diff --git a/module2/exo1/toy_notebook_e.ipynb b/module2/exo1/toy_notebook_e.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..c7c907ae420ea873d082bfae8b37994f1fd44efd --- /dev/null +++ b/module2/exo1/toy_notebook_e.ipynb @@ -0,0 +1,180 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# On the computation of $\\pi$" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false + }, + "source": [ + "## Asking the maths library\n", + "My computer tells me that $\\pi$ is *approximatively*" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "hideCode": false, + "hidePrompt": false, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3.141592653589793\n" + ] + } + ], + "source": [ + "from math import *\n", + "print(pi)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hidePrompt": false + }, + "source": [ + "## Buffon's needle\n", + "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "hideCode": false, + "hidePrompt": false, + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "3.128911138923655" + ] + }, + "execution_count": 2, + "metadata": { + "hideCode": false, + "hidePrompt": false, + }, + "output_type": "execute_result" + } + ], + "source": [ + "import numpy as np\n", + "np.random.seed(seed=42)\n", + "N = 10000\n", + "x = np.random.uniform(size=N, low=0, high=1)\n", + "theta = np.random.uniform(size=N, low=0, high=pi/2)\n", + "2/(sum((x+np.sin(theta))>1)/N)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "hideCode": false + }, + "source": [ + "## Using a surface fraction argument\n", + "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAAD4CAYAAADIOotxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9e3Bc13kn+LvoxhsNNBpvgXiSDQkkSIoiKFCyI/ohyVZsy55MvIlHk3IqU3G5Ymdrt3a2ardqK5XK/pNKzdZWKquasSfjSibjimsyM1boJyXZEiVLFERQFE2QINECSDxIvBsNNIDGo4G7f/z46Zy+fe/t20CDIix8VSgA/bj33HO+99MwTRP7sA/78PGAvI96AfuwD/tw/2Cf4PdhHz5GsE/w+7APHyPYJ/h92IePEewT/D7sw8cI/B/Vjaurq83W1taP6vb7sA+/sXDp0qVZ0zRr7N77yAi+tbUVfX19H9Xt92EffmPBMIwRp/f2Vfp92IePEewT/D7sw8cI9gl+H/bhYwT7BL8P+/Axgn2C34d9+BjBPsHvwz58jGCf4PdhHz5GsE/w+7APHyPImHhjGMb3AHwRwLRpml027xsA/hrAbwNYAfCHpmm+l+uF7sM2IBoFIhEgFgOCQSAcBkKhj3pV+6DDfT4jL5l2fwfg/wPwnx3efw5A+N5PD4B/f+/3fYWs9s3Lh/c6sUSjQG8vUFoKVFUBKyv8v6fno3kOu/0EPvo93q1ztl63uhqYnU1//vt8RoaXjjeGYbQC+LGDhP8OgNdN0/zHe//fBPAp0zQn3K7Z3d1t5iq1VsftkhLu2/Jy6r7J/i+PRfHQWC8awqWoqHf5cKYLelnUbiO4G7L29gJra3wGgeVloLCQz3E/wW4/JycB0wQaGoCNDeD994HBQaClBTh1Cjh5MvPe7JRYc3HOdmsxDGB+ns9WUsJnfe894LHHgPp6dR+fDygq4v0XFoCxMWBmhvf+yle2jRuGYVwyTbPb7r1c2PCNAMa0/8fvvWa3kG8YhtFnGEbfzMxMDm5NiESAzU3g1i3gnXf4e3OTrwPqXNfWgIalCFb9pegfLsXYHQNXb5Wi91op+l+KIBrVLlhayh/DUH/LBTOBfsOqKv5+5RXghz8ELl8mYl++zNc+vGmWYHeP3l5gaIi/X30VGB4mIgmUlBAh7zfY7Wc0SqJIJoGLF4GRESAQAKangX/+Z+Df/Tvg5Zed98fp+bPZz52es3UtMzPAxATwox8Bb7zB1w0DmJsDKiv5W7/PwADPZGEB6O8H1teB2lp1ve3ihgvkguANm9ds1QbTNL9rmma3aZrdNTW2xTyOIHtw7lz6XoyOEs/X14GKCv4eGuLrQOq5+pZiKAyWYGsLeOM8sLEOBGpLYEZj6rqxGA9Ch0zEoi/wpZfIcXREGh8nl/f5KI18PiL5pUtZ7cOHYIesm5vA2bNE/sZGIB4nIgnRr6zw3vcb7PZzY4M/Y2NcX3k54Pdzn4qLKf2Hh50RPxfEup1ztgOROMPDfKaiIj7Dm2/y2eJxImY8nnofgGcyNsbPFxfz7Gpqtsd4PEAuCH4cQJP2/wEAd3Nw3Q/BjZlHo9QGb94E7t6lplRcDOTlqf3Vz3UzEETe6gpiMWBri5/1ra1gtSiIkRHgH/4B6L8TxMLkSuoi3IjFusBolBxnYUFx77feog23uUkE3dzk5/77f98eN7dDVrl+aSnQ3EyiMQxyvuVl/ohpcT8hGOT+6ZCfz594nFK+oACYmqKUDwT4WjLpjPhOTOSdd+ylgtd1bYcpxmLceyHasjKaTpubJOZAgHgQCKTe58ABMvw33ySjm50FEgmgqWnXtLFclMeeBfBtwzB+ADrrFjLZ79mCzswB9buvj3taWMh9Xloi/hw4QDw3DJ77jRvEnaIioGApjLbpXsxGgermEuQlVpCYXcZ76EJeFRnFYm0Yg+/1ouMxpNr5XWkuDPsF1tQAi4tU2TY3ubj8fEqwDz6gbSc2bGmp4mButqNuI+blkcOtr/NeTU2UILOzdA4B/L+ri8R+5w7Q2cn/d8tn4AbhMJ8PULZyKMTnHx/nGmdmSPANDYo4Wlr4+bm59GsKscqeLyyQeMrLlQPs1VepSm9t2a/Xbl1u5+wEwSBw9SpQV0ckXF7m+VRUUMXv6qI219bGZ15Z4euGwTVEozRl4nHgqaf4veXlXdHGMkp4wzD+EcAFAA8bhjFuGMa/MQzjm4ZhfPPeR34KYBjABwD+I4A/yfUinTSvgQGed0sLcb60lEw+GqUpFIuRlpqbgWvXeCYbgRCGa3owMV+IsvU5bBUUYqC8B3nVIRgGaSkyF0IvenD+QiEWb80pR5cTclsX2NREJLt5k1wGIBKK+jkwwNfW14H2dnd1NBqlLfvii7T7Ewn+jkb5/cVFPtjEBM0EIXiAiNPeDjz99M49v7oW4/dzDS++yLWJ38BJsoZCvH9hIYm3sJBOOb8fePddPvfSEtc/NcVnMU0SwOSkPeKHw0prMU36RQCgo4N7nEwCt29zbU42vt26trNP4TDXfucOGbppEgcCAar5BQXACy+QOct9KivpwGtoAD79aTLktjbi0i5qY5689LsB2XjpnRzOly8Dn/gEcb6/n4K0sJDM0ufjfjU08L35eeLSxgZw9CjPYHKSeHflijpzwyB+yHWOHPGAA3YLnJgAfvELElx5OYnvxg0e6NWrwLFjfL2nh++ZJhfwuc+pawiRjYyQEwmzaG5WmkEgoDy7Z84Q8XMdXQiF1DMmk2qzhSiXl9M90Jm0lVdfpUS+dYvMcWqKv1dWSAynTlFVSyaBr3/d/lpDQ8D589zr2VlKx+Zmvtffz/WurwNPPKGQJlOUYrtazNAQ8Dd/oxxvwSDPrKaGTLqxMfV6584R0Yx7LrCFBaWNPf30jiI4bl76j6zjTTbgpHkdPsy/RXsdGyORhkKkg/p6fice595WVXFfu7qIq/n5PP+tLf6Ul5MRFBfzjHTfiWsky26BPh/w3HMq7ALwBoODRMSWFkqjigq+Z2c7iqmQTPJzhsGFxmJKasnDiCfY5yMnBLhB2RK7U1w4FqNEPn+eHLaykog9McFnmZsjd5Vnddu0vj5K37U1bnhBAZlWWxvw0EM8yHich1hWZr/+aJR7eegQmWdfH+9ZUaEcZAUFqXazk3ng5fkz7WFlJdc6NERJcvAg1zU9TSnT0sJzefllXs8wUk0S0cY6O3c1bLonUmudNK+TJ5X2U15OfDlyhCHM5mbljwkEgNVV/oj/pK+PzBQAvvhFnkciwWsnEln6TpwW2N2dqnb6/bzRt7/N334/X3dS4cRUkAcAyBRiMfUwAB9UHBZFRVR7Tpwgo8gG3DzfeXmUyELsGxvUWBIJew+026YNDPA5KivJdQ2DzzIxwT2pqVGJKouL3rz0HR18fXBQ7XUsxkMUyOSQ267nPxpliDUWoyTv7CQzu3CB+1NcTJvS56OdPzxMlXNyUuHGfXKq7gkJDyiaskJPD89jbo5nKX4pXeiKMxTg6319PPvqajpIfT5qg5EIQ8KFhYD01/TstM12gZWVaa9HEUKkV2mTj+QFUbGyQqTt7+f1xDl35w4Rqa+PamRrK20Vq2fTTdJa1dfRUXJNHUQqiupZUsL7GQYRVeLI5eXqO143ra6Okl083AsLdOKZJtWz/HxqEXZSVrQcgYoKSoD+fq63vZ1EJUzVi0POek1dzQac1exIhPc6dIifFQY2MEBkCgSUB980ed2GBjIFERI6buwi7BmCdwInOpPXIxEy2RMnuNcDAyTwwkIKwHicWtfNm9SAm5oUrvb1kY6efnpnC4yGexRdRQRvUhdup01enA/jcbMX5Q2lVF0iESLtqVNc8NgYCaK2loguBChmgpMKG42SA/b2kuuFw0Q+iYE3NKjPCvHGYiSogQF+d2uLKuz8PDdUHE6RCAm4p4f3sUPgw4ep3lZW8rkGB+nsOnSIr1VU8NqGQdXf7+fPM8+oa1i99AAZxOnTal+FoXklKP2aEk41DEptt0hKLEaNp6qKGtbUFJ2QRUV8HtNUztu5Oa7ryhXu4R/8wX1NJ97zBO8GdszANKk5xmLE76IiCpMrVxROxWLUtqJRMoWWlu37ULyahbahx/oQBld70F2oca1wWHGxtjaVYnj7tlIVn3uORGMnaXVHYG0tEfraNRKDXLu8nAgciVAC9/RQpc/PJ7HG41S1V1ZImB0dJIjLl6mOP/EEP+tEICdPpmbaPfwwCfWZZ6hi+f1cU3ExDyiR4LX0dFsvITVR9YTbRiLuB6lfc3RUaTHiJJWD0pEqGqVUlwNsaaH9nkgQsfLy+DyJBNd44wbwyCPKeXSf6xt+owneCnI2Fy5wrysquO9ra8QZn49MACD9VFTwvLyEyZ3AKYfAijdWbRK4J6ATNlxLJMrSEhNNZmb4ICsrwPXrXOTRo3wgqwpr5wgEqC0cOULfgDxwdTXw5JNE1vff5/U3N4nI1dV8vatL5RecOZMqcRcXmXVo9VCHQiRuO294MEjGISowwDVWV6dumq7COUnwbJ1w+jXv3OG6m5udNSa5fm0ttaKREZ5JezvPp7WVTEoyBuNxMrfS0tS9y+gVzh18bAheP5uyMgrFtTV8GHuX8HV/P3EnFKKpOj1N2tjctMfdTOBIyHOpJvSdO8QRO206DYJBLu7ddynVKipUBpI4v+rq7AswZEHiCBQpurDAG4qT66mnlGo7PMx7BIM0JW7eJLJ2damQ4sQEvdIAvzMwwPBjfj6lnpVrOtli4TA92XV1vO7qKonjyJF0R6DTNQS8cluna1pDrdYD0a8vztWbN6kdPPccnbahECX+yZNM48zLY/Tg4EHuXSxGBvcAlcf+RoB+Np/6FFV2MbO6uohTQ0PUZiXTU7S5gQG+trFBnPaSxCVgZ2qurPDcdeGzsWFfUGXrYwqHuYDlZS7M7+cFKiu54KYmciartItEqFIWFiqJBCivttzw4kXFpSTPW5hCdzcldyCQGlJsaOBvidNPTJCz5ucrk8EL1xSCk8KfQIDE4ffzetmAG7fNBF5MBv36FRU0ZU6f5vWffTb9uU6fTmUidtmBu6zi74mwXC5AT4Y7cAD4vd+j5gUQ944epfnZ3k7839qiD6mqitqA5FB4TeISsCaE6X/rEaCGBhL79LSHpK9QiHZzZycvtLaGRKgB44FHcCuyjqHxfCzkaZJIz5Lr6iLB3rxJ5rC5SSdTe7u6oZ5jHo+T2CUMKFmEMzOpD3TmDH8PDiq7G6B0Ly4m1xwa4loybVp3N7937BgluzCjbENWO8mV95KFl+31M2UHbrdaLwv42Eh4q6RtagI+8xkSWEMD3//0p4mrhw9TSPl8xNv1deK4aLtjY0qrlnMC7DVFJ1Pz4sX0dGGJROnJdo7Q3ExCqqrCyq0JjC8GULi+hmJ/EnPFlbg4H8Zj4iS3qrbd3US2kRFKHbcc87IyckvTVGrowYOKM1lDjYOD5I7l5XytrIzfvXmTRCxcczubtp2U153kymcyGZyu39jI161quvW51tao6oumJNfxooFsE/YcweeyfsPnSzVzdR+PRMFmZynp29vVuWSbxGWHN06qvud6CSm6OHoUk3MBFM/eRAHWET/9LDa6P40Cf0jRkl3MurubC84U0ywtpTc9HCYRS+OGr3yFn5XkBTkMUVtFtU8kSPBWrpkpxp2J2LxArhhHNtdvbFTpzXZquv5cwSD3SoddLmHeE7n0Atk0KNluwxmn7+n37eujVtzdrZhAts1kctJs5d5iL74aQ1ljEGvNYWxW8Mspqfk77X7jZVPkATo6FMJLaG92lsyivV1Vw0mMOxDg69vtNJNLyEW7K73mQFKE/X4+o9Wuz2XHHQ3ccun3FMFb8XZhQaWm65qp133M5nzdOhht95xy1U4tIz3vBmK53VSPfdsxiOFhEoJpKk//R9l+KxIhcY6Nca1ei4Ds4Nw5+zyCqSngW9+6L70T93zxjICumYqQKCpKj5V7icZsN0QrkE0S1273w8xoqm5XtXVbuJ0HfGMjNcR06lTqPbKJcd8P0JFgcpIEPzjIvens9FY5Zd0jw+D/1jyCmhp3f8V9gj1F8LrdOzDAyI9Uy+mx8omJzPi0nRCtDl7PyYmx6JqvvP7KKyoTMxvG4Imes0WsTBzRSwMKKwfNJsadS3BiXHoS0rVrfK24mNlXm5t05Ei0wesezc/TN9HamjmP4COAPRWWk6jGxAT9RJEIU2J//Wvgv/wXFeXx0s5tp23rvHalsuLUr39N5/hPfpIalksm+frw8PZ7MuYUMlWO7STE5BSr3I1KMbf+aIIEEnYxDNWaqriYa99Odd3aGpHvyhU6K7u6GH5xu9Z2kGsbsKckvAiI73+fGpj0aiwsZKx8aooJTs3Nyic0Oqp8Qno0JlsveSaBJ0JkdJTMprycDumxMUptMekqKsjw+/rI9AUE5+bn+Vnx9fh89PW4adduawO2aU6MjTEzaWlJxd/Ly5WaJIdx6RLV+IGB9HCXk5rupJIAKpyVl0dmsLioEn2amzM/gHWjFhedVTlBgnic1x4aUpqHaTLXwI0J2VXXDQ2pmvy8PHJyCQl1dbk7QDc36eC8ehV4+23g+ecZAs0h7CmCB3jWW1usP5icpA0vJdWLi/xdUcHzu3SJ+9beztCa1E4APJveXppW4TCvYReilfN55x0yFl2AAeqacl5376oGmkVFpJuREdKK9N27eZNa43/4D8z66+zk5zc2yLRCIcUYent55m6Rnkw9/7Lu5xCNcuFSpXbzJjdAmk3okEyyqEdq4vv7lSPOjYPaOUWEa/n9PLyVFW56WRmvXVzMzzk9gBPnk443AsKITp3i+34/D62yUnXzSSTSfRBWsEqNsTFeR3quSZ/56WkVxrRbn8+nut4WF/P9Dz4A/uqvgN/9XW89+j3CniN4AdNksdjcHPdNpKeUG4+Oct/q6/mzuMi9HxlR8w+efJLEcuECccjOiy/nk5fHn/5+MpOFBZoWU1NkGqEQz6ykROHL3ByZwY9+xDOLxykMJydZQ3HnDpn5woLSUhoaVPddaVF3/jxpzcnf4JRBevkyaTFrP4VwMemVFwgo73pTkyp71TlNMEh7JZFQFXZ2xTs6WIsJamt5rf5+Et/8PFXipia1oW1tzg9gx/mk6ObUKfU5YUTCdPx+4LXXSJiSw7+8zINxKvEF0r2lMzOUHNJUVG9dFgopZLIeyOXL/GxxMZFoaIjSIpnk38lkzkKWe8qGF+js5L4kk0yTbW6mal9VxbOTysbpaTLb/HwS5uuvU3CMjyscPXWKdSKSGKaDjj/l5arD1BtvEBfv3lVmQyJBPJUmM0VFJPD6eq5ha0tpjOEw19rZSbyemGAiT34+mcH6utI41tb4PTd/g1OGp3zO6XuOEItx4eXlKp5eVsaNrq9XdrnYwMJhm5tV26tIhOqQW+jCqbW3qEdSwKBvqNsD2DlmwmESopO/QCr3Tp5UNeuVleSwc3PucwOs6bdSKKNnzulajpPjCKAqX1Sk1FbD4DrcWnVvA/akhO/uJtFeuqTSW7e2KIjW1/neoUNk1oWFxKOCAn5udZV7J1ookGpq6kLnxg0loKTpzOSkSj+XzkojI2QulZXEe6kyDQR43t3d/M7SEq9VWMj3RWrHYqpD061bxPHSUqb4bmwQP938DZl6/mXtDBcOYpq8iGEAiQTiawW4PVyC1Ttz2ILWkUcfpFBaShuqrY1I7GSDOrX2lj7uq6vk3lK+q2+o0wM4NcXQidIpJDk+TnNFJ0gpN9YbbwhYbfFTp5SJsLxsHx91chxJLrd0rC0oICJXV/OZcxiy3JMSPhSiSfTlL5OoEwlKyy9+EXj0UQqM6moKo9FRnrXY3SUlyjErIDhkFTqFhWQqCwuqUebKiipOe+QRJfhiMeLs/Dx/VlZ4jeVlErxoZGtrqjCnrIx4LA5cSTuXz6yuqs9andqTk6SPc+eId7W1NPvOnePvjo7Unn9ZOcPFiy6NGxIJTI8m8PPrTeh/dwWTq0HMzLAjz+LEsqrHz6YZoFNr75kZqm3z86rc17qhTg/g5P2XA/jc53KjGjt5/gFuvPUg9KYddus7eZIOumRSHXpjI23Ipqachiz3pIQHuIfPPktCtIZ0JdErHCauSFXlgQMqrCrFXjoTtgqdjg46vgYHiTN+PwVXOEyGu77Oz/n9/L7Pp5qjiEkRCKi1fOUrXMvt2zzLlRXifUsLGVQsRgYWjao5EydOkJl1dyuntjRiKSxMn1V47Bj/P3uWzxsMqlCw51Ry3bbt7UW8uBrnZ4/AKPCjJn8Zd6u6EBsG2ttDGCzoQffyBB+2poY/+lBEsYHtElSs0i6ZpC2fn0/NIBBI9dKLh9XpAey8/6WlKjmjoYFVfXZaR2cnm3wYhqoOjMUoQayQyUsqzs2VFSJPZaV98Yx+IKEQ23H39almpOFwatlyDmBPpdbagbW9N0BiuH2bzPHVV4kvoRAlvjDM6enMrcIBnnl/P6V5MEjCHBxUvpW8PDLkgwdJ8D09ZDJnz/Iz1dX8kfcAnqnMojh8mAxeukn196sRZdII9rnngH/xLxSeW7Na+/v5jBIKzGmaejSK/pciGLgQQ+lDQSw1hLFeFkIiQbpsaAA+dyqqwhR2m6JnGYmqK5NX6uv5sGIrnzypHBg7lcZDQ4zhSp+8hQUezgsvpBO99MqPRrme/Hze++mn09fghHRvvZXqJQW2lzK8w9TM35jUWjvIyyMBJZMqXOz383dPj7JvdVyzVskJeOmLCKiGs6ur6cIHILH7/ST01VUScHu7ci4/+2x6HYX4ya5f598+H++Tl6d8R2JKWr3yMqtQTGC9X0Umz3xG3AqFcKexB8ufAGIbKltUejV2dkJJrpdeIrHo46+Wl+3DDHrX1suXya30Pv1ui/YK589zEysr+b/8Pn8+neCFuL0QmpMtDtg75aS9kR2n95LHnUPY0wQvfRAXF1WlYV8fVWQhjmzSyL2WT8s17c5EBF11NQWAEMjsLJmHEwgOTU9zHUVFaqpTMMhuVuXlKoIlk6ak6+7SEmlIiF9vW+/WvNZLPUEwSDoeHub/RUWKKX1oTodCVJmOHUuVfCUlqe2v9NcTidS4ovV7eh8wa0aTF6k3MZHalx7g5ugOHB28EppXL6lUd0WjTA1NJjloA1Djwrq7iRz7La4yQySi+ilKJWJ5uTKZBLyeYy7Kp2MxJdltpeE9sEpWMRXW1+mkXVtTnvzlZUYCxEc0Pw/8+MfUGgyDzz4xwRwNa78KwNnn47WeQErv29uJm1NTJPbnn081z80bQQQKV3Cgo1QJar39lV24QDqLXr2aqhnofcDsMprcEnAEpBRXJDugesJ7BScVyC1TEEg1U8rLGX5JJomw0oJ7fJyOPelxlp/Pg7YzI3IEe5rgdcEgCCZ5DtuFbIpinJquOknD6mrig1RiNjSQqK9eVcMwDh1iCnZtrTKBh4ZUs1OAhC8mQl2dSuzq7weOHyde6f0qnHw+mVq+6c8oab4NDWRcdqXIga4wti71YqAP6DxZgor8FdX+SnLtxcsoqa1vv61a/chgTHlwn48XvnUrPaPJLQFH4Phx4Dvf4XVqa/n99XXgt3878wHLBripQHb3FkagmynXr5NZlZWRW5aVETHee0/NoistJTLcvk011Wrz5Qj2NME7mVIydckp73w7TTCcMvCseOAkDZ96SvmtlpZItK+/TmdgXR3v9cYblJr19cp3ZBjEG91ZHI/z9bo6aoQAGd3UFLVKiVJk0lLc6gnsntHOj6ZrCVsIYbO7BwWDEdztn0PFae3m4vi4dYuSLRzmBvn99Fa2tFD66qmo0gdM7BRAOSe8zImbnmYfs2vXqEWUlXHwg9f89J10vdWlUSDA5wS4iQCJW9opiSook2kGBj7eBO9EgLopJc1VRkeJC48+qvoY6IUkmWoUvNi1mfBAmHx+vpKGkYiaGfHuu2TsgrvV1XyuqSmu6+RJ+pVkPqM4rgUCAeJwXZ16bXVVhfZ2aorahSjlt1TAylmMjamxXACwWRGC2d2D0TmgU1+Dvqi6Ol7w9m0VN9SnfErWmnAkvaW2lwQc/ZBqa5WjYWKC6tPsrLc2SDvpeqtz06YmmiQjI2R8Eo8tKeH67iN4InjDMD4P4K8B+AD8rWmaf2l5vxnA3wMI3vvM/2Ga5k9zsUAvWpWELmtq6BMxTarU+tQlyUy01ihEIqxR+Jf/UsW6MzH1THhgR3BjYxQycsYSOpueVjkuMjg1Gk0N5U5OqjBySQlt/ImJ1PmSeXmqGadXcPNZOPW36O2ltiJnMTZGxuWpnz5Ajry8TDVHmv7LWF/rl4UjVVXRrpGklIYG99h0NMpiH2mmKY67oaHUXuOvvKJCg3bIZRj2ISC3kkq7tkjl5WyLvLnJNckUoYMHuaZEgvcYHeWePPooX98FZ15GgjcMwwfgRQDPABgHcNEwjLOmaV7XPvZ/Afivpmn+e8MwDgP4KYDWHa8OmQlQKstk6MmFC0pojI3xPZ0YZW6hTvjy9+Ym8UiXWEA6U7dThScneVbnztmfz+Iiz7q4mPglWqYMUI3HubatLZ63/rz19XyewkIKxclJZhVev857LiyoWhW7JDQ3E8VJG7ALd0Yi1CKktj8e53qvXCFOZ2wMG41SnReiSSaZv9zayoe0Ohx0jpRIKK+sWwKOSIjCQj7E+jq5q1Q/6V1z5+f5HVHvrCWQdiEgp2GDdpLJMPg9mT3+J3+Sbhsmk9yTSIQbePAgP/v976cOKchRv3ovEv5xAB+YpjkMAIZh/ADAlwHoBG8CKL/3dwWAuztalQZetCr9M6L9iboMpAqNq1fVxN7CQr6m1yhIFx23/HOZAyF29vo6Tc9PftLZDAgEiK+JhCrimphQMyDa23mdpSX7UK5EsADl42lvV0ltKys0+6y+CrtWbZlwxyncOT8PPP64qiCVEt7ZWY/ZfPcIafnqMCYmVrGyUYVyXytqb0+i5NAhHoj1y24xUDsQ20m4UjDIDYtEqDbpYTopVOjvV/PoJR0zEqF0lsxBPQQEpDuJ7CRTfb170o0U7rz0EtcmUQppoiA2necyx8zgheAbAeiBy3EA1rv+OYCXDcP4U2MpZaMAACAASURBVAClAGznrRqG8Q0A3wCA5uZmTwv00qjCai719xMBDYN+Hxlm2t5OKRiLkbCkRqG4mJLyyhWea1kZz8pNYukJitPTvEZJiXPLdWkjPzenEmI+/3nev6ZG4Vp/v/vzWoedWCswgVRhs7REhmJn4tj16NMrVbu7U3FdwovWdm0tLbxuRlyMxbBQXI8bKEG5OYYKLGClvB43jENo/czvcv2y+O2qsrrtdOwY/795kwu1VrLFYjx0yUFOJvmAjz6aHgKSisDXX+chWTmoF9XQCeJxJX3kf8mkyvZaGcALwRs2r1nzcb8G4O9M0/x/DMN4AsA/GIbRZZrmVsqXTPO7AL4LMLXWywKtjiWJ6AijDodTPyPdkGX2YXOzGmY6OEj78403KLV8PuV4koGe+fmprcjsJJYw/0OH+P+FC2QeYkLIWvXzEe99Wxvf8/t5nk8+mdrqurNTOXKzKbjSGaAubJaW3E0cIF0bvXqVOHf0qLqvpCsPDHgb+2YLwSDGL68gv7oCaKrACoC8xDKwWUgGFPbgMc0UQtFtJ4Bhi/l5Ltjno1o1O0viFftPSoCHh5XtLrkApaWpbbVlGuzVq6q5gt+fGl5zOhgrDA0xLXN4mFJmc5P38vn4u7zc+7U8gpdquXEAerrSAaSr7P8GwH8FANM0LwAoAlC949XdA5+PYc2XXyZDDofJTPUiJb0CsqaG/3/+86xYlDMtLSUT//rXgS99iXu8uKhi3KurDJs2NPC8nYqrrIVektEmue9A+vnopdNSAhuLkQlJVaRe2OU04citHZwQ7quvpo5mExNH1ufGIKTBal5eekWhpCtvbfHaBQXe2rV9COEwEjPLKDG5+LzEMozEMoxwmAwjUx89t/50+mHE41Tnr1xRzoaGBh5uJEKCl8mdoZCquxdba2srdaP10dFlZSTwyUna3tLKamKCrzmVNFrXGY2qHOzDh/n5W7dI9KurZFJVVTnv+edFwl8EEDYMow3AHQC/D+BfWT4zCuCzAP7OMIxOkOBndro4XfJ84hNqAIST6qyrlOfOqd4MopaWlfE7PT2q54HdQE+n5B3rPEZJ/W5q4trKy9Mr8HSQUGI0ypyQw4d5vbffTu+4kynM65TkJfjy7rsUQo8+Siks0Sy7RByrn6Spid+1qygEVNusrKc33Vv8ynAEZQtz2AwEsXawC3F/CMEym4UAqepIJg9uNErCu36dUkJsts1NHv7wMA9dvLs+X6o6tbxM9V+aE4ikkX59R44QmW7c4PUkUULsmspKxamtJY12fcn0HOzDh6kxjI9TLX3hBTKmHE/MyUjwpmkmDcP4NoBzYMjte6ZpXjMM4y8A9JmmeRbA/wbgPxqG8b+C6v4fmjkow9PPd2GBWYgyFv1Tn7JXTwWCQTJY8cRXVNC0m5zk+9IP0TrQE7DXnkT72txUjUkWF1WMXM470/lYcfbUKVVQ5fU87TzrQuzS9TaRUBNpH3+c6y0ttfeLWc0Et/FxQDrDaWz0XtzV3h1C72YPluwYRiSDvZJp9nZvLx86FCKxSf97w1AxRelvFwhQss/MkIiPHuV3TJP/SzVTVxdj6Jcv83sHDvA9OUTpAXDkiGpFFY3SEReNktNKuvDiopqee+OGKsMtLiYDOXyYPoTTp3kAOW5gCXiMw9+Lqf/U8tqfaX9fB/CJ3C5Nna+YUAUF/Flc5NmJuqqXXQuEw5Scfj/3dW6ONmhrq2odpfeHB5wllq59SZ58YSEFQH8/z+eZZ7wR7E5yOTJdV0KOUi03OUmcTyRoxnhtzeZWUQikMpztDvSw01D6FriQ4hrgQFhLzXVzYEg8VNSuZJKOkPfeo+oWizHBYWiICPP++5QWTU0qjBMM8j55eTzIiQk+WHU1TQKpBZDY7UMPqWaGohpK5dN/+29KpRS7UxohjoyoPIDCQq69sJD3sa1Iyj080Jl2cr5S8tncrNKSJyZURmZtrf3Mg6YmagPSi/CRRxQDEZwRD75bKqpV+you5t9