNVLQclIUlqcei0XS0dC6RB2v/+5RwnWvq49aKRrumbqvJp6hnieJP19DpZzGGUW6mtn6rCTNLdKRH3USZGRFhdnsMJtRyUBCSpxcFpRLcQxOGl0+187teHuXptGTdvGy0OYGUwweQxh1DL4WxbP8tKItdFKFNjZZlmLCmJSVKLg9NS2QnWJir1XYP8fz/ezZLiLL566wWjeidtqMpHBHbXdpGVlkJGamQrICM1hTS3KxhzMMZwpq2f5ZqpNCtWl9sZS32asaQkFkktDkHLoS8xUVz3AAAgAElEQVRxxWHI6+eO+3fi8QX4zru2B91DDk5Q2h8w41oNDnkZI227W/uG6Rv2UVOs8YbZsKrMiv2cTLJK6SGvn//841Fd0yKBSWpx6FgAlsNDu+o41NDDl27ZworSyC4gx7U0uTi4g0uFnm2zgvTLxjmmMjVWJ2nG0lNHW/j6U6d47HDTfE9FmSFJLQ6dCR5z8AcM33nuNFsWF/C69eXjbueIw3iZSg65mamcaumjuWeIM23Wk666lWZHaW5yZiw9edRaVv7cAskETEaSVhycdhKQuOLwh4NNnGsf4ANXLJ9wQZmNtjgUT2I5vHXLIo4393LZF5/iG0+fIi3FxaICbc09G5weSyeSyK0UCBieOmYlQKg4JC5JKw5ddjsJSExxMMbwrWdOsawkm2vXV0y47YZFeYhM7lZ672uW8fTHr+KWi6pp7B5ibWUuKREWBlKmx8qyHE61Jo84HGzopq1vGLdLgotFzYYfvXiW7z53evYTi0M8vsCozsnxRNKKgyMIGamuhBSHF0+1c6C+m7+9bPmkN/DcjFS+dttW3vXqmkmPu6Q4i8/fsIm/3HUNP3j3RVGabXKzvDSb9n4P3QOR1+heaDx5tAURuG5jBbXtA7NO4314dz0P2V2GFxoP7arjhq//mfMd8WdhJb04LC/JoaPfk3B56N969jQlOencdGHVlLZ/8+ZFLJlG5lFRdhrFOekznZ4SglMrcrotOayHp462cMHiAi5cUkjvsG/WD1/t/cNBF/BCw2mpv68u/qyHpBeHlWU5DPsCDHgSp7/S8eZenj3eynsurRm3bkGJH5zeVGfaZu9iiXdae4fZV9fN1WvKqCmxHkbOzjLu0N7nobPfm3APcFPhWFMPAAfre+Z5JuEkvTisKssZ9Xsi8MeDTYjAX4e0yVDil8WFWaS4hNOtC18cnj5mZSldtbaMpXY333OziDsMevwMePx4/IGwhagSHWNMcKXAQw3dk2w99ySxOFgVqysSUByeOtbC5qp8StTtkxCkuV0sKcpKCsvhqWMtlOWms2FRHtWFmYjMznJo7x+pLI+3gjrr5t7Lj148y86zHdPev65zkL5hH5mpKRys7447yyhp15Du6PeSnZZCRX6G/Xt8XXjj0dnvYc/5Lj509ar5nooyDZaVZC/4jCWvP8Bzx9t446ZKRIR0dwqL8jOpnYXl0B7SvaCj3xM3HYK//PhxfvyXc8EuCzXFWTz18SsnTCkfyzG7GeZ1Gyv4xZ56GrqHqIqj1PGkthyKctKCuf+JIg7PnmjFGMtsVxKHZSXZnG3vJxCIr6fDaLKntoveYR9XrS0NjtWUZI1rORhjuP6/n+fqe57mU784wK/21tM/7Bu1TajlMFedDJq6hyb8f3ryaDP3PnGCTdX5/MdfbeZDV6/kbPsAp6bpNjxmV807SSUH6yd3LRlj6BnyMjgHLrbkFYcBL0XZ6RQmmDg8fayVouw0NtuFbUpisLw0myFvgKaeofmeSszYb2fcbFtaFBxbWpw9bsyhtmOAfXXdpIjw670NfPine7n7d0dGbdMWYjlE063kDxh+8nJt2EJf3YNervjPp/j2OHUV/cM+/u8vD7GqLIdvv3M7t1y0mL/esQSAJ440T2sOR5t6qSrI5KKaIlJcwqFxxKFrwMON3/gz2z//J1Z9+vds/uxj/HJv/bTONROSVxz6hynKSiU33U1qiiREfyV/wPDM8VauWF06qvOqEv8463Av5KD0gfpuKvIyKM0diYXVFGfROeCNWOOxp9YSk3tv28rez7yOTVX5YQtvhT60RfMB7pWzHdz1yAH+cHB076cjjT0M+wI88FJtROvhnseOU981yL/ftIk0t3X7rCrIZH1lHn+apjgca+phbUUuGakprCzN4WBD5IylJ4+2sKe2i0tXFnPH5cv59BvXsXVJwbTONROSVxz6PBRlpyMiFGalJURn1v11XXT0e7hyTenkGytxhdMU8cwCrnU4UN8dbNXiEMxY6ggXxd21nWSnpbC63KrEry7MDLOs2vuGyUh1keKSqNY61NpFZ4cbR9+QnThAbccAL48JMu8738UPXzjD/3nVErbXFI1677Xryth1rnPK1o3HF+B0az9rKqyuvRuq8sZ1Kz1zvJXi7DS+cssF/ON1a/nby5eztiJvSueZDckrDgMeirKt9tZF2WkJYTk8fawVl8Dlq1QcEo2y3HSy01Km7ZdOFPqGfZxp6w82eXRYahdeRuqxtLu2ky2LC4IV/hX5GTR1jxUHDyU56dYDXH/0KszrHHEY87R+tKmHvAw3ueluHnzlfHDc6w/wyUcOUJKTzj9etzbseK9dX07AWNlaU+F0Wx++gAmKw8ZF+bT0DtMyRhz9AcOzx1u5fB68BUkpDgMeH0PeAEXZlvlblJ2WEDGHp49ZlaeFk/RIUuIPEWFZafaCTWc9VN+NMbCpevQT7ZIiRxxGf+5Bj58jjb1cuKQwOFaRl0HfsI/ekKVq2/s9FGenUZSdGtWYQ13nIGC5kUI50tjL+kV5vOWCRfzuYGNwfZP/eeYURxp7+JfrN4atmQLWzb0sN33KriXHQnEsAMfiOjRGrA7Wd9M54OWK1XP/QDgrcRCRsyJyQET2ishOe6xIRB4XkRP2v4Uh298lIidF5JiIvD5kfJt9nJMicq9MJx9sBjhC4GQqJYI4tPVZladXrdEspURlWUnOgm2h4bSBGOtWykpzU56XHpaxtL+uC3/AjPKdO2nlzSFPz+39wxQ7lkMUrfvzndZ82vo8tPRa5wsErLqFtRV53LJ9MUPeAL/Z18jx5l7ufeIkb95cyXUbIze5dLmEa9aV8+zxtrAgdySONvWSmiLB6vn1iyyRGOtaeuZ4KyJw2aqSGX/WmRINy+EqY8wFxpjt9u+fBJ4wxqwCnrB/R0TWA7cCG4DrgG+IiNP74ZvAHcAq++e6KMxrXBwhcJ7Ai+NcHPbUdvI3P3wFgKvXqTgkKstLsqnrHJzSzSPROFDfTXleOmW5GWHvRcpY2mN3It06xnIAaOoeSV9t73Msh7SoWw7VhVZNgeNaOt85wIDHz7rKXLZU57OmPJefvlLLJx7aT06Gm8+9dcOEx3ztujL6hn28dNqKVRhjxi1sO9bUy4rSHFJTrFtwTrqb5SXZHGwIF4fNVfnz0ucsFm6l64H77Nf3ATeEjP/UGDNsjDkDnAR2iEglkGeMedFY3+T9IfvEBKdwxWlhXZidRvegF68/EMvTTpu+YR8f//k+bvzGCzR1D3HvbVvZsEhTWBOV5aXZGLMw1zg4UN/NpqrIGTQ1xeG1DrvPdVJTnDWqjXxlvnWzbuy2XD7GGNr7PBTlpFGYnRa1gPSwz09TzxDX2gtkOUHpI42Wq2dNRR4iws3bq9lf182+81189q0bJr1BX7qyhIxUF//1xAned98rXHT3n/jr//lLxG2PNfUG4w0OG6ryR/VY6h7wsqe2c15cSjB7cTDAYyKyS0TusMfKjTGNAPa/zqNuFXA+ZN86e6zKfj12PAwRuUNEdorIztbW1hlPunOMODjupa44a6n8g+fP8PDuOv7uiuU8+fEreeuWRfM9JWUWLNR01vGC0Q5Li7Np7R1mwGMVuBlj2F3bNSreAFCWZ918HbdS37APjz9ASXY6RVlpdA54o1JE2NA1hDGwYVE+VQWZQVE42tSDyMjSrjdurSLN7eLa9eW8ZXPlpMfNSE3h2vUV7DrXyZm2fkpzM3j5bMeoGApAz5CX+q7BMHHYuCiP+q7BoDg+f7KNgIEr5ik7cbbicKkx5kLgDcCdInL5BNtGiiOYCcbDB435tjFmuzFme2npzL+wjgiWQ+h4vPDksRY2Vxdw1xvWkZOetJ1OFgxBcVhgcYfxgtEOYzOW6joHaesbDsvVz0hNoTArlUY7Y8lpnVFsWw7+gAkGiGdDnR1vqC7MZP2iPA7brpxjTb3UFGeTlea2z5vO7z70Gu69deuU22J8+ZYtHPjs63jiY1fyidevBqz4QijHg8Ho0eJw5Zoy0twu3v6dlzjX3s8zx1vIy3CzpTr2NQ2RmJU4GGMa7H9bgF8AO4Bm21WE/a+T21UHhLYRrQYa7PHqCOMxo73fg9sl5GVYF0FRHIpDZ7+Hvee7uHKeTEol+uRmpFKam86ZBWY5jBeMdqixax0c3/7u2k5gdLzBoSI/M2g5OK0ziuxsJYjO3+j5DuvJfHFRFusr8zjd1s+Ax8fRpl7WlI++Ya8syyUzbept8VNTXOTa2UzrK63vIzxddsR9FcqailweeN/FdA54uOkbL/D44WYuW1WKO2V+kkpnfFYRyRaRXOc18DrgIPAocLu92e3Ar+zXjwK3iki6iCzDCjy/bLueekXkVXaW0rtC9okJnf0eCrPTgk8D8SgOTg8lLXhbWCwvyeZ4S9+C6rF0cIJgNFhrpiwtzuLTvzzAb/Y3sKe2i8zUlLAnZ4CKvPSg5eC0znDqHIBx4w5DXv+UW4PXdQ7gdgkVeRmsq8zDGNh7vouz7f2srQyf00wpz0unKDstTBz21HZRlJ3Govzw72t7TREPf+ASstJT5i2F1WE2klQOPC8i+4CXgd8aY/4AfAG4VkROANfav2OMOQQ8CBwG/gDcaYxx0jY+AHwXK0h9Cvj9LOY1KU7utMOIOAyPt8uc88yxVgqzUtk8TyalEhvWVuSy73wX2z7/OHc+sDusfUMiYgWjx0+UyEhN4eEPXMKGRfl88IE9PLyrjs3V+RGfiCvyM4OFcMGU85y0kL/RyG6lex47xnVffW5KDenOdw6yqCCTFJewwU4hfXRvA8YQ1cpjEWF9ZV5YFfaucx1sX1o4rqtqRWkOj3zgUv7purW8ZR7jjDN2ZBtjTgNbIoy3A9eMs8/dwN0RxncCG2c6l+nS2e8JPokAwdfRrMCcDQG7h9Llq0snXR9aSSz+8bq1XLCkgOdOtPHs8Vb+cLCJQ597fcKu6Nc37ON0W/+kN7GSnHQe+NuLueuRAzyyu55tS8NdSmCls7b3exj2+WnvG3Er+fyWpRUpndXnD/CLPfUMev3sr+vi4uXFE87lfMcAi4uszKjqwkxy0938dn8jAOuiaDmAVb/wwxfO4vUHSE1x0dI7xNn2Ad5x8dIJ9yvNTecDV66I6lymS1JWSHf0W+lxDqkpLvIy3HFjORxs6KZdeygtSLLT3dy4tZov33IBn3nLBvwBw9lZrHcw3xxu6LGC0VPoEpzuTuGem7dw/9/sGPfGV2m7Wlp6hmnr85Cb7ibdnTJiOURwKz1/si3ogtplxzMmoq5zkOoCK0guIqyrzKN32EdWWgqLC6O7XsSGRXnBPkoAu85a89teE1kc44mkFIexbiWwMhM64iSV9eljVlWk9lBa2DjVsadaElccjtprIDsVvpMhIly+ujQYtB1LuS0OTT1DdPR7KLYf4rLSUkhzuyJaDr/cU09+ZipLirLYfW5icRj0+GnrGw5aDqFzX12eG/X+ResrrWMfbrSC9q+c7SQj1ZUQ9UpJlx/p8wfoHvSOcisBFGalzqnl8JXHj/Pr/Q1sXJTP5up8Xr2iOHjBPG0vAzofVZHK3LG8xMqnP53AK8SdaO4jN90drG6eLY7l0Ng9FGydAZaoFGWFdzLoH/bxx0PN3HRhFcO+AE8ebcEYM64/v77LSWMdsRCcG3i0XUpgpS+nu10cbujhxq2w81wHW6oLgu2+45n4n2GU6bStg+Kc0eJQlJ0+ZzGHg/XdfO3JE7hdwitnO/j8b4/wpnuf5/0/2sWuc53sPd/FFdpDacGTmZZCVUFmQi8fery5l1XlOdNaHnMiym2Rae4esqqjQyz8SFXSfzzUxKDXz41bq9i2tJCOfs+Ea1aPpLGGWw6xaIPtTnGxtiKXw4099A/7ONTQw0Vj2n3HK0lnOTgX11jLoSg7lQP1XTE/vz9g+PQvDlCUncbP338J+ZmptPQM8dNXzvM/z5