{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Autour du paradoxe de Simpson"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ce document présente une analyse de données pour le MOOC recherche reproductible. Le but est d'analyser les données autour du paradoxe de Simpson, qui donne l'impression - en premier lieu - donner des conclusions surprenantes sur l'effet du tabagisme sur la santé."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Importing and checking the data"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nous récupérons les données sous format CSV depuis le Gitlab du MOOC."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"data_url =\"https://gitlab.inria.fr/learninglab/mooc-rr/mooc-rr-ressources/-/raw/master/module3/Practical_session/Subject6_smoking.csv?inline=false\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"raw_data = pd.read_csv(data_url)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Regardons visuellement le dataset."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Smoker | \n",
" Status | \n",
" Age | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Yes | \n",
" Alive | \n",
" 21.0 | \n",
"
\n",
" \n",
" 1 | \n",
" Yes | \n",
" Alive | \n",
" 19.3 | \n",
"
\n",
" \n",
" 2 | \n",
" No | \n",
" Dead | \n",
" 57.5 | \n",
"
\n",
" \n",
" 3 | \n",
" No | \n",
" Alive | \n",
" 47.1 | \n",
"
\n",
" \n",
" 4 | \n",
" Yes | \n",
" Alive | \n",
" 81.4 | \n",
"
\n",
" \n",
" 5 | \n",
" No | \n",
" Alive | \n",
" 36.8 | \n",
"
\n",
" \n",
" 6 | \n",
" No | \n",
" Alive | \n",
" 23.8 | \n",
"
\n",
" \n",
" 7 | \n",
" Yes | \n",
" Dead | \n",
" 57.5 | \n",
"
\n",
" \n",
" 8 | \n",
" Yes | \n",
" Alive | \n",
" 24.8 | \n",
"
\n",
" \n",
" 9 | \n",
" Yes | \n",
" Alive | \n",
" 49.5 | \n",
"
\n",
" \n",
" 10 | \n",
" Yes | \n",
" Alive | \n",
" 30.0 | \n",
"
\n",
" \n",
" 11 | \n",
" No | \n",
" Dead | \n",
" 66.0 | \n",
"
\n",
" \n",
" 12 | \n",
" Yes | \n",
" Alive | \n",
" 49.2 | \n",
"
\n",
" \n",
" 13 | \n",
" No | \n",
" Alive | \n",
" 58.4 | \n",
"
\n",
" \n",
" 14 | \n",
" No | \n",
" Dead | \n",
" 60.6 | \n",
"
\n",
" \n",
" 15 | \n",
" No | \n",
" Alive | \n",
" 25.1 | \n",
"
\n",
" \n",
" 16 | \n",
" No | \n",
" Alive | \n",
" 43.5 | \n",
"
\n",
" \n",
" 17 | \n",
" No | \n",
" Alive | \n",
" 27.1 | \n",
"
\n",
" \n",
" 18 | \n",
" No | \n",
" Alive | \n",
" 58.3 | \n",
"
\n",
" \n",
" 19 | \n",
" Yes | \n",
" Alive | \n",
" 65.7 | \n",
"
\n",
" \n",
" 20 | \n",
" No | \n",
" Dead | \n",
" 73.2 | \n",
"
\n",
" \n",
" 21 | \n",
" Yes | \n",
" Alive | \n",
" 38.3 | \n",
"
\n",
" \n",
" 22 | \n",
" No | \n",
" Alive | \n",
" 33.4 | \n",
"
\n",
" \n",
" 23 | \n",
" Yes | \n",
" Dead | \n",
" 62.3 | \n",
"
\n",
" \n",
" 24 | \n",
" No | \n",
" Alive | \n",
" 18.0 | \n",
"
\n",
" \n",
" 25 | \n",
" No | \n",
" Alive | \n",
" 56.2 | \n",
"
\n",
" \n",
" 26 | \n",
" Yes | \n",
" Alive | \n",
" 59.2 | \n",
"
\n",
" \n",
" 27 | \n",
" No | \n",
" Alive | \n",
" 25.8 | \n",
"
\n",
" \n",
" 28 | \n",
" No | \n",
" Dead | \n",
" 36.9 | \n",
