diff --git a/module3/exo3/exercice.ipynb b/module3/exo3/exercice.ipynb index 1064564ff66ab6e3e16540024e0ea44da9d567f3..f7b109b8aab1ea0f3df0338a26b19556d03ed8e6 100644 --- a/module3/exo3/exercice.ipynb +++ b/module3/exo3/exercice.ipynb @@ -479,7 +479,7 @@ }, { "cell_type": "code", - "execution_count": 176, + "execution_count": 216, "metadata": { "scrolled": true }, @@ -488,7 +488,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "[0, 150, 725, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]\n" + "5\n", + "[[596, 473, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 150, 725, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 396, 249, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 147, 211, 1044, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [621, 36, 0, 238, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]\n", + "[[0, 0, 350, 0, 853, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 126, 159, 13, 186, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 21, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 281, 0, 116, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 520, 0, 0, 1234, 0, 0, 0, 0, 0, 0, 0, 0]]\n", + "[[247, 3, 74, 575, 0, 0, 0, 726, 22, 20, 0, 0, 0, 0, 0], [85, 0, 0, 0, 0, 0, 0, 173, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 18, 11, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 189, 0, 0, 0, 177, 0, 0, 0, 0], [0, 0, 0, 100, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0, 0], [0, 16, 0, 68, 0, 0, 7, 0, 0, 0, 32, 0, 0, 0, 0], [5, 0, 551, 172, 0, 0, 40, 0, 0, 0, 221, 0, 0, 0, 0], [0, 0, 0, 20, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0], [6, 0, 38, 76, 0, 0, 0, 0, 27, 0, 0, 0, 0, 0, 0]]\n", + "[[0, 55, 231, 0, 0, 0, 405, 0, 0, 0, 223, 0, 0, 0, 0], [0, 3, 12, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 397, 369, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 162, 130, 0, 0, 0, 131, 0, 0, 0, 0, 0, 0, 0], [0, 0, 159, 120, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 15, 0, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]\n", + "[[0, 0, 0, 87, 0, 0, 0, 0, 0, 0, 0, 104, 0, 0, 0], [0, 0, 0, 172, 0, 0, 0, 323, 0, 0, 0, 154, 0, 0, 0], [611, 0, 0, 434, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0], [20, 140, 0, 124, 0, 0, 4, 7, 0, 0, 0, 0, 0, 0, 0], [368, 0, 0, 245, 0, 0, 0, 7, 0, 0, 190, 0, 383, 0, 0], [0, 0, 126, 87, 0, 0, 0, 25, 0, 0, 35, 23, 105, 0, 0]]\n" ] } ], @@ -497,18 +502,21 @@ "nbscene=0\n", "nbacte=0\n", "nbmots=0\n", - "listemotspersonnages=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]\n", + "nbscenetotal=0\n", + "listeacte=[]\n", "listescene=[]\n", - "listacte=[]\n", - "\n", + "listemotspersonnages=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]\n", "with open(texte_file,'r') as file: \n", " for ligne in file:\n", " nbligne+=1\n", " if ligne[0]==\"#\" and ligne[1]==\"#\" and ligne[2]!=\"#\":\n", " nbacte+=1\n", " listeacte.append(0)\n", + " listescene=[]\n", + " nbscene=0\n", " if scene in ligne:\n", " nbscene+=1\n", + " nbscenetotal+=1\n", " listescene.append(0)\n", " listemotspersonnages=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]\n", " if \"VALÈRE\" in ligne:\n", @@ -646,7 +654,9 @@ " listescene[nbscene-1]=listemotspersonnages\n", " listeacte[nbacte-1]=listescene\n", " nbmots=0\n", - " print(listeacte[0][1])" + "print(len(listeacte))\n", + "for i in range(len(listeacte)):\n", + " print(listeacte[i])" ] }, { @@ -656,42 +666,27 @@ }, { "cell_type": "code", - "execution_count": 145, + "execution_count": 224, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 145, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEWCAYAAABliCz2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAHldJREFUeJzt3X+QZWV95/H3h5kJLThmlF8jNmEIS4hCIcqgKK6OYIQIIWslk1IRk1rjbHZ1C2uzSkwZGEWrspWsm3KJxjEogz8CsmqFctcfuPgwwURghgwKGVyNA+XwY2YYQmAo24Hhu3/cg9O03bfP7b7PPfc55/Oq6pr+ce853/s8T3/mnNPPfY4iAjMza7+Dmi7AzMxGw4FvZtYRDnwzs45w4JuZdYQD38ysIxz4ZmYd4cA3WyRJfyXpT5quw2w+8jx8awNJBwMfA14HPA/4IfDHEfHVRgszGyM+wre2WAr8GHgN8IvAnwBfkLQq504lLcm5fbNhcuBbK0TE4xGxPiLuiYinIuIrwHbgtNkeL+nfSLpJ0r9KekjStdN+9quSbpD0sKTvS/qdaT+7StLHJf0fSY8Dr62+96Fpjzlf0lZJj0j6e0mnTPvZJZLuk/RYte2zszSI2Swc+NZKko4CfgW4a46HXA58A3guMAn8z+p5hwI3AJ8HjgTeDHxM0knTnvsW4MPAcuDmGft9KfAp4D8AhwGfAK6XdLCkE4F3AadHxHLgHOCexb5Ws7oc+NY6kpYBnwM2RsTdczzsCeBY4OiImIqIp4P7fOCeiPh0RDwZEbcDXwR+e9pz/zYivl2dSUzN2O47gE9ExC0RsT8iNgI/Bc4A9gMHAy+StKw6G/nnobxosxoc+NYqkg4CPgPso3c0PZf3AgJulXSXpH9fff9Y4OXV5ZhHJD0CXAisnPbcH/fZ7rHAH854/jH0/mP5IfBuYD2wS9I1ko5ewMs0W5ClTRdgNiySBFwJHAW8ISKemOuxEfEgvaNxJL0K+KakTfTC/KaI+LU+u+o3te3HwIcj4sNz7PfzwOclPYfe5Z7/BlzUZ3tmQ+MjfGuTjwMvBH4jIn7S74GS1kqarL78F3ohvh/4CvArki6StKz6OF3SC2vW8EngDyS9XD2HSjpP0nJJJ0o6q5pCOgX8pNqn2Ug48K0VJB1L7w+lpwIPStpbfVw4x1NOB26RtBe4Hrg4IrZHxGPA64E3AfcDD9I7Cj+4Th0RsZnemcMV9P4j+SHwe9WPDwb+FHio2u6RwB8P+FLNFsxvvDIz6wgf4ZuZdYQD38ysIxz4ZmYd4cA3M+uIsZqHf/jhh8eqVauaLsPMrBhbtmx5KCKOqPPYsQr8VatWsXnz5qbLMDMrhqR76z7Wl3TMzDrCgW9m1hEOfDOzjhira/hmZjk98cQT7Nixg6mpmataj7+JiQkmJydZtmzZgrfhwDezztixYwfLly9n1apV9BZXLUNEsGfPHnbs2MFxxx234O34ko6ZdcbU1BSHHXZYUWEPIInDDjts0WcmWY/wJd0DPEZvCdgnI2J1zv2Zmc2ntLB/2jDqHsUlnddGxEMj2I+ZmfXhSzpm1l2rVoI0vI9VK+ff5yzOPfdcVqxYwfnnnz/kF/hMuQM/gG9I2iJp3WwPkLRO0mZJm3fv3p25HLOWGXZgDTHEinDvzl5KTf/4FnB49e/Mn833ce/OBZXxnve8h8985jOLeSW15A78MyPipcCvA++U9OqZD4iIDRGxOiJWH3FEreUgzOxpswVWv4+FhNkCQ6xICVgLXAesGf7mb7vtNk455RSmpqZ4/PHHOemkk7jzzjs5++yzWb58+fB3OEPWa/gRcX/17y5JXwZeBmzKuU8zm0Mia5gVL5G9fU4//XQuuOAC3v/+9/OTn/yEt771rZx88sl5djaLbIEv6VDgoIh4rPr89cAHc+3PzPpIOOz7SYysfS699FJOP/10JiYm+OhHP5p3ZzPkPMI/CvhyNZVoKfD5iPhaxv2Z2WwSDvt+EiNtn4cffpi9e/fyxBNPMDU1xaGHHpp/p5VsgR8RPwJenGv7ZlZDwmE/nxG3z7p167j88svZvn07l1xyCVdcccVodoyXVjBrr4TDfj4rnwcPPgyvHdL2jj2q74+vvvpqli5dylve8hb279/PK1/5Sm688UYuu+wy7r77bvbu3cvk5CRXXnkl55xzzpCKOkARMfSNLtTq1avDN0AxG4DUm0kzU2J4YS9gjHJiMbZt28YLX/jCpstYsNnql7Sl7ioGfuOVWdskfGRvs3Lgm7VJwmFvc3Lgm7VFwmFvfTnwzdog4bC3eTnwzUqXcNhbLQ58s9LlDPuUYZvWGAe+Welyhv3aDNsdI1OTw11tdGpy8JVFt27dyite8QpOOukkTjnlFK699toMr7THb7wyK92aDNtMHDhzGNabksbQxH070frBn/ea7XDddbB2Ldw07RazsX7wlUUPOeQQrr76ak444QTuv/9+TjvtNM455xxWrFgxeGHz8BG+mT1Twn8T6GOusK9jtuWR9+3bxwknnADA0UcfzZFHHkmue4P4CN/MDkg47PtYTNjD/Msj33rrrezbt4/jjz9+iFUf4MA3s56Ew76PxYb90+ZaHvmBBx7goosuYuPGjRx0UJ6LL76kY2YO+3kMK+zhwPLIjz32GFNTUwA8+uijnHfeeXzoQx/ijDPOGELFs3Pgm3VdwmHfxzDDHg4sj3zhhRdyySWXsG/fPt74xjfytre9jbVr806L8iUdsy5LdDrsp15wVO2ZNWljve1N9Pn5bMsjX3PNNWzatIk9e/Zw1VVXAXDVVVdx6qmn1qprEF4e2axkcy2PXEeiXth7eeSx4eWRzWxwiU4f2XeVA9+saxIO+45y4Jt1SaLzYT9Ol7EHMYy6HfhmXZHofNhPTEywZ8+e4kI/ItizZw8TE/3+JDw/z9Ix64JE58MeYHJykh07dmRbuiCniYkJJicnF7UNB75Z2yUc9pVly5Zx3HFDmExfKF/SMWuzhMPefsaBb9ZWCYe9PYMD36yNEg57+zkOfLO2STjsbVYOfLM2STjsbU4OfLO2SDjsrS8HvlkbJBz2Ni8HvlnpEg57q8WBb1a6nGGfMmzTGpM98CUtkfSPkr6Se19mnZQz7PPegMlGbBRH+BcD20awH7NuWpNhm4kDZw7WGlkDX9IkcB7w1zn3Y2ZDlPDfBFoq9xH+XwDvBZ6a6wGS1knaLGlziSvYWTdMTa7s3U4w48fU5MqmX6bDvuWyrZYp6XxgV0RskbRmrsdFxAZgA/TuaZurHrPFmLhvJ1rf/zGv2Q7XXQdr18JNC1iQse7NtLNJOOxbLucR/pnABZLuAa4BzpL02Yz7M2vMYsO+cQmHfQdkC/yIeF9ETEbEKuBNwI0R8dZc+zNrisPeSuF5+GaL4LC3kozkjlcRkfBbOKxlHPZWGh/hmy2Aw95K5MA3G5DD3krlwDcbgMPeSubAN6vJYW+lc+Cb1ZQz7F+zffjbfIaEw94c+GZ15Qz763IuUpZw2BvgwDerLWfYr821DHHCYW8/48A3a0j2vwkkHPb2DA58swY47K0JDnyzEXPYW1Mc+GYj5LC3JjnwzUbEYW9Nc+CbjYDD3saBA98sM4e9jQsHvllGI1mOIWfYpwzbtMY48M0yGdnaOznDPtcbwqwRDnyzDEa60NqaDNtMHDhzsNZw4JsNmVfVtHHlwDcbIoe9jTMHvtmQOOxt3DnwzYbAYW8lcOCbLZLD3krhwDdbBIe9lcSBb7ZADnsrjQPfbAEc9lYiB77ZgBz2VioHvtkAHPZWMge+WU0OeyudA9+sppxh/5rtw9/mMyQc9ubAN6srZ9hfl3ORsoTD3gAHvlltOcN+ba5liBMOe/sZB75ZQ3wnLBu1bIEvaULSrZLukHSXpA/k2pdZaRz21oSlGbf9U+CsiNgraRlws6SvRsR3Mu7TbOw57K0p2QI/IgLYW325rPqIXPszK4HD3po00CUdSc+VdMoAj18iaSuwC7ghIm4ZtECztnDYW9PmDXxJSdJzJD0PuAP4tKSP1Nl4ROyPiFOBSeBlkk6eZfvrJG2WtHn37t2D1j9SPz3yMJCyf0xNrmz6pdqQOezLNTW5sjW/83Uu6fxiRDwq6feBT0fEZZK+O8hOIuIRSQk4F7hzxs82ABsAVq9ePdaXfA7e/TBaP/ztzgyDWL9z+DuxxjjsyzZx386+v/fD6N9R/c7XuaSzVNLzgd8BvlJ3w5KOkLSi+vxZwOuAuxdUZYsV/3Z962sk/Zsz7FOGbbZIab+/dY7wPwB8Hbg5Im6T9MvAD2o87/nARklL6P3H8oWIqP0fRheUNlhsMCPr35xhn+sNYS1Q4u9v38CvwvqYiPjZH2oj4kfAb8234Yj4LvCSRVfYUiUOFqtvpP27JsM2EwfOHF6bYfuFK/X3t+8lnYjYD1wwolo6o9TBYvUU378J/02gj5L7t84lnb+XdAVwLfD409+MiNuzVdViJQ8Wm1/x/Ztw2PdRev/WCfxXVv9+cNr3Ajhr+OW0W+mDxforvn8TDvs+iu9fagR+RPgK3hC0YbDY3Irv34TDvo/i+7cyb+BLunS270fEB2f7vv28tgwWm13x/Ztw2M+j6JvfTFPnks7j0z6fAM4HtuUpp32KDwPrq/j+TTjsayj25jcz1Lmk89+nfy3pz4Hrs1XUIsWHgfVVfP8mHPY15b75Tdo4/O3PZiHr4R8C/PKwC2mb4sPA+iq+fxMO+wY1NX7qXMP/HgeWNV4CHMEzZ+zYDMWHgfVVfP8mHPYNanL81LmGf/60z58EdkbEk5nqKV7xYWB9Fd+/CYd9g5oeP/Ne0omIe4Fj6N296j5ghaQSh3p2TXem5VV8/yYc9g0ah/FTZz38y4BLgPdV3/oF4LM5iyrROHSm5VX01LyEw75B45IPdf5o+0Z66+k8DhAR9wPLcxZVmnHpTMur2Kl5CYd9g8YpH+oE/r7q/rQBIOnQvCWVZZw60/LKPTUvi4TDvkHjlg91Av8Lkj5B79r9O4BvAp/MW1YZxq0zrSy+E1a7jWM+1Hnj1Z9L+jXgUeBE4NKIuCF7ZWNuHDvTyuGwb7dxzYc60zKpAr7zIf+0ce1MK4PDvt3GOR/mDHxJj3HgDVfP+BEQEfGcbFWNsdydOcqFlGz0HPbtNs5hD30CPyI8E2cWucN+lAsp2Wg57Ntt3MMeBlhLR9KRkn7p6Y+cRY2z3GGfbbaGNcph324lhD3Ue+PVBZJ+AGwHbgLuAb6aua6xlTvsx3mw2MI47NutpN/fOkf4lwNnAP8vIo4Dzga+nbWqDilpsNjgRtK/OcM+Zdhmi5T2+1sn8J+IiD3AQZIOiohvAadmrqsTShssNpiR9W/OsPclxjmV+PtbZ1rmI5KeDfwd8DlJu+itmmmLUOJgsfpG2r9rMmwzceDMwXe1/jml/v7WOcLfBKwALga+Bvwz8Bs5i2q7UgeL1VN8/yb8N4E+Su7fOoEv4Ov0hsGzgWurSzy2ACUPFptf8f2bcNj3UXr/1lkP/wMRcRLwTuBo4CZJ38xeWQuVPlisv+L7N+Gw76P4/mWwe9ruAh4E9gBH5imnvdowWGxuxfdvwmHfR/H9W6kzD/8/SkrA/wUOB94REafkLqxN2jJYbHbF92/CYT+PtiynUmeWzrHAuyNia+5i2qj4MLC+iu/fhMO+hrYsp1LnGv4fOewXpvgwsL6K79+Ew76mtiynMsg1fBtA8WFgfRXfvwmHfYOaGj8O/AyKDwPrq/j+TTjsG9Tk+MkW+JKOkfQtSdsk3SXp4lz7GifFh4H1VXz/Jhz2DWp6/NS649UCPQn8YUTcLmk5sEXSDRHxTxn32aimO9PyKr5/Ew77Bo3D+Ml2hB8RD0TE7dXnjwHbgBfk2l/TxqEzLa+ip+YlHPYNGpd8GMk1fEmrgJcAt8zys3WSNkvavHv37lGUM3SNd+aqlSBl/5g6eEn+fUyubKAB6yl2al6inWE/onG/WI3nwzQ5L+kAUK20+UV6c/kfnfnziNgAbABYvXr1bPfQHWtj0Zn37pz97sN1JGqHwYSeQusH2/yg7RPrdw62gxHKPTUvbRz+9lsb9rC4cf+0xPzts4jMH4t8mCbrEb6kZfTC/nMR8aWc+2rCuHXmwBJZw6D49snMd8JqWKJz4z/nLB0BVwLbIuIjufbTlHHszIEkOjfYx4nDvmGJTo7/nEf4ZwIXAWdJ2lp9vCHj/kZmXDuztkQnB/u4cNg3LNHZ8Z/tGn5E3Myirn6Np9ydWfpsjXEe7OPAYd+wRKfHv99pO6DcYV/ybI1xH+xNc9g3LNH58e/AH1DusM+2kFKi84O9SQ77hiU8/nHgDyx32JcYBqUM9qaU3r/FS3j8Vxz4DSs9DEoa7E0YSfvkDPuUYZujlPD4n8aB3yCHfbuNrH1yhv0I12ofuoTH/wwO/IY47NttpO2zJsM2EwfGT4kSHv+zcOA3wGHfbsW3T6LsvwkkPP7n4MAfMYd9uxXfPgmHfR+l968Df4RKD3so/E1nmZUeBg77/orvXxz4I1N82KfeP8W+6Syz4sMg4bDvo/j+rTjwR6AVU/Oq2RpFvukss+LDIOGwn0dbzmwd+Jm1ZmpepqPv0sOy9Pod9jW2T3vObB34GbVqal6G7ZcelqXXX3zYg89sB+TAz8Rh0F/p7VN6/a0Ie/CZ7YAc+Bk4DPorvX1Kr781YQ8+sx2QA3/IHAb9ld4+pdffqrDPIdHq8e/AH6KmO3PREq0e7ItVev0O+3kkWj/+HfhDMg6duSiJ1g/2xSp6al7CYd9PohPj34E/BOPSmQuW6MRgX6xip+YlHPb9JDoz/h34izROnbkgic4M9sUqcmpewmHfT6JT49+Bvwjj1pkDS3RqsI+b4pfbKF2ic+Pfgb9A49iZA0l0brCPE4d9wxKdHP8O/AUY186sLdHJwT4uHPYNS3R2/DvwB5S7M0ufrTHOg30cOOwbluj0+HfgDyh32Jc8W2PcB3vTHPYNS3R+/DvwB5Q77EudrVHCYG+Sw75hCY9/HPgDyx32JYZBKYO9KaX3b/ESHv8VB37DSg+DkgZ7E1px85uSJTz+p3HgN8hh326tuflNqRIe/zM48BvisG+3Vt38pkQJj/9ZOPAb4LBvt+LbJ1H23wQSHv9zcOCPmMO+3Ypvn4TDvo/S+zdb4Ev6lKRdku7MtY/SlB72UPibzjIrPQwc9v0V37/kPcK/Cjg34/aLUnzYp94/xb7pLLPiwyDhsO+j+P6tZAv8iNgEPJxr+yVpxdS8arZGkW86y6z4MEg47OfRljPbxq/hS1onabOkzbt37174hlatBCnvxwK0ZmpepqPvobRPg33fhbCfWkL+9pWYmlyZpf5FSb1/2nJmu3R0u5pdRGwANgCsXr06Fryhe3fCoM9ODDZYBsz8Vk3Ny7D9obXPXH2fGF79s/R9F8IeYGI/aP3gmx+0fWL9zsF30pIz27Rx+NufTeNH+I1JlBFmTUmU3T6JsuvPLdGO9unyme0CdDPwE+0Y7Lkkym6fRNn155ZoT/usybDNRHvaZ4ac0zL/BvgH4ERJOyS9Pde+BpJobWcORaLs9kmUXX9uCbdPP4lWt0+2a/gR8eZc216wRKs7c9ESZbdPouz6c0u4ffpJtL59unNJJ9H6zlyURNntk/DUvH4SZfdvbolOtE83Aj/Ric5csET57eOpeXNLlN+/OSU60z7tD/xEZzpzQRLtaJ8WTM3LItGO/s0l0an2aXfgJzrVmQNLtKd91mTYZqLsqXmJ9vRvDonOtU97Az/Ruc4cSMLt00+i7PZJlF1/bolOtk87Az/Ryc6sLeH26SdRdvskyq4/t0Rn26d9gZ8oujM9W6NhibLbJ1F2/bklOt0+7Qr8RPFT8zxbo0GJstsnUXb9uSU63z7tCvwWTM3zbI2GJMpun0TR9fvMdjTaFfgtmJrnMGhAouz2SfjMtp9E2f07RO0K/DUZtpnw1Lw+Shrss0qU3z4+s51bovz+HaJ2Bf6wJcoeLImy688t0Y728Znt7BLt6N8hcuDPJVH2YEmUXX9uifa0z5oM20z4zLaPUse/A382ibIHS6Ls+nNLuH36SZTdPomy68/IgT9TouzBkii7/twSbp9+EmW3T6Ls+jNz4E+XKHuwJIqfrZFVouz+zS1Rdvskyq5/BBz4T0uUPVgSrZitkU2i7P7NLVF2+yTKrn9EHPjQjsGSO+xHNFsji0T5/ZtTouz2SfjMtiYHfqLswf603GHv2Rqzctj3V3r/Fn9mO0O3Az9R9mCfbk2GbSbKbp9E2fXnlii/fXxmO5DuBn6i/MGeU6Ls9kmUXX9uiXa0j89sB9LNwE+0Y7Dnkii7fRJl159boj3tsybDNhPtaZ8Zuhf4idZ25lAkym6fRNn155Zw+/STaHX7dCvwE63uzEVLlN0+ibLrzy3h9ukn0fr26U7gJ1rfmYuSKLt9Ep6a10+i7P7NLdGJ9ulG4Cc60ZkLlii/fTw1b26J8vs3p0Rn2qf9gZ/oTGcuSKId7eOpebNLtKN/c0l0qn3aHfiJTnXmwBLtaZ81GbaZKHtqXqI9/ZtDonPt097AT3SuMweScPv0kyi7fRJl159bopPt087AT3SyM2tLuH36SZTdPomy688t0dn2aV/gJ4ruTM/WaFii7PZJlF1/bolOt0+7Aj9R/NQ8z9ZoUKLs9kmUXX9uic63T7sCvwVT8zxboyGJstsnUXT9PrMdjayBL+lcSd+X9ENJf5RzX0ArpuY5DBqQKLt9Ej6z7SdRdv8OUbbAl7QE+Evg14EXAW+W9KJc+wM8NW82CQ/2fhLlt4/PbOeWKL9/hyjnEf7LgB9GxI8iYh9wDfCbGfc3fImyB0ui7PpzS7SjfXxmO7tEO/p3iBQReTYs/TZwbkT8fvX1RcDLI+JdMx63DlhXfXki8P0sBQ3H4cBDTRfRoC6/fr/27hr3139sRBxR54FLMxahWb73c/+7RMQGYEPGOoZG0uaIWN10HU3p8uv3a+/ma4d2vf6cl3R2AMdM+3oSuD/j/szMrI+cgX8bcIKk4yT9AvAm4PqM+zMzsz6yXdKJiCclvQv4OrAE+FRE3JVrfyNSxKWnjLr8+v3au6s1rz/bH23NzGy8tOudtmZmNicHvplZRzjwa5D0KUm7JN3ZdC2jJukYSd+StE3SXZIubrqmUZI0IelWSXdUr/8DTdc0apKWSPpHSV9pupZRknSPpO9J2ippc9P1DIOv4dcg6dXAXuDqiDi56XpGSdLzgedHxO2SlgNbgH8XEf/UcGkjIUnAoRGxV9Iy4Gbg4oj4TsOljYyk/wKsBp4TEec3Xc+oSLoHWB0R4/ymq4H4CL+GiNgEPNx0HU2IiAci4vbq88eAbcALmq1qdKJnb/XlsuqjM0dJkiaB84C/broWWzwHvtUmaRXwEuCWZisZreqSxlZgF3BDRHTp9f8F8F7gqaYLaUAA35C0pVoCpngOfKtF0rOBLwLvjohHm65nlCJif0ScSu/d4i+T1InLepLOB3ZFxJama2nImRHxUnor/r6zurRbNAe+zau6dv1F4HMR8aWm62lKRDxCbw3GcxsuZVTOBC6ormVfA5wl6bPNljQ6EXF/9e8u4Mv0VgAumgPf+qr+aHklsC0iPtJ0PaMm6QhJK6rPnwW8Dri72apGIyLeFxGTEbGK3tIoN0bEWxsuayQkHVpNUkDSocDrgeJn6Tnwa5D0N8A/ACdK2iHp7U3XNEJnAhfRO7rbWn28oemiRuj5wLckfZfe+lA3RESnpid21FHAzZLuAG4F/ndEfK3hmhbN0zLNzDrCR/hmZh3hwDcz6wgHvplZRzjwzcw6woFvZtYRDnyzGiSt6uJqqdYuDnyzIZK0pOkazObiwLfWqY7Gt0n6ZLWG/TckPUvSqZK+I+m7kr4s6bnV45Ok/yFpU/