ziD4es7BWNNyQHy0uzE7qN94mWPq5dVx614+VluMlKS6Gxe4i2Ps+oQrmi7NQwy+EXe+qpLsxk29JC8jItV9Wuc53BgsOxOA33QmMLGxbl8R9v28wbN01eBT0T1i/K4/cHm9hTazUbTIR4AySh5RCsusyOZDl4xm2UFS0eeLmWfXXd/POb1pNvX8xleRl86JpVPPOPV/HuS2p47bqyeauKVOaWFaU5nG7ti/l1Fwva+4bp6Pewym43EQ1ErPqDxu5BOgc8FGePuFaLstODlj9AS88Qfz7Zxo1bqxARVpbmkJvhZtcEcYe6zkHS3C5KQly2IsIt2xfHrAvB+so8uga8/HpfAyJw4TiZWvFG0lkOwdYZYW6lVLx+Q9+wb9xg2Wxp7R3mP/5wlEtWFHP9BeGpfyU56Xx2ks6PysJiRVkO/R4/zT3DwZbVicLxZssdtro8ur76ivwMjjX14g+YUW6loqzRlsOj+xoIGLj+AqsVm8slXLikMCwoPeT1B1OFz3cMUF2YOacL5zhuq1/urWdtRV7E9SDikaSzHJxUuKIwt5L1JBGrKmljDJ/99SGGvQH+9YaNUfPRKonNCtv9kYhxhxMtVhuIqItDXgZn7PTe0Nig0z3ZZ3dPfuJIC2srcllZNmK5XLikkOMtvcEeTD968SxbPvcYz52wGnVarbqjm646GVaXVxj2BbgoQVxKkITigDEUZ6eFraZWbneErO8ajMlpH9x5nt/ub+RD16wMriesKCvsG1tCioOdqeT87USLivwMHC9bqPvHsSK6Br0MeHzsPNcR1l5i29JCqx1GbRcnW3r5/G+P4PEH+OADezjb1s/5zgEWF2Yyl+Sku4P9pcYr/otHkk4c3vnqGnb932uDi2w4OE8/x8Z0UIwGJ5p7+cyjh7hkRTEfuHJl1I+vJC5luenkpLsTso13tDOVHELda6MsB6e/Ur+Hv5xux+s3XDamFmjL4nxcAi+daeejD+4jKy2Fh95/CS6B9/zwFboGvCwumlvLAUZcS4mSqQRJKA7jUZabTkFWatTFYcjr54MP7CE7zc1X//oCbYehjEJEWFGaHVXLoWvAMyeN/U609EXdpQSMqpkoitgDzcOzx9vISHWFZf7kZqSypiKP7zx7hv113fzbjZvYtrSQb7xjG+c7Rlp1zzVvu7Ca23YsZlHB3J97pqg42IgIa8pzw3qvz5Yv/P4ox5p7ueeWLZRFqVBIWVgsL83hVEt0xMHrD3Dll57mP/54LCrHGw8nUynU3x8tQi2Hogg90DoHPDx7opWLlxVH7Em1bWkBHn+Am7ZW8QY7PfXVK4r5zFs34JLY1DNMxlVry/j3mzbP+Xlng4pDCGsrcjne3Bu1p64Bj4+fvXKem7dVc6UWtSnjsKI0m4buoeBKabPhdGs/XQNe7nvhbLBx3UzZda6D/37yRMS/h1hlKsGIOBRmpY7q3OpYDgfquznd2s/l47Szvv6CKq5cU8pnxmT+vfNVS9n/2dfHRNAWIioOIaytzGPA46euMzpB6SeOtDDo9XPThdWTb6wkLU6CghN3GPD4ePxw84xqH5xeR4NeP997/kzEbYwxfOoXB/h/vzo47jm6B7y8/39386XHjnPP4+FWSKwylQBKstNxu2SUSwmgIMtKAX10n7UW2OWrSiLuf1FNET98z45gHVEouqLi1FFxCMFZ09X5A5stv9nfQGluOjuWJU4QSpl7lpeOzlj63KOH+dv7d/Li6fZpH+tYUy9ul/C69eXc/+I5uiJ0Mf3N/kYeeKmW+188x4/+ci7ice7+3WE6+j1ctaaUrz91il/uqR/1fqwylcCqVyjLTQ/rLZaRmkJ2WgrnOwapzM9QCyDGqDiEEM2Mpd4hL08da+VNmyo1CK1MyNLiLFxiWQ4vnGzjZzvPA/DAS7XTPtaxpl6Wl2bz0detpm/Yxw/+fHbU+539Hj776CE2V+dz9doy/vU3h9l3fnTbmOdOtPLgzjruuHw5//PO7Vy8rIh/fHg/e0LaYccqU8nhrRdU8br14W05nBT0y1aVaK1QjFFxCCEn3c3iokyONs9eHP50pBmPL8BbtsSmX4uycMhITWFxURaHGnq46xcHqCnO4u0XL+GPh5poC4kbtPQM8cEHdgdXSovEseZe1lTksbYij9etL+cHfz5D79BIy4m7f3eE7kEvX7hpM1++ZQtluRnc+cBuuu22FP3DPj758AGWl2Tz4WtWkeZ28c3/s42KvAz+9v6dHLTXi45VppLDJ9+wlvddtjxs3HE1jRdvUKKHisMY1pTncTwKlsOv9zWyKD+DrYsTp+hFmT+Wl2TzpyPNnGsf4N9u2sTfXFqD1294aFddcJvP/fowv9nfyK/21kc8Rt+wj7rOweDazH9/9Sp6hny86/sv87UnTnD/i2d5aFcdf3fFctYvyqMgK43/fvtWmnuGuPJLT7Hj7j/xqn97gobuQb74ts3BTKCi7DR+8J6LSEtxccv/vMjDu+rsnkqxE4fxKMxKQwQuXRE53qBEDxWHMaytyOV0Wz/DvsnXoh2P7gEvz51o5U2bK+e0h4uSuDhB6Vu2V3PJihJWluWyo6aIn7xcSyBgePpYC7890IhLrMWgIuG4Q9fYN+1N1fl86o1rGRj2c8/jx/l/vzrE8pJs/v7qVcF9ti4p5Otvv5Ar15Rx9doybrywiq/dtjWsWGtFaQ6/uPNSlpVk87Gf7wNg1Tz4/C9dWcwNF1SFdThQoo+G7sewpiIXf8BwqqV/yqtbjeWPh5rw+g1v3jx/i4MricXVa8vYV9fFp964Ljj29ouX8JGf7eXJoy38y28Os7w0mytXl/Gjv5ylb9gXlnkTFIeKkSf6Oy5fwR2Xr6BrwMOe2i5WluWE1Qa8bkMFr9tQMekcy/My+NnfvZo7f7ybv5xuZ13l3NcL3HH5/K6rnEyoOIzBMcmPNfdMSxwGPD4O1HVzoL6bn7xcy5KiLDZXx/9SgEp8cMnKEi5ZOdpVct3GCgp/ncqHf7qHfo+fB953MSLC9/98hj+fbOP1Y27ox5p6yLYXEBpLQVYaV62dfa1NTrqb77/7Ijr6PZTm6kqFCxkVhzHUlGSTluKaVqV0e98wb/7a8zTagcJF+Rnc