diff --git a/module1/exo2/fichier-markdown.md b/module1/exo2/fichier-markdown.md
index 433d70d1a417b86c138c9ad446d76e6caf7df628..eac8441693e8583f6a945af770620aa388a1122c 100644
--- a/module1/exo2/fichier-markdown.md
+++ b/module1/exo2/fichier-markdown.md
@@ -38,4 +38,7 @@ Une ligne de `code`
```
# Extrait de code
-```
\ No newline at end of file
+```
+
+
+
diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb
deleted file mode 100644
index 0bbbe371b01e359e381e43239412d77bf53fb1fb..0000000000000000000000000000000000000000
--- a/module2/exo1/toy_notebook_en.ipynb
+++ /dev/null
@@ -1,25 +0,0 @@
-{
- "cells": [],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.3"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
-}
-
diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb
index 2b19dd6a167a05bbea9a9004bc43687633438854..01e695666655e3d40027b094d80753e0b27835a2 100644
--- a/module2/exo1/toy_notebook_fr.ipynb
+++ b/module2/exo1/toy_notebook_fr.ipynb
@@ -1,3 +1,4 @@
+<<<<<<< HEAD
{
"cells": [
{
@@ -165,3 +166,10 @@
"nbformat": 4,
"nbformat_minor": 2
}
+=======
+# A propos du calcul de $\pi$
+
+## En demandant à la lib maths
+
+Mon ordinateur m'indique que $\pi$ vaut *approximativement*
+>>>>>>> 5ad1b5b042f860c16a9c9d8ac1c75b735867c0e1
diff --git a/module2/exo2/exercice.ipynb b/module2/exo2/exercice.ipynb
index 0bbbe371b01e359e381e43239412d77bf53fb1fb..260f76529ca33f522d4fc8ea14aad798337f4458 100644
--- a/module2/exo2/exercice.ipynb
+++ b/module2/exo2/exercice.ipynb
@@ -1,5 +1,133 @@
{
- "cells": [],
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Moyenne= 14.113000000000001\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "\n",
+ "x= 14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0\n",
+ "\n",
+ "Moyenne = np.mean(x)\n",
+ "print('Moyenne=', Moyenne)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Mediane= 14.5\n",
+ "le Minimum= 2.8\n",
+ "le Maximum= 23.4\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "import statistics\n",
+ "\n",
+ "x= 14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0\n",
+ "\n",
+ "Mediane = statistics.median(x)\n",
+ "print('Mediane=', Mediane)\n",
+ "\n",
+ "Min = min(x)\n",
+ "Max = max(x)\n",
+ "\n",
+ "print('le Minimum=', Min)\n",
+ "print('le Maximum=', Max)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "4.312369534258399\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "\n",
+ "x= 14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0\n",
+ "\n",
+ "Ecart_type = np.std(x)\n",
+ "print(Ecart_type)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "4.312369534258399\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "\n",
+ "x= 14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0\n",
+ "\n",
+ "ddof= 1\n",
+ "ecart_type = np.std(x)\n",
+ "print(ecart_type)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "4.334094455301447\n"
+ ]
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "\n",
+ "x= 14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0\n",
+ "\n",
+ "ecart_type = np.std(x, ddof=1)\n",
+ "print(ecart_type)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
@@ -16,10 +144,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.3"
+ "version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
-
diff --git a/module3/exo1/analyse-syndrome-grippal.ipynb b/module3/exo1/analyse-syndrome-grippal.ipynb
index 59d72b5b58a3ae26346460dd39e62a39c55243d7..268d1933fa647c67d63673ae796cbda2c9df0ac8 100644
--- a/module3/exo1/analyse-syndrome-grippal.ipynb
+++ b/module3/exo1/analyse-syndrome-grippal.ipynb
@@ -9,7 +9,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -28,13 +28,11 @@
},
{
"cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": true
- },
+ "execution_count": 3,
+ "metadata": {},
"outputs": [],
"source": [
- "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\""
+ "data_url = \"https://www.sentiweb.fr/datasets/incidence-PAY-25.csv?v=dbw4m\""
]
},
{
@@ -61,9 +59,976 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 4,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " week | \n",
+ " indicator | \n",
+ " inc | \n",
+ " inc_low | \n",
+ " inc_up | \n",
+ " inc100 | \n",
+ " inc100_low | \n",
+ " inc100_up | \n",
+ " geo_insee | \n",
+ " geo_name | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 202407 | \n",
+ " 25 | \n",
+ " 237334 | \n",
+ " 219625 | \n",
+ " 255043 | \n",
+ " 356 | \n",
+ " 329 | \n",
+ " 383 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 202406 | \n",
+ " 25 | \n",
+ " 266382 | \n",
+ " 251899 | \n",
+ " 280865 | \n",
+ " 399 | \n",
+ " 377 | \n",
+ " 421 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 202405 | \n",
+ " 25 | \n",
+ " 301224 | \n",
+ " 286226 | \n",
+ " 316222 | \n",
+ " 452 | \n",
+ " 430 | \n",
+ " 474 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 202404 | \n",
+ " 25 | \n",
+ " 312596 | \n",
+ " 297185 | \n",
+ " 328007 | \n",
+ " 469 | \n",
+ " 446 | \n",
+ " 492 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 202403 | \n",
+ " 25 | \n",
+ " 260433 | \n",
+ " 246176 | \n",
+ " 274690 | \n",
+ " 390 | \n",
+ " 369 | \n",
+ " 411 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 202402 | \n",
+ " 25 | \n",
+ " 223175 | \n",
+ " 209907 | \n",
+ " 236443 | \n",
+ " 335 | \n",
+ " 315 | \n",
+ " 355 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 202401 | \n",
+ " 25 | \n",
+ " 207680 | \n",
+ " 192579 | \n",
+ " 222781 | \n",
+ " 311 | \n",
+ " 288 | \n",
+ " 334 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 202352 | \n",
+ " 25 | \n",
+ " 204801 | \n",
+ " 189186 | \n",
+ " 220416 | \n",
+ " 308 | \n",
+ " 285 | \n",
+ " 331 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 202351 | \n",
+ " 25 | \n",
+ " 281235 | \n",
+ " 264279 | \n",
+ " 298191 | \n",
+ " 423 | \n",
+ " 397 | \n",
+ " 449 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 202350 | \n",
+ " 25 | \n",
+ " 281168 | \n",
+ " 265632 | \n",
+ " 296704 | \n",
+ " 423 | \n",
+ " 400 | \n",
+ " 446 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 202349 | \n",
+ " 25 | \n",
+ " 286802 | \n",
+ " 271137 | \n",
+ " 302467 | \n",
+ " 431 | \n",
+ " 407 | \n",
+ " 455 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 202348 | \n",
+ " 25 | \n",
+ " 247301 | \n",
+ " 232152 | \n",
+ " 262450 | \n",
+ " 372 | \n",
+ " 349 | \n",
+ " 395 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 202347 | \n",
+ " 25 | \n",
+ " 224971 | \n",
+ " 210414 | \n",
+ " 239528 | \n",
+ " 338 | \n",
+ " 316 | \n",
+ " 360 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 202346 | \n",
+ " 25 | \n",
+ " 170563 | \n",
+ " 157940 | \n",
+ " 183186 | \n",
+ " 257 | \n",
+ " 238 | \n",
+ " 276 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 202345 | \n",
+ " 25 | \n",
+ " 150125 | \n",
+ " 137230 | \n",
+ " 163020 | \n",
+ " 226 | \n",
+ " 207 | \n",
+ " 245 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 202344 | \n",
+ " 25 | \n",
+ " 108608 | \n",
+ " 98016 | \n",
+ " 119200 | \n",
+ " 163 | \n",
+ " 147 | \n",
+ " 179 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 202343 | \n",
+ " 25 | \n",
+ " 105159 | \n",
+ " 94706 | \n",
+ " 115612 | \n",
+ " 158 | \n",
+ " 142 | \n",
+ " 174 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 202342 | \n",
+ " 25 | \n",
+ " 123120 | \n",
+ " 111942 | \n",
+ " 134298 | \n",
+ " 185 | \n",
+ " 168 | \n",
+ " 202 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 202341 | \n",
+ " 25 | \n",
+ " 126477 | \n",
+ " 115697 | \n",
+ " 137257 | \n",
+ " 190 | \n",
+ " 174 | \n",
+ " 206 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 202340 | \n",
+ " 25 | \n",
+ " 145262 | \n",
+ " 132323 | \n",
+ " 158201 | \n",
+ " 219 | \n",
+ " 200 | \n",
+ " 238 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 202339 | \n",
+ " 25 | \n",
+ " 156932 | \n",
+ " 144286 | \n",
+ " 169578 | \n",
+ " 236 | \n",
+ " 217 | \n",
+ " 255 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " 202338 | \n",
+ " 25 | \n",
+ " 140770 | \n",
+ " 128842 | \n",
+ " 152698 | \n",
+ " 212 | \n",
+ " 194 | \n",
+ " 230 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " 202337 | \n",
+ " 25 | \n",
+ " 109440 | \n",
+ " 98918 | \n",
+ " 119962 | \n",
+ " 165 | \n",
+ " 149 | \n",
+ " 181 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " 202336 | \n",
+ " 25 | \n",
+ " 90802 | \n",
+ " 81444 | \n",
+ " 100160 | \n",
+ " 137 | \n",
+ " 123 | \n",
+ " 151 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " 202335 | \n",
+ " 25 | \n",
+ " 75353 | \n",
+ " 66521 | \n",
+ " 84185 | \n",
+ " 113 | \n",
+ " 100 | \n",
+ " 126 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " 202334 | \n",
+ " 25 | \n",
+ " 62298 | \n",
+ " 53692 | \n",
+ " 70904 | \n",
+ " 94 | \n",
+ " 81 | \n",
+ " 107 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " 202333 | \n",
+ " 25 | \n",
+ " 51315 | \n",
+ " 41862 | \n",
+ " 60768 | \n",
+ " 77 | \n",
+ " 63 | \n",
+ " 91 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " 202332 | \n",
+ " 25 | \n",
+ " 44411 | \n",
+ " 36803 | \n",
+ " 52019 | \n",
+ " 67 | \n",
+ " 56 | \n",
+ " 78 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " 202331 | \n",
+ " 25 | \n",
+ " 45046 | \n",
+ " 37089 | \n",
+ " 53003 | \n",
+ " 68 | \n",
+ " 56 | \n",
+ " 80 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " 202330 | \n",
+ " 25 | \n",
+ " 43645 | \n",
+ " 35319 | \n",
+ " 51971 | \n",
+ " 66 | \n",
+ " 53 | \n",
+ " 79 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 175 | \n",
+ " 202041 | \n",
+ " 25 | \n",
+ " 81954 | \n",
+ " 73921 | \n",
+ " 89987 | \n",
+ " 124 | \n",
+ " 112 | \n",
+ " 136 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 176 | \n",
+ " 202040 | \n",
+ " 25 | \n",
+ " 67761 | \n",
+ " 60310 | \n",
+ " 75212 | \n",
+ " 103 | \n",
+ " 92 | \n",
+ " 114 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 177 | \n",
+ " 202039 | \n",
+ " 25 | \n",
+ " 68999 | \n",
+ " 61350 | \n",
+ " 76648 | \n",
+ " 105 | \n",
+ " 93 | \n",
+ " 117 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 178 | \n",
+ " 202038 | \n",
+ " 25 | \n",
+ " 88638 | \n",
+ " 80122 | \n",
+ " 97154 | \n",
+ " 135 | \n",
+ " 122 | \n",
+ " 148 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 179 | \n",
+ " 202037 | \n",
+ " 25 | \n",
+ " 56454 | \n",
+ " 49776 | \n",
+ " 63132 | \n",
+ " 86 | \n",
+ " 76 | \n",
+ " 96 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 180 | \n",
+ " 202036 | \n",
+ " 25 | \n",
+ " 24149 | \n",
+ " 19991 | \n",
+ " 28307 | \n",
+ " 37 | \n",
+ " 31 | \n",
+ " 43 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 181 | \n",
+ " 202035 | \n",
+ " 25 | \n",
+ " 19831 | \n",
+ " 15528 | \n",
+ " 24134 | \n",
+ " 30 | \n",
+ " 23 | \n",
+ " 37 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 182 | \n",
+ " 202034 | \n",
+ " 25 | \n",
+ " 11690 | \n",
+ " 7876 | \n",
+ " 15504 | \n",
+ " 18 | \n",
+ " 12 | \n",
+ " 24 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 183 | \n",
+ " 202033 | \n",
+ " 25 | \n",
+ " 10848 | \n",
+ " 7145 | \n",
+ " 14551 | \n",
+ " 16 | \n",
+ " 10 | \n",
+ " 22 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 184 | \n",
+ " 202032 | \n",
+ " 25 | \n",
+ " 11409 | \n",
+ " 7422 | \n",
+ " 15396 | \n",
+ " 17 | \n",
+ " 11 | \n",
+ " 23 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 185 | \n",
+ " 202031 | \n",
+ " 25 | \n",
+ " 13366 | \n",
+ " 9412 | \n",
+ " 17320 | \n",
+ " 20 | \n",
+ " 14 | \n",
+ " 26 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 186 | \n",
+ " 202030 | \n",
+ " 25 | \n",
+ " 21428 | \n",
+ " 16609 | \n",
+ " 26247 | \n",
+ " 33 | \n",
+ " 26 | \n",
+ " 40 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 187 | \n",
+ " 202029 | \n",
+ " 25 | \n",
+ " 22240 | \n",
+ " 17578 | \n",
+ " 26902 | \n",
+ " 34 | \n",
+ " 27 | \n",
+ " 41 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 188 | \n",
+ " 202028 | \n",
+ " 25 | \n",
+ " 17581 | \n",
+ " 13715 | \n",
+ " 21447 | \n",
+ " 27 | \n",
+ " 21 | \n",
+ " 33 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 189 | \n",
+ " 202027 | \n",
+ " 25 | \n",
+ " 10817 | \n",
+ " 7957 | \n",
+ " 13677 | \n",
+ " 16 | \n",
+ " 12 | \n",
+ " 20 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 190 | \n",
+ " 202026 | \n",
+ " 25 | \n",
+ " 7126 | \n",
+ " 4846 | \n",
+ " 9406 | \n",
+ " 11 | \n",
+ " 8 | \n",
+ " 14 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 191 | \n",
+ " 202025 | \n",
+ " 25 | \n",
+ " 7053 | \n",
+ " 4747 | \n",
+ " 9359 | \n",
+ " 11 | \n",
+ " 7 | \n",
+ " 15 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 192 | \n",
+ " 202024 | \n",
+ " 25 | \n",
+ " 5269 | \n",
+ " 3493 | \n",
+ " 7045 | \n",
+ " 8 | \n",
+ " 5 | \n",
+ " 11 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 193 | \n",
+ " 202023 | \n",
+ " 25 | \n",
+ " 6768 | \n",
+ " 4615 | \n",
+ " 8921 | \n",
+ " 10 | \n",
+ " 7 | \n",
+ " 13 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 194 | \n",
+ " 202022 | \n",
+ " 25 | \n",
+ " 8748 | \n",
+ " 6192 | \n",
+ " 11304 | \n",
+ " 13 | \n",
+ " 9 | \n",
+ " 17 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 195 | \n",
+ " 202021 | \n",
+ " 25 | \n",
+ " 14651 | \n",
+ " 11353 | \n",
+ " 17949 | \n",
+ " 22 | \n",
+ " 17 | \n",
+ " 27 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 196 | \n",
+ " 202020 | \n",
+ " 25 | \n",
+ " 28416 | \n",
+ " 23875 | \n",
+ " 32957 | \n",
+ " 43 | \n",
+ " 36 | \n",
+ " 50 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 197 | \n",
+ " 202019 | \n",
+ " 25 | \n",
+ " 27347 | \n",
+ " 22880 | \n",
+ " 31814 | \n",
+ " 42 | \n",
+ " 35 | \n",
+ " 49 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 198 | \n",
+ " 202018 | \n",
+ " 25 | \n",
+ " 34618 | \n",
+ " 29499 | \n",
+ " 39737 | \n",