SD26Vtm5+pWzbY1vBLYdfQo4ABUZjI3FOTFUn2EnR0E6yT/VnItMIIfBkD9YiEQxemENHTxAVPV2pDgyrB1c6fwjBTk2RiCoredgffECbvKaGD3b5Mp029fX07l67Rsna0KAk8ego76G37pJeaRsbvI5cQ9bxq1/xHteuKY9meTkRBeA6pUGI9EZbXCSBS9NFvSJpl+CBJng535kZEvXaGs9FSkPz8qiJSdm1FcmampS6fuGCc9loplTU0VEyifFx4pFkhlor4IDMEm8nE4wz5fC//bZiBOJBLyujlHdKCBLYbgl2LjQWaz4+TvUgsQzcKAR69LVaOdP0NIm9oUG1IGpuJqFKllJRkWpT7PPReTI9TSKrqWGJYWFhehMEIDWH3+8nsh05olpcyzpu3SJTKC8n8RcUKH+A2FETE9woCS9VVNAe7O9Pr0jaRXige9rJ+YZCPKOCAv7f0sJ9F2IH7Fuo6Y5WKRuVlmuAN8kqyWGlpTzzpSUKjTt37LWvTI5m3Vtv54V3A7drh0IUDgsLdNjduMG/pfIu19NshPncuEGHpWjHQPYRpKymAMkGfu5zVGHq6/m6tLIuKSEhV1WR+KqrVfVdIkEvZmOjCsHYNf6T+mqtp9+HiGNtcf25z6l0X8nXNgylDhYUEHml/FHPA5DuKrnqtecBHmgJD3APvvKV1K41fj+RQSrFAHsk0wVCWVn6mHO3wRP64JJwmOab+Gump4lLf/qn9iG7TBLPSaXN5PTKVprOzPDzbglB2wFZ7+Ym6ejiRQoqKePW99VLdeK2zRz9i9JldHCQhHf6NCXD7Czt+q0tqoSXL6c6fezsmWeeIbL85CfkZg0NdPZ56S9XX0+JICAhksceU+qcnWq32xNH78Ge6Wmnp4revUsNqaUldWpMR4d7vUE2Za9yJj/7GQWCMIjSUpV4cvhw+rUyjm62eS6vk5wzTWj++79XaeqrqzQbpWmqnkDz4dz4bYKYWRIBSSaJ40tLqYNS9GeTakaZUdHdbZ8ZmNU060xflNBKPM6Dkpp4vQGh3Q2sIRnJhxeNwPqdl1+mM7CyUnmIr17lQz/5pELSiQne984dfk/aXMmmZr0B9uDW0+6BVul1EPu3tJRamdQvvP22SpiRWfF26uvQECMir77K/a6uTt9LXWWWXgz9/byHFF2J/yYWs79XtnMSM5kAOrhdWxyL0hBW1nn5Mtf2zjv8ef111SJru2CNCAQCPBPRnqxlxJLW7vOpOgb9bDybOdaBi4DzF6NRIkQ4TMJbXaVqJl5Mp03WQzIy2CA/nw9oN60EIPdqbeUB3LlDwk4m6S/o6EjN/BobU6r9lSvk0q+95h0Jdgh7huCBVOIIBuk3OXOGezc767xn0rx0eZlEu7zM/4eGUq+vD1Lp71cDLZaWaKsmk6q5hjAfO1s6Gxs9G/vV7dp6ay2Aa47HKXnv3iVO/epXJLaxMeKZ9fm9QjCoBqUI6PX41mfTnd2iEVjxWTeJXYndrhe83RcFWRoaaM/V1lKtl0EDTptsxzmLi5XqaAehECVQezuZS1sbnXCBQOoI49lZShJpS1xXR8by8stqwo6ApxFB2cMDb8PrkMmGdXrv2jVvzUslWefdd3kukqbb2Unzb2iIqrEU1zitIxuPd7b2q9O1ra21hodVdENSiKemyBzb27mXZ8+6x+d10M2hvDzVtl2PCFjr8eXZdGe3REmyzj3INv6nJ3FIyEvm1fX3cxNqauy/56UpoRWsddr9/aoyS3KU33uPRN/aymiCYZDgJVGnuzu1p59b66Ztwp4i+EzE4fReX5+35qXV1dQWZ2dJKLOzlJBnzvD/hQXiydaW+zqy8b/sJExnvY7eWksSuXp6iKtSKbe8TDySDjtuDjy9Yax0pZICsYYGaq5ra9w3iXrppos8mzi7702s+jBPJataEC8eS2vJ38YG329u5gNIJZFh8HNPPpl+H51zLi8rL21BgYqpe1ljRQXw5psqT//WLTUPzTBUIpDY+uPjdBbFYmqDTJOHmNXoX3fYUyq9mw1r997EBIl0dpY+FZntBtg3L52dpTO1upqCoLGRn5md5c/YGLWC8nJe262Axa2+Q4dMJoDVbM10nZoarvngQTqWJWdA5s0L2KngOujPIR15hofVuPVwmPf7rd9SZeNWXJQ1SZru5ibDqeLsziqhTLi9DlYuq298bS0l6sAAD3NpiUxAiK6pyZ5wBJEWFnjYV6/ykHt6VMvpTGuUUloZuTUzw5/Tp7l5kt9//jzX095OD/TMDL8rgwrF15BDu35PSfhMGWH6e3l5amrQU09xZPP77zOrcXOTOGBtXirdl6SstKGB53D5MnHl+HH6bmTKqzhv9XU4TQTOJvNMYLtpq4CKQCUSxP1r17gvjzyiwspuLbG8lNjqTTnczkwKlUT4bm6S6C9ezEJTzaQKWVX+hgZ+56WXePG6Oj58Xh45nZ06L2AYfOjmZt6rvFzZ224HKWscGVETYGWTKyv54E89RckvGkhLC9fU0aGy7hoayAichlrsAPYUwQPuxKG3E7txQxFkUxOTUi5c4Ajzxx8nseuNKy9doge/rIyOusJCMgBpmPLEE6kagV0zE7tWak71515U/u2krQqcPKk61ySTTFKSfATBKbe07Wy6CLmdhf58UldijUB50lQduH0UIUR6gbxXYyhqrEJzs5bbsrZGlSIYVAUGsZizOj80BHzve7R1VlZUi6lEgpxOsuzks+fPp8+sE01AkODgQX53bY1qVlcX8IUvAD/8IT8jufRSWru6ymtJmMjaq3+HNfF7Ig6fTfxc+v/fvKkq2RIJ7nN5eXoMWr47MsLP3b5NDa6zk4SSTHK/W1vTR4np1xK/y2uvqQ4xLS3Apz9NwSDMIZuYs9usu8ZGNeZKKv+s37cbduG1L6Ie89f7P2SaV5fp+bLNU3AD/V41w71Yi69h2SxFV9c9on/tNT60pNvqNdJf/WrqxSSUc+sWOaF40p99loe/sKCKXqqr3WfWWR9yYUHVT3d3c1MuXSIzuX2bTCMQ4HfEaSgpwHbDCzOoQ3t6tly2baP7+3kO0sYsGORZjI6SEUtiiiC7HiuurqYgGB3l+be2kgncuUNC0UefWZntL3/JsFcwSGawvs4wa0EBz9hJ83ST2lYn5cIC8URyN2QQS3Gx/SAWO23Ia8WlXRch0RDsSmwFMj1fLqsF9XutNYdR0t8LGMDoaAmOtq+o6R/SCwxQ3MUK58/zsDY2qHo3N5P4X3+dHUOLi5UJ8dJL7mEfq/nh9xOZKit5zXhchYSkuYAU/3R0qIEZR4+qpoXSq/833UufbdvoeJznvLRE9bqjg2d+/TqJ4ktfUo40HQFFbS0ro3S/e5fEJmWwFy9Sw3r6aTWmXPekv/WWisyUlfH7U1M0E06fVp/LBuGteCNlvIWF/Ml2EIsTOGkCk5OMUhgGCV7v3+8EmZ5P8HxuTvWNrKpyN6md1pxqPoWArh4UjkawdGcO6AyqfmY3bqSO8bULgUxMkMjq6khcPh9VtKEhfl9PIcw0s87O/JBMsd5e3kOq7H70Ix7eI4/wmtev84EWF52bFu4AHngvvZfEFKsD98YN7mVlJc/ujTdovh07przM4vCU70rthfxEo3x9fZ3E1d3N3z//ORmDVZomEhQQAltbVLurqvg98bBncjbrYPXgr62pTMyiIuV47u2lBipVndmA1bk9M0NtVTzy9fUkxtrazE5qIPPzVVfTeS7jrRcX+X+miJfdmoXxSSfqKEKYae/B1tOfI7eUyZzCwSIRlWtshYYGPnxFBYsmfD4uvKODXke94YHMrNPBGvaxyySyplU2NLA/vXh9KyrIAaU3md0G7hAeeIL3QiB6SA5Qba2qq0nIorLfvUtE6e9XPeXku34/fTKbmypBRYSCpI+eOMHPV1Sk48yRI0TEtTUlzVZXKRl1BpNt6q2ON52dvMbt21Tt+/v53dpaMri33gL+6Z+yq4iz4uDcHBnlwAAZa2WlktBeokKZnk9Cn0Ls5eX8f3bW23r1NXd0qMzCoiIypA/vpWfaHT1KZ8rJk843OnNGxe2LihQCPPtsujQ/c4Z24vw8Obv8feZM+nX1uOo776Rn1IXDZDSyYTIttKCAKuVrr/Gws+GILvDAE7wXAtEloYxuamlRDUUbG7nvd+9SWq2vcw8NI/W7ySSJ+lvfAj77WeWZFnCLXf/2byvmNDen+h1+8pN8X9dK/H6GzN56K11bcIq7673iGxv5LKOjvF9+PpmAzHLIpgzWqkFJVpyeOptMEveuXCHOul03U16B3jnqiSf4u74+uyxSWbMUyMm03bU17V5Z1dyCtso3v6mmuhYVkYDF4WP97AsvqNz40lLlsNPBqj4lk8D/+B+08yTlNj8/vQPrF75ADj47S4QLh72pVx7ggbfhvXZj0R1Ub76ppviYJv0kCwv0xMtQxpUVevJNM91jHY2q0d537/K9tTUVptvaSm+pdfAg8Md/TL/NygqR8YknUmvvJVOytJRNOcWDLeDmoLTORZABpKbJtdl18+nr4z2vX+f/nZ2qSs2pIadolJJdurjIVGPJAq2pyRxG00NwkUhqvH2nHX+A9KpYySAUX1xvr8voarcbnTypnCGZQhlees5ZmzJKws38PFUnfZKNfo+XX1ZFB4ahHH/3aRDFRw7Z5KZL5xcZxf3uu5Ra4TAlwdAQz7SwUDFenbAARXTPPQf84heUxIGA0hrm54EXX0wv86yspGpfXk6i9PtTu776/e4OSDcHpd1o7LU14hCQ3s1nY4PaYGWlwvH33+d1Tp5Uk2y7uqjt9PXx9aoqMsbOTmoN775Lx1hLi/JpbG5mxj0n5pWph6BTeNt6xnY5OI2N6p6