9cZ1mk2hzIqM1BT+6sJqvvv8GW64YBGXrCzB6w+Qk+7m6WOtYeJwtKmX1RXRXwd5LCkuUWFIAlQcxpCa4mJFWc6U01mNMdz1yAHa+zx8/e0XsmNZkf7hKFHjvZcto7VvmH9+83rAuj4vXVnMM8dGr5VsjOF4cy/XbZzcPaQoU0ED0hFYW5E7ZXH4+a46HjvczCdev4Y3ba5UYVCiSmV+Jv9169ZRrauvXFNGQ/cQJ0L6MbX2DtM54A0GoxVltqg4RGBNRS6N3UPB3O/xqG0f4HOPHuJVy4t472uWzdHslGTHWV/86WMtwTHHDbq6QsVBiQ4qDhFwsjA+++tDNPdELjga9vn5hwf34hLhSzdv0ZRVZc6ozM9kbUXuqJRWx9Kdj46jysJExSECl60s4Y7Ll/Pb/Y1c8Z9Pcc9jx0Z1zPT6A/z9A3vYda6Tu2/aNOfLDirKFWtKeeVsB33D1nV5tKmX0tz0sGZ1ijJTVBwi4HIJn3rjOp742BVcu76Crz15kmu//CxPHGkmEDB84uf7eOxwM599y3reukVrGZS558rVZXj9hg//ZA+7znVwrLknmIatKNFAZtIWOB7Yvn272blz55yca+fZDj71iwMcb+6zV+3q5xOvX8OdV+mSn8r8EAgYvvqn4/zwhbP0DFnWw/tesyyY1aQo4yEiu4wx2yfdTsVhanh8Ab7z3Gn++8mTvO+yZXzsdWvm7NyKMh79wz4e2V3Ho/sa+Kfr1rI9gdYoVuYHFYcY4Q8YbcGtKErCMlVx0JjDNFFhUBQlGYgbcRCR60TkmIicFJFPzvd8FEVRkpm4EAcRSQG+DrwBWA/cJiIaWVMURZkn4kIcgB3ASWPMaWOMB/gpcP08z0lRFCVpiRdxqALOh/xeZ4+NQkTuEJGdIrKztTXygieKoijK7IkXcYgU5Q1LozLGfNsYs90Ys720VNeQVRRFiRXxIg51wOKQ36uBhnmai6IoStITL+LwCrBKRJaJSBpwK/DoPM9JURQlaYmbIjgReSPwVSAF+L4x5u5Jth8EDs3wdPlAd4z3WQLUTvMcMz3XTPdxmO5cF9r8ZjM30Pnp/GZ3vrmYXwnQZr9eaoyZ3C9vjEnIH6B1Fvt+O9b7xPv8ZjPXhTa/2cxN56fzS4T5ATune9x4cSvNhK5Z7PvrOdgn3ucXynTnutDmN5u5gc5P5ze78831/KZE3LiVpouI7DRT6A8yX8T7/EKJ97nq/GaHzm92LIT5zeQzJLLl8O35nsAkxPv8Qon3uer8ZofOb3YshPlN+zMkrOWgKIqixI5EthwURVGUGKHioCiKooSREOIgIn2TvP+0iMx5wEhEqkXkVyJyQkROich/2UV8423/ERHJmss5jjn/hN/jfCIiN4qIEZG18z2XidBrcVZz1Otvlszl9ZcQ4hCPiIgAjwC/NMasAlYDOcBExXsfAeZNHOKc24Dnsarjp4zd7j2p0WsxKuj1N4aEEQcRuVJEfhPy+3+LyLvncUpXA0PGmB8AGGP8wD8AfyMi2SLyJRE5ICL7ReTvReRDwCLgKRF5ar4mLSI5IvKEiOy253e9PV4jIkdE5DsickhEHhORzLmaE3Ap8F7sP077//tZEfmFiBwWkW+JiMt+r09E/kVEXgJePRdzHDNfvRZniF5/UZnvnFx/CSMOccgGYFfogDGmB6uM/X3AMmCrMWYz8GNjzL1YzQSvMsZcNdeTDWEIuNEYcyFwFXCP/eQJsAr4ujFmA1ZhzV/N0ZxuAP5gjDkOdIjIhfb4DuBjwCZgBXCTPZ4NHDTGXGyMeX6O5hjPJNK1qNdfgqDiMHOECG3F7fHLgW8ZY3wAxpiOuZzYJAjwbyKyH/gT1roZ5fZ7Z4wxe+3Xu4CaOZrTbVgLPGH/e3mvymkAAAWASURBVJv9+mVjLQDlB34CvMYe9wMPz9HcEoFEuhb1+ksQ3PM9gWngY7SYZczXRGwOMebJRkTysFqPnybyH2s88A6gFNhmjPGKyFlGvsvhkO38QMzNehEpxnKLbBQRg9V40QC/I/w7dH4fsv9g5wu9FmeOXn+zZ06uv0SyHM4B60UkXUTygWvmeT5PAFki8i4IBqbuAX4IPAa8X0Tc9ntF9j69QO7cT3UU+UCL/Yd5FbB0nufzNuB+Y8xSY0yNMWYxcAbrKW2HWG3cXcBfYwUM4wG9FmeOXn+zZ06uv7gXB/uiHjbGnAceBPYDPwb2zOe8jFVafiNws4icAI5j+VM/BXwXy9+7X0T2AW+3d/s28Pv5CEg73yPWd7ddRHZiPcUdneu5jOE24Bdjxh7G+s5eBL4AHMT6gx273Zyi1+LM0etv9sz19Rf37TNEZAvwHWPMjvmeSyKTaN+jiFwJfNwY8+b5notDon2H8USifXd6/cW55SAi78cKBP3zfM8lkdHvcfbodzhz9LubPfPxHca95aAoiqLMPXFtOSiKoijzg4rDAkREFovIU3bF6SER+bA9XiQij4vVf+dxESm0x68VkV12xeouEbk6wjEfFZGDc/1ZlMQjmtefWL2CjonIXvunbL4+V7KhbqUFiIhUApXGmN0ikotVUHQD8G6gwxjzBRH5JFBojPknEdkKNBtjGkRkI/BHY0xVyPFuwkr522yM2TjnH0hJKKJ5/YnI01iB4Z3z8mGSGLUcFiDGmEZjzG77dS9wBKsS9XrgPnuz+7D+YDHG7DHGNNjjh4AMEUmHYN+ZjwKfn7tPoCQy0bz+lPlDxWGBIyI1wFbgJaDcGNMI1h8wEMlE/ytgjzHGqVb9V6yCqoGYT1ZZcETh+gP4ge1S+r8hfZiUGKPisICxn/ofBj5iN2KbbPsNwBeBv7N/vwBYaYyZ1+IfJTGZ7fVn8w5jzCbgMvvnnbGYqxKOisMCRURSsf4wf2yMecQebrb9wY5fuCVk+2qsCtB3GWNO2cOvBrbZ/W+eB1bbPmBFmZAoXX8YY+rtf3uBB7A6pSpzgIrDAsQ2vb8HHDHGfDnkrUeB2+3XtwO/srcvAH4L3GWM+bOzsTHmm8aYRcaYGqxeM8eNMVfG/hMoiUy0rj8RcYtIif06FXgzVisLZQ7QbKUFiIi8BngOOAAE7OFPYfl9HwSWYPXbudkY0yEi/wzcBZwIOczrjDGhT3Y1wG80W0mZjGhdf0A/8CyQitUt9U/AR+e5I2rSoOKgKIqihKFuJUVRFCUMFQdFURQlDBUHRVEUJQwVB0VRFCUMFQdFURQlDBUHRYkBIvJ+Z03nKW5fo11vlXjCPd8TUJSFhoi4jTHfmu95KMpsUHFQlAjYRX9/wCrc2gocB94FrAO+DOQAbcC7jTGNdluRF4BLgUftVtV9xpgv2T2qvgVkAaeAvzHGdIrINuD7WE0Nn5+7T6cok6NuJUUZnzXAt40xm4Ee4E7ga8DbjDHOjf3ukO0LjDFXGGPuGXOc+4F/so9zAPiMPf4D4EPGmFfH8kMoykxQy0FRxud8SK+f/8VqAbEReNzuHJ0CNIZs/7OxBxCRfCzReMYeug/4eYTxHwFviP5HUJSZoeKgKOMztrdML3Bogif9/mkcWyIcX1HiBnUrKcr4LBERRwhuA/4ClDpjIpJqr0EwLsaYbqBTRC6zh94JPGOM6QK67SZ1AO+I/vQVZeao5aAo43MEuF1E/gerY+jXgD8C99puITfwVaylLSfiduBbIpIFnAbeY4+/B/i+iAzYx1WUuEG7sipKBLRFuZLsqFtJURRFCUMtB0VRFCUMtRwURVGUMFQcFEVRlDBUHBRFUZQwVBwURVGUMFQcFEVRlDD+f1OckgT0fFxhAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'] = sorted_data['inc'].astype(int)\n", "sorted_data['inc'][-100:].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Etude de l'incidence " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nous définissons la période de référence entre le 1er septembre de l'année N au 1er septembre de l'année N+1.\n", "\n", "Les données commencent en décembre 1990. La première année incomplète. Nous commençons donc l'analyse en 1991." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "first_september = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n", " for y in range(1991,\n", " sorted_data.index[-1].year)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "En partant de cette liste des semaines qui contiennent un 1er septembre, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n", "\n", "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_september[:-1],\n", " first_september[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Voici les incidences annuelles." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAD8CAYAAAC2PJlnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHGxJREFUeJzt3X+Q1PWd5/HnC4fMqAsGdDD8UHErxAqarIYpYC+5vTXsAl62BGs1mdONUydVbNTNmq2rUoheWadslW5dXXYpK65UXEWNPzhuLbk9OR3xUsvdEWCIZhUNO5NokEic8YYIpopZB973R39GeibQ0/2dnun+Nq9HVVd/5z3fz2c+/WWYd39+fD+tiMDMzCyLSbVugJmZ5ZeTiJmZZeYkYmZmmTmJmJlZZk4iZmaWmZOImZll5iRiZmaZOYmYmVlmTiJmZpZZU60bUG3nnXdezJ07t9bNMDPLlT179rwfEa2Vlmu4JDJ37ly6urpq3Qwzs1yR9PMs5TycZWZmmTmJmJlZZk4iZmaWmZOImZll5iRiZmaZOYmY1ZHew0f56kM76D1ytNZNMSuLk4hZHVm/rZvdb/ez/qXuWjfFrCwNd5+IWR5dctdWBgaPf/z1Ezv388TO/TQ3TWLfuqtq2DKz0twTKeKhBKuV7bdfydWXz6JlcuG/ZMvkSay4fBbb77iyxi0zK81JpIiHEqxWZkxtYUpzEwODx2lumsTA4HGmNDcxY0rLSc/3Gx6rFx7OwkMJVh/e/3CAGxZdxPULL+TJXfvpK5Egit/wrLvmcxPYSrPhFBG1bkNVtbW1RaV7Z/UePsq659/kxb2/5OhHx2mZPIlll36KO7/y2VO+EzSrhZFveIb4DY+NlaQ9EdFWaTkPZ1H5UIJZrXjuxOqNh7OSSoYSzGrFb3is3jiJJA99/UQvbt3Ky2rYErPS/IbH6onnRMzMzHMiZmY28ZxEzMwss7KSiKS/kLRX0uuSnpLUImm6pE5J3el5WtH5ayX1SNonaVlRfIGk19L31ktSijdLeibFd0qaW1SmI/2Mbkkd1XvpZmY2VqMmEUmzgT8H2iLiMuAMoB1YA2yLiHnAtvQ1kuan718KLAe+K+mMVN2DwGpgXnosT/FVwKGI+DTwHeD+VNd04G5gEbAQuLs4WZmZWW2VO5zVBJwpqQk4C3gXWAFsTN/fCKxMxyuApyNiICLeAnqAhZJmAlMjYkcUZvMfG1FmqK7NwJLUS1kGdEZEf0QcAjo5kXjMzKzGRk0iEfEL4D8D+4GDwAcR8SJwfkQcTOccBGakIrOBd4qqOJBis9PxyPiwMhExCHwAnFuiLjMzqwPlDGdNo9BTuBiYBZwt6U9KFTlJLErEs5YpbuNqSV2Suvr6+ko0zczMqqmc4aw/AN6KiL6I+Aj4e+BfAe+lISrSc286/wBwQVH5ORSGvw6k45HxYWXSkNk5QH+