+ " 53 | \n",
+ " 45 | \n",
+ " 61 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 199 | \n",
+ " 202017 | \n",
+ " 25 | \n",
+ " 45903 | \n",
+ " 40032 | \n",
+ " 51774 | \n",
+ " 70 | \n",
+ " 61 | \n",
+ " 79 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 200 | \n",
+ " 202016 | \n",
+ " 25 | \n",
+ " 60969 | \n",
+ " 54118 | \n",
+ " 67820 | \n",
+ " 93 | \n",
+ " 83 | \n",
+ " 103 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 201 | \n",
+ " 202015 | \n",
+ " 25 | \n",
+ " 95364 | \n",
+ " 86665 | \n",
+ " 104063 | \n",
+ " 145 | \n",
+ " 132 | \n",
+ " 158 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 202 | \n",
+ " 202014 | \n",
+ " 25 | \n",
+ " 213772 | \n",
+ " 201334 | \n",
+ " 226210 | \n",
+ " 325 | \n",
+ " 306 | \n",
+ " 344 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 203 | \n",
+ " 202013 | \n",
+ " 25 | \n",
+ " 297819 | \n",
+ " 283636 | \n",
+ " 312002 | \n",
+ " 452 | \n",
+ " 430 | \n",
+ " 474 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 204 | \n",
+ " 202012 | \n",
+ " 25 | \n",
+ " 273062 | \n",
+ " 259400 | \n",
+ " 286724 | \n",
+ " 415 | \n",
+ " 394 | \n",
+ " 436 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
205 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202407 25 237334 219625 255043 356 329 \n",
+ "1 202406 25 266382 251899 280865 399 377 \n",
+ "2 202405 25 301224 286226 316222 452 430 \n",
+ "3 202404 25 312596 297185 328007 469 446 \n",
+ "4 202403 25 260433 246176 274690 390 369 \n",
+ "5 202402 25 223175 209907 236443 335 315 \n",
+ "6 202401 25 207680 192579 222781 311 288 \n",
+ "7 202352 25 204801 189186 220416 308 285 \n",
+ "8 202351 25 281235 264279 298191 423 397 \n",
+ "9 202350 25 281168 265632 296704 423 400 \n",
+ "10 202349 25 286802 271137 302467 431 407 \n",
+ "11 202348 25 247301 232152 262450 372 349 \n",
+ "12 202347 25 224971 210414 239528 338 316 \n",
+ "13 202346 25 170563 157940 183186 257 238 \n",
+ "14 202345 25 150125 137230 163020 226 207 \n",
+ "15 202344 25 108608 98016 119200 163 147 \n",
+ "16 202343 25 105159 94706 115612 158 142 \n",
+ "17 202342 25 123120 111942 134298 185 168 \n",
+ "18 202341 25 126477 115697 137257 190 174 \n",
+ "19 202340 25 145262 132323 158201 219 200 \n",
+ "20 202339 25 156932 144286 169578 236 217 \n",
+ "21 202338 25 140770 128842 152698 212 194 \n",
+ "22 202337 25 109440 98918 119962 165 149 \n",
+ "23 202336 25 90802 81444 100160 137 123 \n",
+ "24 202335 25 75353 66521 84185 113 100 \n",
+ "25 202334 25 62298 53692 70904 94 81 \n",
+ "26 202333 25 51315 41862 60768 77 63 \n",
+ "27 202332 25 44411 36803 52019 67 56 \n",
+ "28 202331 25 45046 37089 53003 68 56 \n",
+ "29 202330 25 43645 35319 51971 66 53 \n",
+ ".. ... ... ... ... ... ... ... \n",
+ "175 202041 25 81954 73921 89987 124 112 \n",
+ "176 202040 25 67761 60310 75212 103 92 \n",
+ "177 202039 25 68999 61350 76648 105 93 \n",
+ "178 202038 25 88638 80122 97154 135 122 \n",
+ "179 202037 25 56454 49776 63132 86 76 \n",
+ "180 202036 25 24149 19991 28307 37 31 \n",
+ "181 202035 25 19831 15528 24134 30 23 \n",
+ "182 202034 25 11690 7876 15504 18 12 \n",
+ "183 202033 25 10848 7145 14551 16 10 \n",
+ "184 202032 25 11409 7422 15396 17 11 \n",
+ "185 202031 25 13366 9412 17320 20 14 \n",
+ "186 202030 25 21428 16609 26247 33 26 \n",
+ "187 202029 25 22240 17578 26902 34 27 \n",
+ "188 202028 25 17581 13715 21447 27 21 \n",
+ "189 202027 25 10817 7957 13677 16 12 \n",
+ "190 202026 25 7126 4846 9406 11 8 \n",
+ "191 202025 25 7053 4747 9359 11 7 \n",
+ "192 202024 25 5269 3493 7045 8 5 \n",
+ "193 202023 25 6768 4615 8921 10 7 \n",
+ "194 202022 25 8748 6192 11304 13 9 \n",
+ "195 202021 25 14651 11353 17949 22 17 \n",
+ "196 202020 25 28416 23875 32957 43 36 \n",
+ "197 202019 25 27347 22880 31814 42 35 \n",
+ "198 202018 25 34618 29499 39737 53 45 \n",
+ "199 202017 25 45903 40032 51774 70 61 \n",
+ "200 202016 25 60969 54118 67820 93 83 \n",
+ "201 202015 25 95364 86665 104063 145 132 \n",
+ "202 202014 25 213772 201334 226210 325 306 \n",
+ "203 202013 25 297819 283636 312002 452 430 \n",
+ "204 202012 25 273062 259400 286724 415 394 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 383 FR France \n",
+ "1 421 FR France \n",
+ "2 474 FR France \n",
+ "3 492 FR France \n",
+ "4 411 FR France \n",
+ "5 355 FR France \n",
+ "6 334 FR France \n",
+ "7 331 FR France \n",
+ "8 449 FR France \n",
+ "9 446 FR France \n",
+ "10 455 FR France \n",
+ "11 395 FR France \n",
+ "12 360 FR France \n",
+ "13 276 FR France \n",
+ "14 245 FR France \n",
+ "15 179 FR France \n",
+ "16 174 FR France \n",
+ "17 202 FR France \n",
+ "18 206 FR France \n",
+ "19 238 FR France \n",
+ "20 255 FR France \n",
+ "21 230 FR France \n",
+ "22 181 FR France \n",
+ "23 151 FR France \n",
+ "24 126 FR France \n",
+ "25 107 FR France \n",
+ "26 91 FR France \n",
+ "27 78 FR France \n",
+ "28 80 FR France \n",
+ "29 79 FR France \n",
+ ".. ... ... ... \n",
+ "175 136 FR France \n",
+ "176 114 FR France \n",
+ "177 117 FR France \n",
+ "178 148 FR France \n",
+ "179 96 FR France \n",
+ "180 43 FR France \n",
+ "181 37 FR France \n",
+ "182 24 FR France \n",
+ "183 22 FR France \n",
+ "184 23 FR France \n",
+ "185 26 FR France \n",
+ "186 40 FR France \n",
+ "187 41 FR France \n",
+ "188 33 FR France \n",
+ "189 20 FR France \n",
+ "190 14 FR France \n",
+ "191 15 FR France \n",
+ "192 11 FR France \n",
+ "193 13 FR France \n",
+ "194 17 FR France \n",
+ "195 27 FR France \n",
+ "196 50 FR France \n",
+ "197 49 FR France \n",
+ "198 61 FR France \n",
+ "199 79 FR France \n",
+ "200 103 FR France \n",
+ "201 158 FR France \n",
+ "202 344 FR France \n",
+ "203 474 FR France \n",
+ "204 436 FR France \n",
+ "\n",
+ "[205 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"raw_data = pd.read_csv(data_url, skiprows=1)\n",
"raw_data"
@@ -78,9 +1043,58 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 5,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " week | \n",
+ " indicator | \n",
+ " inc | \n",
+ " inc_low | \n",
+ " inc_up | \n",
+ " inc100 | \n",
+ " inc100_low | \n",
+ " inc100_up | \n",
+ " geo_insee | \n",
+ " geo_name | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n",
+ "Index: []"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"raw_data[raw_data.isnull().any(axis=1)]"
]
@@ -94,9 +1108,976 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 6,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " week | \n",
+ " indicator | \n",
+ " inc | \n",
+ " inc_low | \n",
+ " inc_up | \n",
+ " inc100 | \n",
+ " inc100_low | \n",
+ " inc100_up | \n",
+ " geo_insee | \n",
+ " geo_name | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 202407 | \n",
+ " 25 | \n",
+ " 237334 | \n",
+ " 219625 | \n",
+ " 255043 | \n",
+ " 356 | \n",
+ " 329 | \n",
+ " 383 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 202406 | \n",
+ " 25 | \n",
+ " 266382 | \n",
+ " 251899 | \n",
+ " 280865 | \n",
+ " 399 | \n",
+ " 377 | \n",
+ " 421 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 202405 | \n",
+ " 25 | \n",
+ " 301224 | \n",
+ " 286226 | \n",
+ " 316222 | \n",
+ " 452 | \n",
+ " 430 | \n",
+ " 474 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 202404 | \n",
+ " 25 | \n",
+ " 312596 | \n",
+ " 297185 | \n",
+ " 328007 | \n",
+ " 469 | \n",
+ " 446 | \n",
+ " 492 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 202403 | \n",
+ " 25 | \n",
+ " 260433 | \n",
+ " 246176 | \n",
+ " 274690 | \n",
+ " 390 | \n",
+ " 369 | \n",
+ " 411 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 202402 | \n",
+ " 25 | \n",
+ " 223175 | \n",
+ " 209907 | \n",
+ " 236443 | \n",
+ " 335 | \n",
+ " 315 | \n",
+ " 355 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 202401 | \n",
+ " 25 | \n",
+ " 207680 | \n",
+ " 192579 | \n",
+ " 222781 | \n",
+ " 311 | \n",
+ " 288 | \n",
+ " 334 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 202352 | \n",
+ " 25 | \n",
+ " 204801 | \n",
+ " 189186 | \n",
+ " 220416 | \n",
+ " 308 | \n",
+ " 285 | \n",
+ " 331 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 202351 | \n",
+ " 25 | \n",
+ " 281235 | \n",
+ " 264279 | \n",
+ " 298191 | \n",
+ " 423 | \n",
+ " 397 | \n",
+ " 449 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 202350 | \n",
+ " 25 | \n",
+ " 281168 | \n",
+ " 265632 | \n",
+ " 296704 | \n",
+ " 423 | \n",
+ " 400 | \n",
+ " 446 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 202349 | \n",
+ " 25 | \n",
+ " 286802 | \n",
+ " 271137 | \n",
+ " 302467 | \n",
+ " 431 | \n",
+ " 407 | \n",
+ " 455 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 202348 | \n",
+ " 25 | \n",
+ " 247301 | \n",
+ " 232152 | \n",
+ " 262450 | \n",
+ " 372 | \n",
+ " 349 | \n",
+ " 395 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 202347 | \n",
+ " 25 | \n",
+ " 224971 | \n",
+ " 210414 | \n",
+ " 239528 | \n",
+ " 338 | \n",
+ " 316 | \n",
+ " 360 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 202346 | \n",
+ " 25 | \n",
+ " 170563 | \n",
+ " 157940 | \n",
+ " 183186 | \n",
+ " 257 | \n",
+ " 238 | \n",
+ " 276 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 202345 | \n",
+ " 25 | \n",
+ " 150125 | \n",
+ " 137230 | \n",
+ " 163020 | \n",
+ " 226 | \n",
+ " 207 | \n",
+ " 245 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 202344 | \n",
+ " 25 | \n",
+ " 108608 | \n",
+ " 98016 | \n",
+ " 119200 | \n",
+ " 163 | \n",
+ " 147 | \n",
+ " 179 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 202343 | \n",
+ " 25 | \n",
+ " 105159 | \n",
+ " 94706 | \n",
+ " 115612 | \n",
+ " 158 | \n",
+ " 142 | \n",
+ " 174 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 202342 | \n",
+ " 25 | \n",
+ " 123120 | \n",
+ " 111942 | \n",
+ " 134298 | \n",
+ " 185 | \n",
+ " 168 | \n",
+ " 202 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 202341 | \n",
+ " 25 | \n",
+ " 126477 | \n",
+ " 115697 | \n",
+ " 137257 | \n",
+ " 190 | \n",
+ " 174 | \n",
+ " 206 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 202340 | \n",
+ " 25 | \n",
+ " 145262 | \n",
+ " 132323 | \n",
+ " 158201 | \n",
+ " 219 | \n",
+ " 200 | \n",
+ " 238 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 202339 | \n",
+ " 25 | \n",
+ " 156932 | \n",
+ " 144286 | \n",
+ " 169578 | \n",
+ " 236 | \n",
+ " 217 | \n",
+ " 255 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " 202338 | \n",
+ " 25 | \n",
+ " 140770 | \n",
+ " 128842 | \n",
+ " 152698 | \n",
+ " 212 | \n",
+ " 194 | \n",
+ " 230 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " 202337 | \n",
+ " 25 | \n",
+ " 109440 | \n",
+ " 98918 | \n",
+ " 119962 | \n",
+ " 165 | \n",
+ " 149 | \n",
+ " 181 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " 202336 | \n",
+ " 25 | \n",
+ " 90802 | \n",
+ " 81444 | \n",
+ " 100160 | \n",
+ " 137 | \n",
+ " 123 | \n",
+ " 151 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " 202335 | \n",
+ " 25 | \n",
+ " 75353 | \n",
+ " 66521 | \n",
+ " 84185 | \n",
+ " 113 | \n",
+ " 100 | \n",
+ " 126 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " 202334 | \n",
+ " 25 | \n",
+ " 62298 | \n",
+ " 53692 | \n",
+ " 70904 | \n",
+ " 94 | \n",
+ " 81 | \n",
+ " 107 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " 202333 | \n",
+ " 25 | \n",
+ " 51315 | \n",
+ " 41862 | \n",
+ " 60768 | \n",
+ " 77 | \n",
+ " 63 | \n",
+ " 91 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " 202332 | \n",
+ " 25 | \n",
+ " 44411 | \n",
+ " 36803 | \n",
+ " 52019 | \n",
+ " 67 | \n",
+ " 56 | \n",
+ " 78 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " 202331 | \n",
+ " 25 | \n",
+ " 45046 | \n",
+ " 37089 | \n",
+ " 53003 | \n",
+ " 68 | \n",
+ " 56 | \n",
+ " 80 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " 202330 | \n",
+ " 25 | \n",
+ " 43645 | \n",
+ " 35319 | \n",
+ " 51971 | \n",
+ " 66 | \n",
+ " 53 | \n",
+ " 79 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 175 | \n",
+ " 202041 | \n",
+ " 25 | \n",
+ " 81954 | \n",
+ " 73921 | \n",
+ " 89987 | \n",
+ " 124 | \n",
+ " 112 | \n",
+ " 136 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 176 | \n",
+ " 202040 | \n",
+ " 25 | \n",
+ " 67761 | \n",
+ " 60310 | \n",
+ " 75212 | \n",
+ " 103 | \n",
+ " 92 | \n",
+ " 114 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 177 | \n",
+ " 202039 | \n",
+ " 25 | \n",
+ " 68999 | \n",
+ " 61350 | \n",
+ " 76648 | \n",
+ " 105 | \n",
+ " 93 | \n",
+ " 117 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 178 | \n",
+ " 202038 | \n",
+ " 25 | \n",
+ " 88638 | \n",
+ " 80122 | \n",
+ " 97154 | \n",
+ " 135 | \n",
+ " 122 | \n",
+ " 148 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 179 | \n",
+ " 202037 | \n",
+ " 25 | \n",
+ " 56454 | \n",
+ " 49776 | \n",
+ " 63132 | \n",
+ " 86 | \n",
+ " 76 | \n",
+ " 96 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 180 | \n",
+ " 202036 | \n",
+ " 25 | \n",
+ " 24149 | \n",
+ " 19991 | \n",
+ " 28307 | \n",
+ " 37 | \n",
+ " 31 | \n",
+ " 43 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 181 | \n",
+ " 202035 | \n",
+ " 25 | \n",
+ " 19831 | \n",
+ " 15528 | \n",
+ " 24134 | \n",
+ " 30 | \n",
+ " 23 | \n",
+ " 37 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 182 | \n",
+ " 202034 | \n",
+ " 25 | \n",
+ " 11690 | \n",
+ " 7876 | \n",
+ " 15504 | \n",
+ " 18 | \n",
+ " 12 | \n",
+ " 24 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 183 | \n",
+ " 202033 | \n",
+ " 25 | \n",
+ " 10848 | \n",
+ " 7145 | \n",
+ " 14551 | \n",
+ " 16 | \n",
+ " 10 | \n",
+ " 22 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 184 | \n",
+ " 202032 | \n",
+ " 25 | \n",
+ " 11409 | \n",
+ " 7422 | \n",
+ " 15396 | \n",
+ " 17 | \n",
+ " 11 | \n",
+ " 23 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 185 | \n",
+ " 202031 | \n",
+ " 25 | \n",
+ " 13366 | \n",
+ " 9412 | \n",