Oo6vtHHa7VYuuezDFxgwG+ZDr62qSjV2Mua5OHWp/PxErkdjxkvYEwTuB0zk9/zwLQ0ZGiCyNjUTSw4fpixkbo6QqL09vDAEooistBX7nd6her6xQqkqMPRBQPQ2tjKK1ldI3EuEZNTcTz2T6sQ66B9vNw22VjE1NdEbKHELTpC3/+OPqWba2iE/6lJholAR16JC6Vnc3iVAackqH5Fu3VJVoRQV/+3x8T59mawdW4SbRpYkJErFdB2YJhVdWqh6T3/8+1yPTpuWspfeBRLnKy/lcMgvCdXS1FYmySWfMBvRDE1tpdVVN+LDrhx6JqL53Uq0nr584sbP1YA8TvNs5HTzIKjDpOS/xap/Pvr0Y4F51Jwk409PEARnjLeqzlVEAamionlCSSZ2V95NJlScic+fspNrqKhFcai9WV5WfY3ZW9WMQkESzuTlGLAQqKkj0c3NqrQcPqoavGxt85qUl3ufuXeKstF63E4rWjsPFxVzr9DSZi53f4gc/4FnV1vK3hLd/8hNVjiydq95+m/cVx2t9PUPm8biy7x1HV+uwk3TGTCCHJqWK168r3wBgb2LIA127xv/FbpudvW+DKB4IsEpzITancwqFUnvOi5Rxai9mV3U3NkYpevs2pbuo50VFZB7WMk+dUUj9hDQ3sY7EslNnZUiljE0vKODzCvHfuMFzl1l0n/ykigSJz0GkdE+PmrAsQmJ1VaXVerGjrYVj4+P83+fjebz/Ps0APa9BiNhaaixJaTU1qRELfdT3woLqEHXoEPe8ooLELRN1Fxa4Hinmqa1Vc/NqangvfeRXRv/AbvUNB7gZHR1UN/PziTi1tTxgn88+JyAY5IZ2dfFBFhb4sDnqeffAe+kB5wq0TD0DdA9/eTlt9yNHgD/6IzV0xKnqbmKCxL65SQIpKqLtnkiQkK09DfXwoUi1eJzmhNNILKsHOxQiYZSXq/h/RwfP/bXXVG2+38/1CSEDSko/8ojqxCTl3ysr/Jmf5z3OnPEWGgyHuU81NfTQ37hBhtnQwOeS8N2tWxRIMnsBUPH2mRnujTQRCQZ5TqOjKn9ATIWFBTKCO3foV5AW4zKoE1DNNIJBZRJIyXlTE80YmZhj91zWKMhCXhaJEdsBkcwtLXzQlRVVcmtHxNY48bFj/K4kYOwQ9gTB27WBqqlRqrQQmLV9k1OISGoc7AhPvjM9rSTT0aOqG/LduyRka5mn0yiy5mb7jjhOnV1krJmMSHvvPeKH30+kl9i4OM500PFUqtROnFDJRNIazO35dRABNTnJ+588yc9NTioz59o1NUdRiCkaVfH2mhquv6yMzCgWU00xJD+iuFhNg5qcJPHH49Qg7tyhJiM0GY+rgS0SSZC5eTIxJxRyLzXWBcfF+TAWJ7JIjPAKcrMf/Yie3/FxHsLioqrwcit53E5bYw+wJ1R6O60rHGb128QEVde8PGpN1qEUTh5+N89/KEQJ9slPKvsVUFKzqYmIWlZmX54rE45kInZ/P89ZiNnt7PLyKN1EnZcZb7q/pqiI65B8DafGGUL0zzxj/4zSC08KyOzWNjurMkqlgcvUlGJqImETiVR1PRbj63V1XOfaGp9JuvCUl3PdgYDqSrS+zvskk/xbtJZPf1ppSNJu3DTJUEZHU+fmuU3MsTXX60MYXO1Bd2FEzYTLunb3Hojdef06VaJQSNXgj47Smyvc6MqV9Niufjg79R84wJ4geDtnl+QrjI2RKPUqQruhFNlCXh7P5YMPeP/mZiJiebm3EUxra/y8OKwKC3nuOjOyizKIn0D63q+vqzHmra0koNVVfr69XQmCbKbFAN6d08Jsm5r4LAD/vnSJf588SWKfneXeXLnC5zxwgIy4spJa6egov/Poo4oxSr7ChQs0N8rK+MxlZcxT2NxkrkR5OT87OEg13zR5nfp6FZ62K+qx7u/oKM06HUpKgLmEx9pdt/Cd3iH3+nU1S07mbIdCqtIpP58P5YSku9iyek8QvJOzq6eHyHXsWGoJabY+F7vikfl5IlxHByVaXx+R5Wtfy7z31j4IAIlUxosNDqqx5fX1qQS3vKyy+UZGVA+66WlmuT35JBlca2tqDoDTs+y01l6YrWS1iR/p+HG+L05MgBLcNHkmAwNkeJWVJMb2dv798MNKu+jtpQr/8MNkGvPzVPvLy5mJ2NbG+77/Pq8v5c4ykk0S0558Mp0eDYPXa2hQ+zs+TnrTU95TzHW3TZEF23FIQHW63doi4oiEys/nQ0gK7kMPkRtKiMEO+SRJQlIyX3nFuUV2lrAnCN4t226nmVt2ku7sWZ5vdzcRPD+fBNbe7q28VNar90GoqaGEKSpSDTEXF9WAEln/xASZg1TdSUtsKbseHWVCkBOxew0pZ3JOO/Wza2ujSq7nHoyMqGutrvJslpb4rAUFqhbk5EkyAese+f3sQByPcz/E3DXN1PDc+LhKxbVrPqI/u4wW1z33U1NkmocP0w+WVjzntiluzABQwwfHxrjgREJtQlkZD+PIEdp6iQQf4OZNhjFqalQ6pyCfOEgknjk0pKbT7oDoPRG8YRifB/DX4LjovzVN8y9tPvM/AfhzcFz0FdM0rTPkdwROZs1Om0DanePmJlVUfZSV08x4t/XqYUFR7QEyACmJ1kNIYtNKW7P6en4/L4/E4vcTeQcG+KOnyjo9i7xu3TvDUCOipK2XaBM68bS1cd2RiJqPqJu4kjmnN3iRupPZWTWdGVAjv5z2SEKnd+5QCnd1qdA1oArU7DQ467Mnk1zfwADPc2uLmlFpaaoGkDK70U16iOdUwi+BACW1ZL+JB1EQSEoujxwhA7hyRTmaysrUguvquJhr1/jAgnx6i2xr0scObNWMXnrDMHwAXgTwHIDDAL5mGMZhy2fCAP5PAJ8wTfMIgP9l2yvKEnbq1LSrsRBkBYiA//zPwHe+wzBdNr3cdc+9mHMSzpMU2HhcfX5lhWr/88/zOaamVPHP6qqK6wsevP8+4/YSlfBaLyKFOFNTlJriM5ic5OuXLhHvbt2iRJybU0MmNje5NvFyDw6S8Rw/rio8ZQ+dQp9Oe6SHTnt6VG7/6mpq2rBTvor+7PJZmfMo7bVbWpSETyuec6vUMgxujHgT9QosUcUTCb6n579Le+w/+zOGZhoa+LnHHlNNDeRH0m9nZ1U4Akjt7b3DXvVeJPzjAD4wTXMYAAzD+AGALwO4rn3mjwG8aJrmPACYpjm9o1VlCTtxatoxdbHhBwcZ6isqUum0kuqZjWofifD8xsf52sAAtb3BQd6rs1ONyxJT5U//VE07kpjzygpxTxBbUmWF6Xs1b6QQZ3aWuCQhMWk3/atfKb+VZIMODXF9n/xkugYhnW2BVC2rqYkmKEAicwv96fnzTz1FDWd5mUJUdxDazQSMRsmw9BZwTU3UYCSfYX6ee1xXp3rzpWkKbraj7iTSwTDSe4QvLFDFOH2aD251pJw7R2YwPc17iaNjcpKIFo2qBg076u2dDl4IvhGA3sF9HICVvDr47MZboNr/56Zp/tx6IcMwvgHgGwDQLDGrjxjsTAIZ0/297/HvUIiIIgMprQMs3EAcVCMjdNbm5zMBZWOD/ptgkF7qnp5UgpD0YPHnLCzwvfl55gKUlHBNyaRi+l7NGzFVZT6e5AwIEczMkLmJCVJcrMalBQLpDTqle621Y3BtLX0f1qpAHWQi1KFDdL6urJAOJFde8gcMwz4UKuZHbS2ZqvR+PHiQ9y4u5vWkh0FZGa8ZCDjQj5P02NoixxkfT3dK6IwiP58Haxj8jh2IthAKqXrqS5cUpwqHyWFnZ9WoZC+DLD2AF4K3Y23Wzpd+AGEAnwJwAMCbhmF0maaZon+YpvldAN8F2MQy69VuE9w813JWv/wlq+ISCe5vRweR+eGHicACdgMsMkEkQnu8upoagzii6uspBKS0063k1zAo8aUZx/o6NYWWltRkGy+lxKIJiLosBB2Ncn2JhNIoZTbirVvKiSgdZrq6VI9Afa3SjcaLL8HJ7zA7601r078vY630FnCyns1N0pD0rGhoyJJ+JOW1qUnlOr//vqoiEsSan1fhuY0NbtDbb6f2BxNtVTbhGQAAIABJREFUobSUr73zjmpLLY4jseMqKlTmUjZxVwfwQvDjAPSWHwcA3LX5zDumaW4AuGUYxk2QAVzc0epyAF481/PzdA61tytv+Pe/z7NaWFBeYsB+gEUm0Etba2uVHevmhLKCjByPRlUrrfV14oRdMxA3EE2gqopEIATd1kb8DYeJr+vrxPFolO/pDEI6zLS0OGsQOjg9405T2a3DXuxawAkTlPr+QEA5xj3TTzjM8NjIiCoyuHaNThe/nxv16qsq7LC4qFSnwsLUuV66trC2pqZ4bG2lenC9NP7PErwQ/EUAYcMw2gDcAfD7AKwe+JcAfA3A3xmGUQ2q+MO5XOh2wYvn+vx5+yaky8tkBkBqN2LrAItMoNvWQjTLyySkCxdURZwbbG1xysuNGyROgIRWV5c909c1gUSCgkqm7EgFYV8fzZnubkr9/Hz6GqQH3cwMiV5v9Wb3vAJO5udOw6pevi/P65V27DXCkCpOWF/n72PHeGOJF0aj9ITK8MmtLW6ilADqzhYpkAGIFNLvazubkAVkJHjTNJOGYXwbwDnQPv+eaZrXDMP4CwB9pmmevffes4ZhXAewCeB/N00zB+VGhJ0kHnmRIE5NSBcX6aA7f55aXEND6gAL6/pGR1VttphiepIJQCfUm2/ys0ePUlrfvasGi+rf00Fw5PRp/ugdeWSabTaErxNBeXl6//uTJ6m2i6SsreXrMkHpwAHi8+Bgeg+HbEKlOw2r5mo2n4CrRmia5ICGQU4t0lhUNWlxffMmv1xUROZw8yY1ASdni3QdaWtL7ZiyQ3vdDh74QRTZDG6wAy+DD773Pb6mq+7z8/zOH/2Rt/WJjeg0N0BnWoODyntsGKqQxG3Ig92wjZUVFf4VR6NXZ2I2e6QP6xCHnAz30IdsWPfFK5PeaSZpLjJR5RrvvJPa8su3EMXWYATFazF0Bu6Q8zU0qOmwALm2dDi5fp1SvrCQCCtNBnt6GOKQjXLqDT42lnnCSAbY04ModtqfwIsEOHOGNjuQneou02aiUZ6RaH12veJ123pxkWtYWiJuSMag3o/O+nx6+Ordd4ljwSDxSvw62Yx/zmaP7DIHJcHGKSEpm1Cp02e9EvJOa010ZioNU/r7gUebo6gf7cVWUSnm86qA2g3aM489Zh8vDIV4kaNH6VGdneVBHT+uYqpui66s5GJqa7Ocw+UdHniCt6rkdo0l3PbCi+dampBmUt110EtBa2tVAktRkcoaKylhKE6eQxj5+Ljybn/wgSr9FA3Dzmmlh6+Wl/n80pEm0/jnTIQje9TXlxo3t+6jnhUnsEumZormNDvLUJvV2Z2Le1iluvQiKC4GFt+LoK6pFCsoRVk5iBiPPcYQQGMjSxhNU8ULn36ahzg0RPvemsKYiWh3s/vOPXjgCV53yugzzvTGEpkYoBcJoDchFUSQSjk7piJnU1PDdVRWUmJPTnJtgQD/HhsjQ9Dz9Ovr6fSSqrf5eX5O2k45JcsILpSXq/HiU1PENacW2labVG8PZZrK31BdTeI6ccJZuOTaXnaDSITrGR5WZbY70WKs4CTVm5tVzUNyJoblA1VIrGpMpr6eHkx9QKEOEpu32qDdFg3bjgvvZvede/DAE7yOZNev046UOgTZ1+0wQGtlleRJWKushED0nIhQKL1sVJx8U1NqtLcUWVnz9PUORsXFZGQVFSQ+u0wyIBUXmpo4BVe61rqNf7Y2kxwe5vd+/WsKHYm3v/12+lrl+7K3XuP82wG7UtblZZV1CvD14WGaUY2NO6sctTLQ+XkKbimhjceB8qIgCrdWcLDL0uo6L49I6ZbY4bZJTp5Bv3/nPbwzwANP8Lq6+e67POhDh1Qdw3a690rp8uYmkX12loxUZpjrVVbSP21pKVWjsCsbXVzk9Rob+f1EggJBB/HNSH5FVxejBNPT3pJlREP8rd9iWFjqMZzGP1s7JcvgSdNM9TeI6qznGNgJl1z3ZhgaAn76U56vJCIVF9PsicdT69fn5vg8paUqK89Nw3MzZfR9kWzHsjLlRB0aAuqPheFL9AIrAMrvSeuJCX5ICgrsFpFpk5xUd4nXArumQj3wBA9w/yoqWPfs86X2csu2e280qkqXq6tVXnswSCSTKivJppMkE6tDzTpdVS8b1ZHPKU9f71Tj1qVFwKpOh0LMOa+sdB6mYR00IW2ghAAA9Wx6wZC+9t2wzwWkLXUsRia5scE0889/ns/y4x/zPZ+PTC0Wo8otXZzdTFy3vvizs6n7EouxDn96mnuxuUkVfiMQQrS6B9FIBF2JOZQ3B1UrYK92djaquzVHOZcq1D3YEwQP5K57r9iGUocu+dciYVpb+TmpYrMOeBCpZ1f0ceZM5ni0hM/s+rK7gZ2maJf0AqQiuz5oQoqt8vIUIcuzyUgzt5ZZuQZJeJKycWHk773HvSwuplbl96vkta0t5/biOtgJ0cVFMvuTJ1P3ZWuL+1hfT8ZTUKAYYeHREJbLezAgocdz59yHC+jgxHVkUKWd6p5rFcoCe4LgpRoqGlW5DNEofyoqnPux2UEspmLXMvUH4N8FBST0tTUevvRxN03ltJFzEa+59FCfnSUy6V5kN3NuO55mr7hgRXYZNBGNkogef5y+hvl5EltBATWazk4+eyKxK8IlDSThKRpVeQllZSra8PDDqmtvPE7ClHFSUpbu99vvpS5Epc7+178m0UtnntJS4sHEhHpeqb+3Y/IAsksNdFLdZ2YouUTyWDtxfJxbXOnVUJOTzCyLRnnQBw6QALx664HUXusTE7zuyAj3W5pTikoXi5EopBZcd6h59SLvMsO2BavGqA+aOHWKa/f5+PyLi8yHf/RRVaJr7fS6Wwk0MnW5rk71GRBCk+YZkh8PkCG9+iqlst63f34+vR+kPtRDmo9I2+ubN1W772SS/gDpj6c3ybQyeQDZhSrsVPeNDdqRjz7Kh5ydTe3EsZuTcLAH2lQLkywpoSQtLKQEWllRmWrCRK1tm+1Aeq23t6s5aeIhf+UVeqtXV6n2ffWrJN6aGjWf3edjQtU77zDGLl5kiYXbtY++36D3yBewaoxf/Sp/P/ccmUAwmL6PTvMA7IaYZvNZAZm6vLFBH0g0SuLMzyfxvf8+nWn6oFWZ6CMaQXc3idW659LLYnBQ9ZFYXFQdc6emeFajo5T8fj/PvayMTKC9PZXJf2g2ZtNxxe4gIhHVeMBujLVdT3avyO0BHngJL0zy2jX+PnBA9UWTFmJSl+0lXKmr2dKJVurN6+qIqLEYiV9sZLuGpoWFJHw9vOo2Tvp+glUITU7yeQ8cUO/roUUd9H3MJg9kOzkjesLT0BAl9h/+IRnsm2+SWI8e5ZnIoNWHHuJvPe/fLtvPLjuwo0M1s5FyYIDXLCzke5/5jFq3o4/Fq9pmpw3MzND7rIPXAYM5gAee4IVJiocZIKc3TeVYAbbnUX7oIdbAr6/TeSTx+EOHKHl0ZLUidEcHs7/EfzA6yrNqaFCOQLtCGq+wEzNOZ2q3b5MphsPURPQmqIbhbo7ejzJXSXjS8/n7+1WcPRpVXZ1lKo/d/D07O94uO3B8nExgdJQMX6YHiZT3+8noc2KG2TlxenrSJ3HaDRjcpVj8A6/S65N3JMFEuq5IX4BshoXoqmdbG89kclKpjAcPEnE3NlIltbVnWkUFMynn5ih9TJNIevs2kSoSUSmwMzOZ1VunNXpVj60guNbURI2xpIRaks+nmqDOz/PZnfrOuZkGVsjms3ag768kA1VVca1PPME1Xb9OIj93juG8995L7cVntz/WnnlDQ2R8R44Qjy5dUvUIkk+TzT5nBDkIGTXU3e0+58utr14O4IGX8LJffj8Po7qaXuZEwn4AQSbJaJXULS38bGGhkhKJBIlfR1Y7xltVRWIqKFDTZY8do30Yj1OC2BXSZLvGnaRU6yaRtQlqQwOZidMwCzf/lFM7dbvP6iDfsxaF5eWl9wwAVBffS5eUlJ+a4nXy8lSYUYhXpuzo6xP7fHSUhF5UxJ4CMzPU5jY2lHZXXZ26zzl3mGfKxNvNdEbsAYIH+KzPPKMy4WIxNVhxdlaNShKkcyu4sKqeTU30/H/wgcrqisXICHSm6oT8uk0pJdJS2AOkN0z04oR1U4+jUSL29XstRDs7+WyyD1aktDOJ9Caobk1VBPcuXVJFNZ2dqsGnvs8+HxOBksnMGaWbm9wjGeNdXMw1miaZkLUQTRiJhOjKyshkh4fJAAoL+XoioWYuWvd4eZkamJxVZyfwT/+kRlSJ9njkiNLstuUw98IhMvkAdjG0sycIXkDfB6cBElKY4hQqs0rqigo6hkpLVYruiRPpQz6cGG8kki6Z/NquCnGJeutFejuZcXl5qV2WADK0X/6Spdb19elIKYxKTKLtNEFNJlOLas6e5TNJz/dgkIztjTfcC1vk2W/d4rVkJp1oQKurKgqjN65cW+N5VFSQ0RUU0M43TdUxeniYzFuc2XZ7PDGRuq9lZcy4Ky5WrbokNKev1+2sdPqujQ+h4+ZZlBbei69vbPADOSxv3SnsKYLXN/fOvV4E1sKU69epIuoFF3rZqFP227/+196z3XSwdrO5dInIn59v3zDx4sXMzi0nbcLn4zUrK9Xzra8Tr+bmeB8rUsqafT41hz2bJqhOGWu9vapz7fq6mi3nZnaI5qJrG7oG5KRtSLcfgIxmY4OflfPa2OB1ZEoPYL/HIs0XF2nLV1Xx77Y2NR1Kz3/xMp1HhE6tP4rAa2dxe9OP5uPVCGyskgu1t+e0vHWn8MA77QSsjqxolIcmXnqATHVyUsVdgfRQWTZhVLv7y1xxu5HUySQl05NPqsozKaSRe3h1bvl8VKPfeks1TDFNhdwCGxtKNRawzisIhYBnnwW+9S1K6mTS+3PbDbdIJpnEEgioOhLDSHd0WsHaLRdI14DsQPdjHTigRnSVlfH8TZN+HSk3dtrj5mY+8/Q019rQwDyEhgb+bx3ZnumsdGZYNB5BoX8TeVVBTE5rU2PE1npAYM9IeKuk0WeG6dNOSkuVo0ZCZYcOkfCA7Tlh9Oo6O03NS8cWCd9lStTSpcYnPpHa0z0YpOYgnWMB/r+2ptJAAX7HMOwrOJ0EzdBQel3AwYP25kV+vppfLy2zTTPd0WkFa7fc1VVvLaN1c0rU/ViMvpdgUOVTJJPK7+K0x6EQcUEfQNrUlN7pVl+v01npGoAvHkMyWI2i5Criy/cOp6iI6mVnp/Om3GfYMwRv52yT2enS98/nA/7gD4Cf/Yx2Yk0NHT0bG2qE0htv2BMuYO89rq5Ora5b9aipuTl83JywbnZjOMyw38gInxmgPbu1pQZLrKxQy5E8BS/OJqlaq6zkvkqb7hdeSEX6jQ2uY3yczq9YjK+Jl76w0D16pBNuti2jdWZ16lRqN5zZWVWUJNdw22M7JjY5SQl/7lw6g/Rync1AEEaSOdslZQDMIlXql6OQWi5gzxC8nbPt4EH7OvK5OSJgMkmEkuSKf/gHfsdKuJcuqRx6q/f47bdVXbbM9wOIZNb8CR0k1/7WLSUJq6oUk8hk5+qgt8rKy1OaYmkpzYeDB0m0b72lPtPW5j2s59Sm+/x5NvEUT72ERZ97jtcqLOT/c3MkmOPHMxcyCRFtt2W0lPGKLR4IUIA6te2yA7tMRGlVZzcJ2gn06