"
\n",
" \n",
" 29 | \n",
" No | \n",
" Alive | \n",
" 20.2 | \n",
"
\n",
" \n",
" ... | \n",
" ... | \n",
" ... | \n",
" ... | \n",
"
\n",
" \n",
" 1284 | \n",
" Yes | \n",
" Dead | \n",
" 36.0 | \n",
"
\n",
" \n",
" 1285 | \n",
" Yes | \n",
" Alive | \n",
" 48.3 | \n",
"
\n",
" \n",
" 1286 | \n",
" No | \n",
" Alive | \n",
" 63.1 | \n",
"
\n",
" \n",
" 1287 | \n",
" No | \n",
" Alive | \n",
" 60.8 | \n",
"
\n",
" \n",
" 1288 | \n",
" Yes | \n",
" Dead | \n",
" 39.3 | \n",
"
\n",
" \n",
" 1289 | \n",
" No | \n",
" Alive | \n",
" 36.7 | \n",
"
\n",
" \n",
" 1290 | \n",
" No | \n",
" Alive | \n",
" 63.8 | \n",
"
\n",
" \n",
" 1291 | \n",
" No | \n",
" Dead | \n",
" 71.3 | \n",
"
\n",
" \n",
" 1292 | \n",
" No | \n",
" Alive | \n",
" 57.7 | \n",
"
\n",
" \n",
" 1293 | \n",
" No | \n",
" Alive | \n",
" 63.2 | \n",
"
\n",
" \n",
" 1294 | \n",
" No | \n",
" Alive | \n",
" 46.6 | \n",
"
\n",
" \n",
" 1295 | \n",
" Yes | \n",
" Dead | \n",
" 82.4 | \n",
"
\n",
" \n",
" 1296 | \n",
" Yes | \n",
" Alive | \n",
" 38.3 | \n",
"
\n",
" \n",
" 1297 | \n",
" Yes | \n",
" Alive | \n",
" 32.7 | \n",
"
\n",
" \n",
" 1298 | \n",
" No | \n",
" Alive | \n",
" 39.7 | \n",
"
\n",
" \n",
" 1299 | \n",
" Yes | \n",
" Dead | \n",
" 60.0 | \n",
"
\n",
" \n",
" 1300 | \n",
" No | \n",
" Dead | \n",
" 71.0 | \n",
"
\n",
" \n",
" 1301 | \n",
" No | \n",
" Alive | \n",
" 20.5 | \n",
"
\n",
" \n",
" 1302 | \n",
" No | \n",
" Alive | \n",
" 44.4 | \n",
"
\n",
" \n",
" 1303 | \n",
" Yes | \n",
" Alive | \n",
" 31.2 | \n",
"
\n",
" \n",
" 1304 | \n",
" Yes | \n",
" Alive | \n",
" 47.8 | \n",
"
\n",
" \n",
" 1305 | \n",
" Yes | \n",
" Alive | \n",
" 60.9 | \n",
"
\n",
" \n",
" 1306 | \n",
" No | \n",
" Dead | \n",
" 61.4 | \n",
"
\n",
" \n",
" 1307 | \n",
" Yes | \n",
" Alive | \n",
" 43.0 | \n",
"
\n",
" \n",
" 1308 | \n",
" No | \n",
" Alive | \n",
" 42.1 | \n",
"
\n",
" \n",
" 1309 | \n",
" Yes | \n",
" Alive | \n",
" 35.9 | \n",
"
\n",
" \n",
" 1310 | \n",
" No | \n",
" Alive | \n",
" 22.3 | \n",
"
\n",
" \n",
" 1311 | \n",
" Yes | \n",
" Dead | \n",
" 62.1 | \n",
"
\n",
" \n",
" 1312 | \n",
" No | \n",
" Dead | \n",
" 88.6 | \n",
"
\n",
" \n",
" 1313 | \n",
" No | \n",
" Alive | \n",
" 39.1 | \n",
"
\n",
" \n",
"
\n",
"
1314 rows × 3 columns
\n",
"
"
],
"text/plain": [
" Smoker Status Age\n",
"0 Yes Alive 21.0\n",
"1 Yes Alive 19.3\n",
"2 No Dead 57.5\n",
"3 No Alive 47.1\n",
"4 Yes Alive 81.4\n",
"5 No Alive 36.8\n",
"6 No Alive 23.8\n",
"7 Yes Dead 57.5\n",
"8 Yes Alive 24.8\n",
"9 Yes Alive 49.5\n",
"10 Yes Alive 30.0\n",
"11 No Dead 66.0\n",
"12 Yes Alive 49.2\n",
"13 No Alive 58.4\n",
"14 No Dead 60.6\n",
"15 No Alive 25.1\n",
"16 No Alive 43.5\n",
"17 No Alive 27.1\n",
"18 No Alive 58.3\n",
"19 Yes Alive 65.7\n",
"20 No Dead 73.2\n",
"21 Yes Alive 38.3\n",
"22 No Alive 33.4\n",
"23 Yes Dead 62.3\n",
"24 No Alive 18.0\n",
"25 No Alive 56.2\n",
"26 Yes Alive 59.2\n",
"27 No Alive 25.8\n",
"28 No Dead 36.9\n",
"29 No Alive 20.2\n",
"... ... ... ...\n",
"1284 Yes Dead 36.0\n",
"1285 Yes Alive 48.3\n",
"1286 No Alive 63.1\n",
"1287 No Alive 60.8\n",
"1288 Yes Dead 39.3\n",
"1289 No Alive 36.7\n",
"1290 No Alive 63.8\n",
"1291 No Dead 71.3\n",
"1292 No Alive 57.7\n",
"1293 No Alive 63.2\n",
"1294 No Alive 46.6\n",
"1295 Yes Dead 82.4\n",
"1296 Yes Alive 38.3\n",
"1297 Yes Alive 32.7\n",
"1298 No Alive 39.7\n",
"1299 Yes Dead 60.0\n",
"1300 No Dead 71.0\n",
"1301 No Alive 20.5\n",
"1302 No Alive 44.4\n",
"1303 Yes Alive 31.2\n",
"1304 Yes Alive 47.8\n",
"1305 Yes Alive 60.9\n",
"1306 No Dead 61.4\n",
"1307 Yes Alive 43.0\n",
"1308 No Alive 42.1\n",
"1309 Yes Alive 35.9\n",
"1310 No Alive 22.3\n",
"1311 Yes Dead 62.1\n",
"1312 No Dead 88.6\n",
"1313 No Alive 39.1\n",
"\n",
"[1314 rows x 3 columns]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nous allons maintenant vérifier si aucune donnée n'est manquante, et si les différentes lignes concordent entre elles."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Smoker | \n",
" Status | \n",
" Age | \n",
"
\n",
" \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
"Empty DataFrame\n",
"Columns: [Smoker, Status, Age]\n",
"Index: []"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data[raw_data.isnull().any(axis=1)]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Smoker | \n",
" Status | \n",
" Age | \n",
"
\n",
" \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
"Empty DataFrame\n",
"Columns: [Smoker, Status, Age]\n",
"Index: []"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data[(raw_data['Smoker'] != \"Yes\") & (raw_data['Smoker'] != \"No\")]"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" Smoker | \n",
" Status | \n",
" Age | \n",
"
\n",
" \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
"Empty DataFrame\n",
"Columns: [Smoker, Status, Age]\n",
"Index: []"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"raw_data[(raw_data['Status'] != \"Alive\") & (raw_data['Status'] != \"Dead\")]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Le dataset paraît correct, et les données brutes sont ainsi utilisées pour l'analyse."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"data = raw_data.copy()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Taux de mortalité (question 1)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nous allons calculer le taux de mortalité sur la période pour les deux groupes de femmes: fumeuses et non fumeuses, et représenter les résultats sous forme d'un tableau."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Smokers Non-Smokers\n",
"Vivantes 443.000000 502.000000\n",
"Mortes 139.000000 230.000000\n",
"Taux mortalité 0.238832 0.314208\n"
]
}
],
"source": [
"alive = [len(data[(data['Smoker'] == \"Yes\") & (data['Status'] == \"Alive\")].index), len(data[(data['Smoker'] == \"No\") & (data['Status'] == \"Alive\")].index)]\n",
"dead = [len(data[(data['Smoker'] == \"Yes\") & (data['Status'] == \"Dead\")].index), len(data[(data['Smoker'] == \"No\") & (data['Status'] == \"Dead\")].index)]\n",
"deathrate = [dead[0]/(alive[0] + dead[0]), dead[1]/(alive[1] + dead[1])]\n",