JuoaJiA0R0RYRba2trWW8JDMzq4Zyksh+YLGks9I8xRLgTWALMLRaqgN4Lh1vAdrTiquLKUyg70pDXkckLU713DiizFBd1wIvp3mTF4ClkqalHtHSFDOzBuft7vNh1G1PImKnpM3Aj4BB4BVgA/BbwCZJqygkmuvS+XslbQLeSOffGhHHUnU3A48CZwJb0wPgYeBxST0UeiDtqa5+SfcCu9N590RE/5hesZnlgre7zwdve2INp/fwUf7sqVd44PorvDFhDnm7+9rwtidmiT+hMt+83X2+eBdfaxj+hMrG4O3u88U9EWsYfgfbOIa2u3/2li9yw6KL6PtwoNZNslNwT8Qaht/BNg5/vk9+OIlYQ/EHNplNLK/Ostzwqiuz8ePVWVY19XqTl1ddmdUfD2fZb6i3m7y86sqsfnk4yz5Wrzd59R4+yrrn3+TFvb/k6EfHaZk8iWWXfoo7v/LZXA1reTjO6pmHs2zM6nWJbKOsuvJwnDUiD2fZx+r5j3WeV115OM4amZOIDVOvf6zzfN/A9tuvPOVwnFneOYnYMHn+Y12v6rmHZzZWTiJmE6Bee3hmY+XVWWZm5tVZZmY28ZxEzMwsMycRMzPLzEnEbIzqda8xs4ngJGI2Rr4T3U5nXuJrlpHvRDdzT8Qss3rda8xsIjmJmGXkO9HNykgiki6R9GrR47Ckb0maLqlTUnd6nlZUZq2kHkn7JC0rii+Q9Fr63npJSvFmSc+k+E5Jc4vKdKSf0S2po7ov32xshu5Ef/aWL3LDoovo+3Cg1k0ym1AV3bEu6QzgF8Ai4FagPyLuk7QGmBYRd0iaDzwFLARmAS8Bn4mIY5J2AbcBPwSeB9ZHxFZJtwCfj4hvSGoHromIr0maDnQBbUAAe4AFEXHoVG30Hetm1efPQml8E3XH+hLgpxHxc2AFsDHFNwIr0/EK4OmIGIiIt4AeYKGkmcDUiNgRhcz12IgyQ3VtBpakXsoyoDMi+lPi6ASWV/oizWxsvALNTqXS1VntFHoZAOdHxEGAiDgoaUaKz6bQ0xhyIMU+Sscj40Nl3kl1DUr6ADi3OH6SMmY2zrwCzUZTdk9E0ieAq4H/OtqpJ4lFiXjWMsVtWy2pS1JXX1/fKM0zs3J5BZqNppLhrKuAH0XEe+nr99IQFem5N8UPABcUlZsDvJvic04SH1ZGUhNwDtBfoq5hImJDRLRFRFtra2sFL8nMSql0BZrv3j/9VJJE/h0nhrIAtgBDq6U6gOeK4u1pxdXFwDxgVxr6OiJpcZrvuHFEmaG6rgVeTvMmLwBLJU1Lq7+WppiN4P+8Nl4qWYHmuZPTT1mrsySdRWFu4rcj4oMUOxfYBFwI7Aeui4j+9L07gZuAQeBbEbE1xduAR4Ezga3ANyMiJLUAjwNXUOiBtEfEz1KZm4Bvp6b8ZUQ8Uqqtp+vqrLuefY3v79rPDQsvZN01n6t1c+w0M3LuZIjnTvIj6+osfyhVzlX6n9dLNW089B4+esrPkffvWT74Q6lOU5VOfHq4wcaD794/fXkDxpwr9z+vl2raePPnyJ+enEQaQDn/ebfffuUphxvMquGhr58YCVm38rIatsQmkpNIAyjnP6+HG8xsPHhOZJzU45JbbxZoZtXm1VnjxEtuzSxPsq7O8nBWlXkC28xOJx7OqrJKltzW45CXmVklnESqrJIJbN+zYWZ55+GscTDaklsPeZlZo3BPpELlDEE99PU21q28jPmzprJu5WXDluCCt9e2ieHh0vrXCP9GTiIVqsYQlO/ZsIng4dL61wj/Rl7iW6Zq71L6p4930TqlZdiQ18gei1kW3lG3/tXjv5F38U3GK4l4l9LTUx53Pfbvav2rx38j7+I7zjwE1VjKHYvO43CDf1frXyP9G3l1VgW8S2njKE4OJ9tRIO8r6Py7Wv8a5d/Iw1l2Wil3LLoehxvGSx6H7Kz6PJxldaneljCWu7y6kYYbRpPHITurHx7OsszKeQc72rDRRKskOTTKcMOp5H3IzuqDh7Mss1I7FdfjEsYhXl5dcDoN2dnovIuvTZhy3sHW8ycp+hP4Ck6nITsbP54TsYqVM6/gP1D54A8qs7FyT8QqVm6CaPQ5hUZQi16ZV4M1lrJ6IpI+KWmzpJ9IelPS70qaLqlTUnd6nlZ0/lpJPZL2SVpWFF8g6bX0vfWSlOLNkp5J8Z2S5haV6Ug/o1tSR/Veuo1FOe9gR9uI0k5PXg3WWMqaWJe0EdgeEd+T9AngLODbQH9E3CdpDTAtIu6QNB94ClgIzAJeAj4TEcck7QJuA34IPA+sj4itkm4BPh8R35DUDlwTEV+TNB3oAtqAAPYACyLi0Kna6ol1s/pUz4stbBzvE5E0Ffg94GGAiPiXiPgVsALYmE7bCKxMxyuApyNiICLeAnqAhZJmAlMjYkcUMtdjI8oM1bUZWJJ6KcuAzojoT4mjE1he6Ys0s9rzRyA0pnKGs34b6AMekfSKpO9JOhs4PyIOAqTnGen82cA7ReUPpNjsdDwyPqxMRAwCHwDnlqhrGEmrJXVJ6urr6yvjJZnZRPNii8ZUThJpAr4APBgRVwC/BtaUOF8niUWJeNYyJwIRGyKiLSLaWltbSzTNzGrJq8EaTzmrsw4AByJiZ/p6M4Uk8p6kmRFxMA1V9Radf0FR+TnAuyk+5yTx4jIHJDUB5wD9Kf77I8r8oKxXZmZ1p57v0fGqsWxG7YlExC+BdyRdkkJLgDeALcDQaqkO4Ll0vAVoTyuuLgbmAbvSkNcRSYvTfMeNI8oM1XUt8HKaN3kBWCppWlr9tTTFzMyqyqvGsin3PpFvAt9PK7N+Bvx7Cglok6RVwH7gOoCI2CtpE4VEMwjcGhHHUj03A48CZwJb0wMKk/aPS+qh0ANpT3X1S7oX2J3Ouyci+jO+VjOz3+A9xMbGe2eZ2WnNe4gVeCt4M7MMvGpsbLztiZmd9rxFT3YezjIzMw9nNbJ6+3RAM7MhTiI54KWHZlavPCdSx7z00MzqnXsidcwb1plZvXMSqWNeemhWmucLa89JpM55wzqzU/N8Ye15ia+Z5Y4/4Kr6vMTXzE4blc4Xethr/DiJmFnuVDpf6GGv8eMlvmaWS+VsVeJl8uPPcyJm1