+ " 17320 | \n",
+ " 20 | \n",
+ " 14 | \n",
+ " 26 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 186 | \n",
+ " 202030 | \n",
+ " 25 | \n",
+ " 21428 | \n",
+ " 16609 | \n",
+ " 26247 | \n",
+ " 33 | \n",
+ " 26 | \n",
+ " 40 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 187 | \n",
+ " 202029 | \n",
+ " 25 | \n",
+ " 22240 | \n",
+ " 17578 | \n",
+ " 26902 | \n",
+ " 34 | \n",
+ " 27 | \n",
+ " 41 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 188 | \n",
+ " 202028 | \n",
+ " 25 | \n",
+ " 17581 | \n",
+ " 13715 | \n",
+ " 21447 | \n",
+ " 27 | \n",
+ " 21 | \n",
+ " 33 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 189 | \n",
+ " 202027 | \n",
+ " 25 | \n",
+ " 10817 | \n",
+ " 7957 | \n",
+ " 13677 | \n",
+ " 16 | \n",
+ " 12 | \n",
+ " 20 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 190 | \n",
+ " 202026 | \n",
+ " 25 | \n",
+ " 7126 | \n",
+ " 4846 | \n",
+ " 9406 | \n",
+ " 11 | \n",
+ " 8 | \n",
+ " 14 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 191 | \n",
+ " 202025 | \n",
+ " 25 | \n",
+ " 7053 | \n",
+ " 4747 | \n",
+ " 9359 | \n",
+ " 11 | \n",
+ " 7 | \n",
+ " 15 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 192 | \n",
+ " 202024 | \n",
+ " 25 | \n",
+ " 5269 | \n",
+ " 3493 | \n",
+ " 7045 | \n",
+ " 8 | \n",
+ " 5 | \n",
+ " 11 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 193 | \n",
+ " 202023 | \n",
+ " 25 | \n",
+ " 6768 | \n",
+ " 4615 | \n",
+ " 8921 | \n",
+ " 10 | \n",
+ " 7 | \n",
+ " 13 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 194 | \n",
+ " 202022 | \n",
+ " 25 | \n",
+ " 8748 | \n",
+ " 6192 | \n",
+ " 11304 | \n",
+ " 13 | \n",
+ " 9 | \n",
+ " 17 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 195 | \n",
+ " 202021 | \n",
+ " 25 | \n",
+ " 14651 | \n",
+ " 11353 | \n",
+ " 17949 | \n",
+ " 22 | \n",
+ " 17 | \n",
+ " 27 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 196 | \n",
+ " 202020 | \n",
+ " 25 | \n",
+ " 28416 | \n",
+ " 23875 | \n",
+ " 32957 | \n",
+ " 43 | \n",
+ " 36 | \n",
+ " 50 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 197 | \n",
+ " 202019 | \n",
+ " 25 | \n",
+ " 27347 | \n",
+ " 22880 | \n",
+ " 31814 | \n",
+ " 42 | \n",
+ " 35 | \n",
+ " 49 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 198 | \n",
+ " 202018 | \n",
+ " 25 | \n",
+ " 34618 | \n",
+ " 29499 | \n",
+ " 39737 | \n",
+ " 53 | \n",
+ " 45 | \n",
+ " 61 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 199 | \n",
+ " 202017 | \n",
+ " 25 | \n",
+ " 45903 | \n",
+ " 40032 | \n",
+ " 51774 | \n",
+ " 70 | \n",
+ " 61 | \n",
+ " 79 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 200 | \n",
+ " 202016 | \n",
+ " 25 | \n",
+ " 60969 | \n",
+ " 54118 | \n",
+ " 67820 | \n",
+ " 93 | \n",
+ " 83 | \n",
+ " 103 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 201 | \n",
+ " 202015 | \n",
+ " 25 | \n",
+ " 95364 | \n",
+ " 86665 | \n",
+ " 104063 | \n",
+ " 145 | \n",
+ " 132 | \n",
+ " 158 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 202 | \n",
+ " 202014 | \n",
+ " 25 | \n",
+ " 213772 | \n",
+ " 201334 | \n",
+ " 226210 | \n",
+ " 325 | \n",
+ " 306 | \n",
+ " 344 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 203 | \n",
+ " 202013 | \n",
+ " 25 | \n",
+ " 297819 | \n",
+ " 283636 | \n",
+ " 312002 | \n",
+ " 452 | \n",
+ " 430 | \n",
+ " 474 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ " 204 | \n",
+ " 202012 | \n",
+ " 25 | \n",
+ " 273062 | \n",
+ " 259400 | \n",
+ " 286724 | \n",
+ " 415 | \n",
+ " 394 | \n",
+ " 436 | \n",
+ " FR | \n",
+ " France | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
205 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202407 25 237334 219625 255043 356 329 \n",
+ "1 202406 25 266382 251899 280865 399 377 \n",
+ "2 202405 25 301224 286226 316222 452 430 \n",
+ "3 202404 25 312596 297185 328007 469 446 \n",
+ "4 202403 25 260433 246176 274690 390 369 \n",
+ "5 202402 25 223175 209907 236443 335 315 \n",
+ "6 202401 25 207680 192579 222781 311 288 \n",
+ "7 202352 25 204801 189186 220416 308 285 \n",
+ "8 202351 25 281235 264279 298191 423 397 \n",
+ "9 202350 25 281168 265632 296704 423 400 \n",
+ "10 202349 25 286802 271137 302467 431 407 \n",
+ "11 202348 25 247301 232152 262450 372 349 \n",
+ "12 202347 25 224971 210414 239528 338 316 \n",
+ "13 202346 25 170563 157940 183186 257 238 \n",
+ "14 202345 25 150125 137230 163020 226 207 \n",
+ "15 202344 25 108608 98016 119200 163 147 \n",
+ "16 202343 25 105159 94706 115612 158 142 \n",
+ "17 202342 25 123120 111942 134298 185 168 \n",
+ "18 202341 25 126477 115697 137257 190 174 \n",
+ "19 202340 25 145262 132323 158201 219 200 \n",
+ "20 202339 25 156932 144286 169578 236 217 \n",
+ "21 202338 25 140770 128842 152698 212 194 \n",
+ "22 202337 25 109440 98918 119962 165 149 \n",
+ "23 202336 25 90802 81444 100160 137 123 \n",
+ "24 202335 25 75353 66521 84185 113 100 \n",
+ "25 202334 25 62298 53692 70904 94 81 \n",
+ "26 202333 25 51315 41862 60768 77 63 \n",
+ "27 202332 25 44411 36803 52019 67 56 \n",
+ "28 202331 25 45046 37089 53003 68 56 \n",
+ "29 202330 25 43645 35319 51971 66 53 \n",
+ ".. ... ... ... ... ... ... ... \n",
+ "175 202041 25 81954 73921 89987 124 112 \n",
+ "176 202040 25 67761 60310 75212 103 92 \n",
+ "177 202039 25 68999 61350 76648 105 93 \n",
+ "178 202038 25 88638 80122 97154 135 122 \n",
+ "179 202037 25 56454 49776 63132 86 76 \n",
+ "180 202036 25 24149 19991 28307 37 31 \n",
+ "181 202035 25 19831 15528 24134 30 23 \n",
+ "182 202034 25 11690 7876 15504 18 12 \n",
+ "183 202033 25 10848 7145 14551 16 10 \n",
+ "184 202032 25 11409 7422 15396 17 11 \n",
+ "185 202031 25 13366 9412 17320 20 14 \n",
+ "186 202030 25 21428 16609 26247 33 26 \n",
+ "187 202029 25 22240 17578 26902 34 27 \n",
+ "188 202028 25 17581 13715 21447 27 21 \n",
+ "189 202027 25 10817 7957 13677 16 12 \n",
+ "190 202026 25 7126 4846 9406 11 8 \n",
+ "191 202025 25 7053 4747 9359 11 7 \n",
+ "192 202024 25 5269 3493 7045 8 5 \n",
+ "193 202023 25 6768 4615 8921 10 7 \n",
+ "194 202022 25 8748 6192 11304 13 9 \n",
+ "195 202021 25 14651 11353 17949 22 17 \n",
+ "196 202020 25 28416 23875 32957 43 36 \n",
+ "197 202019 25 27347 22880 31814 42 35 \n",
+ "198 202018 25 34618 29499 39737 53 45 \n",
+ "199 202017 25 45903 40032 51774 70 61 \n",
+ "200 202016 25 60969 54118 67820 93 83 \n",
+ "201 202015 25 95364 86665 104063 145 132 \n",
+ "202 202014 25 213772 201334 226210 325 306 \n",
+ "203 202013 25 297819 283636 312002 452 430 \n",
+ "204 202012 25 273062 259400 286724 415 394 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 383 FR France \n",
+ "1 421 FR France \n",
+ "2 474 FR France \n",
+ "3 492 FR France \n",
+ "4 411 FR France \n",
+ "5 355 FR France \n",
+ "6 334 FR France \n",
+ "7 331 FR France \n",
+ "8 449 FR France \n",
+ "9 446 FR France \n",
+ "10 455 FR France \n",
+ "11 395 FR France \n",
+ "12 360 FR France \n",
+ "13 276 FR France \n",
+ "14 245 FR France \n",
+ "15 179 FR France \n",
+ "16 174 FR France \n",
+ "17 202 FR France \n",
+ "18 206 FR France \n",
+ "19 238 FR France \n",
+ "20 255 FR France \n",
+ "21 230 FR France \n",
+ "22 181 FR France \n",
+ "23 151 FR France \n",
+ "24 126 FR France \n",
+ "25 107 FR France \n",
+ "26 91 FR France \n",
+ "27 78 FR France \n",
+ "28 80 FR France \n",
+ "29 79 FR France \n",
+ ".. ... ... ... \n",
+ "175 136 FR France \n",
+ "176 114 FR France \n",
+ "177 117 FR France \n",
+ "178 148 FR France \n",
+ "179 96 FR France \n",
+ "180 43 FR France \n",
+ "181 37 FR France \n",
+ "182 24 FR France \n",
+ "183 22 FR France \n",
+ "184 23 FR France \n",
+ "185 26 FR France \n",
+ "186 40 FR France \n",
+ "187 41 FR France \n",
+ "188 33 FR France \n",
+ "189 20 FR France \n",
+ "190 14 FR France \n",
+ "191 15 FR France \n",
+ "192 11 FR France \n",
+ "193 13 FR France \n",
+ "194 17 FR France \n",
+ "195 27 FR France \n",
+ "196 50 FR France \n",
+ "197 49 FR France \n",
+ "198 61 FR France \n",
+ "199 79 FR France \n",
+ "200 103 FR France \n",
+ "201 158 FR France \n",
+ "202 344 FR France \n",
+ "203 474 FR France \n",
+ "204 436 FR France \n",
+ "\n",
+ "[205 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"data = raw_data.dropna().copy()\n",
"data"
@@ -122,7 +2103,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
@@ -152,10 +2133,8 @@
},
{
"cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": true
- },
+ "execution_count": 8,
+ "metadata": {},
"outputs": [],
"source": [
"sorted_data = data.set_index('period').sort_index()"
@@ -179,7 +2158,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
@@ -199,9 +2178,32 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 10,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl4XOV59/+5Z5U02jdblrzbGC9sxhhDNrbYZCuEQOs0CbQvLW1+pE23pEmbljQpbfNmIU3a5G0SKCZJQwhZIAslBkLYjMGAwRu25H2RrX2ZGc3+/P4454xnRrNJmhlp5OdzXXNp/Mw5Z87ImvM99y5KKTQajUajyQfbdJ+ARqPRaMoHLRoajUajyRstGhqNRqPJGy0aGo1Go8kbLRoajUajyRstGhqNRqPJm7xFQ0TsIvKaiPzC/HejiGwVkU7zZ0PCtp8WkS4R2S8imxLWLxWRXeZrXxMRMdfdIvJDc327iCxK2Oc28z06ReS2QnxojUaj0UyOiVgaHwf2Jfz7U8CTSqnlwJPmvxGRVcBmYDVwPfANEbGb+3wTuANYbj6uN9dvBwaVUsuAe4AvmMdqBO4CLgfWA3clipNGo9FoSkteoiEiHcB7gO8kLN8AbDGfbwFuTFh/UCkVVEodBrqA9SLSBtQqpbYpo6LwgZR9rGM9DFxrWiGbgK1KqQGl1CCwlbNCo9FoNJoS48hzu68CnwRqEtbmKKW6AZRS3SLSaq63Ay8mbHfCXAubz1PXrX2Om8eKiMgw0JS4nmaftDQ3N6tFixbl+bE0Go1GA/DKK6/0KaVacm2XUzRE5L1Aj1LqFRG5Ko/3ljRrKsv6ZPdJPMc7MNxeLFiwgB07duRxmhqNRqOxEJGj+WyXj3vqLcDviMgR4EHgGhH5HnDGdDlh/uwxtz8BzE/YvwM4Za53pFlP2kdEHEAdMJDlWEkopb6llFqnlFrX0pJTKDUajUYzSXKKhlLq00qpDqXUIowA91NKqQ8DjwJWNtNtwCPm80eBzWZG1GKMgPdLpitrVEQ2mPGKW1P2sY51s/keCngc2CgiDWYAfKO5ptFoNJppIN+YRjr+DXhIRG4HjgG3ACil9ojIQ8BeIALcqZSKmvt8FLgfqAQeMx8A9wLfFZEuDAtjs3msARH5PPCyud3nlFIDUzhnjUaj0UwBmW2t0detW6d0TEOj0Wgmhoi8opRal2s7XRGu0Wg0mrzRoqHRaDSavNGiodFoNJq80aKh0WiKxhsnhnjl6OB0n4amgGjR0Gg0ReOLj+/nz3/wGrMt4eZcRouGRqMpGr5ghJNDYxzs9U73qWgKhBYNjUZTNIKRGABP7++d5jPRFAotGhqNpmho0Zh9aNHQaDRFIxA2mkG8dHgAXzAyzWejKQRaNDQaTdEIRmK011cSisbYdXJ4uk9HUwC0aGg0mqIRCEdpqXHHn2vKHy0aGo2maAQjMWoqjL6o4ahOu50NaNHQaDRFIRZThCIxPC5DNCLR2DSfkaYQaNHQaDRFIWSKhMdtWhoxbWnMBrRoaDSaomDFMCz3lLY0ZgdaNDQaTVGwajSq3ZZoaEtjNqBFQ6PRFAXL0qg2LY2QtjRmBVo0NBpNUbAsDY9bu6dmEzlFQ0QqROQlEXldRPaIyD+Z658VkZMistN8vDthn0+LSJeI7BeRTQnrl4rILvO1r4mImOtuEfmhub5dRBYl7HObiHSaj9sK+eE1Gk3xCIYNkaixREMHwmcFjjy2CQLXKKW8IuIEnhORx8zX7lFKfSlxYxFZBWwGVgPzgCdE5DylVBT4JnAH8CLwK+B64DHgdmBQKbVMRDYDXwB+T0QagbuAdYACXhGRR5VSukG/RjPDCURM95Rb12nMJnJaGsrA6mvsNB/Z/vdvAB5USgWVUoeBLmC9iLQBtUqpbcporv8AcGPCPlvM5w8D15pWyCZgq1JqwBSKrRhCo9FoZjiWpVGts6dmFXnFNETELiI7gR6Mi/h286WPicgbInKfiDSYa+3A8YTdT5hr7ebz1PWkfZRSEWAYaMpyrNTzu0NEdojIjt5e3U1To5kJWIHwKpcd0HUas4W8REMpFVVKXQx0YFgNazBcTUuBi4Fu4Mvm5pLuEFnWJ7tP4vl9Sym1Tim1rqWlJetn0Wg0pcEKhFc47TjtQlhbGrOCCWVPKaWGgKeB65VSZ0wxiQHfBtabm50A5ifs1gGcMtc70qwn7SMiDqAOGMhyLI1GM8OxLI0Khx2HzabdU7OEfLKnWkSk3nxeCVwHvGnGKCzeD+w2nz8KbDYzohYDy4GXlFLdwKiIbDDjFbcCjyTsY2VG3Qw8ZcY9Hgc2ikiD6f7aaK5pNJoZjmVpuJ02HHbRgfBZQj7ZU23AFhGxY4jMQ0qpX4jId0XkYgx30RHgTwCUUntE5CFgLxAB7jQzpwA+CtwPVGJkTVlZWPcC3xWRLgwLY7N5rAER+Tzwsrnd55RSA1P4vBqNpkQkWhouu41ITFsas4GcoqGUegO4JM36R7Lsczdwd5r1HcCaNOsB4JYMx7oPuC/XeWo0mplFqqWh24jMDnRFuEajKQqWpeGy23DYbLqNyCxBi4ZGoykKwUgMl8OGzSY4taUxa9CiodFoikIwEsXtMC4xDh3TmDVo0dBoNEUhEI5R4TQK+5x2m86emiVo0dBoNEUh0dIw3FPa0pgNaNHQaDRFIZhgaThsuk5jtqBFQ6PRFIXUmIZuIzI70KKh0WiKQnJMQ/Q8jVmCFg2NRlMUkiwN3Xtq1qBFQ6PRFAWdPTU70aKh0WiKQmr2lI5pzA60aGg0mqIQCMdSivu0pTEb0KKh0WiKQjASPeuesmlLY7agRUOj0RSFYCTR0tC9pwrJoC/E+77+HJ1nRkv+3lo0NBpNUQiEo0mBcN17qnAc7PWy6+Qwv9zVXfL31qKh0WgKjlIqydJw2m2EIlo0CsVoMALAi4f6S/7eWjQ0Gk3BCUVjKAXuhDYiOhBeOLwBQzRePTYUn1tSKvKZEV4hIi+JyOsiskdE/slcbxSRrSLSaf5sSNjn0yLSJSL7RWRTwvqlIrLLfO1r5qxwzHniPzTXt4vIooR9bjPfo1NEbkOj0cx44lP7ErOndEyjYHhNSyMUibHz+FBJ3zsfSyMIXKOUugi4GLheRDYAnwKeVEotB540/42IrMKY8b0auB74hjlfHOCbwB3AcvNxvbl+OzColFoG3AN8wTxWI3AXcDmwHrgrUZw0Gs3MJD4fPKGNSFjHNAqGZWlA6V1UOUVDGXjNfzrNhwJuALaY61uAG83nNwAPKqWCSqnDQBewXkTagFql1DallAIeSNnHOtbDwLWmFbIJ2KqUGlBKDQJbOSs0Go1mhhIMp1gaNhtKQVS7qArCaDCCCKxqq2X7oYGSvndeMQ0RsYvITqAH4yK+HZijlOoGMH+2mpu3A8cTdj9hrrWbz1PXk/ZRSkWAYaApy7FSz+8OEdkhIjt6e3vz+UgZCUdj+IKR3BtqNJqMBCMploZDAHStRoHwBiJUuxwsba3m1PBYSd87L9FQSkWVUhcDHRhWw5osm0u6Q2RZn+w+ief3LaXUOqXUupaWliynlpt/f6KTm77xwpSOodGc6wRSLA2nzfipRaMweINhqiscNHlcDHhDJX3vCWVPKaWGgKcxXERnTJcT5s8ec7MTwPyE3TqAU+Z6R5r1pH1ExAHUAQNZjlU09naPcGqotMqt0cw2Ui0Nh924/9PB8MLgDUaodjto9LgYDUbiv+9SkE/2VIuI1JvPK4HrgDeBRwErm+k24BHz+aPAZjMjajFGwPsl04U1KiIbzHjFrSn7WMe6GXjKjHs8DmwUkQYzAL7RXCsap4bGCJTwP0CjmY34gsZ3yOO2RMO0NHQwvCCMBiJUVxiiATDoC5fsvR15bNMGbDEzoGzAQ0qpX4jINuAhEbkdOAbcAqCU2iMiDwF7gQhwp1LKugp/FLgfqAQeMx8A9wLfFZEuDAtjs3msARH5PPCyud3nlFJFjfqcGhojHFVEYwq7LZ13TKPR5MIfMuKCVS7jEuO0aUujkFiWRpMpGgO+EHPrKkry3jlFQyn1BnBJmvV+4NoM+9wN3J1mfQcwLh6ilApgik6a1+4D7st1noXAG4wwYqayBSPR+B+8RlNMXj4ywPyGqpJ96UuBP2RaGpZomJaGFo3C4A1EaKuriFsaA77SxTV0RXgC3QmxDCuQp9EUm9vvf5n/99uD030aBcVnikaVOzmmEdKB8KycGhpj98nhnNvFLY1qQzT6fcFin1ocLRoJnEwQjVIGljTnLuFojJFAhF5v6b70pcAftNxTZxsWArppYQ6+9Ph+fu+/tuW0HLyBCNVuJ40eN6AtjWmjezgQf64tDU0pGB4zAphD/tKmTRYbXyiKCFQ4zvaeAu2eykWvN4gvFOVbzxzKuE0spvCGjEB4faUTm5RWNLTTPoFTSe4pbWlois+Q3xCNUma/lAJ/MEKV047NFAvL0tB1Gtmx/h4e2HaEmgoHl8yv58plzUnb+MNRlIIatwObTWioctGvLY3p4dTQWUsjqNs4a0rA8JjxZZ+NlkaV++w9abxOQ7cRycqgP8TF8+uJKcUXH9/PZx7ZPW4bq+9UdYXx+20ocYGfFo0Euoe1paEpLZZ7atA/yyyNUASPyx7/d9zS0DdjWRn2h7lkQT2v37WRD6ztwB8cfx3yBo2/lWpTlBs9Lh3TmC5ODY3RXl8JaNHQlAbLHTEWjs6qvzlfMDll3WlaGmFtaWQkHI0xGoxQX+nC7bBT7banLTQeTbE0mjwuBkpoqWrRMFFKcWo4wOJmD6DdU5rSMJRgYQzOIheVPxSJV4OD0eUWIKJjGhmxrM4GjxOACpedsVA6S8MQjRptaUwv/b4QoUgsLhqz6a5PM3OxLhQwu4LhvlCypWHFNMI6eyoj1g1EXaUpGg47wUiMWIp1lhrTaPK4GPSHStZ2XouGSbXbwX//wWW8+4I24Ow8AI2mmCSKxmwKhvuDyZaGrtPIjfX/31BlFOxVmjGhVK+HNR/cqrZv9LhQqnR/P1o0TCqcdq4+v5Xlc6oBXdynKQ2JX/TZFAz3h1JjGjrlNheWpVFfZVkaxu8s1ethWRo1pqXRWF3aAj8tGim44/9R+o9bU3yGx8LMqTW+9LMppuFLyZ6yivu0eyoz1v9/fWWypTGWKhqWpeE+654CSlaroUUjBav/v45paErB0FiYhU1GHG2whMHMYuNPqdPQDQtzY7kq661AuDOzaFQ4bfHfabNpafSVqBWNFo0UnHYbdpvo7ClNSRj2h2mtceNx2WeNeyocjRGKxKhyJlga8eI+/b3KxJA/jN0m8ayoTDewo2bfKYvWGkM0eka0aEwbbodNWxqakjA8Fqau0kl9lWvWBML98Q63CZZGfNyrtjQyMegPUV/pxJhRl1k0vMFIPJ4BRgzEZbfRM6pFY9qocKYvqtFoColSiqGxMPVVTho8zlkT07AGMCXFNOLjXrWlkYmhsTB1VWctiMq4aCT/zkbGwkmiISK01LjpGQ1QCrRopKHCYdMpt5qi4wtFicYU9ZUuGqpcs8Y9ZY16TRfT0NlTmRnyh+LptnBWNFIL/AZTtgNoqXHTO1MsDRGZLyK/EZF9IrJHRD5urn9WRE6KyE7z8e6EfT4tIl0isl9ENiWsXyoiu8zXvmbOCsecJ/5Dc327iCxK2Oc2Eek0H7dRAtxOOwEd09AUGcsdVVfppGFWuafGWxpOXdyXkyF/mPrKs5ZGhdPM5IyMFw1rYp9Fa417RsU0IsBfK6VWAhuAO0VklfnaPUqpi83HrwDM1zYDq4HrgW+Y88UBvgncASw3H9eb67cDg0qpZcA9wBfMYzUCdwGXA+uBu0SkYSofOB90TENTCuIVwFVOGqqcJW0FUUziloYr2YVit4kOhGdhyJ/snqrIZGn4wvFaDovWWjdnZop7SinVrZR61Xw+CuwD2rPscgPwoFIqqJQ6DHQB60WkDahVSm1TSingAeDGhH22mM8fBq41rZBNwFal1IBSahDYylmhKRoVTrvOntIUnRErxdIMhI8EIrPC5x+3NBIqwsGo1dApt5lJdU/FA+EJ16JQJIY3GKGxKtXSqGDIHy5JUfKEYhqm2+gSYLu59DEReUNE7kuwANqB4wm7nTDX2s3nqetJ+yilIsAw0JTlWEVFWxqaUjA0dtbSsPoNWYVb5Ux8Prgrecab027T7qkMhCIxfKFoknvKKu4LJFgalguzPo17CihJXCNv0RCRauDHwF8opUYwXE1LgYuBbuDL1qZpdldZ1ie7T+K53SEiO0RkR29vb9bPkQ8VTjtBLRqaIpPYoK4qQ/VvOeIPprc0nHbRgfAMDI2NFwOrjUji34SVLDHO0jC7CpQi7TYv0RARJ4ZgfF8p9RMApdQZpVRUKRUDvo0RcwDDGpifsHsHcMpc70iznrSPiDiAOmAgy7GSUEp9Sym1Tim1rqWlJZ+PlJUKp027pzRFxxqmU1PhTMjJL/+/u0yWhsNu0zGNDFhB7Jbqs2LgsNtw2iXJ62HFvaz26RatNRVJxykm+WRPCXAvsE8p9ZWE9baEzd4PWHMJHwU2mxlRizEC3i8ppbqBURHZYB7zVuCRhH2szKibgafMuMfjwEYRaTDdXxvNtaLidti1e0pTdKwiuEqnPWPQsxyxLI0qV4qlYRPtnsrAiUE/AB0NVUnrFQ57iqWR3AnXwrI0eksQDHfk3oS3AB8BdonITnPt74APisjFGO6iI8CfACil9ojIQ8BejMyrO5VS1qf+KHA/UAk8Zj7AEKXvikgXhoWx2TzWgIh8HnjZ3O5zSqmByX3U/Klw2mbFHZ9mZjMWilLhNNrWZGpOV474QlFc9rO9kSwcdtusCPQXg+MDxqjp+ami4bInXYss0UhNuW3yuLFJadxTOUVDKfUc6WMLv8qyz93A3WnWdwBr0qwHgFsyHOs+4L5c51lIjOyp8v/yamY2vlAk7sKpnEWNMv2hCFUp8QwwqsL1uNf0HB/0U1PhSEq5BesGNsHSMN1TqSm3dpvQXF2aWg1dEZ4GI3tK3xFpiosxc8K4uGaq/i1H/KFofEBQIk6bjbCOFabl+IB/nJUBxt9FICUQ7nHZcTvGi3JrbWlaiWjRSIPVe8oIq2g0xcEfTBAN1/hMmXLFH4qMi2cAOB1CRFsaaTkxOEZHQ+W49QpnSkzDF6I+JZ5h0VpTQZ+3+AWi+cQ0zjkqnHaUglA0llbRNZpC4A9HqXQlt8GeDaIxGogk9Z2ycNhsOuU2DUopTgyO8fbzxmd+VoyzNMa3ELH4+gcviVusxURbGmmwpvfptFtNMRlLmG43m2IaQ/4wjSk+dzDqNHRF+Hj6vCHGwlHmp7E0Kp12xhJc5QP+8S1ELDxuBzZbuvBzYdGikQb3LPoCa2YuviT31OyJaQz4QjSkuRuudDniLUY0Z8mUbgtmzVg4uSI8k6VRKrRopMGqxNTt0TXFZCzRPeWYPe6pAV8oPrc6kYYq56xp/15Ijg+a6baN6QPhYynFfak1GqVGi0YaLEtDp91qiok/wT1ls8msyNobC0UZC0fTWhr1lc5Z0/69kBwfsCyNDIFw0/oMR2OMBiJaNGYilqVR7l9gzczGH4zG3VIwPuhZjsSLz9Jc2GZTJ99CcmJwjEaPC0+a5IHEvwmrV1mjJ31Mo1Ro0UhDptm8Gk2hUErhD0eTUlMrE+4qy5WzvZHSu6fAmIuuOcvwWCj+u0nFEA1DZPt9RuFeppTbUqFFIw06e0pTbELRGNGYSmrqV+myl31MwxKNtDENc03HNZLxBqNUV6QXjUqnPf630nnGC8CSFk8pT28cWjTSoC0NTbHxx6fbJbunyl004g310sU0zDvk4TEd10jEF4xQnabtCiSMfA1H2dc9gsMmLGutLuXpjUOLRhpmU5tqzczEHx4vGpXO8h/+ZVkaaWMa5oChQZ+2NBLxBiJp265AwiAmUzSWtVZPe8GxFo00nHVPlfcXWDNzGQtZ7cNT3FOzIKZhE+KTCBOxsn4GdQZVEt5ghOqK9KKRmIq9r3uUlW21pTy1tGjRSIO2NDTFxpfGPZWak1+OWHUE6SqT682snyEd00jCF4pQnSZzCozW6ADdwwFOjwRY2VZTylNLixaNNLhMS0P3ydEUi/gAplkY00gXzwCocTtw2ERbGgkopfAGsoiGeS167dgggLY0ZipOu3GXpEVDUyzGwuYc7UT3lNNOYBa4p9LFMwBEhPoqJ0M65TZOMBIjElNpazTg7E3Fq0eHAC0aMxZr4lhIi4amSKR1T82SlNvU+dWJ1Omq8CR85mjcTJaG1cjypSMDtNS4aa52l+zcMpHPjPD5IvIbEdknIntE5OPmeqOIbBWRTvNnQ8I+nxaRLhHZLyKbEtYvFZFd5mtfM2eFY84T/6G5vl1EFiXsc5v5Hp0ichslIC4auk5DUySsgHdiC/HEQq5yZcAXptGT+cLWUOXS2VMJeHOIhhVfHfCF+NN3LC3ZeWUjH0sjAvy1UmolsAG4U0RWAZ8CnlRKLQeeNP+N+dpmYDVwPfANEbFup74J3AEsNx/Xm+u3A4NKqWXAPcAXzGM1AncBlwPrgbsSxalY2G2C3SbaPaUpGj4re8o5PqZRrsO/lFLmvIfMlkZ9lUvHNBKwRCOTe2pObQUVThuf2LSC29+6uJSnlpGcoqGU6lZKvWo+HwX2Ae3ADcAWc7MtwI3m8xuAB5VSQaXUYaALWC8ibUCtUmqbMr4VD6TsYx3rYeBa0wrZBGxVSg0opQaBrZwVmqLitAth3ftfUyTSBcIr440yy/NmZSQQIRpTWRvqNVQ5dRuRBLwBQzRqMqTcttS42fXZTdx59bJSnlZWJhTTMN1GlwDbgTlKqW4whAVoNTdrB44n7HbCXGs3n6euJ+2jlIoAw0BTlmMVHZfdpt1TmqIxFopiNzvbWlSa1b/lWqsRL+zLMu+hwaMtjUQsizOTpQFn3eUzhbzPRkSqgR8Df6GUGsm2aZo1lWV9svskntsdIrJDRHb09vZmObX8cTn0aEpN8fCFIlQ57ZhhPSBhEFOZBsOtAHc2S6Ou0kkgHCv7yvdC4TUTIjK1EZmJ5CUaIuLEEIzvK6V+Yi6fMV1OmD97zPUTwPyE3TuAU+Z6R5r1pH1ExAHUAQNZjpWEUupbSql1Sql1LS3j5+xOBqddi4ameIyFktuiQ/nPCR/N4WoBXRWeiuWeqnZPb7vziZBP9pQA9wL7lFJfSXjpUcDKZroNeCRhfbOZEbUYI+D9kunCGhWRDeYxb03ZxzrWzcBTZtzjcWCjiDSYAfCN5lrRMURDxzQ0xcEfio5zSVgxjXJ1T8UzgbKKhu4/lYgvHggvH0sj8//uWd4CfATYJSI7zbW/A/4NeEhEbgeOAbcAKKX2iMhDwF6MzKs7lVLWt+CjwP1AJfCY+QBDlL4rIl0YFsZm81gDIvJ54GVzu88ppQYm+VknhNMuOqahKRr+UCQuEhaJzenKkbN3zZkvK3V6pkYS8eypDA0LZyI5z1Qp9RzpYwsA12bY527g7jTrO4A1adYDmKKT5rX7gPtynWehcdpturhPUzT8oeQBTJBgaZSpaIyaF8CaLK4W6+LoNwPA5zreoDHyN12vrpnKzArLzyB0IFxTTPyhaFJhHyTENMrVPRXI7WqxXvOX6WcsNL5gJGvm1ExEi0YGXDoQrikifjN7KpFyz57yBsNUOu04sqSIVmpLI4lsbdFnKlo0MuC02whHdCBcUxzSuacsSyNYpq1EvMFI1swpAI9LWxqJeIOZO9zOVLRoZMDp0DENTfEw3FOzLKYRyH3XXKlFIwlfMPPUvpmKFo0MuHT2lKZIKKUYGQtTW5EcMC530fAGI9TkuGt22W04bKLdUyb5CO1MQ4tGBnRxn6ZY+ENRIjE1biSq1VKknAPhuS6AIkKlyx5vDX+uk21q30xFi0YGtGhoioVVo5AqGjabUOG0lW+dRp7+eY/LUbbCWGh8wagWjdmCkXKrA+GawpNJNKC854SPBiJ5tcOoctnjjfrOdbwBnXI7a9DFfZpikVM0yvQuPJ/sKYAqt10HwjGGvIWisbJqVghaNDLisushTJriYIlGbRrRqCjTka9KqbzdU1VOhw6Ek3vU60xFi0YGnHqehqZI5LI0yjGmEQjHiMZUXplA2tIw6Dfnj9RnaSU/E9GikQGnbiOiKRIjlmhUzZ6YxmjA+Ex5WRouLRoAxwZ8AMxvrJrmM5kYWjQyYLVGL9d5zZqZy/BYGJtAdZqirooyjWnEmxXmY2m4HPiD2j11tN8PwKImLRqzApfd6DqpM6g0hWZ4LExtpTNtZ9MKp51AGbYRyactuoXHZcdfhtZUoTna76fG7cg6HncmokUjAy6z0Eq7qDSFZjhNNbhFpas8YxreCQR1K10O/Lq4jyP9PhY0VSWN/C0HtGhkwBrmrkVDU2iGx8Jpg+AAlU5bmcY0ck/ts/C47ISisbTfrV/vOc22g/0FP7+ZyNF+P4uaPNN9GhNGi0YGLNHQtRqaQpNdNMozEG5ZGpksqEQyNS0cHgvzFz/cyf99/M3Cn2AJGR4L09XjzbpNJBrjxKCfBWUWz4D8ZoTfJyI9IrI7Ye2zInJSRHaaj3cnvPZpEekSkf0isilh/VIR2WW+9jVzTjjmLPEfmuvbRWRRwj63iUin+bBmiJcElyUaOu1WU2CyiUaFqzwD4d4JZE9ZFdCpn/Ohl4/jD0XpPOMt6wSUrz5xgBv/8/ms147u4QDhqCq7IDjkZ2ncD1yfZv0epdTF5uNXACKyCmO+92pzn2+IiFXu+E3gDmC5+bCOeTswqJRaBtwDfME8ViNwF3A5sB64S0QaJvwJJ4nToQPhmvxRShGL5fe3MmIGwtNR6bQTjMTyPtZMIT7rOs+UWyCplUgkGuP+F45gtwneYIRTw4HinGgJ2H1yGG8wwq6TQxm3OdJvpNsunI3uKaXUM8BAnse7AXhQKRVUSh0GuoD1ItIG1CqltinjFuIB4MaEfbaYzx8GrjWtkE3AVqXUgFJqENhKevEqCjqmoZkIm7/1Inc9uifndkqpnO4pgECkvKyN0WAEt8MWTyDJRpVrvKXx0pEBTg6NcesVCwE4cGa0OCdaZJRSvHnaOPfthzMqOpNAAAAgAElEQVRfNq1024Wz1NLIxMdE5A3TfWVZAO3A8YRtTphr7ebz1PWkfZRSEWAYaMpyrJKg3VOafInFFDuPD/HwKyfirSEyMRaOEo6Ob4tuER/5WmYuKm8gv75TkGBpJPyuTg6OAfCBtR0AHDhdnqLRPRyIJwVsP5RNNHy4HTbm1FSU6tQKxmRF45vAUuBioBv4srmeLndMZVmf7D5JiMgdIrJDRHb09vZmO++8ceqUW02e9HqDBCMxxsJRtu49k3XbbC1E4OzI13ILhk9kbKklGom1Gn1eo6XGkhYPc2sr2F+mlsZ+U+xWzKnhlaODRDJcP3pGg8yprUhbqzPTmZRoKKXOKKWiSqkY8G2MmAMY1sD8hE07gFPmekea9aR9RMQB1GG4wzIdK935fEsptU4pta6lpWUyH2kcrrh7qrx8y5rSc3zAcDWIwE9eO5l121yiEXdPlZlojE6gxbflnkqs1ejzBvG47FS5HCyfU1227inLNfWRKxbiDUbY2z2Sdrshf5j6NG1kyoFJiYYZo7B4P2BlVj0KbDYzohZjBLxfUkp1A6MissGMV9wKPJKwj5UZdTPwlBn3eBzYKCINpvtro7lWEpzaPaXJk2OmaLx7TRvPdfbSOxrMuO2wPz9Lo9yqwkeyxGlSiVsaCYHwPm+Q5ho3YNyld57xEi2zZACAN0+PMK+ugneumgPAK0cH026XLa4108kn5fYHwDZghYicEJHbgf9rps++AVwN/CWAUmoP8BCwF/hf4E6llHU78VHgOxjB8YPAY+b6vUCTiHQBfwV8yjzWAPB54GXz8TlzrSQ4421EyuvLqyk9xwb8iMAdb19CTMET+zK7qEZMf3cuS6Pc3FMTuQhWpanT6B0N0lxtiMZ5c2sIRmIcNTOMyon9p0dZMbeG1ho3dZVODvamr9cYHguXXXdbi5z2pFLqg2mW782y/d3A3WnWdwBr0qwHgFsyHOs+4L5c51gMdHGfJhe/2tVNk8fF8YEx2moruLCjjvmNlfx6z2k+uH5B2n1yuqdc5TknfCSQuTVKKpYby5diaSxuNtJPl7dWA3Cw18eSluoCn2nxCEdjHOz1ctWKVkSExc0eDvWmFz5DZMtrjoZFeZ51CdC9pzS5+Kef76HJ46ba7aCj0eghtHHVXL677WjGwLDVQjxTplG5BsKHx8JpW72nw+2wIZIsjH3eEJctagSIC8WhXi8wp+DnWiz6vEHCUcUCs9X5khYPL3SNb4lipV3XV5anpaHbiGTApes0NFkIhKOcGQmyt3uE3aeG4xeKjavmEIrGeOZA+iw+X44iuHIMhAcjUQLhGLV5ptyKCB6XA58ZCI9EYwz6Q3H3VF2lk+ZqV0bXzkylb9TIAGuuNsRgaUs1p0cC49KwvcEI0VjmtOuZjhaNDMRTbiPlF4zTFB8rYwoM37wlGusWNVJX6cwoGt5gFJc9cxFcOdZpjIxlj9Oko9JlZyxs7DfgC6EUtJiBcDCsjUyunZlKr9eoYrcC+ktMd9vhvuTPMeTPPISrHNCikQErEB7UloYmDVZFr2WRzm+sBMBuE9rrK+nzps+g8ocieNz2tK9BeQbCRwKZZ55nwuOyxy2NHjPbzLI0AJa2eDjUV16iYVkaLebnWNxiiEaqxZQrrjXT0aKRgbh7SqfcatJgpdn+zsXzAOKWBkB9lTN+N5mKNxiJ1ymkoxxjGtZFcCKiUelyxLOnLIFtqTnr41/aUs2AL8SgOUf7Hx/Zzcf+51X6vEEC4eiMbGjYG/8chmgsavIgMt7SsH5f9WUqGjoQngHde0qTjWMDfqrdDv7smmVEojFWz6uLv1Zf5eTAmfT+eF+OymkrSBwoI/fUZO6cayocDPkNQbCqwRMtjSXmXfqhPi+Xehr5xRvdDPhCPL7nNOGo4kOXL+Du919QqI9QEPq8QardjrjwVzjttNdXjnOzxUWjTFNutaWRAS0ammwc7fexoLGKhU0evrr5kviFAqCu0pXR0vCHolRlcU+JSNnN1BixLI08U27BSKvdf2YUpVTc0kh2T5lptz0+xkJRBnwhblrbzq1XLOKijjoe2316xnUC7h0NJsVlACPtti/5BmIoR4HnTEeLRgasmEZItxHRpOHYgD/JJZVIfZWTkbFwWhdKPj2aKspUNCZyEVzZVstoIMKJwTH6RoNUuexJGWUdDVW47DYO9nk5OWQ0M3z78hb+4b2r+MO3LGbAF2LXyeHCfpAp0ucNxjOnLNa017H31Ai/TUiMGBozLKtzqo3IuYCI4LLbtKWhGUcspjg+OJaxrXV9pZNQNJb2wu8LRvBkiWmAEQyfaW1EBnwh/mjLyzy9v2fca1aVe+0EitVWzasFYG/3iHmxTb5Dt9uERc1VHOw5Kxrz6o1kg7ef14IISRfimUCfNzTuc9x59TLOm1PDx77/ajy2MTwWxuWwJVmn5YQWjSw47aID4ZpxnB4JEIrEmJ/B0rDuuNO5qHzB7O4pgIoZOCf8m0938cS+Hv5oyw4e2ZnclHF4LEyF04bbkf9F8Py5NYjA3lMj9IyOv0MHWD6nhgNnvPG26e0Nhmg0elxc2FGfVsCmk3TiV+12cO8fXMZoMMIvXjf6rQ77w2UbBActGllxOmy6jYhmHFbmVEZLoyqLaIRyu6cqXfYZFQjvGQnwwLajvPuCuVy6sIFPPPxGUkbQyFj+LUQsqlwOFjd7eL6rjx1HB5MSCSxWzKnh2ICfrh4vdpswJyFe8I7zWth5fCgeTJ9uQpEYQ/7wuJgGQHt9Je31lfHU23JuVghaNLLi1O4pTRos0ZjfkMnSMO6aLd91Ir5g7hbiMykQHorEuOvRPURiik9uOp+vf/AS3A4bf/eTXfGYzWQvgqvaatlxdJBQJMZtVy4c9/p5c2oA+O2BHubWVuCwn71crV1QT0xBZ8/MqBrv940P5ieytLWaLlM0yrktOmjRyIrLbiOkK8I1KZwcHEPkrI89FeuCMJxiaYQiMcJRhceVyz01M0QjGlPcvuVlHtt9mk9sWsGiZg+ttRV86l3ns+1QP8919QFms8LJiIYZ13jb8maWtdaMe33FXGPtYK+P9pTftZWEcKzfP26/6SC1hUgqS1s8HOzxEYtZ437LM90WtGhkxWkXbWloxnFyaIzWGnfGViBx0RhLFo1cfacsKp32GdFGpKvHy7OdfXxi0wr+9B1L4+vvXGk0ETxiXrAna2msXWBMif6jty1J+/qCxirc5u/YimdYdDRUIQJHB2aIaFhpw2ncUwDLWqsZC0fpHglo99RsxuXQ7inNeE4M+unI4JoC4t1Lh1JEw5uvaLjsM6JhYb95Ibx0YUPSeqPHhQjxYVMjY5FJXQQ3LGni2U9ezTvOSz9t024Tls8x6jVSLQ2Xw8a8usqkHmDTifW7aMnknjLrTrp6vOYsDS0asxId09Ck4+TQ2LiLWCIVTqMhYWog3GqbkU/K7UxwT/X50rtcHHYbTR53/EI5PBbOu8NtKpky0CysuEaqpWHsWxmPL003qS1EUllmzgjZf3oEb3ByIjtT0KKRBafdRlCn3GoSiMYU3UOBtBcxCxGhrtLJcEog/KylkUdMYwa4pyxLo9Ez/kLYUuOmdzRALKYYDRTP3bLCEo00Ir2w0RNvHDndnB4OUFvhyFh70eRxUVfp5Nd7jKmODdrSmJ2UU3Hfq8cG+eyje2aEW2M2c2YkQCSmsloaYBT4pVoaecc0XFMv7ntk50l6RgNTOka/N4RN0jfWM0QjiDcUIaYm1qxwIrx1eTMdDZWsbKsd99qCpir6vMGkWePTxaE+L4uzTBkUEZa1VrPj6CAtNW42rZ5bwrMrLPnMCL9PRHpEZHfCWqOIbBWRTvNnQ8JrnxaRLhHZLyKbEtYvNeeKd4nI10REzHW3iPzQXN8uIosS9rnNfI9OEbmtUB86X5wOIVwGbUQe2XmSzf/1Ive/cITnOvum+3RmNVZ1ckcWSwPSd7q1Lm653FMVDjuhaIzoJHsr9Y4G+fiDO/nRjhOT2t+i3xek0ePGZpNxr7VUG6JhZYgVSzRWz6vjub+9Jq3bx8qgOj4wVpT3ngiHen0sNednZOL8uTW4HDa+9ZFLaa2tKNGZFZ58LI37getT1j4FPKmUWg48af4bEVkFbAZWm/t8Q0Qse+2bwB3AcvNhHfN2YFAptQy4B/iCeaxG4C7gcmA9cFeiOJWCcohp+EMRPvPT3axpr8XlsPHiofHjJTWT483TI7zv688lpXVa1cm5RKOu0jUue8przo/IVdxnua+8gcndQVuFd1bMYbIYbTHSp4a21Ljp9QYZMOMe0+Gjt0TjaP/0zt3whyJ0DwfinXkz8clN5/PYx9/GJQtKehkrODlFQyn1DDCQsnwDsMV8vgW4MWH9QaVUUCl1GOgC1otIG1CrlNqmjIqgB1L2sY71MHCtaYVsArYqpQaUUoPAVsaLV1Ex6jRmtmj8atdpRoMRPvWulaxdUM82LRoF49vPHGbXyWG+8Pib8bXUPkiZqK9yZky5zdVGxLqrtibBTZQj5kW03ze1aukBX4imDKLRWuMmHFW8emwQODulrpTEazWmORhutT5fksU9BcakvqU5tikHJhvTmKOU6gYwf7aa6+3A8YTtTphr7ebz1PWkfZRSEWAYaMpyrHGIyB0iskNEdvT2Fq6JmbMMUm5/+PIxlrR4uGxRA1csaWZv98i4ojLNxBn0hfj5G6eor3Lyyze6+fYzh/jP33Sx59QwjR5X1kFKYMU0ki/aPtM9lcvSaK0xXBdnRiZnKRwxLY3+DNMD86XfG6QpTRAczgrb8139OO3ComkQjfoqJzUVjukXjT5LNEr/O5gOCh0IH+/8BJVlfbL7JC8q9S2l1Dql1LqWlvQ535PBCITP3JjGwV4vLx8ZZPNl8xERNixpRCl46UiqYaiZKA+/coJQJMa9t62jyePi7l/t44uP7+dXu07ndE2B4a7xhaJJlqovGMFuk3jBWibm1BoX5MkGsuOWhndqlka/N0SjJ7N7CmD7oX4WN3vi82dKiYiwpKWarmluJXKo14uIManvXGCy/9NnTJcT5k+r3eQJYH7Cdh3AKXO9I8160j4i4gDqMNxhmY5VMpx2IRiZudlIz5qtod9zoTFy9OIF9bh1XKMg/PjVE1y6sIFLFzby0J9ewY8/eiU/+tMrmFPr5qKO+pz7x5sWJqTd+oJRqlx2zByQjFhB0p5JWxrGnbfVD2kyBMJRRoORrDENgNFghOVzxrcAKRWr2mrZ2z0yreNfrTYn5drqfKJMVjQeBaxsptuARxLWN5sZUYsxAt4vmS6sURHZYMYrbk3ZxzrWzcBTZtzjcWCjiDSYAfCN5lrJqDPTJmfiPGKA3adGaK52Ma/OuMi4HXaWtFRPe2Cw3OkZCfDm6VGuM9tlLG2p5tKFDVy2qJFtn7qWu963KucxrMZ1Vk8iyD3q1aLa7cDjsk/KPaWUilsaA77QpDOwrAB3U4YK58RspvPS9I0qFavaahjyh+kenlp68VQ41OvNGc+YTeSTcvsDYBuwQkROiMjtwL8B7xSRTuCd5r9RSu0BHgL2Av8L3KmUsm7VPwp8ByM4fhB4zFy/F2gSkS7grzAzsZRSA8DngZfNx+fMtZLR6HETjMTilbwzjd0nh1nTXpd059rocca/8JrJ8fxBI235bcubx71ms0lSt9VMtJmB8lNDZ9NBfaHcHW4tWmsrJuWe6h0N4g9FWdLiIaaYdOtwy7XVlME9VeN2UOE0fg/nzZm+C6bV9HBf98i0vL9SisN9vmlJBJgucv4FK6U+mOGlazNsfzdwd5r1HcCaNOsB4JYMx7oPuC/XORYLK3NkwBfK+8teDALhKD965QS/v34BdjNnPhCO0tnj5Z2r5iRt21Dl4tTQ9HyBZgvPdvbRUOVkVZqCsnyZV29Yf93DZ0XDG4zm7HBr0VrjnpR7ymoiuG5hA4d6ffT7QhmthWxYrq1M+4oILTVujg+MTat7asXc2vgwp2tXzsm9Q4E5MTiGPxSN98g6F9AV4Vmw7rKmmro4VZ7e38s//Gw32w+fjVXs6x4hGlPjhtc0elza0pgCSime6+zjymXNaYva8qXZ48ZpF04OnbUW/HnM0rCYrKVhZU5ZTQb7JplBlcvSAKPAz2W3sSjDMKpSUO12sLCxir3TZGlY75uuYn22okUjC1bmyMAUAoqFwGqGljgtbffJYQAu6EgWjYYqo6gsMsNThacbbzDCvz32Zrx2wqKrx0vPaJC3LRvvmpoINpvQVleZYmlEcqbqWrTWuDkzEpxwPO1wvw+HTbig3QjWTzaD6qylkVk0lrVWc9H8urzcdcVk1bzaaXNP7eseQcSo9j5X0KKRBStHvW+KqYtTpc+s7D2SIBq7Tg7TUOWMB8EtLKFLbcutSebnr5/i//32IM92Jtf1vHl6FDAy0aZKW11FUkzDH4pSnaOwz2JOrZuxcDTe5DBfjvb7WNBYFU/bnWytRr83hMthyxq4/9wNa7j/D9dP6viFZFVbLUf6/RP+XRWCfd0jLGry5H0zMBvQopGFxoSYxnRi3fUd7jtbxLT75Mi4IDhAgyUaM2R28kzlN28aWeKH+pIzzSzLIFfFdz6011dyKsE9NegP5d1uY7IFfof7/Cxq9lBf5cImk3et9nqDNHtcWdODK5z2aY31WViuoTenwdrY1z3KyrZzx8oALRpZ8bjsuBy2aRcNK23TSqUMhKMcODPKBe1147ZtrLKETlsamQhGojxvjiq1WkBYnBoKUO12UFsx9V5KbfUVnB4JEI0phv1hRgORnPMjLFonUeCnlOJov4+FTVXYbUKjxzVpK/lYv5+OPM91upmuDKrRQJhjA/4pJUyUI1o0siAiNHtcU66snSpWMPNYv59oTLH/9CiRmGJNGtFo8BgXu+kWupnMjiOD+EJRXA4bh3qTq4lPDY3RVleYDqTz6iuJxhS9o8F4q4u8RaNm4gV+PWa67WIz/bPJ4560e6qc0kjn1lbQUOUseTB8v+nKPJeC4KBFIyeN1a5pD4T3+0KIQCga49TQGLtPmUHwdKJhWhqDJXRPKaW4Z+uBeHB+pvPEvjO47Dbec0FbGvdUoCCuKYB5dcZxTg6NxUVjQZ6iMZlWIlbMy2pn0VTtmpR7angsTL8vFBefmY6IsLKtlr2nSisa52LmFGjRyEmjxz3td+19o0HOn2v8YR7u87H75DB1lc60PZAaqgoTh+kZCeQ90KnfF+Lfn+zkO88emtJ7loJ7nzvM/S8c4bpVrayeV8uQP5z0u+oeHovXWEwVS3y6h8cmbGlUux3UVDgmNJnOcl+eFY3JWRqW+JSLaIARDH/z9GhJswZ3nTCSUQplmZYLWjRy0OSZ3N1aobB6AF22yMi7P9LvY9fJYda016YNUla67FQ67QxO4ZzD0RjX//uzfOnx/Xltb8UFnu3sIzbJthWlYNvBfj7/i71sWjWXL99ycbxNteWiCoSj9HlDtNUVxtJoM8XnlGlpNHlcebURAePu+cKOOl4/MZT3+x3u8+O0S1z0WqqNtN2JthI5XIaisbKtlmAkFhfOUrDz+BCXLGjI2UtstqFFIweN0xzTsARrZVstVS47B86Msv/0aNp4hkWjx8XgFNqj7zo5zIAvxFNv9uTeGKPbrnWu01VklQ8/f+MUVS47X918MZUue/yiaLmoTpv9iwrlnqqtcFLjdnBycIzjA/68rQyLS+Y3sK97NO954Uf7fcxvrIrXTVzYUcdYODrhAPGhPh8ixjjVcsEKhu8pkYtqeCxMZ4+XS+ZPPTW73NCikYNGj4uxcDTvL26hsdwLzdVuVrXV8j/bjxGOKtbMyywaDR7nlGIa2w4aleeH+nzxoUPZONjjxWk37rae6SzcPJNCEo0pHt99mqvPb413I+1oqMRpl7ildMpKty2gu2FNex3PH+zn2IA/73iGxcXz64nGVDyGlYvDfb6k9tyXL2kEYPvhibVsO9zno6OhErejfLq2Lm2pxmW38erRwZK83xumBVjuU/gmgxaNHFitoafSZnoq9MVFw8XXPngJt16xiNXzarliaVPGfRqqptZKZNvBfmorDDfK83nMHD/Y62VZaw0r22p55sDMFI2XDg/Q7wvx7jVt8TWH3cbCJk98HkO3WVPRViBLA+BdF8ylq8c7OdEwCwxfO5b7Qmik2/qTRKOtrpIFjVVsn2Cr/CN9PhY3l1cvJZfDxsbVc9iy7Sjfe/Fo0d/vtWNDiMCF8zPfvM1WtGjkoNGsCp+uYLhVo9Fc7WZefSWf/Z3V/PLP3xZvvZ0Owz01ufMNRqLsODrATWs7aK5281xXPqLhY2mLh7ctb+aVo4N5B9BLyWO7u6lw2rhqRfKQrrUL6tl+qJ9AOBqv3i5kYHPT6rnx5xMVjeZqNwsaq3jtWO64xuE+H2Ph6LiOs+sXN/LSkYG8Y03l3LX1S7dcxDXnt/IPj+zmxGBxp/ntPD7EspbqgtTzlBtaNHLQOM1NC/t8Z91T+TIVS+P148MEwjGuWNrEW5c18UxnL4/sPJlRCALhKCcG/SxtqWbtgnrCUTVtfYCy8crRQS5b1Diugvk9F85jNBjh2c4+Tg0HaPK4CjpMZ05tBevM5oETjWmA4aLaeTy3aLxiumXWLkx2l1y+uJEhf5gDPaN5vV+vN4g3GJnWJoSTpcJp5y+vOw+lyOt3NlmUUrx2bJBLCtBqphzRopEDyz3VOzpN7qnREB6Xnco8W2qDIRqjgcik5ptvO9iPCGxY3MRHrliITYSPP7iTO777Stq71aP9fmIKlrZWc6E50e71In5hJ0M0pujq8bIiTQvvK5c20VDl5BdvnOJQrzee8VRI3nfRPOw2YekkZkhf2FFH93Ag503Aq8eGqKlwsCxlGNCGJYYbc/uh/OIah834zuIyHSq0Ym4NLruNXSeKVzPU2eNl0B9m3cLGor3HTEaLRg7m1VfictimbQ5xvy844XkIjWZV+GRcVC8c7GP1vFrqqpxcurCRl//+Ov7xvat45kAv33i6a9z2VubU0hYPbXUVtNS4eaOIX9jJcHJwjGAkxrLW8RdCp93G9Wvm8sjOU2w/PMBV57UW/P0/smEhv/7Lt8fHuE6EJabQHO7Lnkpq3Pk2jGvn3tFQyby6Cl7KMxhupayWo3sKjNjGyraaov4NvmC6bK9cljmuOJvRopEDp93G+XNr2JNnBkuh6fMGM85pzsQc8+J0YjB35hPAsD/ML9/oJhCO8tqxIa5YcvbLYLcJf/iWRfzORfP4ytYD4y5eb5wYRsTI6RcRLppgbUEp6DRdM5kG5XxgbQcOm/Dxa5fz1xvPK/j722wSrwmZKFZAOptojAbC7D8zyto07hIR4fIlTWw/3J9Xm/VDfT5cdlvB0o6ngws66th9crhoNUPPH+xnQWMVHQ3l58IrBFMSDRE5IiK7RGSniOww1xpFZKuIdJo/GxK2/7SIdInIfhHZlLB+qXmcLhH5mjlHHHPW+A/N9e0ismgq5ztZVpktCqZjVnjf6MQnr602azjybevxve1HufN/XuWeJw4QisbGZWaJCJ9570qcdhv/+Zuz1kYgHOWhHce59vzWeGvoCzvqOdjrYyQwcxomdppW4rKW9N1I1y1qZPc/beIv33nejCvU6mioxGETDvdltnRfPz6MUrA2Q/rn5Ysb6fOGONibu/DtcK+PBWbDw3LlwvZ6RoMRDheh0C8aU7x4qJ8rs2QvznYKYWlcrZS6WCm1zvz3p4AnlVLLgSfNfyMiq4DNwGrgeuAbImI56r8J3AEsNx/Xm+u3A4NKqWXAPcAXCnC+E2bVvFoG/WFOj5R+eH2/LzihIDgYdQaNHlfefl0rBvFfvz2E3SZctmi8r7a1poIPXb6Qn752kmNma4sfv3qCAV+IP3rbkvh2F5nFTrtnkIuqq8dLa42buqrMmS6FDH4XEqfdxoLGqqyWxlNv9iCSeQbI5VZc43Du1NvDfb6yqgRPhzWYrBhxjT2nhhkNRLhyikO6ypliuKduALaYz7cANyasP6iUCiqlDgNdwHoRaQNqlVLblHEr/0DKPtaxHgaulWm4FVxtVZueLG1WUDSmGPCFaJmge0pEWNNex648LY1dZi8rMIrRajKkEf7JO5ZgF+G7Lx5BKcW9zx3mgvY6Ll98VmQuNK2c3+zPr5q8FHT2eMt6hvOiZs+4Fu4Wu04Ms2XbET6wtiNj+ueipipaa9w5g+HRmOLogL9s4xkWy1urqXDa+MUbp5KSQUKRGN978Shvnp7899iqQ0p04Z5rTFU0FPBrEXlFRO4w1+YopboBzJ9WZLEdOJ6w7wlzrd18nrqetI9SKgIMA+P+t0TkDhHZISI7ensLX1wWH15f4lTSQX+ImGLC7imAC9pr6ezx5qyZ6BkN0D0c4KNXLeWi+fXccNG8jNvOqa3g8iWNPPVmD3tOjXCo18eHNyxIcuk0eFzcdEk7W144mjRpcLpQStF1ZpTlreU7KGdxs4cj/b5xPvpgJMrf/Oh1mqtd/MN7V2Xc34prvHCwP2tDv1NDY4QisbK3NBx2G392zXKe2NfDH23ZQSgS41Cvl/d+/Vk+87PdfO7neyd13FhM8dCOE6xf3EhLzcS/k7OFqYrGW5RSa4F3AXeKyNuzbJvOQlBZ1rPtk7yg1LeUUuuUUutaWlrS7DI1qt0OFjV5St56uc878RoNiwva64jGctdMWHGPtQsaeOTOt/B/3ro46/ZXrWjlYK+Pe587jE3gupVzxm3zt+86H6dd+OdfTu7LWUi6hwP4QtG0mVPlwuJmD4FwjKfe7OE/nuqMx9b+46ku9p8Z5V9vuiDnRMD3XthGnzfIE/vOZNymHBsVZuLOq5dx9/vX8NsDvfzzL/fy0e+9Sp83xKbVc9h2qD9pDG++PNPZy7EBPx/esLAIZ1w+TEk0lFKnzJ89wE+B9cAZ0+WE+dPyU5wA5ifs3gGcMtc70qwn7SMiDqAOmFgjneCKy4kAABI1SURBVAKxal5t3u6eQmE1SmyaoHsKiDc0fLazj6NZAoJW9pPlgsvF1WZF9U9fO8llixrTWkFzaiv447cv4Yl9PRwfKG5lbi4sP36+n28mYrmL7vyfV/nSrw9wfGCM3SeH+cbTB/nA2g6uOX+8cKdy3co5tNdX8t/PH8m4zWwSDYAPXb6Qj2xYyAPbjrL/zCj3/N7F/P27V6EU/GznybyOEYrE+J/tx/jEj17ny78+QHO1i+sTqvzPRSYtGiLiEZEa6zmwEdgNPArcZm52G/CI+fxRYLOZEbUYI+D9kunCGhWRDWa84taUfaxj3Qw8paYjhQm4bGEDJ4fGSnoRnIql0V5fSZPHxVe2HuDqLz1N55lRnjnQy9VfejppsM8bJ4ZZ1lKd96znxc2eeDuMTVm+PDddYtwHPLa7e8LnXkh++cZp2uoquKijfKt3F5u1GsGI4VradqiP+54/jMdl5x+zuKUSsduE265cyPbDA7yaoZfV4T4fHpd9Vrle/v49K7lqRQufvH4F7zivhQVNVVy2qIGfvHoyZzZkOBrjfV9/jr/76S4e33OaXSeH+fCGhbgc53alwlQ+/RzgORF5HXgJ+KVS6n+BfwPeKSKdwDvNf6OU2gM8BOwF/he4UyllOdw/CnwHIzh+EHjMXL8XaBKRLuCvMDOxpoMNZordixNs/jYVrCr0lkmIhojwnx9ay+dvWI2I8ONXT/LtZw9xuM8Xv9sMhKO8emwwXsmd73Eta2Pj6sx3uAuaqrigvY5f7jo94XMvFKOBMM909vKuNW3jit7KiTk1FcxvrORjVy+judrNM519PLmvh+tWzcmaEZbK761bQHO1m9//9ov89LUT415/8VA/F3TUzbi046lQ4bRz/x+u5/+7all87eZLO+jq8eYsePzt/l72nxnl7vev4fW7NrLjM9fxZ9csL/Ypz3gmLRpKqUNKqYvMx2ql1N3mer9S6lql1HLz50DCPncrpZYqpVYopR5LWN+hlFpjvvYxy5pQSgWUUrcopZYppdYrpaZtNNx5rTU0elxsK6Fo9PtCOO1CbWV+VkAqG5Y08ZErFvH25c08tOM4z3X1UeG08b1tRxkJhHl05ymG/GHef0l77oMl8GfXLue+P1iXs7jp3Re08frxoaJYZ1/59X7+9uE3sm7z5L4eQpEY77mwvN0JNpvw27+5mr/ZtIIrljbx2K5uhsfCbFw1sc9VV+Xkl3/+VlbPq+PTP9lFMHI2SeLMSIA3T49y1YrCV8TPNG64uJ2GKiffee5w1u0efuUEzdUufnfdfESE5mp3WdevFIpz286aADabsGFJI9sPDZSsyK9vNEiTxz3lO7/3r+2I9y766u9dzGgwwr/+6k2+89whzp9bw1sm2A6hudqdlx/9PRcYbci37s0cfJ0M2w7287WnuvjRK8ezTih8bHc3c2sruGR++c88sCylK5Y0EVNQ4bTxjvMmnvQxp7aCO96+hEA4ltRqw0olffvywieSzDQqnHY+smEhT+w7k7H+ZcAX4sk3z3Djxe047foymYj+bUyAK5Y0mXGNiWdeTIZ+X2hSQfBUNq6aQ43bwVuXNXP9mjZuu2IhP3jpGAfOePnjty0pmjtiQVMV8+oqCtpW5MSgn7/98RvUVTqJKfhthvkd0Zhi28F+rlrRUtauqVSsav23LW+ZUBPLRNabxZuJczZ+e6CXlho3K9vKNzV5Inz4ioU4bTY+87NdadPS73/hCOGo4uZ1HWn2PrfRojEBrC/s0wdKU7hm9J2aelCywmnnwT/ZwBdvvgiAf7phDf/9B5dx+1sX874sdRmFYE17XcEqc3/zZg/Xf/VZ+rxBvn3rOpqrXRlH0u49NcJIIJJ1WFU5sqipijvevoQ/fcfSSR+jwePi/Lk18Yl+R/p8PNvZxzvOa5lV8YxstNZU8C83XcALB/u547uvJBUBPr2/h68/1ckNF8/j/Lnlm3VXLCbnLD9HWdpSzaq2Wh7acZxbr1hU9Pfr94YKVpS2OmU87NXnt3L1+cX3X1/YUcev955hJBCe8sCar2w9QGuNmy3/Zz3zG6t4x3mtPLHvDJFoLD4X22LbIaMT6Wyr3BUR/u7dK6d8nMsXN/LQjhPc9chutmw7it0m3LR2YrGtcufmSzuIRGN86ie7+NzP99LocfHfzx9mJBDh/Lk1/OtNF0z3Kc5ItKUxAUSEzevns/vkSN7NACeLUoreSXS4nWlY9SKpLViiE+xAeno4wK6Tw9y8riM+zOia81sZHgvzotke41i/Px5v2nawnyUtnkm1Iz8XWL+4ibFwlC3bjvKhyxfwwqeu4cql514/pc3rF/DHb1vMd188yr8/2cmGJU38/btX8sDt6+NNODXJ6N/KBLnhonbu/uU+/uKHO/EHI/zHh9Zm7C46FUaDEUKRWEHcU9PJBaZo7Do5FHcV9YwGePe/P8ct6zr45KYVeblEnnzTCKa/M6EC/aoVLbTVVfCPj+7mxovb+crWA3zmPSu57cpFvHR4gBsnmBV2LnGFOXzq/Zd08A/vXXnOuKXS8bfXnw/AyrZablqrYxi50KIxQeqqnHzg0g5+9poxAvXJfWeKIhpTqQafSTRVu2mvr2RXgqXx/ReP0ecN8s2nD1JT4UjKoU+l3xukezjAE3vPsKCxKqkdiMft4Is3X8SH793OV7YewOOy89UnOjk1ZLQOees53Ik0F40eFy/9/XU6MwijV9Xfvye/IkmNdk9Nin++wSj2WTG3tmgTwk4PG1Xb5W5pgGFt7Dw+iFKKYCTK97cf5aoVLfzORfP44uP7MxZMKqX44wd28N6vP8dv9vdy3co54+6I37q8mU9sWsHNl3bwyMfeQigS477nD3PT2nY2nuPtHnKhBUMzGbSlMQlsNsGGMaXusd2nUUrlbd5/f/tRdh4b4tqVc9i0evxFEIyL5def6qTa7WBVGfdMsrhmZSv/u+c0P33tJL5QlD5viNvfupi1Cxp4/cQQf/Oj13ns428b15L952908+qxIX53XQe9o0F+//L5aY9/59VnLZV/uekCTg6O8WfXLJtVqbYazUxBi8YUuLCjngdfPs7Rfj+L8mjyduDMKHc9sgeAH71ygm9+aC3vMgvgEvnBS8d54WA///L+C2aFpXHz2g5+8NIx7npkD/5wlMsWNfDWZc2ICF++5SJ+97+28c+/2McXbr4wvo8/FOELj73JqrZa/vWmC/OuxL35Uu2T1miKibZPp8CF5oSwN/LIpFJK8Zmf7cbjdvDCp65hTq2bH786vtNmLKb4j6c6Wb+okQ+uT39nXW7YbMK/vP8CApEoVy5t+v/bu/8gq8o6juPvL7sLBCxsEMsP0d0iIIEYiI1x0yIdHIWJKHNMa4BoKrOaZKaZxKbGmmJGnXBUakKmKCxLp8KBEmXQiBJNXUbiR/wKgRZBAeU3oijf/jjPwoILnL2cs+fcu5/XzJl7efbsw/N8585+73Puud+H30wbc3KFVVfbk5vHDuSRhkaeDN8cd3duX7CGnQfe4I6JQ1W6QSRHtNK4AEP6VtKpvAOrG/fz6fN8SW7Zxt08v/V1Zn52ONXdOzNxRH/mP7uN/UffoqrLqQ+7G7bvY+eBY9w2/kMldUfLpf26s2LGVfTq+u76PdPHDWLZht3c8tBKxg6u5p0TJ1i2cQ/fuXrwya1KRSQftNK4ABVlHRjavzurGs9fJmP+M9upruzEDXXR6uEzoy7i+DvO42tPrwK7cNXLvKeirMXNjYpddWXnFlcNncqjSqRT6mtZv+sg2187ytT6mtM+qxCRfNBK4wJdOaSae5ZuYsMrB89acmDb3iMs37SH6eMGnbxjZVj/7gzs3ZXZT21mUHU36mp78tbbJ1i8ZhfjhvaJvb9FqejbozM/+NTQc25bKiLZ00rjAk2pr6FrxzJ+vmzLWc+Zt2Ir5R2ML4y55GSbmTHrhpGUlRnXz3mWy+/8Gx+d+ST7jh7nOn0pTURyqn29nU1BVZeOTK6v5YF/bGFqfQ11oYJok2UbdvNgKNVwZkmLkRdX8fitn+Dh5//Hqsb9dK4o49phfdukJpSISCEso91TU1NXV+cNDQ1t+n/uPfwmk362glcOHuOWsQOZXF/DvBVbee6l19n86iFqenVlwTc+RueKwkpZi4ikzcxWunvdec8rhqRhZtcC9wFlwC/d/c6znZtF0gA48MZxfrRoHQtePHUb7WUf6Envys5895ohJ4vsiYjkUckkDTMrAzYR7Te+A3gBuMnd/9PS+VkljSard+xn4aqdTPhwX0bX9Dz/L4iI5EDcpFEMn2mMAf7btD+4mT0MTAJaTBpZGzGgihEDqrIehohIKorh7qmLgMZm/94R2kREpI0VQ9Jo6WvRp11TM7OvmVmDmTXs2dPyntEiInLhiiFp7ACaF2EaAOxsfoK7z3X3Onev6927d5sOTkSkPSmGpPECMMjM3m9mHYEbgUUZj0lEpF3K/Qfh7v62mX0LWEJ0y+08d1+X8bBERNql3CcNAHdfDCzOehwiIu1dMVyeEhGRnFDSEBGR2HL/jfDWMrM9wPaEuusBnH9bvuLuC+B9wN6E+kp6bHmNW5Ixg/zOM+n+9ForXNqxG+Lulef9TXfXcZYDmFvqfYX+GnI8tlzGLcmY5XmeeY5bzueZ6NjaInZx+9flqXP7SzvoK2lJj01xy7avNPpLSp7nmdeYNSl4fCV3eUpaz8waPEahMjlFMSuM4la4tGMXt3+tNARgbtYDKEKKWWEUt8KlHbtY/WulISIisWmlISIisSlplCAzu9jMlpnZejNbZ2a3hvaeZrbUzDaHx/eG9qvNbKWZrQmPVzXra6aZNZrZ4azm0xaSipmZdTGzx8xsQ+jnrLtMloKEX2tPmNm/Qz9zwgZsJSvJ2DXrc5GZrU114EnfFqYj+wPoB3wkPK8k2vlwKHA3MCO0zwDuCs9HAf3D8+HAy836uiz0dzjreRVDzIAuwJXheUfgn8D4rOeX97iFf3cPjwb8Gbgx6/kVS+xC23XA74G1qY4768DpSP8AFhJtl7sR6Bfa+gEbWzjXgNeATme0l3TSSCNm4Wf3AV/Nej7FFDegguiW0M9nPZ9iiR3QDXg6JJ1Uk4YuT5U4M6sleofyHNDH3XcBhMfqFn7lc8CL7v5mW40xb5KKmZlVAROBp9Icb14kETczWwLsBg4Bf0p5yLmRQOx+DMwCjqY9ViWNEmZm3YiW+dPd/WCM84cBdwE3pz22vEoqZmZWDvwBuN/D/valLKm4ufs1RO+uOwHvumZfii40dmY2Eviguz+a6kADJY0SZWYVRC/Eh9x9QWh+1cz6hZ/3I3pH13T+AOBRYIq7b2nr8eZBwjGbC2x293vTH3m2kn6tufsxoo3WJqU99qwlFLt6YLSZbSO6RDXYzP6e1piVNEqQmRnwK2C9u9/T7EeLgKnh+VSia6hNl1EeA2539xVtOda8SDJmZvYTooJw09Med9aSipuZdWv2h7IcmABsSH8G2Ukqdu7+C3fv7+61wBXAJnf/ZGoDz/rDHx3JH+GF48BqYFU4JgC9iK6vbw6PPcP53weONDt3FVAdfnY30T7tJ8LjD7OeX55jRrSHvQPrm7V/Jev5FUHc+hBt7bwaWAfMBsqznl8xxO6MPmtJ+YNwfSNcRERi0+UpERGJTUlDRERiU9IQEZHYlDRERCQ2JQ0REYlNSUOkjZnZ181sSivOr029cqlITOVZD0CkPTGzcnefk/U4RAqlpCHSSqG43BNExeVGEZW0ngJcCtxDVHF0L/Ald98VSjo8A1wOLDKzSqKqwT8NdYPmEJVU3wJ82d33mdloYB5RAbqn2252Iuemy1MihRkCzHX3EcBB4JtE32K+3t2b/uDPbHZ+lbuPdfdZZ/TzIHBb6GcNcEdo/zXwbXevT3MSIq2llYZIYRr9VP2f3wHfI9oYZ2lUUogyYFez8x85swMz60GUTJaHpvnAH1to/y0wPvkpiLSekoZIYc6sv3MIWHeOlcGRVvRtLfQvkgu6PCVSmEvMrClB3AT8C+jd1GZmFWHfg7Ny9wPAPjP7eGiaDCx39/3AATO7IrR/MfnhixRGKw2RwqwHpprZA0TVSGcDS4D7w+WlcuBeooqt5zIVmGNmXYCXgGmhfRowz8yOhn5FckFVbkVaKdw99Vd3H57xUETanC5PiYhIbFppiIhIbFppiIhIbEoaIiISm5KGiIjEpqQhIiKxKWmIiEhsShoiIhLb/wGEilkgjtOYbwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
"source": [
"sorted_data['inc'].plot()"
]
@@ -215,9 +2217,32 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 11,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl4XPV97//6zKaRRvvmTfJuFi/YGGMMJCFAgsnSACk0pk3itrSk+UGbbjdPkpt7SZPSG9qkpKSBlgQaoE0IJU0gC4sDJAQwNmbxvsnyJkto32ZGs39/f5xzRjPSbJKlkWb8fT3PPBp/55wzZ8bSeZ/PLkopNBqNRqPJBdtMn4BGo9FoCgctGhqNRqPJGS0aGo1Go8kZLRoajUajyRktGhqNRqPJGS0aGo1Go8mZnEVDROwi8raI/Nz8d62IbBORo+bPmoRtvygiLSJyWEQ2J6xfIiJ7zdfuExEx10tE5Efm+g4RWZywz1bzPY6KyNap+NAajUajmRwTsTQ+BxxM+PcXgBeUUiuAF8x/IyIrgS3AKuB64H4RsZv7PADcDqwwH9eb67cB/Uqp5cC9wD3msWqBu4DLgI3AXYnipNFoNJr8kpNoiEgT8BHgewnLNwCPmM8fAW5MWH9cKRVUSh0HWoCNIjIPqFRKbVdGReGjY/axjvUkcK1phWwGtiml+pRS/cA2RoVGo9FoNHnGkeN23wI+D1QkrM1RSnUAKKU6RKTRXF8AvJ6wXZu5Fjafj1239jltHisiIoNAXeJ6in1SUl9frxYvXpzjx9JoNBoNwJtvvtmjlGrItl1W0RCRjwJdSqk3ReT9Oby3pFhTGdYnu0/iOd6O4fZi4cKF7Nq1K4fT1Gg0Go2FiJzMZbtc3FNXAh8TkRPA48A1IvKfQKfpcsL82WVu3wY0J+zfBLSb600p1pP2EREHUAX0ZThWEkqpB5VSG5RSGxoasgqlRqPRaCZJVtFQSn1RKdWklFqMEeB+USn1SeBpwMpm2go8ZT5/GthiZkQtwQh47zRdWcMissmMV3x6zD7WsW4230MBzwHXiUiNGQC/zlzTaDQazQyQa0wjFV8HnhCR24BTwC0ASqn9IvIEcACIAHcopaLmPp8Fvg+UAs+YD4CHgMdEpAXDwthiHqtPRL4GvGFu91WlVN9ZnLNGo9FozgIpttboGzZsUDqmodFoNBNDRN5USm3Itp2uCNdoNBpNzmjR0Gg0Gk3OaNHQaDQaTc5o0dBoNFPOL/Z00DUUmOnT0EwDWjQ0Gs2UEorEuPOHb/EvLxyd6VPRTANaNDQazZQyEo6iFLx0qItiy87UaNHQaDRTTDBslGW1DwY43Dk8w2ejmWq0aGg0miklGInFn794qCvDlppCRIuGRqOZUgLhaPz5S1o0ig4tGhqNZkoJhA1LY1mDhzdP9hON6bhGMaFFQ6PRTCnBiGFpNFa4iSkIR2NZ9tAUElo0NBrNlGJZGuVuox9qSItGUaFFQ6PRTCmWpVFRYohGJKrdU8WEFg2NRjOlWJZGhdsSDW1pFBNaNDQazZRiZU95SrR7qhjRoqHRaKYUq06j3K3dU8WIFg2NRjOlWJZGhdsJQCSmLY1iQouGRqOZUgJmILy8xA5AKKItjWIiq2iIiFtEdorIbhHZLyJ/Z65/RUTOiMg75uPDCft8UURaROSwiGxOWL9ERPaar90nImKul4jIj8z1HSKyOGGfrSJy1HxsncoPr9Fopp6gGQj3uEz3lLY0igpHDtsEgWuUUl4RcQKviMgz5mv3KqW+kbixiKwEtgCrgPnAr0TkPKVUFHgAuB14HfglcD3wDHAb0K+UWi4iW4B7gE+ISC1wF7ABUMCbIvK0Uqr/7D62RqOZLgKRKC6HDZfDuCcN65hGUZHV0lAGXvOfTvOR6bfgBuBxpVRQKXUcaAE2isg8oFIptV0Z/ZIfBW5M2OcR8/mTwLWmFbIZ2KaU6jOFYhuG0Gg0mllKMBzD7bDhtFuioS2NYiKnmIaI2EXkHaAL4yK+w3zpThHZIyIPi0iNubYAOJ2we5u5tsB8PnY9aR+lVAQYBOoyHGvs+d0uIrtEZFd3d3cuH0mj0UwTwUiUEqc9Lho6e6q4yEk0lFJRpdQ6oAnDaliN4WpaBqwDOoBvmptLqkNkWJ/sPonn96BSaoNSakNDQ0PGz6LRaKaXQDiG22nDYTf+fMM6plFUTCh7Sik1APwauF4p1WmKSQz4LrDR3KwNaE7YrQloN9ebUqwn7SMiDqAK6MtwLI1GM0sJhKO4HXacNtM9FdGiUUzkkj3VICLV5vNS4APAITNGYXETsM98/jSwxcyIWgKsAHYqpTqAYRHZZMYrPg08lbCPlRl1M/CiGfd4DrhORGpM99d15ppGo5mlBCMxSpw2nA7D0ojo1uhFRS7ZU/OAR0TEjiEyTyilfi4ij4nIOgx30QngMwBKqf0i8gRwAIgAd5iZUwCfBb4PlGJkTVlZWA8Bj4lIC4aFscU8Vp+IfA14w9zuq0qpvrP4vBqNZpqxLA2HTQfCi5GsoqGU2gNcnGL9Uxn2uRu4O8X6LmB1ivUAcEuaYz0MPJztPDUazewgEI5S5nLgNGMaOhBeXOiKcI1GM6UEIzFKHDYcOuW2KNGiodFoppRAOIrbaY9bGmEd0ygqtGhoNJopJRA2A+E2q05DWxrFhBYNjUYzpRjuKftonYYWjaJCi4ZGo5lSguEobmdiGxHtniomtGhoNJopJRCxYhq6jUgxokVDo9FMGdGYIhxVuB127DZBRLunig0tGhqNZsoImgOYSpzGpcVpt+neU0WGFg2NRjNlWAOY3OYsDadNtHuqyNCiodFopgxr1KvbaYx6ddht2j1VZGjR0Gg0U0bAtDSS3FPa0igqtGhoNJopw4ppuB2GpeG0iy7uKzK0aGg0minDsjRG3VOi3VNFhhYNjUYzZQTCZvaUIzF7SrunpprjPT4+9q+v0DUcyPt7a9HQaDRTRjBixTRM95TNpt1T08CetgH2tA3y0qGuvL+3Fg2NRjNlWJaG2wyEO+w65XY68AYjAGw/1pv399aiodFopoxR95QVCLcR0pbGlOMNGKLx2rFejMnY+SOXGeFuEdkpIrtFZL+I/J25Xisi20TkqPmzJmGfL4pIi4gcFpHNCeuXiMhe87X7zFnhmPPEf2Su7xCRxQn7bDXf46iIbEWj0cxaLPeUO55yqy2N6WDYFI2u4SDHun15fe9cLI0gcI1Sai2wDrheRDYBXwBeUEqtAF4w/42IrMSY8b0KuB6435wvDvAAcDuwwnxcb67fBvQrpZYD9wL3mMeqBe4CLgM2AnclipNGo5ldBMNjivtsNiK6jciU4w1GsBmd59l+rCev751VNJSB1/yn03wo4AbgEXP9EeBG8/kNwONKqaBS6jjQAmwUkXlApVJquzLsqUfH7GMd60ngWtMK2QxsU0r1KaX6gW2MCo1Go5llxIv7rOwph42QtjSmnKFAmHlVpSyoLuX14315fe+cYhoiYheRd4AujIv4DmCOUqoDwPzZaG6+ADidsHububbAfD52PWkfpVQEGATqMhxr7PndLiK7RGRXd3d3Lh9Jo9FMA8ExbUSM3lPa0phqvIEIFW4HSxs8nOkfyet75yQaSqmoUmod0IRhNazOsLmkOkSG9cnuk3h+DyqlNiilNjQ0NGQ4NY1GM50EwjHsNonP0tDZU9ODNxihvMRBncdFry+Y1/eeUPaUUmoA+DWGi6jTdDlh/rQShtuA5oTdmoB2c70pxXrSPiLiAKqAvgzH0mg0s5BAOBp3TYFuWDhdDAcilLsd1JWX0OcN5fW9c8meahCRavN5KfAB4BDwNGBlM20FnjKfPw1sMTOilmAEvHeaLqxhEdlkxis+PWYf61g3Ay+acY/ngOtEpMYMgF9nrmk0mlmILxTFU+KI/9ul52lMC95ghAq3k1qPC18oGk91zgeO7JswD3jEzICyAU8opX4uItuBJ0TkNuAUcAuAUmq/iDwBHAAiwB1KKesTfRb4PlAKPGM+AB4CHhORFgwLY4t5rD4R+RrwhrndV5VS+Y36aDSanPGHInhc9vi/HXqexrQwHBh1TwH0+kIsqC7Ny3tnFQ2l1B7g4hTrvcC1afa5G7g7xfouYFw8RCkVwBSdFK89DDyc7Tw1mkLhzMAInUMB1i8svuxxXzBKmWv0sqLdU9PDcCBMhemeAuj1BvMmGroiXKPJM/f96iif/c83Z/o0pgWfGaC1cNlFz9OYAK+39jI4Es64TSgSIxiJUVHioDbB0sgXWjQ0mjzT6wvS4w3lvf1DPvCHIpSVJLin7LphYa4EwlE++b0d/O+f7M24nc/sO1XudlBfbopGHoPhWjQ0mjwz4A8TjSmGzFYQxYQvFMWT5J7SlkauDPjDRGKKn+/p4ED7UNrtrBYi5QmWRl8e0261aGg0eWbAdD/059GlkC/8wQhlCYFwnT2VO/3+0d+H//PUPh749THa+v3jthsOGr8/FW4n5SUOXHabtjQ0mmJmwG+Khr/4RMMbjCSl3DpsNpSCqB7ElBXr9+Hq8xt482Q/9zx7iEdeOzFuO6vDbYXbgYhQV+7SMQ2NplhRSjE4YvyBF5toKKXwh6J4kmIaRlMHnUGVnUHzZuJ/bb6AA1/dTJ1ZgzGWRPcUQK3HRZ8WDY2mOPGHonEff58vc5ZMoRGKxojEVFLKrctsJ6JFIzv9pmjUeJyUuRyUuuwEUoiGNYCpwm18z3XlJfR6dUxDoylKEq2LgSKzNPxB4wKXVNxnWhq6wC871u9GTZkR3HY77QQiKSyNhOwpwOw/pS0NjaYoseIZQF5dCvnAugMuK0ku7gN0MDwHBvwh3E5bvENwqdPOSEr3lBkIL3ECpmjoQLhGU5wkFm4VW0zDH7IsjeTiPkCn3eZAvz8ctzLAFI0UPaW8gQh2m8SnI9aWuxgJR/GH8pPCrUVDo8kjlqVhtwn9RRbT8JkXraRAuM24xOgCv+wM+ENUJ4iG22VnJDz+ezOaFRqZU8Bo/6k8WRtaNDSaPDJgZk4115TSV2yWhhXTKEku7gNtaeSCYWk44/92O2wpA+FWs0KLOo/ZfypP7k4tGhpNHrEsjSX1nqIr7ovHNMYU94HOnsqFfn8o2T3lShMIHyMa9RWGaPQM5yeDSouGRpNHBkfCuJ025laVxlMsiwXLp+5xjQ+E6+yp7Az4w1QnWBrpAuHeYJhK9+h2cyoN0ejSoqHRFB8D/hDVpS5qPU4G/MXVtNAqRCtLVdyns6cyEospBsZYGu40gXBrap9FfXkJItA5FMjLuWrR0GjyiHU3WVPmIhJT8Zz7YsAfTK5UhgT3VESLRiaGgxFiimRLw2VPOZFvyJylYeG026jzuOga1qKh0RQdAyNhqkqd8TvKYopr+IIRRMDtSJ7cBxDRvacyMjCmsA+M7zEcVeMyz/p94Xh3W4vGCjedQ7PEPSUizSLykogcFJH9IvI5c/0rInJGRN4xHx9O2OeLItIiIodFZHPC+iUistd87T5zVjjmPPEfmes7RGRxwj5bReSo+diKRlPADJqWxmhL6yISjVCUMqcdmykUkFDcpwPhGbHiW8mWhvHdBRKstGAkijcYobYsWTTmVJbMKksjAvyNUupCYBNwh4isNF+7Vym1znz8EsB8bQuwCrgeuN+cLw7wAHA7sMJ8XG+u3wb0K6WWA/cC95jHqgXuAi4DNgJ3iUjxzcjUnDMMjBgxDeviMFBEwXBjAFPyBGmnTrnNCavQs3pMcR+QFAwfiPenmsWWhlKqQyn1lvl8GDgILMiwyw3A40qpoFLqONACbBSReUClUmq7MqJ/jwI3JuzziPn8SeBa0wrZDGxTSvUppfqBbYwKjUZTcAz4w1R7itTSCEaT+k6B4W8HXdyXjVH3VEKdhikaiXEN6/dlrHtqTmUJPd5gXr7nCcU0TLfRxcAOc+lOEdkjIg8nWAALgNMJu7WZawvM52PXk/ZRSkWAQaAuw7E0moIjEI4SjMSoLnVRVWpcHLLNgy4kfMFIUodbSLA0dEwjI1Z3gLHZU0BSBpUVA6sZ455qrHSjVH4K/HIWDREpB34M/KVSagjD1bQMWAd0AN+0Nk2xu8qwPtl9Es/tdhHZJSK7uru7M34OjWamsFwLVaVOSl3jLwiFji+UXHQGo21EdPZUZgb8IUSgsjS5TgPGWBr+dJaGG8hP2m1OoiEiTgzB+C+l1P8AKKU6lVJRpVQM+C5GzAEMa6A5YfcmoN1cb0qxnrSPiDiAKqAvw7GSUEo9qJTaoJTa0NDQkMtH0mjyTrw7qdsY0WkTUqZUFir+UDSpRgPA6TDdU7pOIyOdQ0HqPCXYE5II4jcWoRSWhseZtH+jWRWej7hGLtlTAjwEHFRK/XPC+ryEzW4C9pnPnwa2mBlRSzAC3juVUh3AsIhsMo/5aeCphH2szKibgRfNuMdzwHUiUmO6v64z1zSagiPeBbbEjoikrfgtVHzBSFI1OIDTpgPhuXCqz8/C2tKktVTuqb4UbiwYtTTykUHlyL4JVwKfAvaKyDvm2peAW0VkHYa76ATwGQCl1H4ReQI4gJF5dYdSyvrUnwW+D5QCz5gPMETpMRFpwbAwtpjH6hORrwFvmNt9VSnVN7mPqtHMLFYXWMvvX+pKXfFbqPhD0aS+U5DYRkRbGpk43e/nkkXJiaFW6/NEa7TfH6LS7YgnGFjUl7vMqvDptzSyioZS6hVSxxZ+mWGfu4G7U6zvAlanWA8At6Q51sPAw9nOU6OZ7VhdYK0La7o2EYWKNxhJ6nALOuU2F8LRGO0DI9x0cXKOz2hMY1Rw+3yhcfEMMMS5zlNC12yJaWg0mrPHH7ZEw2H+LB73lFIKfyiaNEsDRlNude+p9HQMBIgpaK4pS1pPlSzR7w+Nq9GwMAr8ZkFMQ6PRTA1WbybrwppuMlshEozEiMbUuJTbeBsRbWmk5VSfH4Dm2jGikaK4r88XGlcNbjGn0k13HkQjl5iGRqOZAuJdYJ3Gn527iALh1iyNscV9dpsgotuIZOJ0vyUa2QPh/b4QF86rTHmcb996cVxophNtaWg0eWLEDIRbbod0XUwLkdFU0OS7YBHBabPpmEYGTvf5cdiEeVXJolHiGB8I7/OnjmmAMTExse/XdKFFQ6PJE75QFKddcJkXg2JyT1mVyNbo0URKXfb4gCbNeE71+VlQU5pUowHE07It0RgJRQmEY+PSbfONFg2NJk/4x7TZKCbR6E/TEwmMfkrFNqVwKjndPzIuCG6RmJY9Wg3uTLltvtCiodHkCX8ouaGfu4iyp+KWRvl40aguc8Ub8mnGc7rPPy4IbmEUgBrxoHR9p/KNFg2NJk/4Q9F4PAOgrIgC4Vb31cR5EBa1HldRdfOdSnzBCH2+0LgguEWJ0xZ3T6XrcJtvtGhoNHnCF0oufrNcD8UwJ7zPF6KixEGJY3z2TnWZs6jmhkwlA2aX47o0QpAY0+jxGum06eo08oUWDY0mT/hD0aSUSLfTTkxBqAjSUft8IWpTuKbAcKf0a/dUSnzx2p3U1Q+Jca8jnV6cdkkb/8gXWjQ0mjzhH2tpWG0iQkUiGmnugGvKnPhD0aJJL55KhgOGaIxtKW+RGAg/0DHEisaKePbdTKFFQ6PJE/5gckO/Ypqp0ZuhUtlyp2gX1XisosgKd2rRKHGMxr0OtA+xcn7qwr58okVDo8kTY7vAlqao+C1U+nzBDJaGsa5dVOPxxi2N1Gm0pS47wUiMrqEAPd4gq7RoaDTnDr7QmDoNU0AKvfBNKUW/L5w2pmFlVGnRGI9vTD+ysZQ6bYyEouzvGAJgZZoWIvlEi4ZGkweUUoyM6QKbapxnIeINRghFY2kzgCxLQ7unxjNsuafSWRpmIPxAuyEaF2pLQ6M5NwhFY0TGdIEdHedZ2IHw0fqB8S1EjHXtnkqH5Z5KZ2lYM1cOdAzRXFtKpXtmq8FBi4ZGkxfGDmCC4olp9Poyt7eIu6d0gd84fKEIpU57fMLhWNxOO6FIjDeO93Hh3Jm3MiC3GeHNIvKSiBwUkf0i8jlzvVZEtonIUfNnTcI+XxSRFhE5LCKbE9YvEZG95mv3mbPCMeeJ/8hc3yEiixP22Wq+x1ER2YpGU4CMDmBKrtOAwheN/iyWRonDTpnLrvtPpWA4MH7aYSKWNTo4EuaP37MkX6eVkVwsjQjwN0qpC4FNwB0ishL4AvCCUmoF8IL5b8zXtgCrgOuB+0XE+kt5ALgdWGE+rjfXbwP6lVLLgXuBe8xj1QJ3AZcBG4G7EsVJoykUrAFMqdxTgQJvJTLa4TZ9pbIu8EuNNxhJm24LsKi2jPISBw9tvZRNS+vyeGbpySoaSqkOpdRb5vNh4CCwALgBeMTc7BHgRvP5DcDjSqmgUuo40AJsFJF5QKVSarsy+iY8OmYf61hPAteaVshmYJtSqk8p1Q9sY1RoNJqCwRrAlCoQXujZU7n0RKrx6FYiqfAGwmkL+wA+tGYeb//fD/KeFfV5PKvMTCimYbqNLgZ2AHOUUh1gCAvQaG62ADidsFububbAfD52PWkfpVQEGATqMhxLoykoLGEodY5eIMrixX2FHwgvcdiSXG9jqSnTTQtT4QuOn6s+FmeaeMdMkfPZiEg58GPgL5VSQ5k2TbGmMqxPdp/Ec7tdRHaJyK7u7u4Mp6bRzAxWIDzxAmFNZiuGmEZNmQszRJkS3R49NcPBSNrCvtlKTqIhIk4MwfgvpdT/mMudpssJ82eXud4GNCfs3gS0m+tNKdaT9hERB1AF9GU4VhJKqQeVUhuUUhsaGhpy+UgaTV7xhcbHNMZOZitUsvnlQQ9iSoc3GM763c02csmeEuAh4KBS6p8TXnoasLKZtgJPJaxvMTOilmAEvHeaLqxhEdlkHvPTY/axjnUz8KIZ93gOuE5EaswA+HXmmkZTUFj9g8a6cEqLYBDTcCAX0XAxFAgTjRV+G/ipxBeMZoxpzEZyOdsrgU8Be0XkHXPtS8DXgSdE5DbgFHALgFJqv4g8ARzAyLy6Qyll/VV8Fvg+UAo8Yz7AEKXHRKQFw8LYYh6rT0S+BrxhbvdVpVTfJD+rRjNjxAPhruQ/uWIY+TocjFBVmtnFUl3mRCkYGgnP+DyI2YQ3S8rtbCTr2SqlXiF1bAHg2jT73A3cnWJ9F7A6xXoAU3RSvPYw8HC289RoZjNWym3pGEvD7bQVvmgEwjTVpJ48Z2FdGH2hiBYNk2AkSigaKz73lEajOXv84ShOu4ybhVDmchS8e8obiFCR5W7ZsrD8Bf5ZpxJvllkasxUtGhpNHvAHkzvcWpQWwZxwbzCS9cJnxXKsrq4aI54BWjQ0Gk0KfGNmaVi4XYUd04hEY/hDUSqyNNKL16QUuEBOJcNBI5us0GIaWjQ0mjzgD0VSikap01bQKbfxu+UsfvnRmEbhftapxnJP6ZiGRqMZx+BImMoUGUaFnj01FDDulrNd+MqKZODUVGLV7mj3lEajGcfgSJjqVKJR4HUa8RnX2QLhlqURLNzPOtUMW4FwbWloNJqxDI6EU9YyuAs8ED4cd7FkjmkUy2jbqcQSXG1paDSacQz4w1SXja9PKCvwQLjXDOZmu1suc1rZU4X7WacanXKr0WhSEo0phgORtDGNSEwRjhZmp9vhHIO5DruNEocNf1hbGha+YASR8a1lZjtaNDSaaWbYDBanc09B4Xa6jYtGDnfLnhJHvNuvxupw68jYHXg2okVDo5lmrOFD6QLhULjT++J++RyCuWUuezxjSGPMIbHmpxcSWjQ0mmlmcCS9pVFa8JZGGLtN4p8jEx6XtjQSOdHrZ1GtZ6ZPY8Jo0dBophlLNFLdVRa6aHgDubtYSrWlkcSJHh+L68tm+jQmjBYNjWaaGchgabjjqaiFKRq5zNKw8JTYC/ZzTjUD/hCDI2EW12lLQ6PRjCGTe8pKRS3UmMZwDs0KLcpcDi0aJsd7fABaNDQazXiGTNFImXLrKnz3VGWWwj4Lj8uetrjvVwc6ea2lZypPbVZzotcUDe2e0mg0Yxnwh3A7bfH02kQKPaYxHAzn3AajrMSRsrhvKBDmc4+/zT3PHprq08s7sZjindMDWbc70eNHBJpri1A0RORhEekSkX0Ja18RkTMi8o75+HDCa18UkRYROSwimxPWLxGRveZr95lzwjFnif/IXN8hIosT9tkqIkfNhzVDXKMpKIy+U6mn1cXrNArUbeOdQEyjzJna0nh85yl8oShHOr3ECnyG+LaDndz4nVd582R/xu1O9PqYX1VKiaOwCvsgN0vj+8D1KdbvVUqtMx+/BBCRlRjzvVeZ+9wvIta38gBwO7DCfFjHvA3oV0otB+4F7jGPVQvcBVwGbATuEpGaCX9CjWYaiMVUzhe4AX/qvlOQUKdRqJZGYAIxjRIjppH4vYWjMb7/6glcdmPs7ak+/3Sdal7Y02ZYGdlcbSd6fCypL7x4BuQgGkqpl4G+HI93A/C4UiqolDoOtAAbRWQeUKmU2q6UUsCjwI0J+zxiPn8SuNa0QjYD25RSfUqpfmAbqcVLo8k7H/vOK9zzXG7ulHTNCmHUPVWoAeLhYCRn95QnRfzmtWO9tA8G+MxVSwE49O7w1J9kHjnUYZz/68d7M253otfPorrCc03B2cU07hSRPab7yrIAFgCnE7ZpM9cWmM/Hrifto5SKAINAXYZjaTQzSiAcZX/7ED/ccYpgJPvFfnAkTFWayt9CjmkEI1FCkVjOgfCykvFzws/0jwDw8fVNiMDhQhcN8/zfPNmf9nej31e46bYwedF4AFgGrAM6gG+a66kqfFSG9cnuk4SI3C4iu0RkV3d3d6bz1mjOmrb+EZSCoUCEFw52Zd0+k6VhswklDltBisZEu7R6UrRH7x4OAtBUU8qi2jIOdw5N8Vnmj8GRMGcGRljXXE0gHGNP22DK7brMzzy3yp3P05syJiUaSqlOpVRUKRUDvosRcwDDGmhO2LQJaDfXm1KsJ+0jIg6gCsMdlu5Yqc7nQaXUBqXUhoaGhsl8JI0mZ071GemSdpvw4zfbsmydfgCTRanLXpB1GsMTFI0y1/hBTN3eADVlTpx2G+fPrSho95RlJW29YhEi8Pqx1C6qAX8IgJoUrfILgUmJhhmjsLgJsDKrngaNzYFmAAAgAElEQVS2mBlRSzAC3juVUh3AsIhsMuMVnwaeStjHyoy6GXjRjHs8B1wnIjWm++s6c02jmVFO9RrB2hvXLeDXR7rp8QbTbhuKxPCHomktDSjcka+ZihZTkWrka/dwkIaKEgDOn1vJiR5fwSYFHOwwrKTLl9Zz/pwK3kiTQTWQoa1MIZBLyu0Pge3A+SLSJiK3Af9ops/uAa4G/gpAKbUfeAI4ADwL3KGUsn4DPgt8DyM4fgx4xlx/CKgTkRbgr4EvmMfqA74GvGE+vmquaTQzysk+P2UuO3905WKiMcWvDnSm3TZ+Yc1wgTBEo/DmaeTy2RLxlJiDmBKsqh5vKC4aF8ytIKagpcs7xWeaHw69O0R1mZM5lSVcMLeCY2k+x6B/YmI728hqVyqlbk2x/FCG7e8G7k6xvgtYnWI9ANyS5lgPAw9nO0eNJh/8cOcpLl5Yzek+Pwtry1g1v5Lm2lKe3f8uWzYuTLlPLnfjhTrydeKWhhkIDyZbGusXVgNw3pxyAI52DbN6QdVUnmpeONgxzAVzKxARljWU89N32vGHIvHPbTEwYrinitbS0Gg0RqbQl36yl28+f4STvYZoiAjXr5rLay29DJmDlsZirWfKMCp12RkpwIl2ExUNjys5e0opleSeWljrwW4TjnX5puFsp5/2gZF4q/OlDYYAtnaP/ywDfqOdfKGNebXQoqHR5MDpPiNj6uUj3ZwyLQ2A61fPJRSN8dKh1FlUPvOu2pPhAlHmOkcsjZLkmIYvFGUkHKW+3BANl8PGoroyjnUXnnsqGlP0+kZdbcsaDfFI9VkGzMSIQpvYZ6FFQ6PJgZNmg7lgJEYwEosXZl3cXEN9uYvfHEmd6j0qGunbRbgLNKYxNBLG5UjdUysVlqVhxTSsdFvrQguwrKG8IGMa/f4Q0ZiKf5bFdR5EUlsag/70dTuFgBYNjSYHTpoZU1Yx3kKzMMtmE5pry+IXwLF4zfTSTK6IUqe9IDOGMtWfpMLttCEyGtOwss4SRWN5Yzknen1EooUlomMF0O2001yT2moaGAllTMGe7WjR0Ghy4GSvj4oSBx9aMxcg7p4CY/a3NQd8LLm4p0oLOBA+EdEQEcqc9qyWRjiq4j2ovvfbVv7ge69ztHOYUCRGeJaKSerP4uFYmphGdYHWaEAO2VMajcZIs11UX8Zt71mC02ZLFo0yFy1p/PDeYPYCOCMQXvyiAVDhdtJvFrfFL7TlyRdagGPdPpY2lPP8gU52Hu/j+n/5LTGlWN5QzvN/9b5ZFw+IW03lyQK4vbWXWExhs42e74A/zPlzKvJ+jlOFtjQ0mhw42etnUa2HVfOruOfmi7AnXASqslgadrNVSDoKOeV2oqKxYk55vHK6eziI3SZJldHLGo2sIyuucaZ/hKvOa+BP37uU61bO4WiXlyOdsy/mYQlgfaKl0VhOIByjfXAkadtMvcgKAS0aGk0WItEYbf3pu5LWlLkYDkRS+uF9wQgelz3jnXGp004oGis4P/5kRGPV/CqOmK6m7uEgdR5X0l14pdtJY0UJx7q9RKIx3h0KsGZBFV/40AV85WOrAHjpcPZ+X/mmezhIqdMe768FsHq+UWvynZeOYTS5MFrBe4ORtPNVCgEtGhpNFjoGA4SjKq1oWEVaVgpqIt5gNGs+vtVeIxCZfaLxz88f5h9+eTCloE1ONCoJRxVHOofp9gaTYgAWyxrKOdrlpWMwQDSmaKopBWBeVSkXzqvkxTTpzTOJ9VkSbw7WNFXxZ1ct44c7T/HQK8eB0d+RQi3sAy0aGk1WrMypRWlaWVsXgIEUouELRjIGwQHcrtk5vW9/+yD3vdjCgy+38qeP7krK8IrGFMOBSMq555lYNb8SgAPtQ0mFfYmcP7eCo53DnO43vvcFpmgAXH1+A2+e7E8p0DNJus/y+c3nc9mSWn6w4xRA3I2pRUOjKWJOmDUa6SwN6247VVzDF8ouGlYa72xLu/3m80eoKnXypQ9fwEuHu7n3V0firw0HJtc/aXGdB4/LzrP732V/+2BcRBI5f24F/lCUHa1Gq7mmmtHv/ZoLGonGFK8czTwZL9/0eINJQXALm03YuKSWk31+gpEog2YLkULtOwVaNDSarJzu8+Ny2JhTkXr+gRXItVpeJ+INZh+HOhsHMf3k7TZePNTFn121jNvft4wtlzbz3Zdb4+NMJ1oNbmGzSdzFZBPhU5sWj9vm/LlGZtELh4xGkPMS5k6sba7GbhMOvTu75m50Dwepr0gdp1jeWE40pjjR40+wNHRMQ6MpWtr6R2iqLk0K2CYSd0+lsjSCkYzV4AClLuPPcLa4px5+5Th/9aPdbFxSyx9esRiAL374QurLS/in5w4Do6JRmeOo10Qs6+J31s5POYjoPDMddd+ZIRorSpIqzp12G/Or3XGX4WwgFInR7w/TUJ76pmJ5QkZYXDS0paHRFC9t/f4kv/pYrEyY1DGNaPaYxiybE/7QK8fZuKSWx27bSKkZb6kqdXL5srr4xXqylgbAJYtrsQnc9p4lKV8vL3HQXGt836m+90W1Hk72zR7R6PWNL+xLZFlDOSJG914dCNdozgHa+keS/OpjqXA7sAkMTtI9ZbXOng0xDaUUvb4g65qrKXEkW0iNFSV0DQdQSk14lkYiH10zj5c/f3XG9ucXzDWskVTf+8K6Mk71zp5OuKmqwROxWooc7fIyMBJGxChyLFS0aGg0GfCHIvT6QvG0z1TYbEJVqZP+Me4ppVRO2VOzKabhC0UJhGPUecb73Bsr3ATCMYaDEYZGjEr3yVgaNptkFGEwBjIBLKge/70vriuj3x+eNRlUqXpojWVFYznHurwM+kNUup1JxaGFhhYNjSYDZ/qNat5MogFGYHOseyoYiRGJqdwD4bPAPdVrXgDrU2QCNVYaa11DwbNyT+WCFQxP9b0vNGdWnJolcY32gQAAcyrTi8byOeW0dvs40DFETQG7pkCLRkERicb4zkst/HxP+0yfyjlDW1w0Mt8ZG61Ekt1T8WaFrsyBcLcVCD8LSyMWU/zn6yfP2sXV4zU+Q135eEvDSintHjZEw2mXuOBNNZcurmVBdSmXLKoZ95qV+nyyb3a4qI51eylz2dNm1wEsbygnFI3xxol+tprJBYVKLjPCHxaRLhHZl7BWKyLbROSo+bMm4bUvikiLiBwWkc0J65eYc8VbROQ+MUsnRaRERH5kru8QkcUJ+2w13+OoiGydqg9diAwHwnzyoR3803OH+YaZwaKZftrMArPmLJZGTZlznLvEZ7ZFz0edxq6T/Xz5p/vOulq6JxdLYzgQrwafrsaBcyrdvPqFa7hw3vg6DqtZ5GzJoDKaK3rSZtcBrDQzxn7/soXxjLRCJRdL4/vA9WPWvgC8oJRaAbxg/hsRWQlsAVaZ+9wvItatyAPA7cAK82Ed8zagXym1HLgXuMc8Vi1wF3AZsBG4K1GczjUe3X6S11v7uOq8Bk70+jkzMJJ9J82EeOS1E/zZY28Si6n4Wlv/CC6HLeVFNJHqMle8e6uFL5S9wy0YoiECQ4HJj3xtNbvsppvrkSu9pqWR6vM2mHfS3cNB+nzBGStQ85Q4aKgoiQ/GmmmOdXlZZo53Tceq+VU8dceVfO2G1bOuQ+9EySoaSqmXgb4xyzcAj5jPHwFuTFh/XCkVVEodB1qAjSIyD6hUSm1XRueuR8fsYx3rSeBa0wrZDGxTSvUppfqBbYwXr3OCWEzxw52n2LS0li986AIAth/rneGzKi4C4Sj/8sJRnt3/Lk/tPhNfz1ajYZGq020uszQAHHYbdZ4SuocDkzx7OG5eQC1LYbJYMY3aFIHwSreDEoeNruEgLV3e+BzsmWBRbdmssDRGQlHODIxkFQ0YLUwsdCYb05ijlOoAMH82musLgNMJ27WZawvM52PXk/ZRSkWAQaAuw7HGISK3i8guEdnV3Z167GYh89uWHtr6R/j9yxZx/pwKaj0uXjs2u9ooFDq/2NNBny9EfXkJ//jsYf7z9ZM8tv0EJ3p9GWs0LKrLnOM63XpzFA0wgqidQ5O/4B/vtkRjfNrvROjxGhaEK0UrdxGhoaKEtn4/J3r9MzoTYmHd7BANazKfVcB3LjDVgfBUMqoyrE92n+RFpR5USm1QSm1oaGjI6UQLiR/uOEWtx8XmVXOw2YTLl9ax/VhvvN2y5uxQSvHI9hMsbyzn27deTMdggC//dB//56n97G8fyhoEh9FWIokuJl8Oo14t5lS66Rw6C0ujZ2osjR5fKGUQ3KKxooQdrX1EY4rz5s6caCxrKOfdocCMp91aopGLpVEsTFY0Ok2XE+ZPK/rWBjQnbNcEtJvrTSnWk/YREQdQheEOS3esc4pYTPFKSw/Xr54bL7a6fFkdHYMBTsyCO61i4GiXlz1tg3zysoVcvqyOJz5zOS/+zVV845a1uJ021jWnL0KzsCp8E+Mao+6p7BlGZ2NpRGMqXiHdOwXuqXpP+vhNY4WbXp/xGS+YQdGwWpEc7JjZHlTHun3YJH0zy2JksqLxNGBlM20FnkpY32JmRC3BCHjvNF1YwyKyyYxXfHrMPtaxbgZeNOMezwHXiUiNGQC/zlw7pzje68MbjLCuuTq+ZmWUnOiZHYHAQuc3hw2X5nWrjPnfG5fUsrShnJsvaWLvVzbzexuaM+0OjAaOuxIu/LmMerUwLsbBSc3Abh8YIRSJYZOpcE+F0jbeg9EMKqddWJymVXw+WGUOONrfPtOi4aW5tiypP1axk/W3WUR+CLwfqBeRNoyMpq8DT4jIbcAp4BYApdR+EXkCOABEgDuUUlYe4WcxMrFKgWfMB8BDwGMi0oJhYWwxj9UnIl8D3jC3+6pSamxAvujZ2zYIwEVNo3e7VrVun+/sLhAag5ePdrO8sZz5KaqPnfbc7qusyuX2hKy2XAPhYLinlDLcS/OqssdQErFat6+cXxmPbUyWXm+QuqV1aV9vNKuel9aXp4x75IuGihIaKkrY3z44Y+cAuWVOFRtZf5uVUremeenaNNvfDdydYn0XsDrFegBTdFK89jDwcLZzLBae3dfBqvlVNNeOmrp72gZxO20sT/jFrDFFY2yKp2biBMJRdhzv45OXLTqr41jdWhNFwxuK4HLYchIeq5q4c2jiomHFMzYsqmXfmSFGQtF4o8GJEIka3VozxTSsVhkzGc+wWDW/kgMzaGmEIjFau31cdV7xxVEzoSvCZwnRmOLOH7zNgy+3Jq3vPTPAqvlVOBIuPJVuBw6bxH3Lmsmz43gfoUiM955Xf1bHcTvt1JeXJNXP+HJoVmgxp9IQnXcHJx4Mb+324XHZWWm6LScbDLcs10w1KY1mrcb5c2b+7nrV/EqOdnlnrNHjsW4voWgsXrh3rqBFY5bQ7w8Rian4XSMYQrLvzBBrxnQDFRFqPC76tWjkzM/3tPNSimrp3x7pxmW3cdmS2rN+jwXV7jGiEc0pCA6jotE1iVqNE70+Ftd74rGIyYpGT7ywL72lsbTBg01gfYr2Hvlm1fwqojFj3vhMYFk5qaYPFjNaNGYJ1h+6VdlrPR8JR8eJBkBtmUvHNHIkGlN8+af7+NYLR8e9drhzmAvnVcTbk58NC2pKk91TwQieHI9b53Fht8mk0m6P9/hYUu+hzsx66p1kMNyaC1GXwdJYVOdh15c/yBXLzs4ymwqsi/VMBcP3tw/hdtpYUj/zVlc+0aIxS+gZNv7Q2wcD8W6ne1IEwS1qPVo0cuXtU/0M+MO0dnnH1bacGRjJqXgvF+ZXldI+EIi/x4A/lHOrDZtNaKyYeNptKBKjrX+EJfUe6s14w2QtDasFSbaWKamqxWeC5poyKkocMxYMP9AxyAVzK4uiynsiaNGYJXR7R+8wrWyYvWcGKXPZU7ZrqPW46NOB8Jx4wXRLDQcjdCdcUJVStA+MMH+Cged0zK8uZSQcjc/VONnrT0pqyEbjJAr8Tvf7icaUaWkYF/PJxrpO9PqxCcyvTt+tdTZhzRufiWC4UooD7UPnXDwDtGjMGixLA0azYfa0DbB6flXKO5kaj1PHNHLkxYNd8fbkx7pGY0b9/jCBcCxlqu1kmJ+QdjsSitI1HGTRBERjTkVJUp1HLlgptkvqPbiddipKHJNuWthq1hyMndg3m1k5v5KDHcNEY/ntjtDWP8JQIHLOxTNAi8asoccbxGGKw/EeH5FojP3tQ6xJ4ZoCqPWUMDASzvsfy4uHOvmvHSfz+p5nw8leH4c7h/nEpQuB0bYPMJoeO1WiYQ0MOjMwwimzQnvhBCqF51S66ZxgINyySpfUG4V29RUlk7Y0Wrt98eMUCqvmVzISjiYlkOSDA2Yl+soUrduLHS0as4Rub5DGihLmVrpp7fZxtMtLMBJLGc8AqC1zohTjBv9M+H2HgxOaGPfvv2nl739+cFbMs87G0c5hPvXQTlwOG394xWLKXPYk0bAynVKNFJ0Mlvic6R+Jt+1eNIGq6QU1pQz4wxP6P23t8VFT5qTa7H1V53HRMwlLI2Zm7i0tsKDuaGV4fuMae9oGsNskPsv8XEKLxizBaN9QwpJ6D8d7vPFK8FSZUzA1BX6xmOJ3vv0KX/vFgZz3OdbtYyQcZdeJ/km/bz5QSvEnj+7CH4ry+O2bWFhXxtIGD60JFdOjlsbU+PBrypy4nTbaEyyNibinrBuEt08P5LzPiZ5k66CxsoSOwYnPWukcDjASjrK0obAsjRVzynHZbXmPa7x1coCV8yonVURZ6GjRmCX0DAdpKC9hSYOH1h4fu9sGKC9xpO3vY6VX9vkm3+Xz4LtDvDsU4IWDnTl1zB30h+OZOb8+fHYT4qab3W2DnOz184UPXcD6hUZNwdL68nHuqRKHbcqygUSE+dWltPWPcLLXT4XbEW9kmAtrm6qxCbx9MndBPt5j1GhYXNRUzYle/4TjGpaYLi0w95TTbuO8ueV5TbuNRGPsbhtg/cLq7BsXIVo0Zgk93iD15SWsml/JgD/M42+cZvWCyrTDf2o8xsWozzf5rqavtRiDnDqHghzt8mbZGlq6jSKqUqed3xyZ3XNLfrGnHadd+ODKOfG1ZQ3lnDGD1ADtAwEWVJdO6SS1tU3VvH68l9YeL4vqyiZ0bE+JgwvmVvLWqdwsjZFQlI7BQNKFfpPZN+r11okN6bLqg2ZysNJkWTWvin3tgxNys54NhzuH8Yeis6LAcSbQojELiMUUvT6ju+gnNjTz9zeuZs2CKm5Yl3LmFDCaK382lsarx3ri1b8v5yACLaaw3LKhiaNd3lk7cjYWU/xiTwfvW9GQVCexrNGDUqPB8DMDI1MWBLf48Jp5DPjDbD/Wy6Laid+1r19UzTunB3JKcLCC4ImWxur5lZSXOCYsGse6fZS57PEeWIXEhy+ax9BImE8/vIOhwPTP13jLtAQtC/ZcQ4vGLKDfHyIaU9SXl+Cw2/jkpkX89I4ruXXjwrT7WEN/JhvTCEVi7Dzex4fXzGNZg4eXj2afBNjS5cXlsPH7lxnn9WoO+8wEb58eoH0wwEcumpe0frH5R25ZSe0DI1Nek/DeFfWUlziIqYllTlmsX1iDNxjhaFf21hj7zhhxr8QJeg67jUsX10xYNKyq8kKcX33VeQ3cd+vFvHVqgO+81DLt7/fWqQEaKkri2XLnGlo0ZgGjPX9yv8tzO+14XPZJt4zY3TaAPxTlimV1vHdFAztae3nijdMZ79RaurwsrfdwXmMFlW7HhAK2+WTXCaOD/vvPb0xaX1BdyiWLavjZ7naCEaOOYqotDbfTHneJTSQIbmHdvb51Mvt3++bJfqpKneNac1++rI5j3T66JlAo2NozszO/z5aPXjSfdc3VvJmHBI23TvWzfmF1QQrsVKBFYxZgBZcnIhpgZFBN1tJ4raUXEcMHvmVjMzVlLj7/4z184t9fT+sbbun2sryxHJtNWNtsuFFmI0c6vTRUlKQMcH9s7XwOvTvMc/s7gamr0Uh6j3Xzgcm1D19UV0ZVqZN9OaSQ7jrZzyWLasbFveJxjeO5jZ8JhKO09Y8UXBB8LGubqtnXPpg0p32qaR8wkhwuXXz2DS4LFS0aswBLNKxZBblSdxb9p1491sPq+VVUl7m4YG4l2794DQ/8wXoOvTvEl3+6b1w2lXVhWd5o3I2ua67mSOcw/lAk1eFnlKNdw5yXpnX3h9fMwybwucffxuOyT8sf/9XnN/Krv37fpHzeIsKyBk/WYUoD/hAtXV4uSRGMXTW/iooSB9uP5eaiOtnrRykKLt12LGubqwiEYxzpzJ7UMVlebTFcsu9ZMfMNG2cKLRqzACs9smGClsbcKjen+3KfE941HGDbgU78oQhvn+rniuWjE9pEhA+tmcefX7OCH7/Vxq/HBMb3nRlEKZJEw2rdPpuIxRRHO72saEx9l99QUcIHV85hflUpT372immrgF6e5v1zYUl9Oa09mS98b50y3DCpRMNuEzYuqWVHjnGN4+Z7FVph31jWNhkpsHvaps8CfrXFSB5JjCOda5yVaIjICRHZKyLviMguc61WRLaJyFHzZ03C9l8UkRYROSwimxPWLzGP0yIi95lzxDFnjf/IXN8hIovP5nxnKz3eEC67jcrSibXnXrOgitYeX84ZIw/+ppU/fXQX3335OOGoStne+s6rl7OgupRvbTuSZG38x2snqHA74lPK1pozy985PbuK/M4MjDASjnJehj/qb9+6npc/f3V81vpsY2mDh86hYHzGeCrePNmPwybxC+VYNi2to7XHl1MDxGNW/6oCtzQs197uaRINpRSvtPRyxbL6czaeAVNjaVytlFqnlNpg/vsLwAtKqRXAC+a/EZGVGPO/VwHXA/eLiFVO+QBwO7DCfFxvrt8G9CullgP3AvdMwfnOOrqHg9SVuyb8i7jGvGBYWTTZsGIQ33rhCE67cOni8XepLoeNv7h2ObvbBnnJLOA72evjmb0dfHLTIircRgprfbmRPbL79MzOaB6LNZAnnXsKjM84m9tZLzMv3ulcVNGY4sVD3ayan74i+fJluddrtHb7mFNZkvOUwdmKiHBRU9W0/U4e6fTS4w3ynuXnrmsKpsc9dQPwiPn8EeDGhPXHlVJBpdRxoAXYKCLzgEql1HZl3No+OmYf61hPAtdKEUq8Vdg3UawWI1bLkUxEojH2tQ9S53GhlJF+mm7w0MfXN9FcW8r3fnscgIdeOY7DZuOPrlictN3FC43UTl+GO+J8Y/mzVxSw+8DKYkrnovrub1s52DHEH79nSdpjXDivkkp3bnGN1h5vwTUqTMfapmoOdw6Pu5E63uPjuy+3EopMPkj+myPGTVSiW/dc5GxFQwHPi8ibInK7uTZHKdUBYP608h4XAKcT9m0z1xaYz8euJ+2jlIoAg8C4/zERuV1EdonIru7u2V2pnApDNCbeyqLW46KppjQ+rCkTRzq9BMIxPn/9+ayaX8kNZoZPKpx2Gx+9aD47j/fR7wvx9O52PrRmLo2VyTUNf3TlYnp9Ie5LMRFvpjjaOcycypKchx/NRhbWliEy6jZK5NC7Q/zz80f40Oq5fGxt+v9DI65Rx2+P9hDLUih4vMdX0Om2iXzi0mbmVrq55d+2x+tx/uPV42z+1svc/cuD/GJv+6SOG4spHt95mosXVtNUM/FU6mLibEXjSqXUeuBDwB0i8r4M26ayEFSG9Uz7JC8o9aBSaoNSakNDQ0O2c07LmYGRs+4aOxl6vMEJZ05ZrG2qZs+Z7D5cKzi4cUkdv/iL9/IHly3KuP01FzQSiSm+8fxhBvxhPrR63rht1i+s4RMbmnnoleO05FCMlg+OdA1njGcUAm6nnaaaUlq7vTz0ynF2mqmzoUiMv3liN5WlDv7+xtVZ3ZkfWzefMwMjcTdjKvp8IQb84YJPt7Vori3jJ3dcweJ6D3f+4C3+49Xj/N3PDvDe5fU01ZTy5Jtt2Q+Sgt+29NDa4+MPx1jb5yJnJRpKqXbzZxfwE2Aj0Gm6nDB/Wr+xbUBzwu5NQLu53pRiPWkfEXEAVUBuyecT5HSfnyu//iI/29MxHYdPSyym6PWGJuWeAljTVMXpvhHePtWfMf12d9sglW4Hi3OsUr64uZqqUic/2HmKUqc9HgAfy+evPx+7TXhs+8zP2BjwhzjUMczqNJ2BC4ml9eW8cLCLr/38AN9+0bDk/vWlFva3D3H3TWsyzvG2+NDqucyrcvPQK8fTbjPac6o4RAOgscLNg5+6BAH+7mcHWL2gkvs/uZ6bL2nitWO9Obe/GQlF+f6rx/lf/72bbzx3mPrykpQ3T+cakxYNEfGISIX1HLgO2Ac8DWw1N9sKPGU+fxrYYmZELcEIeO80XVjDIrLJjFd8esw+1rFuBl5UubRjnQRNNaUsqC5l+7H8tsYYHAkTMVuITAarnfZN97/GzQ+8Riym+M5LLfz+d19PckvsPj3ARU25V7E67DauOq8BpeD95zekDbjWlZdw7YWN/GLvu3kfCDWWZ/e9SySm+HAR/GEvbfAwYs4seeNEH8OBMA+/cpyPrJnH5lVzczqG027j05cv5rVjvfEU3bFYfbgKPd12LM21ZXxryzrWNlXxnd9fT4nDzu+ub0Ip+J8crI3hQJgP/PNv+MrPDvD8gU72nhlk6+WLcDl0lcLZfANzgFdEZDewE/iFUupZ4OvAB0XkKPBB898opfYDTwAHgGeBO5RSVunxZ4HvYQTHjwHPmOsPAXUi0gL8NWYm1nQgIly+rI7tx3qz+oCnEmtmdf0k3VObltTxj797EX985RJae3y8eqyH7/62ldeO9fL8AaPquccb5HDnMGubJ3YHfu2FRjjq+tWZL1IfvWg+Pd5gznUB08XP9rSzuK6M1QtmZyrtRLh0cS21Hhf/+8MXEgjH+NcXW/AGI9y8oSn7zgncurGZ+vISbn3wdZ544/S413e09lFT5pzQLPNC4ZoL5vDUne+JD8Jqri3jimV1/HDnKcJZqsZ/truDMwMj/NsnL+Gd//tBdqIt9mYAAA+WSURBVH35A9xx9fJ8nPasZ9KioZRqVUqtNR+rlFJ3m+u9SqlrlVIrzJ99CfvcrZRappQ6Xyn1TML6LqXUavO1Oy1rQikVUErdopRarpTaqJRqPZsPm40rltXR7w9z8N38FaxZU9YmEwgHsNmE37u0mb/dfB4el53PP7mHAX8Yj8vOd15qQSnFo6+dIBpT3HTxxC44H1kzj3/Zso6PrMl85371+Y14XHZ+tmdyQcZs3P/rFu78wVsZt+keDrL9WC8fvWh+UeTQf3jNPHb97w/wiY3N2AQefvU4FSUOrlg2scyd6jIXv/yL97CuuZov/WRvUqZbLKb4zZFurjqvYVanIE8lf/LeJbQPBvh5lt/VH+06zflzKti8ag4iQn15SdoxBeca2tZKwMptz7X9wlRgWRoTrQYfS5nLwUcumkfHYICFtWV8+aMr2XtmkH9/uZVHXz/JB1fOiVdz54rDbuOGdQtw2DP/mpS67Hxg5Rye25/bMKeJ8ObJfr7x3GF+vqeDtv701e/PH3iXmIKPri1815SFzSZUup2saaomHFVce2EjJY6JT4prrHTz59esIBJTvHFiNCS498wgvb7QuMaOxcz7z2tkRWM5//6b1rS/q4ffHWb36QFu2dBUFDcgU40WjQTmVZWytN7Da3kUjcl0uE3HzZcYeQZbNjbzu+ubeM/yer7+zCEG/GH+7KqlZ338TFy+tI4+X4iTvbm3NcnGmYER/va/d8fbwL9wMH0W0CtHe1hQXVqU7R2uNG9msrkJM3HJohqcduH11lHReOlwFyLwvjRJDsWIzSbc/r6lHHp3mH/7zXjHhVKKf//NMZx24ePrJ2aZnysUdgnoNHDl8np+/FYbvmAETx4qZHu8QZx2mZK6go1LavnP2y7j0iU1uBw2HrttI0++2Ub7QIBLFk1vV86LzOr03W0DSUOBJsu2A5385eNvo4CH//BSvvQ/e3nhUBdbU6Q8xmKK7a29fODCOUV5Z/iJS5vp95+dRVDqsrOuuZrtrda0xgDP7nuXdc3VUzbutlC46eIFvHy0h3uePYQI/NlVywBDMB57/ST/8/YZ7rx6+Tn3veSKFo0x3HjxfB57/SRP727POARpqugZDlLnmTp/aWL3TRHhlg3NGbaeOs6bU06Jw8aetsGMEwdz5RvPHWZ+dSkP/+GlNNeWce2FjTzy2km8wci4dhcHOoYY8Ie5skgrdRfVefh/H7/orI+zaWkd9//6GN98/jD3//oY0Zji6x9fMwVnWFg47Dbu/b21AHz9mUPUelxsP9bLM/s6CIRjXHNBI3/1wfNm+CxnL9o9NYb1C2s4f04FP9x5Ki/v1+MNUl9R+Hc0DruNVfMrU3YYnWgq7sleH4c7h9mycWE8q+faC+cQisZ44aCREdbW74/PTbDaVadqwKgZ5fKldURjim+/2ML1q+by0t++ny15uDGajTjsNv7p5ou4eGE1n39yD0/vbufj65v42g2r+PatF58ziQGTQYvGGESEWzc2s6dtkI/f/yof+9dXpnWoS/ck+07NRi5qqmbfmaGk7+uJXae5+KvPx6uac2GbmSp8nTkBD2DDIkPM//4XB/nBjlO87x9f4ks/2QvAq8d6Wd5YzpzKqR3dWmysX1RDY0UJH1+/gPtuvbho+k1NFrfTzr9/6hJ+b0MTT3xmE/9w0xo+dfnivLilCxktGim4aX0TNWVOWrq87GkbpKV7+oa69AxPvhp8trG2uYqRcDT+fRl3tUcZCkT44++/kbWxYsfgCEc6h3n+QCcXzK1Iqh1w2G18a8s6Bv1hvvSTvXhcDp7Y1ca3fnWE7cd6zvnOo7ngdtp59QvX8M+/t07fSZs0Vrj5x5vXTnvMr5jQopGCqlInO770AX5yx5WAUU09HYQiMXp9xWVpALx9yvi+th14l9N9I9z1OyupKnXy2f96k+E0sz+CkSi3Pvg61937MjuP93FdiqrnC+dVcvdNq/nAhXP41d9cZcz9+NVRLpxXyeeuXTF9H6yIcGZJn9ZosqF/g9LgcthYUueh0u3gnQn253/s9ZP87X/v5hd7OjLWLfzrSy2EoypeH1LoLKnzsLTBw/2/bmFwJMwDv2mlubaUT1++mPtuXUf7wAhfefpAyn3/49UTnOj180dXLubq8xu45ZLU6Y63bGjme1s3MKfSzbe2rOMPLlvIf/3JZdToTBeNJi9o510GbDZhbXP1hCyNA+1DfOXp/Qjw5JttfOsT67jx4vHZRPvODPKdl1r4+MUL0jYDLDRsNuEfblrDlgdf55pv/JpeX4hv3rIWu024ZFEtd169nPtebOGaCxr5yEWjRXgdgyN8+4WjfODCRu76nVU5v9+li2unZca3RqNJj7Y0srCu2RjqMhKKZt02GlN88Sd7qS51suNL19Jcm74V87dfPEp1qXNCF8lCYNPSOm7d2MzgSJhv3rKW302wGP782hWsNdtZdAwanUZDkRj/33+9hQK+/JGVM3TWGo0mV7RoZGFtUzXRmGJfe3YX1S/3drD79ABf/uiF1JWXcNO6Bbx6rId3B5PnNA/6w7x0qJsb1i2gqqxwhwWl4+9vXMNrX7gmSTDA8Kd/6xPrCEVibL73Zf7y8be59buv8/apAf7p5rVTUhSo0WimFy0aWbjI7Az71snUraUT+Y9Xj7O4rowb1hruqJvMVsxP7z6TtN0v93UQisa4KYXbqhiw22TclD+LJfUefvSZTVx74RxePdaLNxDhyx+5MMldpdFoZi86ppGFxgo3axZU8YOdp7jtPUvSNu/bfXqAt04NcNfvrIxXdy+p97CuuZoHX25lxZwKrj6/EaUUP3nrDMsaPEXRwnsyXNRUzb2fWDfTp6HRaCaBtjRy4M5rlnOy18/Tu9O3U37w5VbKSxzcPMYl8/XfXUNNmYs/+o832Hj3r9j0/15g54k+Pr5ed9DUaDT/f3t3HyNXVcZx/Puz20JKW7BuWxZR24SqBWJENhV0fY9omxgSNRGjtoLv8QX+MQIx0URJhAhCibFutKS+ExDiYglNQ5SARu2i2FKXdkENrTa0KNAWognh8Y97VqfrttyZvXfuvTO/T3Izs2duzz7n6WSfuWdmzmkeX2nkcMGZy1g1tIgNd08ysnKQpQuPnnq5efujbNm5n0vftpKFJx79HsUrT13EHZ8d4Zbxvfz+0Sd59rngjSsHe3Zqysx6m0raPbUyw8PDMT4+Xni/904e5CObxzlp3hyuWLOKkZWDfGPbHvYcOMLE3w+xesViNl+y2t+0NbNGknR/RAw/73lNKBqS3gncAMwBvhMRXzvWuWUVDYCHDxzm87fu+O83nucNvIDXrljMskUncuXaVV5K2cwaK2/RqP30lKQ5wDfJ9hvfB2yXNBYRM3+1uERnLF3IbZ96Hdv+9Bi/+8s/+eB5L/PHRM2sr9S+aACrgYen9geX9BPgQqDrRSP9fi4469QZ10YyM+t1Tfj01IuBvS0/70ttZmbWZU0oGjO9s3zUGzGSPi5pXNL4wYMHuxSWmVn/aULR2Ae07ll6OnDUFyYiYjQihiNieMmS3lj8z8ysjppQNLYDKyWtkDQPuAgYqzgmM7O+VPs3wiPiWUmfAbaSfeR2U0TsqjgsM7O+VPuiARARdwJ3Vh2HmVm/a8L0lJmZ1YSLhpmZ5daIZUTaIekwsDvn6ScD7W0A3uz+BoHHC+yvyPicu97ur5/yV3RsU8rM4SBwUkQ8/8dPI6KnDmC8jXNHC/7dde8vd266HZ9z1/P99U3+io6tGzlsp+9+n566o8/6K1qR8Tl3vd1f0eo83rrnbkpHcfbi9NR45FipsR85N51z7mbH+Zu9MnPYTt+9eKUxWnUANebcdM65mx3nb/bKzGHuvnvuSsPMzMrTi1caZmZWEheNBpP0Ekm/kDQhaZekS1P7YknbJE2m2xem9rdLul/SznT71pa+rpK0V9KRqsbTTUXlTtJ8SVskPZT6Oeaukr2k4OfeXZL+mPrZmDZe63lF5rClzzFJD5YaeBkfDfPRnQMYAl6T7i8E9gBnAtcAl6f2y4Gr0/1zgNPS/bOBv7X0dV7q70jV42pS7oD5wFvS/XnAvcCaqsfXlPylnxelWwE/BS6qenxNy2FqezfwI+DBUuOuOnE+CvzPhJ+RbYu7GxhKbUPA7hnOFfAP4IRp7X1RNMrIXXrsBuBjVY+nifkD5pJ9DPR9VY+naTkEFgD3paJTatHw9FSPkLSc7JXIb4FlEbEfIN0uneGfvAf4Q0T8u1sx1lVRuZN0CvAu4O4y462bIvInaStwADgM3FpyyLVTQA6/AlwLPFN2rC4aPUDSArLL+ssi4lCO888CrgY+UXZsdVdU7iQNAD8GNkTaz74fFJW/iHgH2avqE4D/m6vvZbPNoaRXA2dExO2lBpq4aDScpLlkT7gfRsRtqfkxSUPp8SGyV3BT558O3A6si4hHuh1vnRScu1FgMiKuLz/yeij6uRcR/yLbYO3CsmOvi4JyeD5wrqS/kk1RvVzSL8uK2UWjwSQJ+C4wERHXtTw0BqxP99eTzZVOTZ9sAa6IiF91M9a6KTJ3kr5KtvjbZWXHXRdF5U/SgpY/kAPAWuCh8kdQvaJyGBHfiojTImI5MALsiYg3lxZ41W/++Oj8SE+QAHYAD6RjLfAisnn1yXS7OJ3/ReDplnMfAJamx64h24/9uXT75arH14Tcke1ZH8BES/tHqx5fg/K3jGxL5x3ALuBGYKDq8TUph9P6XE7Jb4T7G+FmZpabp6fMzCw3Fw0zM8vNRcPMzHJz0TAzs9xcNMzMLDcXDbMuk/RJSevaOH956SuXmuU0UHUAZv1E0kBEbKw6DrNOuWiYtSktLncX2eJy55Atab0OWAVcR7bi6OPAhyNif1rS4dfA64ExSQvJVhP+elo3aCPZEuuPAJdExBOSzgU2kS1Ad1/3Rmd2fJ6eMuvMK4DRiHgVcAj4NNm3md8bEVN/8K9qOf+UiHhTRFw7rZ/vAV9I/ewEvpTabwI+FxHnlzkIs3b5SsOsM3vjf+v//AC4kmxjnG3ZkkLMAfa3nH/z9A4knUxWTO5JTZuBW2Zo/z6wpvghmLXPRcOsM9PX3zkM7DrOlcHTbfStGfo3qwVPT5l15qWSpgrE+4HfAEum2iTNTfseHFNEPAU8IekNqelDwD0R8STwlKSR1P6B4sM364yvNMw6MwGsl/RtstVIbwS2AhvS9NIAcD3Zyq3Hsx7YKGk+8Gfg4tR+MbBJ0jOpX7Na8Cq3Zm1Kn576eUScXXEoZl3n6SkzM8vNVxpmZpabrzTMzCw3Fw0zM8vNRcPMzHJz0TAzs9xcNMzMLDcXDTMzy+0/YWjA7fnUF+kAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
"source": [
"sorted_data['inc'][-200:].plot()"
]
@@ -252,14 +2277,12 @@
},
{
"cell_type": "code",
- "execution_count": null,
- "metadata": {
- "collapsed": true
- },
+ "execution_count": 15,
+ "metadata": {},
"outputs": [],
"source": [
"first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n",
- " for y in range(1985,\n",
+ " for y in range(2020,\n",
" sorted_data.index[-1].year)]"
]
},
@@ -274,7 +2297,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
@@ -298,9 +2321,32 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 17,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAD8CAYAAABU4IIeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGxpJREFUeJzt3X+MXfWZ3/H3xx4zpomNf2SMjAdib3CjQlY7u4xsV2mrxWztgd3FoJDsNOziP2gdISJlu5UCVlOZBW+1TpU69VawIYFiINS4JBQ3jeP1Aqmo5LU9XhzAEHcmgTXGLh5nBjBtGWnsp3/cZ5I7V8OdO/bXc439eUlH99znfJ/v+c6Z43nmnO+5Y0UEZmZmpUxp9gDMzOz84sJiZmZFubCYmVlRLixmZlaUC4uZmRXlwmJmZkW5sJiZWVEuLGZmVpQLi5mZFdXS7AFMpk984hOxcOHCZg/DzOwjZd++fccjoq3R9hdUYVm4cCE9PT3NHoaZ2UeKpL+bSHvfCjMzs6JcWMzMrCgXFjMzK8qFxczMinJhMTOzolxYzMzOY8fe+4AvfGsXx058MGn7dGExMzuPbXq2l71vDLDpr3snbZ8X1OdYzMwuFJ/+2naGhk/98v3juw/x+O5DtLZM4eD668/qvn3FYmZ2Hnrhq9dyY8dlTJ9W+TE/fdoUVnVcxgt3XXvW9+3CYmZ2Hpo3czozWlsYGj5Fa8sUhoZPMaO1hXkzpp/1fftWmJnZeer4+0PcuvSTfHHJFTyx5xD9kzSBr4iYlB2dCzo7O8N/K8zMbGIk7YuIzkbbN3QrTNIbkl6WtF9ST8bukfRWxvZLuqGq/VpJfZIOSlpZFb8m++mTtEmSMt4q6cmM75a0sCpntaTeXFZXxRdl297MvajRL9rMzM6eicyxXBsRHTVVa2PGOiLihwCSrgK6gauBLuB+SVOz/QPAGmBxLl0Zvx0YjIgrgY3AhuxrDrAOWAosAdZJmp05G3L/i4HB7MPMzJrsbEzerwK2RMRQRLwO9AFLJM0HZkbErqjcf3sUuKkqZ3OuPwVcl1czK4GdETEQEYPATqArty3PtmTuSF9mZtZEjRaWAP5K0j5Ja6riX5b0kqSHq64kFgBvVrU5nLEFuV4bH5UTEcPAu8DcOn3NBd7JtrV9jSJpjaQeST39/f0NfrlmZna6Gi0sn42I3wKuB+6U9E+o3Nb6FNABHAW+kW01Rn7UiZ9OTr2+RgcjHoyIzojobGtr+D9AMzOz09RQYYmII/l6DHgaWBIRb0fEyYg4BXybyhwIVK4eLq9KbweOZLx9jPioHEktwCXAQJ2+jgOzsm1tX2Zm1kTjFhZJH5M0Y2QdWAG8knMmI24GXsn1bUB3Pum1iMok/Z6IOAqckLQs50huA56pyhl54usW4Lmch9kBrJA0O2+1rQB25Lbnsy2ZO9KXmZk1USMfkLwUeDqfDG4BnoiIH0l6TFIHlVtQbwBfAoiIA5K2Aq8Cw8CdEXEy+7oDeAS4GNieC8BDwGOS+qhcqXRnXwOS7gP2Zrt7I2Ig1+8CtkhaD7yYfZiZWZP5A5JmZlbXWfmApJmZWaNcWMzMrCgXFjMzK8qFxczMinJhMTOzolxYzMysKBcWMzMryoXFzMyKcmExM7OiXFjMzKwoFxYzMyvKhcXMzIpyYTEzs6JcWMzMrCgXFjMzK8qFxczMinJhMTOzolxYzMysKBcWMzMryoXFzMyKcmExM7OiGioskt6Q9LKk/ZJ6MjZH0k5Jvfk6u6r9Wkl9kg5KWlkVvyb76ZO0SZIy3irpyYzvlrSwKmd17qNX0uqq+KJs25u5F5354TAzszM1kSuWayOiIyI68/3dwLMRsRh4Nt8j6SqgG7ga6ALulzQ1cx4A1gCLc+nK+O3AYERcCWwENmRfc4B1wFJgCbCuqoBtADbm/gezDzMza7IzuRW2Ctic65uBm6riWyJiKCJeB/qAJZLmAzMjYldEBPBoTc5IX08B1+XVzEpgZ0QMRMQgsBPoym3Ls23t/s3MrIkaLSwB/JWkfZLWZOzSiDgKkK/zMr4AeLMq93DGFuR6bXxUTkQMA+8Cc+v0NRd4J9vW9mVmZk3U0mC7z0bEEUnzgJ2SflqnrcaIRZ346eTU62v0YCqFcA3AFVdcMVYTMzMrqKErlog4kq/HgKepzHe8nbe3yNdj2fwwcHlVejtwJOPtY8RH5UhqAS4BBur0dRyYlW1r+6od+4MR0RkRnW1tbY18uWZmdgbGLSySPiZpxsg6sAJ4BdgGjDyltRp4Jte3Ad35pNciKpP0e/J22QlJy3KO5LaanJG+bgGey3mYHcAKSbNz0n4FsCO3PZ9ta/dvZmZN1MitsEuBp/PJ4BbgiYj4kaS9wFZJtwOHgM8DRMQBSVuBV4Fh4M6IOJl93QE8AlwMbM8F4CHgMUl9VK5UurOvAUn3AXuz3b0RMZDrdwFbJK0HXsw+zMysyVT55f/C0NnZGT09Pc0ehpnZR4qkfVUfNRmXP3lvZmZFubCYmVlRLixmZlaUC4uZmRXlwmJmZkW5sJiZWVEuLGZmVpQLi5mZFeXCYmZmRbmwmDXZsfc+4Avf2sWxEx80eyhmRbiwmDXZpmd72fvGAJv+urfZQzErotH/j8XMCvv017YzNHzql+8f332Ix3cforVlCgfXX9/EkZmdGV+xmDXJC1+9lhs7LmP6tMo/w+nTprCq4zJeuOvaJo/M7My4sJg1ybyZ05nR2sLQ8ClaW6YwNHyKGa0tzJsxvdlDMzsjvhVm1kTH3x/i1qWf5ItLruCJPYfo9wS+nQf8/7GYmVld/v9YzMysqVxYzMysKBcWMzMryoXFzMyKcmExM7OiXFjMzKyohguLpKmSXpT0g3x/j6S3JO3P5Yaqtmsl9Uk6KGllVfwaSS/ntk2SlPFWSU9mfLekhVU5qyX15rK6Kr4o2/Zm7kVndijMzKyEiVyxfAV4rSa2MSI6cvkhgKSrgG7gaqALuF/S1Gz/ALAGWJxLV8ZvBwYj4kpgI7Ah+5oDrAOWAkuAdZJmZ86G3P9iYDD7MDOzJmuosEhqB34X+E4DzVcBWyJiKCJeB/qAJZLmAzMjYldUPpX5KHBTVc7mXH8KuC6vZlYCOyNiICIGgZ1AV25bnm3J3JG+zMysiRq9Yvkm8FXgVE38y5JekvRw1ZXEAuDNqjaHM7Yg12vjo3IiYhh4F5hbp6+5wDvZtrYvMzNronELi6TfA45FxL6aTQ8AnwI6gKPAN0ZSxugm6sRPJ6deX6NIWiOpR1JPf3//WE3MzKygRq5YPgvcKOkNYAuwXNLjEfF2RJyMiFPAt6nMgUDl6uHyqvx24EjG28eIj8qR1AJcAgzU6es4MCvb1vY1SkQ8GBGdEdHZ1tbWwJdrZmZnYtzCEhFrI6I9IhZSmZR/LiL+MOdMRtwMvJLr24DufNJrEZVJ+j0RcRQ4IWlZzpHcBjxTlTPyxNctuY8AdgArJM3OW20rgB257flsS+aO9GVmZk10Jn82/+uSOqjcgnoD+BJARByQtBV4FRgG7oyIk5lzB/AIcDGwPReAh4DHJPVRuVLpzr4GJN0H7M1290bEQK7fBWyRtB54MfswM7Mm85/NNzOzuvxn883MrKlcWMzMrCgXFjMzK8qFxczMinJhMTOzolxYzMysKBcWMzMryoXFzMyKcmExM7OiXFjMzKwoFxYzMyvKhcXMzIpyYTEzs6JcWMzMrCgXFjMzK8qFxczMinJhMTOzolxYzMysKBcWMzMryoXFzMyKcmExM7OiXFjMzKyohguLpKmSXpT0g3w/R9JOSb35Oruq7VpJfZIOSlpZFb9G0su5bZMkZbxV0pMZ3y1pYVXO6txHr6TVVfFF2bY3cy86s0NhZmYlTOSK5SvAa1Xv7waejYjFwLP5HklXAd3A1UAXcL+kqZnzALAGWJxLV8ZvBwYj4kpgI7Ah+5oDrAOWAkuAdVUFbAOwMfc/mH2YmVmTNVRYJLUDvwt8pyq8Ctic65uBm6riWyJiKCJeB/qAJZLmAzMjYldEBPBoTc5IX08B1+XVzEpgZ0QMRMQgsBPoym3Ls23t/s3MrIkavWL