"\n",
"print(pd.DataFrame([alive, dead, deathrate], [\"Vivantes\", \"Mortes\", \"Taux mortalité\"], [\"Smokers\", \"Non-Smokers\"]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On remarque que le taux de mortalité est - nettement - plus élevé dans le groupe des non fumeuses, ce qui constitue le paradoxe de Simpson, vu que le sens commun ferait s'attendre à la conclusion inverse."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Taux de mortalité par classes d'age (question 2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nous allons regarder si les résultats persistent en prenant en compte les différentes classes d'age"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Smokers Non-Smokers\n",
"18-34 0.037037 0.026432\n",
"35-54 0.170306 0.099476\n",
"55-64 0.443478 0.330579\n",
"65+ 0.857143 0.854922\n"
]
}
],
"source": [
"classes_breaks = [0,35,55,65,150] \n",
"tab_alive = [ [len(data[(data['Smoker'] == \"Yes\") & (data['Status'] == \"Alive\") & (classes_breaks[i] <= data['Age']) & (data['Age'] < classes_breaks[i+1])]), len(data[(data['Smoker'] == \"No\") & (data['Status'] == \"Alive\") & (classes_breaks[i] <= data['Age']) & (data['Age'] < classes_breaks[i+1])])] for i in [0,1,2,3]]\n",
"tab_dead = [ [len(data[(data['Smoker'] == \"Yes\") & (data['Status'] == \"Dead\") & (classes_breaks[i] <= data['Age']) & (data['Age'] < classes_breaks[i+1])]), len(data[(data['Smoker'] == \"No\") & (data['Status'] == \"Dead\") & (classes_breaks[i] <= data['Age']) & (data['Age'] < classes_breaks[i+1])])] for i in [0,1,2,3]]\n",
"tab_deathrate = [ [tab_dead[i][0]/(tab_dead[i][0]+tab_alive[i][0]) , tab_dead[i][1]/(tab_dead[i][1]+tab_alive[i][1])] for i in [0,1,2,3]]\n",
"\n",
"print(pd.DataFrame(tab_deathrate, [\"18-34\",\"35-54\",\"55-64\",\"65+\"], [\"Smokers\", \"Non-Smokers\"]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"On remarque cette fois que, pour chaque classe d'âge, le résultat est attendu où le taux de mortalité est nettement supérieur pour le groupe des fumeuses, sauf pour les plus de 65 ans où les résultats sont sensiblement égaux."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Une explication possible de ce paradoxe est que le groupe des non fumeuses contient plus de personnes agées (proportionnellement), vu que les non fumeuses vivent plus longtemps, et du coup il contient également un taux de mortalité plus élevé, vu que l'âge est la principale variable explicative du taux de décès."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Vérification de l'hypothèse - régression logistique (question 3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Pour commencer on va rajouter les variables de type boolean dans le dataset, pour représenter les variables Status et Smoker."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"dead_bool = [(data['Status'][i] == \"Dead\") for i in range(len(data))]\n",
"data['Dead?'] = dead_bool\n",
"smoke_bool = [(data['Smoker'][i] == \"Yes\") for i in range(len(data))]\n",
"data['Smoke?'] = smoke_bool"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
" Nous allons tester les hypothèses par régression logistique."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import statsmodels.api as sm\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"x1 = data['Age'].values.reshape(-1,1)\n",
"x2 = data['Smoke?'].values.reshape(-1,1)\n",
"x = np.hstack((x1,x2))\n",
"x = sm.add_constant(x)\n",
"y = data['Dead?']"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Optimization terminated successfully.\n",
" Current function value: 0.381244\n",
" Iterations 7\n"
]
}
],
"source": [
"model = sm.Logit(y, x)\n",
"result = model.fit(method='newton')"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"Logit Regression Results\n",
"\n",
" Dep. Variable: | Dead? | No. Observations: | 1314 | \n",
"
\n",
"\n",
" Model: | Logit | Df Residuals: | 1311 | \n",
"
\n",
"\n",
" Method: | MLE | Df Model: | 2 | \n",
"
\n",
"\n",
" Date: | Tue, 01 Sep 2020 | Pseudo R-squ.: | 0.3579 | \n",
"
\n",
"\n",
" Time: | 10:16:00 | Log-Likelihood: | -500.95 | \n",
"
\n",
"\n",
" converged: | True | LL-Null: | -780.16 | \n",
"
\n",
"\n",
" | | LLR p-value: | 5.534e-122 | \n",
"
\n",
"
\n",
"\n",
"\n",
" | coef | std err | z | P>|z| | [0.025 | 0.975] | \n",
"
\n",
"\n",
" const | -6.3519 | 0.360 | -17.637 | 0.000 | -7.058 | -5.646 | \n",
"
\n",
"\n",
" x1 | 0.0998 | 0.006 | 17.290 | 0.000 | 0.089 | 0.111 | \n",
"
\n",
"\n",
" x2 | 0.2787 | 0.165 | 1.689 | 0.091 | -0.045 | 0.602 | \n",
"
\n",
"
"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Logit Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Dead? No. Observations: 1314\n",
"Model: Logit Df Residuals: 1311\n",
"Method: MLE Df Model: 2\n",
"Date: Tue, 01 Sep 2020 Pseudo R-squ.: 0.3579\n",
"Time: 10:16:00 Log-Likelihood: -500.95\n",
"converged: True LL-Null: -780.16\n",
" LLR p-value: 5.534e-122\n",
"==============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"------------------------------------------------------------------------------\n",
"const -6.3519 0.360 -17.637 0.000 -7.058 -5.646\n",
"x1 0.0998 0.006 17.290 0.000 0.089 0.111\n",
"x2 0.2787 0.165 1.689 0.091 -0.045 0.602\n",
"==============================================================================\n",
"\"\"\""
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Le tableau précédent donne les résultats de la régression logistique, avec x1 qui représente l'âge, et x2 qui représente le status (fumeuse ou non fumeuse). Le modèle cherche donc à expliquer la variable \"Dead ?\" à l'aide des variables âge et fumeur ou non. Les résultats montrent un p-value à 0.09 pour le status de fumeur, ce qui signifie que l'on peut rejeter l'hypothèse nulle pour une valeur significative de 10%, mais pas pour 5%. De plus le coefficient associé est positif, on peut donc en conclure que le fait de fumer impacte négativement l'espérance de vie, pour un seuil significatif de 10%. Des recherches plus approfondies seraient nécessaires pour établir des conclusions plus claires."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}