W80yV9SdIPJH1o2qaXStpYPf9/STqkev49ki6VdDOwVtLxkr5WLbr1d5J+tXrcWkl3Vmvrbxp9y1jXOfCtrU4A/jIiTgIeAX4LuBq4JCJOAb4HXDbt8fsi4tXAXwF/C7wTOBn4PUmHVY85EdhQPf9R4D9Ne/5URLwqIq6hd9Pr/xwRpwH/FfhY9ZhLgXMi4sXABUN/xWbzcOBbW22PiK3V51uA44EVEXFT9b2NwPTVD6+v/v0ecFd1H4CfAj8Cjql+9uOI+Hb1+WeBV017/rXws1VFXwlcVy2p/Al6yzMAfBu4StI7AF/6sZFb2nQBZpn8dNrn+4EVNR//1IznPsWB35OZ65BM//rx6t+DgEeq5ZSf+eCIP5D0cno3FNkq6dSI2DNPXWZD4yN864p/Bf5F0r+tvr4IuKnP42fzS5JeUX3+Znq3O3yG6l4B2yWthd5qo5JeXH1+fETcEhGXAg9x4MzBbCQc+NYlvwv8WbXy5anABwd8/jbgd6vnPw/4+ByPuxB4e7XS4l3Ab1bf/7Pqpth3ApuAOwZ9AWaL4dUyzcw6wkf4ZmYd4cA3M+sIB76ZWUc48M3MOsKBb2bWEQ58M7OOcOCbmXXE/wfN0cKS1EXy8wAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "ename": "SyntaxError", + "evalue": "invalid syntax (, line 5)", + "output_type": "error", + "traceback": [ + "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m5\u001b[0m\n\u001b[0;31m plt.hist(x2, bins = bins, color = 'green',edgecolor = 'blue', hatch = '\\', label = 'x2')\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" + ] } ], "source": [ - "nbmots = [1, 2, 2, 3, 4, 4, 4, 4, 4, 5, 5]\n", + "x1 = [1, 2, 2, 3, 4, 4, 4, 4, 4, 5, 5]\n", "x2 = [1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 5, 5]\n", - "bins = [x + 0.5 for x in range(0, 6)]\n", - "plt.hist([x1, x2], bins = bins, color = ['yellow', 'green'],\n", - " edgecolor = 'red', hatch = '/', label = ['x1', 'x2'],\n", - " histtype = 'bar') # bar est le defaut\n", + "bins = nbscenetotal\n", + "plt.hist(x1, bins = bins, color = 'yellow',edgecolor = 'red', hatch = '/', label = 'x1')\n", + "plt.hist(x2, bins = bins, color = 'green', alpha = 0.5 ,edgecolor = 'blue', hatch = '\\', label = 'x2')\n", "plt.ylabel('valeurs')\n", "plt.xlabel('nombres')\n", - "plt.title('2 series')\n", + "plt.title('superpose')\n", "plt.legend()" ] }, @@ -708,20 +703,7 @@ ] } ], - "source": [ - "listeacte=[0,0]\n", - "listescene=[0,0]\n", - "listepersonnagescene=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]\n", - "valeremots=18\n", - "elisemots=5\n", - "\n", - "\n", - "listepersonnagescene[0]=valeremots\n", - "listepersonnagescene[1]=elisemots\n", - "listescene[0]=listepersonnagescene\n", - "listeacte[0]=listescene\n", - "print(listeacte[0])" - ] + "source": [] }, { "cell_type": "code",