5JvBV4FRV7NKIOAqQr/MyvgB4s6rd4YwtyPXa+KiciBgG3gXm1ulrLvBOtq3taxRJayT1SOrp7+9v8Ms1M7PTNW5hkfR7wLGI2NdgnxojFnXip5NTr6/RwYgHI6IzIjrb2trGamJmZgU1csXyWeBGSW8AW4Dlkh4H3s7bW+TrsWx/GLi8Kr8dOJLx9jHio3IktQCXAAN1+joOzMq2tX2ZmVkTjVtYImJtRLRHxEIqk/LPRcQfAtuAkae0VgPP5Po2oDuf9FpEZZJ+T94uOyFpWc6R3FaTM9LXLbmPAHYAKyTNzkn7FcCO3PZ8tq3dv5mZNVHL+E0+1J8DWyXdDhwCPg8QEQckbQVeBYaBOyPiZObcATwCXAxszwXgIeAxSX1UrlS6s68BSfcBe7PdvRExkOt3AVskrQdezD7MzKzJVPnl/8LQ2dkZPT09zR6GmdlHiqR9EdHZaHt/8t7MzIpyYTEzs6JcWMzMrCgXFjMzK8qFxczMinJhMTOzolxYzMysKBcWMzMryoXFzMyKcmExM7OiXFjMzKwoFxYzMyvKhcXMzIpyYTEzs6JcWMzMrCgXFjMzK8qFxczMinJhMTOzolxYzMysKBcWMzMryoXFzMyKGrewSJouaY+kn0g6IOlPM36PpLck7c/lhqqctZL6JB2UtLIqfo2kl3PbJknKeKukJzO+W9LCqpzVknpzWV0VX5RtezP3ojKHxMzMzkQjVyxDwPKI+A2gA+iStCy3bYyIjlx+CCDpKqAbuBroAu6XNDXbPwCsARbn0pXx24HBiLgS2AhsyL7mAOuApcASYJ2k2ZmzIfe/GBjMPszMrMnGLSxR8X6+nZZL1ElZBWyJiKGIeB3oA5ZImg/MjIhdERHAo8BNVTmbc/0p4Lq8mlkJ7IyIgYgYBHZSKWwClmdbMnekLzMza6KG5lgkTZW0HzhG5Qf97tz0ZUkvSXq46kpiAfBmVfrhjC3I9dr4qJyIGAbeBebW6Wsu8E62re3LzMyaqKHCEhEnI6IDaKdy9fEZKre1PkXl9thR4BvZXGN1USd+Ojn1+hpF0hpJPZJ6+vv7x2piZmYFTeipsIh4B/gx0BURb2fBOQV8m8ocCFSuHi6vSmsHjmS8fYz4qBxJLcAlwECdvo4Ds7JtbV+1Y34wIjojorOtrW0iX66ZmZ2GRp4Ka5M0K9cvBn4H+GnOmYy4GXgl17cB3fmk1yIqk/R7IuIocELSspwjuQ14pipn5ImvW4Dnch5mB7BC0uy81bYC2JHbns+2ZO5IX2Zm1kQt4zdhPrA5n+yaAmyNiB9IekxSB5VbUG8AXwKIiAOStgKvAsPAnRFxMvu6A3gEuBjYngvAQ8BjkvqoXKl0Z18Dku4D9ma7eyNiINfvArZIWg+8mH2YmVmTqfLL/4Whs7Mzenp6mj0MM7OPFEn7IqKz0fb+5L2ZmRXlwmJmZkW5sJiZWVEuLGZmVpQLi5mZFeXCYmZmRbmwmJlZUS4sZmZWlAuLmZkV5cJiZmZFubCYmVlRLixmZlaUC4uZmRXlwmJmZkW5sJiZWVEuLGZmVpQLi5mZFeXCYmZmRbmwmJlZUS4sZmZWlAuLmZkV5cJiZmZFjVtYJE2XtEfSTyQdkPSnGZ8jaaek3nydXZWzVlKfpIOSVlbFr5H0cm7bJEkZb5X0ZMZ3S1pYlbM699EraXVVfFG27c3ci8ocEjMzOxONXLEMAcsj4jeADqBL0jLgbuDZiFgMPJvvkXQV0A1cDXQB90uamn09AKwBFufSlfHbgcGIuBLYCGzIvuYA64ClwBJgXVUB2wBszP0PZh9mZtZk4xaWqHg/307LJYBVwOaMbwZuyvVVwJaIGIqI14E+YImk+cDMiNgVEQE8WpMz0tdTwHV5NbMS2BkRAxExCOykUtgELM+2tfs3M7MmamiORdJUSfuBY1R+0O8GLo2IowD5Oi+bLwDerEo/nLEFuV4bH5UTEcPAu8DcOn3NBd7JtrV9mZlZEzVUWCLiZER0AO1Urj4+U6e5xuqiTvx0cur1NXow0hpJPZJ6+vv7x2piZmYFTeipsIh4B/gxlbmRt/P2Fvl6LJsdBi6vSmsHjmS8fYz4qBxJLcAlwECdvo4Ds7JtbV+1Y34wIjojorOtrW0iX66ZmZ2GRp4Ka5M0K9cvBn4H+CmwDRh5Sms18EyubwO680mvRVQm6ffk7bITkpblHMltNTkjfd0CPJfzMDuAFZJm56T9CmBHbns+29bu38zMmqhl/CbMBzbnk11TgK0R8QNJu4Ctkm4HDgGfB4iIA5K2Aq8Cw8CdEXEy+7oDeAS4GNieC8BDwGOS+qhcqXRnXwOS7gP2Zrt7I2Ig1+8CtkhaD7yYfZiZWZOp8sv/haGzszN6enqaPQwzs48USfsiorPR9v7kvZmZFeXCYmZmRbmwmJlZUS4sZmZWlAuLmZkV5cJiZmZFubCYmVlRLixmZlaUC4uZmRXlwmJmZkW5sJiZWVEuLGZmVpQLi5mZFeXCYmZmRbmwmJlZUS4sZmZWlAuLmZkV5cJiZmZFubCYmVlRLixmZlaUC4uZmRXlwmJmZkWNW1gkXS7peUmvSTog6SsZv0fSW5L253JDVc5aSX2SDkpaWRW/RtLLuW2TJGW8VdKTGd8taWFVzmpJvbmsroovyra9mXtRmUNiZmZnopErlmHgX0XEPwCWAXdKuiq3bYyIjlx+CJDbuoGrgS7gfklTs/0DwBpgcS5dGb8dGIyIK4GNwIbsaw6wDlgKLAHWSZqdORty/4uBwezDzMyabNzCEhFHI+Jvc/0E8BqwoE7KKmBLRAxFxOtAH7BE0nxgZkTsiogAHgVuqsrZnOtPAdfl1cxKYGdEDETEILAT6Mpty7MtmTvSl5mZNdGE5ljyFtVvArsz9GVJL0l6uOpKYgHwZlXa4YwtyPXa+KiciBgG3gXm1ulrLvBOtq3tq3bMayT1SOrp7++fyJdrZmanoeHCIunjwPeAP46I96jc1voU0AEcBb4x0nSM9KgTP52cen2NDkY8GBGdEdHZ1tY2VhMzMyuoocIiaRqVovLdiPg+QES8HREnI+IU8G0qcyBQuXq4vCq9HTiS8fYx4qNyJLUAlwADdfo6DszKtrV9mZlZEzXyVJiAh4DXIuLfV8XnVzW7GXgl17cB3fmk1yIqk/R7IuIocELSsuzzNuCZqpyRJ75uAZ7LeZgdwApJs/NW2wpgR257PtuSuSN9mZlZEzVyxfJZ4I+A5TWPFn89Hx1+CbgW+JcAEXEA2Aq8CvwIuDMiTmZfdwDfoTKh/zNge8YfAuZK6gP+BLg7+xoA7gP25nJvxgDuAv4kc+ZmH2fFsfc+4Avf2sWxEx+crV2YmZ03VPnl/8LQ2dkZPT09E8772tMv8909h7h1yRWsv/nXz8LIzMzOXZL2RURno+1bxm9y4fr017YzNHzql+8f332Ix3cforVlCgfXX9/EkZmZnbv8J13qeOGr13Jjx2VMn1Y5TNOnTWFVx2W8cNe1TR6Zmdm5y4WljnkzpzOjtYWh4VO0tkxhaPgUM1pbmDdjerOHZmZ2zvKtsHEcf3+IW5d+ki8uuYIn9hyi3xP4ZmZ1efLezMzqmujkvW+FmZlZUS4sZmZWlAuLmZkV5cJiZmZFubCYmVlRLixmZlbUBfW4saR+4O9OM/0TVP5c/7nG45oYj2tiPK6JOV/H9cmIaPg/tLqgCsuZkNQzkee4J4vHNTEe18R4XBPjcVX4VpiZmRXlwmJmZkW5sDTuwWYP4EN4XBPjcU2MxzUxHheeYzEzs8J8xWJmZmVFxHm5AJcDzwOvAQeAr2R8DrAT6M3X2Rn/p8A+4OV8XV7V158BbwLvj7PPtUAfcBBYWRW/JvvtAx6ezHGNk//jHOv+HMv/nMRxLQT+X+57P/CX58jxurVqTPuBU0DH2TpewN8D/jvw0+znz8+F86vRcY1zvJt2vJjk82sC45rU8yu3/Qj4Sfbzl8DUMzi/NpF3uur+LDwbP9TPhQWYD/xWrs8A/hdwFfB14O6M3w1syPXfBC7L9c8Ab1X1tSz7q/cD6ar85rUCi4CfjXwDgT3APwQEPAd8eRLHVS//x0Bnk47XQuCVD9nWtONVM45fB35+No8XlR9I1+b6RcALwPXNPr8mMK5JPb8mMK6FTOL51ei4Jvv8yvcz81XA94DuMzi/to/3dUWcx4VljAP3DJWqfhCYX/XNOzhGWwG/AFpr4vV+UK4F1la935HfjPnAT6vi/wz41mSNq15+9YnchOO1kDH+4Z9jx+vfAn9W9f6sHq/c9h+Af3EunV/1xtXM82uc49W082sCx2tSzy9gGvDfgD8odX592HJBzLFIWkilou8GLo2IowD5Om+MlM8BL0bE0AR2s4DKbZYRhzO2INdr45M1rvHy/5Ok/ZL+jSRN8rgWSXpR0v+Q9I8zdi4drz8A/nNN7KwdL0mzgN8Hnh0jp2nn1zjjGi+/WccLmnR+TeB4Tdr5JWkHcAw4ATw1Rs6Ez696zvv/mljSx6lc/v1xRLyX36t67a8GNgArJrqrMWLxYfFJHFe9/Fsj4i1JM3IsfyTp+5M0rqPAFRHxC0nXAP81+zpXjtdS4P9GxCtV4bN2vCS1UPkhsykifj5W6hixs35+NTCuevnNPF5NOb8mcLwm9fyKiJWSpgPfBZZTmZ8ZlTpGdx96ftUdBOf5U2GSplH5pnw3Ir6f4bclzc/t86lU8ZH27cDTwG0R8bMJ7u4wlQcGRrQDRzLeXhP/35M4rg/Nj4i38vUE8ASVOYhJGVdEDEXEL3J9H5V7un+fc+B4pW5qfps8y8frQaA3Ir75IeNp1vk13riadX7VHVcTz69xj1ea7POLiPgA2AasGmM8Ezm/jozztZ2/cyxUKu2jwDdr4v+O0ZNfX8/1WVQmrz5Xp896cwZXM3ry6+f8avJrL5WTZGTy69lJHNeY+VSuVj8Rv7r3+hTwN5M4rraq4/NrwFvAnGYfr9w+hco/qF+bjOMFrKfyA2TKuXR+NTiuST+/GhzXpJ9fjYxrss8v4OP8ak6mBXiSfFjhDM6vG+p9fRHn8eQ98I+oXLK9xK8e7bsBmJsnUm++jpxsXwP+D6MfBZyX276eJ8KpfL0n4zcC91bt819T+c3oIFVPTgCdwCu57XuTOa4Pywc+RuWxxJeoPIb4XyZ5XJ/L/f4E+Fvg98+F45Xvfxv4m5rz6awcLyq/AQaVx0pH4v+82edXo+Oqk9/U48Ukn18T/D7+NpN3fl1KpTCM9PsXQMsZnF//kQYeN/Yn783MrKjzeo7FzMwmnwuLmZkV5cJiZmZFubCYmVlRLixmZlaUC4uZmRXlwmJmZkW5sJiZWVH/H8kg1vQkukECAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
"source": [
"yearly_incidence.plot(style='*')"
]
@@ -314,9 +2360,23 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 18,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2021 2394230\n",
+ "2022 4728673\n",
+ "2023 5616796\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"yearly_incidence.sort_values()"
]
@@ -331,9 +2391,32 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 19,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFYdJREFUeJzt3X2QXXddx/H3l6StoVsCGLpAUkzBKMaGWrq06qjsFsUU0I7YGdqGYqudUGzEhzqSQcBnLdQOD04hrlBKVVzUopY2Q2XAyEMB04zYEDqtmbZiGmgtleqWQln69Y9zMlxvNrtnb87eh1/fr5md7rn3l3M+99d7P/fcc++5G5mJJKksTxh0AElS+yx3SSqQ5S5JBbLcJalAlrskFchyl6QCWe6SVCDLXZIKZLlLUoFWDmrDa9asyfXr1y/rNh5++GGOP/74Zd3Gchrl/GYfjFHODqOdv1/Z9+zZ80BmPm2xcQMr9/Xr13Prrbcu6zZ27drF5OTksm5jOY1yfrMPxihnh9HO36/sEfEfTcZ5WEaSCmS5S1KBLHdJKpDlLkkFstwlqUCLlntEXBMR90fE549wfUTEOyJif0TcFhHPbz+mJGkpmuy5XwtsXuD6s4EN9c9W4F1HH0uSdDQWLffM/Djw4AJDzgGuy8pngCdHxDPaCihJWrpo8jdUI2I9cGNmnjLPdTcCV2TmJ+vljwKvy8zDzlCKiK1Ue/eMj4+fPjMz01Povfc+1Gjc+Cq475GeNnFEm9aubneFC5idnWVsbKxv22uT2Qej1+xNH1PLofMx1c+5b/s2L6VvjqZHpqam9mTmxGLj2jhDNea5bN5njMycBqYBJiYmstezuS7aflOjcZdvmuOqve2ehHvPlslW17cQz9YbjMdj9qaPqeXQ+Zjq59y3fZuX0jf96JE2Pi1zADipY3kdcLCF9UqSetRGud8AvKr+1MwPAg9l5pdaWK8kqUeLvoaIiL8CJoE1EXEA+C3gGIDM3AHsBF4C7Ae+Bly8XGElSc0sWu6Zef4i1ydwWWuJJElHzTNUJalAlrskFchyl6QCWe6SVCDLXZIKZLlLUoEsd0kqkOUuSQWy3CWpQJa7JBXIcpekAlnuklQgy12SCmS5S1KBLHdJKpDlLkkFstwlqUCWuyQVyHKXpAJZ7pJUIMtdkgpkuUtSgSx3SSqQ5S5JBbLcJalAlrskFchyl6QCWe6SVCDLXZIKZLlLUoEsd0kqkOUuSQVqVO4RsTki7oiI/RGxfZ7rV0fEhyLi3yJiX0Rc3H5USVJTi5Z7RKwArgbOBjYC50fExq5hlwFfyMxTgUngqog4tuWskqSGmuy5nwHsz8y7MvNRYAY4p2tMAidERABjwIPAXKtJJUmNRWYuPCDiXGBzZl5SL18InJmZ2zrGnADcADwXOAF4RWbeNM+6tgJbAcbHx0+fmZnpKfTeex9qNG58Fdz3SE+bOKJNa1e3u8IFzM7OMjY21rfttcnsg9Fr9qaPqeXQ+Zjq59y3fZuX0jdH0yNTU1N7MnNisXErG6wr5rms+xnhJ4HPAWcBzwE+EhGfyMz/+X//KHMamAaYmJjIycnJBps/3EXbD3vemNflm+a4am+Tm9jcPVsmW13fQnbt2kWvczRoZh+MXrM3fUwth87HVD/nvu3bvJS+6UePNDkscwA4qWN5HXCwa8zFwAezsh+4m2ovXpI0AE3KfTewISJOrt8kPY/qEEynLwIvAoiIceB7gbvaDCpJam7R1xCZORcR24CbgRXANZm5LyIura/fAfwecG1E7KU6jPO6zHxgGXNLkhbQ6ABRZu4EdnZdtqPj94PAi9uNJknqlWeoSlKBLHdJKpDlLkkFstwlqUCWuyQVyHKXpAJZ7pJUIMtdkgpkuUtSgSx3SSqQ5S5JBbLcJalAlrskFchyl6QCWe6SVCDLXZIKZLlLUoEsd0kqkOUuSQWy3CWpQJa7JBXIcpekAlnuklQgy12SCmS5S1KBLHdJKpDlLkkFstwlqUCWuyQVyHKXpAJZ7pJUIMtdkgpkuUtSgRqVe0Rsjog7ImJ/RGw/wpjJiPhcROyLiH9uN6YkaSlWLjYgIlYAVwM/ARwAdkfEDZn5hY4xTwbeCWzOzC9GxInLFViStLgme+5nAPsz867MfBSYAc7pGnMB8MHM/CJAZt7fbkxJ0lJEZi48IOJcqj3yS+rlC4EzM3Nbx5i3AccA3w+cALw9M6+bZ11bga0A4+Pjp8/MzPQUeu+9DzUaN74K7nukp00c0aa1q9td4QJmZ2cZGxvr2/baZPbB6DV708fUcuh8TPVz7tu+zUvpm6PpkampqT2ZObHYuEUPywAxz2XdzwgrgdOBFwGrgE9HxGcy887/948yp4FpgImJiZycnGyw+cNdtP2mRuMu3zTHVXub3MTm7tky2er6FrJr1y56naNBM/tg9Jq96WNqOXQ+pvo5923f5qX0TT96pEmSA8BJHcvrgIPzjHkgMx8GHo6IjwOnAnciSeq7JsfcdwMbIuLkiDgWOA+4oWvMPwA/GhErI+KJwJnA7e1GlSQ1teiee2bORcQ24GZgBXBNZu6LiEvr63dk5u0R8WHgNuAx4N2Z+fnlDC5JOrJGB4gycyews+uyHV3LVwJXthdNktQrz1CVpAJZ7pJUIMtdkgpkuUtSgSx3SSqQ5S5JBbLcJalAlrskFchyl6QCWe6SVCDLXZIKZLlLUoEsd0kqkOUuSQWy3CWpQJa7JBXIcpekAlnuklQgy12SCmS5S1KBLHdJKpDlLkkFstwlqUCWuyQVyHKXpAJZ7pJUIMtdkgpkuUtSgSx3SSqQ5S5JBbLcJalAlrskFahRuUfE5oi4IyL2R8T2Bca9ICK+FRHnthdRkrRUi5Z7RKwArgbOBjYC50fExiOMezNwc9shJUlL02TP/Qxgf2belZmPAjPAOfOM+yXgeuD+FvNJknoQmbnwgOoQy+bMvKRevhA4MzO3dYxZC7wfOAt4D3BjZv7tPOvaCmwFGB8fP31mZqan0HvvfajRuPFVcN8jPW3iiDatXd3uChcwOzvL2NhY37bXJrMPRq/Zmz6mlkPnY6qfc9/2bV5K3xxNj0xNTe3JzInFxq1ssK6Y57LuZ4S3Aa/LzG9FzDe8/keZ08A0wMTERE5OTjbY/OEu2n5To3GXb5rjqr1NbmJz92yZbHV9C9m1axe9ztGgmX0wes3e9DG1HDofU/2c+7Zv81L6ph890iTJAeCkjuV1wMGuMRPATF3sa4CXRMRcZv59KyklSUvSpNx3Axsi4mTgXuA84ILOAZl58qHfI+JaqsMyFrskDcii5Z6ZcxGxjepTMCuAazJzX0RcWl+/Y5kzSpKWqNEBoszcCezsumzeUs/Mi44+liTpaHiGqiQVyHKXpAJZ7pJUIMtdkgpkuUtSgSx3SSqQ5S5JBbLcJalAlrskFchyl6QCWe6SVCDLXZIKZLlLUoEsd0kqkOUuSQWy3CWpQJa7JBXIcpekAlnuklQgy12SCmS5S1KBLHdJKpDlLkkFstwlqUCWuyQVyHKXpAJZ7pJUIMtdkgpkuUtSgSx3SSqQ5S5JBbLcJalAlrskFahRuUfE5oi4IyL2R8T2ea7fEhG31T+3RMSp7UeVJDW1aLlHxArgauBsYCNwfkRs7Bp2N/DCzHwe8HvAdNtBJUnNNdlzPwPYn5l3ZeajwAxwTueAzLwlM/+7XvwMsK7dmJKkpYjMXHhAxLnA5sy8pF6+EDgzM7cdYfyvA889NL7ruq3AVoDx8fHTZ2Zmegq9996HGo0bXwX3PdLTJo5o09rV7a5wAbOzs4yNjfVte20y+2D0mr3pY2o5dD6m+jn3bd/mpfTN0fTI1NTUnsycWGzcygbrinkum/cZISKmgF8AfmS+6zNzmvqQzcTERE5OTjbY/OEu2n5To3GXb5rjqr1NbmJz92yZbHV9C9m1axe9ztGgmX0wes3e9DG1HDofU/2c+7Zv81L6ph890iTJAeCkjuV1wMHuQRHxPODdwNmZ+ZV24kmSetHkmPtuYENEnBwRxwLnATd0DoiIZwEfBC7MzDvbjylJWopF99wzcy4itgE3AyuAazJzX0RcWl+/A3gT8J3AOyMCYK7JMSFJ0vJodIAoM3cCO7su29Hx+yXAYW+gSpIGwzNUJalAlrskFchyl6QCWe6SVCDLXZIKZLlLUoEsd0kqkOUuSQWy3CWpQJa7JBXIcpekAlnuklQgy12SCmS5S1KBLHdJKpDlLkkFstwlqUCWuyQVyHKXpAJZ7pJUIMtdkgpkuUtSgSx3SSqQ5S5JBbLcJalAlrskFchyl6QCWe6SVCDLXZIKZLlLUoEsd0kqkOUuSQVqVO4RsTki7oiI/RGxfZ7rIyLeUV9/W0Q8v/2okqSmFi33iFgBXA2cDWwEzo+IjV3DzgY21D9bgXe1nFOStARN9tzPAPZn5l2Z+SgwA5zTNeYc4LqsfAZ4ckQ8o+WskqSGVjYYsxb4z47lA8CZDcasBb7UOSgitlLt2QPMRsQdS0q7RK+FNcADba4z3tzm2hbVev4+MvtgjFz2rsfUyOU/ZCl9c5Q98l1NBjUp95jnsuxhDJk5DUw32GYrIuLWzJzo1/baNsr5zT4Yo5wdRjv/sGVvcljmAHBSx/I64GAPYyRJfdKk3HcDGyLi5Ig4FjgPuKFrzA3Aq+pPzfwg8FBmfql7RZKk/lj0sExmzkXENuBmYAVwTWbui4hL6+t3ADuBlwD7ga8BFy9f5CXp2yGgZTLK+c0+GKOcHUY7/1Blj8zDDo1LkkacZ6hKUoEsd0kqkOUuSQWy3I8gIp4dEb8aEWcNOstSjXJ2GO38Zh+MUc4Oy5Pfcp9HRPwI8BGq79K5NCJeM+BIjY1ydhjt/GYfjFHODsuYPzMf9z/AWcDJ9e8BvAl4Zb18JvAhYPLQ9YPOW0r2Uc9vdrMPc/7H9Z57RGyMiNuA3wbeGxFnZTWjG4GnA2TmZ4Fb+PZn9+f7qoW+G+XsMNr5zT4Yo5wd+p//cVXuEbEuIp7UcdErgOsz88eovu3ygojYALwf+KmOcX8HnBIRx2XmY/1L/G2jnB1GO7/Zzd6LQed/XJR7RHxfROwEPgn8bkQc+srirwNPrH//a+DLwEupnjm/MyIOffvag8AdwKn9S10Z5eww2vnNbvZeDEv+Yss9Io7vWPwB4EBmrgc+BvxxffmDwDci4oTMfBD4d+CZVP8TbgF+rR53LPAt4J7lTz7a2WG085vd7L0YxvxFlXtEPCUiro2I3cAVEfG0iAhgE/CpiIjMvAH4akS8FLgTOKG+nnr5ROAx4K3AiRHxZ8BfAXOZeb/Zy8tvdrOXmL+ocgd+DJij+hKzAF4PPInqC8+eXr95AfA+4ALgX4D/pfozgWTmp+t1rMzM24FXA/uAP8zM5f4ytFHOPur5zW728vL3+jGbQf7Uk/dq4J+p/rLTmvryvwZeW/9+MnBFff0LqI5/raivGwP+q17PWuB2YBvwXuCdwPFmLy+/2c3+eMo/Unvu9UseqN5Z/mngd4AfAt5SX/4R4Ifr3/8T+ARwdmbupnpmnQLIzFngs8ALMvNe4EJgnOoNjjdk5sPLeDNeNorZnfvBZHfevc/3qsmf2RuoiJgALqF6OXMlcD/wbOCuzPxYRNwNXBkRLwb2AD8TEWsy84GI+Hfg4Yh4FvAnwCsj4kSqvxT1FaqXSWTmrcCtLWaOzMyIeAHVy7FPADdl5jeA7xnm7F23w7kfwNw7797n2zC0e+4RsToi3gtcD9wNvD0z74+IJ1A9K94ZEasy826qlznPo/ofcpDq86RQveO8gup2Xk/1ZfpbgNOB6VyGz8BGxIr6Tv5CqpddXwd+HPijeshjw5q9zh8RMRYR1zJ6c7+qnvtJ4BpGaO4j4riIOH5E5/1Jozrvdf6xiPiOiHgfIzb3C1qu41RL/aH6/OelVO8UX0x1nOrNwKs7xqys/7sN+H1gfb38snoi19S/7wVWU53muxM4tmMdT1iG7MdTPdtfD1xO9abKrwCX1dc/BbgNOI3qjnDFsGTvyv9B4JeBp43K3NfrPQG4ieqvhAH86gjN/Qn1tv60Xn4LcOmwzzvV4/XngI9SnZgzavN+KP/HgA/Ul43Mfb7Jz1DsuUfE04EbgUngOuA1wMupPir0vRFxRb1H8/MR8VTgw1Sn635fvYqPAy8EHs3MG4H3AH8LXE31TvU3D20rW372jOrzrR+l+h/7Z8CLgZ+lelPlsXqb/w38A/BaquN0Jw5D9nnyT1O9k/9y4AvAc4d57jusAo4DnhMRa4DnUO1BDfXcd2Q/lup+/kyqwxmnRMQfDeu8R8QxVJ/qOBe4MjN/tr7qtI5tDu28d+V/S2Ye2vPeC2wc5rlfkkE9q3Q9i64CzuxYfhXVu8jfA3yg/jkfeBvw4XrMZVSn8D6l/vcfAp7VsY41fcz/5I7ff4PqDr0F+JeOy58JHBy27PPk/3Wqj3Q9exTmvt7ez1EdH30j8AtUb4DtHpG5P5T9DVSvmtaMwrxTvcrb0nXZK4DPjsi8z5f/WXXGoZ77xrdx0AHqiYlDP/XyacAnD91BOsYdA+wCzqqX/wD4R6o3K1434NvwJOBa4D7gd+vlrwDjHWM+Qv0kRvUybyiyd+X/cp3teGDtMM99x/3lYqpDei8H/rK+7IFhnvsjZJ+pL3vGMM97neNlVK+sr6rzvQn4LqqzME8c1nk/Qv5/ovoyr3XDfp9f0m0cdICuCT90h38f3z52Fx3XP70uoOd1TP4pwHcMOnud5xepPu86TXUM+5b6Th/AU4F3Uz/bD1v2rvxXU33s67tHYe6Bv6E6DLOa6rPIbwA+D7yxvn5o574r+0eBHcDzR2Teb6Z6lXcS1d7uLwOfHpX7fFf+v6T6moANozD3TX4OlenQiIh1VMewXpOZd9WXnUZ1FthLgc9l5i8OMOKiIuIHqE56+DTVcbpTqPYKPpf9OXPuqETEKVR3+j8Bvka1lzOUcx8RY1SHNY6jmuvnUp1A8nqqveINDOncz5N9A9V7HT9B9f0kL6Ka+6Gbd4CIeGJmfq3+/VSqE3g+RXV6/dDf57vynwJsB94OPMoQ3+ebGsbPuZ9G9cbGFyPiEqqPJb2U6jTfyzLzXwcZrqGvUL2p94bMvC4iXgnsG5HsAF+lOvb7eaqSPIbhnfs5qk8+fJNqj/1bwOszcy/wa0M+90fK/o2I+Gmq0h/WeedQMda+SvUe2Rsz8/1DPu/AYfn/l+rEotuB32S47/ONDOOe+6eo3sy7h+r47/bMvGOgoRqIiNVUe1oXUH35/jRwdWZ+c8F/OCTmyf+ezLxqsKmWrj6B5NDx6y8POs9S1NnPBd6b1adNhlpEHAdspjrj8vuBdwHvzMy5gQZraJ7805n51sGmas9QlXv9EaXfotpb/4uszm4bCRGxkupQzDeosn99wJGWpID8K4DHcpju0A2NePZXU33k989H7T4Do59/IUNV7pKkdgzFSUySpHZZ7pJUIMtdkgpkuUtSgSx3SSqQ5S5JBbLcJalA/wdG32Dikq1OzwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
"source": [
"yearly_incidence.hist(xrot=20)"
]
@@ -364,7 +2447,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.1"
+ "version": "3.6.4"
}
},
"nbformat": 4,
diff --git a/toy_notebook_fr.ipynb b/toy_notebook_fr.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..39f398e5b441c7569e77e0723ad499712391dc02
--- /dev/null
+++ b/toy_notebook_fr.ipynb
@@ -0,0 +1,6 @@
+# A proopos du calcul de $\pi$
+
+## En demandant à la lib maths
+
+Mon ordinateur m'indique que $\pi$ vaut *approximativement*
+