rC8Q2/5PCdiZjaCl8mPPw9nmVlD8w6948vDWWZm5uEsMzObeE4iVhe8jt8sn5xErC54Hb9ZPnli3WrK6/jN8s09Easpb3dvlm9OIlZTXsdvlm9lJRFJb0t6TdKrkrpSbLqkTknd6Xla0flrJfVI2idpWVF8QaqnR9J6SUrxZknPpPhOSXOLynSkn9EtqaNaL9zqh7e7N8uvsu4TkfQ20BYR7xfF/groj4j7JK0BpkXEHZLmA08BC4FZwEvAZyLimKRdwG3AD4HngfURsVXSLcDnI+IbktqBayLia5KmA11AGxDAHmBBRBw6VVt9n4iZWeVqcZ/ICmBjOt4IrCyKPx0RAxHxFtADLJQ0E5gaETuikLkeG1FmqK7NwJLUS1kGdEZEf0ocncDyMbTZzMyqqNwkEsCLkvZIWp1i50fEQYD0PCPFZwPvFJU9kGKz0/HI+LAyETEIfACcW6KuYSStltQlqauvr6/Ml2RmZmNV7hLfL0bEu5JmAJ2SflLiXJ0kFiXiWcucCERsADZAYTirRNvMzKyKyuqJRMS76bkXeJbCfMd7aYiK9NybTj8AXFBUfA7wborPOUl8WBlJTcA5QH+JuszMrA6MmkQknS1pytAxsBR4HdgCDK2W6gCeS8dbgPa04upiYB6wKw15HZG0OM133DiizFBd1wIvp3mTF4Clkqal1V9LU8zMzOpAOcNZ5wPPptW4TcCTEfE/Je0GNklaBewHrgOIiL2SNgFvAIPArRFxLNV1M/AocCawNT0AHgYel9RDoQfSnurql3QvsDudd09E9I/h9ZqZNaTew0f5s6de4YHrr5jQ+6y8FbyZWQO469nX+P6u/dyw8ELWXfO5istnXeLrvbPMzHKs1vvPedsTM7Mcq/X+c04iZmY5Vuv95zycZWaWc7X8HHlPrJuZmT9j3czMJp6TiJmZZeYkYmZmmTmJmJlZZk4iZmaWmZOImZll5iRiZmaZOYmYmVlmTiJmZpaZk4iZmWXmJGJmZpk5iZiZWWZOImZmlpmTiJmZZeYkYmZmmTmJmJlZZk4iZmaWWdlJRNIZkl6R9A/p6+mSOiV1p+dpReeuldQjaZ+kZUXxBZJeS99bL0kp3izpmRTfKWluUZmO9DO6JXVU40WbmVl1VNITuQ14s+jrNcC2iJgHbEtfI2k+0A5cCiwHvivpjFTmQWA1MC89lqf4KuBQRHwa+A5wf6prOnA3sAhYCNxdnKzMzKy2ykoikuYAXwG+VxReAWxMxxuBlUXxpyNiICLeAnqAhZJmAlMjYkcUPtj9sRFlhuraDCxJvZRlQGdE9EfEIaCTE4nHzMxqrNyeyF8DtwPHi2LnR8RBgPQ8I8VnA+8UnXcgxWan45HxYWUiYhD4ADi3RF1mZlYHRk0ikv4I6I2IPWXWqZPEokQ8a5niNq6W1CWpq6+vr8xmmpnZWJXTE/kicLWkt4GngS9LegJ4Lw1RkZ570/kHgAuKys8B3k3xOSeJDysjqQk4B+gvUdcwEbEhItoioq21tbWMl2RmZtUwahKJiLURMSci5lKYMH85Iv4E2AIMrZbqAJ5Lx1uA9rTi6mIKE+i70pDXEUmL03zHjSPKDNV1bfoZAbwALJU0LU2oL00xMzOrA01jKHsfsEnSKmA/cB1AROyVtAl4AxgEbo2IY6nMzcCjwJnA1vQAeBh4XFIPhR5Ie6qrX9K9wO503j0R0T+GNpuZWRWp8Ia/cbS1tUVXV1etm2FmliuS9kREW6XlfMe6mVmV9R4+ylcf2kHvkaO1bsq4cxIxM6uy9du62f12P+tf6q51U8bdWOZEzMysyCV3bWVg8MTtdE/s3M8TO/fT3DSJfeuuqmHLxo97ImZmVbL99iu5+vJZtEwu/GltmTyJFZfPYvsdV46p3noeHnMSMTOrkhlTW5jS3MTA4HGamyYxMHicKc1NzJjSMqZ663l4zMNZZmZV9P6HA9yw6CKuX3ghT+7aT98Yeg95GB7zEl8zszrVe/go655/kxf3/pKjHx2nZfIkll36Ke78ymfH3LsZyUt8zcwazHgNj1WTh7PMzOpYNYfHxoOHs8zMzMNZZmY28ZxEzMwsMycRMzPLzEnEzMwycxIxM7PMnETMzCwzJxEzM8vMScTMzDJzEjEzs8ycRMzMLDMnETMzy8xJxMzMMnMSMTOzzEZNIpJaJO2S9GNJeyX9pxSfLqlTUnd6nlZUZq2kHkn7JC0rii+Q9Fr63npJSvFmSc+k+E5Jc4vKdKSf0S2po5ov3szMxqacnsgA8OWI+B3gcmC5pMXAGmBbRMwDtqWvkTQfaAcuBZYD35V0RqrrQWA1MC89lqf4KuBQRHwa+A5wf6prOnA3sAhYCNxdnKzMzKy2Rk0iUfBh+nJyegSwAtiY4huBlel4BfB0RAxExFtAD7BQ0kxgakTsiMKHmDw2osxQXZuBJamXsgzojIj+iDgEdHIi8ZiZWY2VNSci6QxJrwK9FP6o7wTOj4iDAOl5Rjp9NvBOUfEDKTY7HY+MDysTEYPAB8C5JeoyM7M6UFYSiYhjEXE5MIdCr+KyEqfrZFWUiGctc+IHSqsldUnq6uvrK9E0MzOrpopWZ0XEr4AfUBhSei8NUZGee9NpB4ALiorNAd5N8TkniQ8rI6kJOAfoL1HXyHZtiIi2iGhrbW2t5CWZmdkYlLM6q1XSJ9PxmcAfAD8BtgBDq6U6gOfS8RagPa24upjCBPquNOR1RNLiNN9x44gyQ3VdC7yc5k1eAJZKmpYm1JemmJmZ1YGmMs6ZCWxMK6wmAZsi4h8k7QA2SVoF7AeuA4iIvZI2AW8Ag8CtEXEs1XUz8ChwJrA1PQAeBh6X1EOhB9Ke6uqXdC+wO513T0T0j+UFm5lZ9ajwhr9xtLW1RVdXV62bYWaWK5L2RERbpeV8x7qZmWXmJGJmZpk5iZiZWWZOImZmlpmTiJmZZeYkYmZmmTmJmJlZZk4iZmaWmZOImZll5iRiZmaZOYmYmVlmTiJmZpaZk4iZmWXmJGJmZpk5iZiZWWZOImZmlpmTiJmZZeYkYmZWgd7DR/nqQzvoPXK01k2pC04iZmYVWL+tm91v97P+pe5aN6UuNNW6AWZmeXDJXVsZGDz+8ddP7NzPEzv309w0iX3rrqphy2rLPREzszJsv/1Krr58Fi2TC382WyZPYsXls9h+x5U1blltOYmYmZVhxtQWpjQ3MTB4nOamSQwMHmdKcxMzprTUumk15eEsM7Myvf/hADcsuojrF17Ik7v20+fJdRQRpU+QLgAeAz4FHAc2RMTfSJoOPAPMBd4GvhoRh1KZtcAq4Bjw5xHxQoovAB4FzgSeB26LiJDUnH7GAuD/AV+LiLdTmQ7grtScdRGxsVR729raoqurq/wrYGZmSNoTEW2VlitnOGsQ+A8R8VlgMXCrpPnAGmBbRMwDtqWvSd9rBy4FlgPflXRGqutBYDUwLz2Wp/gq4FBEfBr4DnB/qms6cDewCFgI3C1pWqUv0szMxseoSSQiDkbEj9LxEeBNYDawAhjqFWwEVqbjFcDTETEQEW8BPcBCSTOBqRGxIwrdn8dGlBmqazOwRJKAZUBnRPSnXk4nJxKPmZnVWEUT65LmAlcAO4HzI+IgFBINMCOdNht4p6jYgRSbnY5HxoeViYhB4APg3BJ1mZlZHSg7iUj6LeC/Ad+KiMOlTj1JLErEs5YpbttqSV2Suvr6+ko0zczMqqmsJCJpMoUE8v2I+PsUfi8NUZGee1P8AHBBUfE5wLspPuck8WFlJDUB5wD9JeoaJiI2RERbRLS1traW85LMzKwKRk0iaW7iYeDNiPgvRd/aAnSk4w7guaJ4u6RmSRdTmEDflYa8jkhanOq8cUSZobquBV5O8yYvAEslTUsT6ktTzMzM6kA5S3y/BGwHXqOwxBfg2xTmRTYBFwL7gesioj+VuRO4icLKrm9FxNYUb+PEEt+twDfTEt8W4HEK8y39QHtE/CyVuSn9PIC/jIhHRmlvH/DzMl9/PTgPeL/WjRiDPLc/z22HfLc/z22Hxmz/RRFR8VDOqEnExpekrixrs+tFntuf57ZDvtuf57aD21/M256YmVlmTiJmZpaZk0jtbah1A8Yoz+3Pc9sh3+3Pc9vB7f+Y50TMzCwz90TMzCwzJ5FxIOnvJPVKer0o9juSdkh6TdJ/lzQ1xT8h6ZEU/7Gk3y8q8wNJ+yS9mh4zTvLjqt32CyT9L0lvStor6bYUny6pU1J3ep5WVGatpJ7U1mVF8QXpdfVIWp/uD8pL2+v+2ks6N53/oaQHRtRV19d+lLbn4dr/oaQ96RrvkfTlorom9NqPQ/sru/4R4UeVH8DvAV8AXi+K7Qb+TTq+Cbg3Hd8KPJKOZwB7gEnp6x8AbRPc9pnAF9LxFOCfgfnAXwFrUnwNcH86ng/8GGgGLgZ+CpyRvrcL+F0K29dsBa7KUdvzcO3PBr4EfAN4YERd9X7tS7U9D9f+CmBWOr4M+EWtrv04tL+i6++eyDiIiH+kcNNksUuAf0zHncAfp+P5FLbSJyJ6gV8BNVt/HhOza3Ndt30821hKpe2PiF9HxP8Ghn0yUh6u/anaXisZ2v9KRAxtwbQXaFFhl44Jv/bVbH+Wn+0kMnFeB65Ox9dxYk+wHwMrJDWpsE3MAobvF/ZI6lL+x4noFhfT+O3aPO7G2PYh9X7tTyUP1340ebr2fwy8EhED1Pjaw5jbP6Ts6+8kMnFuovCBXnsodDf/JcX/jsIvWhfw18D/pbBdDMANEfE54F+nx9cnqrEa312bx1UV2g75uPanrOIksXq79qXk5tpLupTCh+j96VDoJKdN2BLYKrQfKrz+TiITJCJ+EhFLI2IB8BSF8XciYjAi/iIiLo+IFcAnge70vV+k5yPAk0zQUIvGf9fmcVOltufl2p9KHq79KeXl2kuaAzwL3BgRP03hmlz71J5qtL/i6+8kMkGGVjhImkThM+P/Nn19lqSz0/EfAoMR8UYa3jovxScDf0RhSGy82zkRuzbXddtzdO1PKifX/lT15OLaS/ok8D+AtRHxf4ZOrsW1r2b7M13/SlcB+FHWSomngIPARxTemawCbqOwYuKfgfs4caPnXGAfhYmwlyjspAmF1St7gH+iMPH1N6SVQ+Pc9i9R6H7/E/BqevxbCp80uY1CL2kbML2ozJ0Uelb7KFqJQmGBwOvpew8MveZ6b3vOrv3bFBZxfJh+1+bn6Nr/Rtvzcu0pvBH8ddG5rwIzanHtq9n+LNffd6ybmVlmHs4yM7PMnETMzCwzJxEzM8vMScTMzDJzEjEzs8ycRMzMLDMnETMzy8xJxMzMMvv/r4lGV8I8mfkAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Une liste triée permet de plus facilement repérer les valeurs les plus élevées." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2020 221186\n", "2023 366227\n", "2021 376290\n", "2024 479258\n", "2002 516689\n", "2018 542312\n", "2017 551041\n", "1996 564901\n", "2019 584066\n", "2015 604382\n", "2000 617597\n", "2001 619041\n", "2012 624573\n", "2005 628464\n", "2006 632833\n", "2022 641397\n", "2011 642368\n", "1993 643387\n", "1995 652478\n", "1994 661409\n", "1998 677775\n", "1997 683434\n", "2014 685769\n", "2013 698332\n", "2007 717352\n", "2008 749478\n", "1999 756456\n", "2003 758363\n", "2004 777388\n", "2016 782114\n", "2010 829911\n", "1992 832939\n", "2009 842373\n", "dtype: int64" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yearly_incidence.sort_values()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }