diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index 5e2eb74affb248c9a5d79c936cec77b57a08b169..9139e6f0a76d37e8a756428b88ef84dff921fbb2 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "markdown", - "metadata": { "hideCode": false}, + "metadata": {}, "source": [ "## Asking the maths library\n", "My computer tells me that $\\pi$ is *approximatively*" @@ -18,9 +18,7 @@ { "cell_type": "code", "execution_count": 1, - "metadata": {"hideCode": false, - "hidePrompt": false, - "scrolled": true}, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -37,7 +35,7 @@ }, { "cell_type": "markdown", - "metadata": {"hidePrompt": false}, + "metadata": {}, "source": [ "## Buffon's needle\n", "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" @@ -46,13 +44,12 @@ { "cell_type": "code", "execution_count": 2, - "metadata": {"hideCode": false, - "hidePrompt": false}, + "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "3.1289111389236548" + "3.128911138923655" ] }, "execution_count": 2, @@ -71,7 +68,7 @@ }, { "cell_type": "markdown", - "metadata": {"hideCode": false}, + "metadata": {}, "source": [ "## Using a surface fraction argument\n", "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" @@ -80,7 +77,9 @@ { "cell_type": "code", "execution_count": 3, - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [ { "data": { @@ -794,7 +793,7 @@ gKdReDKTNcEaEcFZEAFwF0AHjSNntueZlJDvt/i6HxrYPdATFcm3ePNe/ic1x2oWZs08C+P7qz/Wgqlq { "data": { "text/plain": [ - "3.1120000000000001" + "3.112" ] }, "execution_count": 4,