yyVh7F0MYqFWDu6CmaxNDyFsnILF3oAYM8QvJOzza6OXO8mLDA6qurerYS7sEDb1s57vLlJKaar0V40tdFRNRJKn8+WabaAk/SRVlltbYw+TEyoWnhJohFP+uuv8zW5t+yZU9abU5tu6QkQCtEh99RTqQxXKvDKy+lFlyjBK6841+lnA1ZTan6eEvixx1JHWG23RbdI7ulpXlOaf8gziiAoLXUe1f4hM7wWQmNbD44URmCs5uPXvk50Ph9G5cEHh9iBPeS08+JsEzX6xg01CllAurmIswhQ3W6Wlynte3uprkp9tswrlwKnvj7G6+/cyaypxeNKGguDsTrX7MAu0UpvlSWhqpERrrmqir9HRvi6YVBFzstLHYnl5hSTqjUdrBN27DINu7u5ppMn+Vm7tW0nSxAgsf/N3/DZl5Z4f+nWOze387oSPQGusTG9M1FJCSM+paVqVLuepSjPpDPDY58KwfdED9Y//TkkT/ZgcPbBInZgD0l4wF1Nc2r6cPIkVW+fj+Go6XtzbaXWfW2NhBWP8zCXl0nUBw5QSgmCHTxI6Swe3m9+012qGAaRfmuLhCa5+vpwEbdn1O3GAwdSEXJsjK+vrysiky49FRX2/g03p5iXNt16uamew760lMoIrGsTadnXl9ptJ1OZ7dmzqi/BxgaZ7MqKmnsnoCckbTcjzinvQa5vl6Wo91K8D70ncwZ7iuCdYGiIwySmp1UnYWn60N/PlstNTZTSUma7sECEyssjQt26pRxfGxuUUocO8VA/8xkicDxOm7+qSlXs2UE0SiSoq6NGEYuRMLq701VnO7BjbDpCxuNkROKZDwT4LHqXHif/hh14adMdDrMW/fbt1Fp006TJIYMce3vVLESBjQ2+fuaMNyei+D8CAd5vc5MMO5kkE9PHcukRie22tHbyxnd2pmcpCnO5coXMPBze9XqXnMKeJ3jxMM/PE8mWl4Gf/5x90bq7ScjJJKV3ZSWRaXaWhyn10I2NPMTRUSLZ1hZ/pBGlOOwEnIYvCIgKLmqtNNOYnHTubuwGVoT0+3k9Kc2VWejl5akRi0x98nTQ23TbQSjE/RsbU6mura187cc/JlHX1JARzM9zLWImvPwy9/HWLcXwRkZ4ndOn06VxLKY0sESCz2ya9DUAqREJKazaSUtrJ288kJqluLJCc/GRR2hSbm2pPnle6ggeBNjzBP+Tn/Bw43HVJTYQoNc1FOLrdXWK+546pdT2Q4f4nbU1FcMvKCCB6+OTsuXesRjXIVJvYUGVol68SK3CNN2dWlYVtaODCH35Mte/tcXrlZcTIYX4dqn3IQA+h9/P1lMyRvrqVa7jwAH+FsIvK6MNPDvL3y0tJJYPPuBehkLcB7tuRZJZJ6OxFxfJRIJBVihKQxJ5zosXeR9rS2unwRx24GQu6lmKS0t8dknDllRcGW29i70ncwZ7muCjUUq2Awf4c/s2pUhLC6WBlETa9RycmGDyhfSVl0mx0jvv+ef52Ww6Gtl1iu3qIqH09VEy+f2phSF2CG8Xw+/rI9MQT/zkJDvC5OXxc4cPp+f/5xoWF5UjEuBzFRWREA4fVnn66+tc0+uv8/fBg8rhePMmNaqqKp6NXchQJjO3tqousoEAHWPFxemEGQyS8dTVqdfsmpFsx86XLMXuboZ18/IoFKyjtj6KVmbbgT3jpRfQU1xfekn1qCspIYIUF/NQpWW0xOB1WFmhnSp95WXaiPgAwmEVcvKaiqun/nZ1qU64MjwSIAMYH1cx7/Fxe0+zXZcjqfeW10pKiHihEDPyCgt3oZbbAmLuJBJE9Pl5NTJLoh/STbi9nc94/DhVYGmOKdV+AwPKQTg8TP+A7vnu6eFZVleTyX3xiyo12QrStkx8ClL5Vl2tPr/THgPSTOP4ceUP+sd/BP7+7xWu7AXYUxLeKvmuXk2NF5eV8fXNTSaM6NViQKqEPnOGB7W4SASUOHt3t0r1tBagyBrspIRTp9j+fv6vV3tZpwxbPbpOvQ91sPOGLy7mZiqLE0hR0twc1y7aU1mZqjQ0TVWYU1PD18rKuKfvvcezyc/ntQYG1PvW0WFOE5vsNKtQiBrZ2bNU46VlnB46zUWPgXAY+OEPWQY9M8N1l5QQJ374Qz6TRGVyvfe5Ak8EbxjG5wH8NTgf/m9N0/xLh8/9LoB/AnDKNM2+nK3yHsihSVx0cpIb3NrK31NTlEJf/rK3VtEAkWRyknXtlZV0JgUCRNzLl1MJG3BOl3XrFGut9tKbOwDpPgGn/HUdrJ76hQU6MDc2aKo4jcjaDuhNK8SLb5qqgOkzn6FGJQ5RIVifj2aHYZAZPfQQn8nn4++pKaX+Sz687syToRFeIw1f/7q3STMC2wmdSYltcTH3v7BQJeVsbPDMt9VodhdbU+uQkeANw/ABeBHAMwDGAVw0DOOsaZrXLZ8LAPifAfTmfJX3QIpiJC5aX8+Njcep8j3+uJrJroPVvhJN4Z13eJ3jx3lwkmE3MKDsf+v8ACcp4RaasSuhBdSUYavkstNKJI4vgyKsnvqxMdqXmUZkZYtDulbV2kqk/uUvKZGlScjkJBnSiROpeNrdzTVGozSXZIhqZydfl2Qeefb+fpoE4swbHLRfs1Ohj5sdbRg0sfR0azFH7J7ZSYuTUWJSKbi2xr2WbreZJuJk3ORdaE2tgxcb/nEAH5imOWya5jqAHwD4ss3n/m8AfwVg1ea9nIA0kCgupmo4NUVHTW0tnUGRCKWC2x7ptpxMDY3HKUkSCRL+zZv8bEdHakaXxPF1kFJUt1Zk1hLaEydY8eVUpmrnN3jmGXqo5bX2dhKc38/7zcyoqSwyQy4YJMHvJCPN6k9YX2fDkNZW/u7oIONqarJ/jqef5vM+8gi/8/jjZHpdXWS04bAyyyQrUZx5dmuWMOzyMu+5vMz/pa+905nPz6shFNIFd3IyPVvSzdaXISZ+P/cBUIlZElGw4oXronRn1Oamsstu3aJUe+mlnDsHvKj0jQC0JE2MA0jhW4ZhnADQZJrmjw3D+LdOFzIM4xsAvgEAzc3NWS82HGZMt66OhwWQ4x45wv06doyE6xZP1hFY+ptXV/N3QQElkc+nbG4BIfRME4IytSrzCuJ/sJbXWjUVuV9BAaXv9euMVhw86DI9JQuwqsKShLK4qF5zu7Y8t955R2LoutayuEhmtqqNZra7rluhj9O5RyLUBIqKqF3NznJfRCuwftZNi9vYUANRJOHJ5+O19aQq19CtnTMqHqcEGB0l96itJTLmWNJ7IXjD5jXzwzcNIw/A/wvgDzNdyDTN7wL4LgB0d3ebGT6eBoI8w8Pci5oa5ZwpKfGG1Naxy6JGbm2pgZDHjimbWcYUzcwQIScnVYzd6kjKZWhGxwmxEV9+WTU+1evwRfqMjJDw8/OZCdbSkppLsJ3ML6upIk0l9RRhL9e2Y4jScDISUclOXV2K0VqvG40ynz4Q4DXq66lK645bOxBTcGRE+TPEdLNOrHGz9U+d4ue7unjfwUES/Je+RBrVmZlr4o1Tc4e33uLhJZNE6gMHUnN4cwBeCH4cgJ4QegDAXe3/AIAuAK8bTEerB3DWMIznc+G4k1i7eHQPHOABHTvGQxsZ4SF1dZEYxTPsBDoCy7jmwUE1t0zPsJJWSDKSua2NB7m6uvvz16wOSskgGx6mNqMzfZFgNTXKey9OPbeZ817A6k+oquKet7V5RG4N3KIdX/wiz8GJaIQBVlTw+ZNJlTwl3WucIBgkw9QTc+w61MpnvWhx+flkAGKy6dpWRrywa+7wzjtsji/FHzLcQPp55QgM03QXtIZh+AEMAvgsgDsALgL4V6ZpXnP4/OsA/m0mYu/u7jb7+tz5QTSamr8NqL3Ky6PzqKaGhy6DIV94wV2ll2tGo9zL/Hxla1or78SEqqlR/duWl1Oz8HYLzp1T7aXn5/nc4h/41KdU2yz9s3r679gY1VwJUZ05o1KLs3UEO9Wkb9ehbJ3iI8QtXnm764pdPT/PBieBgOr2U1EBfOELaoqQ9bvRKPDii2SYxcWKYR85wu/o6c5Oa/OqVXtytutTNwRef50hjaoqHlRdHaX85iadIFkgnGEYl0zT7LZ7L6OEN00zaRjGtwGcA8Ny3zNN85phGH8BoM80zbOeV5IlRCLcQL1po/ROKygAfu/3yFFlwktbW2Ybns/k/j9g3woJyH0VlBOCiKSZnKQ5UVSkpp5KeyinLrcLC5SWDz+swkSSqVdfn70j2M5U2c70WwEnO1lCenYgjL60lA04Ll1S+/KFL9DE053cr75KvJG4uLQ0X1hQ9rveodb6rNtJk/XsbLcLwyQSwO/8jvJeFhXxtZmZnHbM8RSHN03zpwB+anntzxw++6mdL4sgLZRMk+qbxD/FS3/sWKoqZ1fUYiWoxUV+59Ah9Rk9yUaH3a6CckMQwQndSbu+TkTd2Eh1mlnxR8/s0zP1AEWo20k8yRVsJyaun4WkUou2JQk68kzJJLXCaFQxvM1NEp2d/0XHES91Dk7gObnHjqtIWEYcElK4kOPQ3AOdaSeZZJEIJXhZGaX53ByR2YkYrYki4TAPenIS+NGPqAk0NCg13QnZssmj3w5kQpCeHtqeo6NUX9vbqeVZm1Za8Ufv4y5OxytX+AwdHd664HgBN/XV7b3tMFK3AZl376aeiV0WotOUHSDVOZqpzsENnDIkrQlcoRDS1SZre5/WVh52t61mvm14oAlearClK+ramqpsk1JYIJUYGxvVAS4t8RDF0TUyolobV1XRQy8VT3bIthP1Dshsz2WSdKEQ8NnPUqsT06WkRDno7NYKqMy+hQU1G10IQJ65omJn2oqbdgK4q7ZOxCthLbdhLZFI6oDM+nruzaVLpI2KivQsRLmPXXsxWWdpKfdGQrM/+xnzDPQ+hJnAMFRCEMCITyJBc9xVxY9GqZaFw/Yz43MIDzTBh0JKIkkTx4cfZhJHMkkvqd0kGDlA6WG3ukqEaGqiKv/uuyr+e+cOG2ZIiMhuDdtReb3Yc05dZKyNJ6JRaiU6Y3Mz64SgRkZUD3sJoxkGNYb29p1pK27aifzvpLnoxHvrFouIhHjdfAv6WehDSDo66KMYHCTRW7MQAWfmNjrKfVhaYiRobU313RemYc1/sINolGd47RrXWVDAnPuSEiYYuWbg6ZspNurysjeHVJbwQBM8wBzrujpOEBVYXqaktiNGXWpK3rr0rguHVVaUafJQpGNKrsGLPSdloDI6SrrISGWcILwMpQBYhtrR4a45yL7os9HlnqOjZHKdnTsLKVq1k4UFXjsS4Z7W1bmbTfrZSUHO7dvqUSfTAAAgAElEQVTp3X293Luigip4f7/qWDw3x2Kd6mr+6BNlBKJRMhvR8ObmSLQS+s3L49nopocTRCKqjmFhQfkXamr4v2gvtmbUfeyR9cATfLZ2tG4fSmLN6ir3MxbjgXZ0EAkSCRJZfX3unVdezlC6yMzPU90OBJSEksw661CKyUlKs4YGdzVRyjmt0R/JZd/ps+r7LKaDOJsNg0xFxki5mU3b6e7rVFwk3XN6eylVM2nHemei1VVK9rw8NetOrru0ZL8O3WS7cYNrbmwkbgF8pvn51B58tprGfeyR9cATfLZ2tBz44qI67Pl5akbJJJEqFFI10wcP7g4ztRKEZOtJkoas366ltkQb7LQE8dpLlMHN274bTkdB8tFRpYrPznL909PUyDY3gTffpKMwPx/4xS+YQ//7v59+Pb27L6Di5G7dfd2eKxvtWO9MdP069zwvj6G85WUSbns7X7PbBz2f4+5d1dY8meT319dVCy7XJKXd9g5r8MATPOBc7Wan0ordLw7PlhZVqtnRQaeKpOVK15Ll5dwzU53x6Nl6JSVsmiBlq9L6yo65e6mLB5wZ1k6djlbQ/RJtbarZyNwcGVBdHdXYa9e4znic95yepgT8T/+JSUOSGgzQ3JD2ZEVFavyUW3dft+fKRjsWpgzwnsePk5GVlKgI2fo6C52s0NdHE6SykvshPfXOn6daX1DAsy8tVSaG4/7n+qBcYE8QvA5enGGzsyRynYiEy3/lK6mZVNa001yVJcsZvvSS6vMWDNIm1MtW5+dVQoydtMpUFw+4a3/ZMMtMYNU4GhpImB98QEkoLayk596BAyQaGX1lmumpwU1Nqj+eJMXYRSEyPZdANtqxjBGT8taaGrUvGxv0tp88aR8ZGxjg50QzkciRVNFJVWFLS2pWZNYPlGPYcwTvxRnmxuWdmCnA4hQZqRwO76yOHEjP1pMQmdi2bvFhCV9Z04ALCvg9qYvPRvvbadm1075Kvr5M9Y3HKakfeojPVFen+udLkoyc13aiEG7gVTvWI2Hj4/zcwgIJVFKYKyrSU67dwDSp6Xzta6mvPUj96fccwXuZ2T04yJ/CQiJSZ2eq08hJ6o2MKOS8eJHSJpEgp8+m5bMOusSZnOT1YjHVxrm83N1BZU37LS0lUl25ktoAwsvadtrmyc0vceIENajmZmUiSUeYxUUygLw85pNYcw1yqc16vZ6+F8eOUdMaHiZjPX6cZ+Q2e+DwYUZODEOZIpubfH4dsva97XLnmz1H8MEgCUcSUSSMU1PDvXrlldR01Js3iZSdnc6xdr0yTWz6u3f5WmfnzsqSdVteWnJJwU5/P1VhJ/VVquD0NOCJCU7APXmSiLqyQuZWWZl5bTuN/siz3LlDhri6+v+39+2xcV1nfr9DDl/ie/iWSEqkPLRFSV7LomLZcZxkI9tBgrU33XTjJlnsommDJN5igf2rRYBFkP6Rdou2aFEH26ANkhibxyZ/bIQgWa3dtRNvbCkiLev9oJ4kJVKk+BqSIikOefrHj5/PmTvn3rlDDukRNB8giDO8vPfcc853vvfvI0O3thp0Ggk1XrhAyTk9zXmV7rIyD/Y7Z1ubDXM/b5n0yZMGU2BhgQet4BG47rV/vwHWmJoyiD+VlWvTvgBsCvLNfYdaG4kAP/8552FsjAwg8db+fi7A1q2shKqspFSZnw9mCMnZHx1lgk5fn2lusLjIzblWxBjZfKOjPKykzFmq2yQ05DcuL8LOnTsGHCXT/mq2k0pCaW++aaC5w7xLVxfnfmGByS/bt/Pdlpc5hmiUB+tTT/Fdq6poxpSU8N/QENObBwY2HmXXRa7+g9XV1OzEm15cTCZtbvZHrZH33LePc7JvH/CZzySjEvkhHPuSC654rRvPh+4rCT8xQekmaC7SgOJDHzJllUtLZr4qKriAAl/sRwUFZPJolAwxOcmNsHVrdkJ3ti0fjyc3p5ifp7R0aW8uB9SdOybOKxR2bH6Rg8bG8ILkzh0eWGL6AHwHu322MMPKCpnod7/jM2dneTiUlPCa9fpIMqWg/oPV1XwfSc8F0kdv/DSJNWsrm5CAc19JeOk5tm0b1dyeHqrcwvySL37uHLEELl/mXBUVBS+cHAbl5Ya5Z2f5d9nIOwcM8wroRnc3P0ej/jjpLpy8wsJUhvcbmw2bJo4sQQy6fJk+C0ELCitIBNfN1YXXOwYbg1BaR0lPeT9M/o0kW4DW1HD/VFUZ08rGCLQxCTeNZJOI+vXOOzyRXIkAa6T7iuHTbbb6eqr50iBhdpaMX1wcvHBa85QvLjYho498hFLMRoxZz+J7mddVwurd/CJBbBXxhRfIpC6wTJv8wBhFe9m716D1njlDzSgQdHGVZJ4lcUk0KFf77FjMtI6+d4/PkH+CSZgW7DGL5Nfy+pFH2F3m2WfXoY5ng2Ix2qi9vVwwCeZLrnUWKOdVehvi6vp1LkAkwk0nUkM2W38/8PTT3GTXrvHvd++mUyZo4aS6zHauDA+H774ahoJKWIVc2ptLbRTkGleZp1337/LI//rX9EkoZfrWA7zfvn3p30PCaJ2dPGhv3+b8P/OM27nc0sL1WFqiT6WqigJLKh2DNKe1OKzXU5Yb5OzLlvM88D7pcq2z4NnMaYa3Ia6KiihN3nqLknfPHm60wkKTJy2pki0tzKsGwsVBXbHbTLuvhiF7QxUUcA3D4KQH3Qfwd+7aBUfybsPDnJuzqwBl0hpKiovCPltw3Xbt4uF76ZLbubx1K++/ZQvf9cIF471+4w2zfl5ai8M63d+sNYM1W85zFzDpa6+Zxh3RKIJzrbNAOa3SC8RVcTE9yRUVXBxJY3z0UXYbkRxp2wstlE6CHDtGp1kkQlNhM9Q5P5z04eG1mQ0u565ELWySnnrimygupnq/spLZ+wrTP/88/79zx9+5XFVFRr94kY7Cmho+T3wRdh+/dO+Uzt5P9zcuEynMe4cdi9dn4vdOAkxaWEiH6ZUr1vWZbuIMKaclvHjdJycpiUpKuEkLCynlpRBGKNNOr95TOxOwQtf9wqp8/f3UROrrTR18VVW4WLqLXM7dWIytprwxYempV15Oc+fuXR40WnOjukAq/UAr5Z1ff52O1Pb2ZDSd69d5OM/M8JC5e5cbfedOHha2N9yrsco7SYLPzAwP/PLy8GWzMg6/stz1zK/c11VM5FfXL/cRFGIp05asy/5+4IkNLqTJaQlfU8ONMjVFRgdo2ogN73X2ZHKCr0WC+J3gmXYmFeeReOyffJJaXBoAYV9yCYWiIvdc7NyZ/P3ioskWq6uj0/Nv/5b/uz7Lu4lUWlwks8/M0PknDTLv3jV+hJISPkNAOG08PsDtuJMEqzNnuOaCZDM0lDqvrti6UDaEo5/QVcrMgVTFXb2a7D+x95PcZ2bGAJNIs5D352CtakhIymmGF0mSSJj0zHic0tBuBbwWciW1BHmMg5jae3hIU8RXX3Uzfra1Nr82Vz093CsHDvC648eTw3PPP8+5bG42Yx8fp6YxPu7+LO/561+bn2tr6SS9cIF2+fAwn19ZafIGurt52NTWUmK/+Wby4eB9d3HC2qmrdvaba128bbqzFVrzm197PgRdqazMNMXw7ie5TyRiohzz86al+ftz4LWZsmhb5jTDR6PMXPr4x3kqzswwjLV3rzsMlImkzZTpgjQC+/CQEKr0rQsbXw8KrfnZhPY8uYQCQKfQt79NB1Ekkjoe78EnraSkHt37GTDOvy1b+L43blCdb2gw+HRdXfzuzh0y7OwstQLpwTY2xg5Lcjh4310q6aTTjV/2W1BsPaxwTDfPfvO7smLmzkZXkrny7ie5T2cnoxvLyzSrpL32+3MQduHXQDltwwOcpM9+li2J09nIkphz7Vpynn0YcIh0QIp+dpw86/RpbviZGRPqkqaIMjYZQ5gCj0w9w0EFQY2NPKTOnuVz5KCKxegMlbHbDCb16H6tpVpa+L/AqJeV8b6dnaY/gPgRpqaMHV1ayjEsLpp0Zr9oSFtbKmKPN/vNtS5SbhuGws6zy/b3Q1eSfHqX6R2NMubf02P2szijo1FrQMvLnMTTpzmJL7yQFXy7nGd4oTDOlkzgkmymCwOk6KoUu3GD63PwoOkMdPYsgTYLC4ObIrrex3b83byZDNSYaWWbtyBIojyC2fbP/8yahNlZY3MePcprx8d5wEpe+enTtNO1Nvhw4vwbGzPorN405GiU+/TwYc7vtm1U6QsK6LeoqjLXuSiM/8oFtaUUn+VN3XU5VtdTQWiPr6qKh11/PxlY2pb5vZvvfhapdfWq6S82NcVJ/NM/Xbd6f18wfFgP+MiIAZgoL+dcSTtoF9mT3tTkv+gTE9xMx45x4927x0WVuP/oKMs+pWpqZCTZC22rdn7v4tdQVA4vILO0apF8ompKeuutW1Qnb9+mSlpaSga+eZPv1d1NZh8Z4d/dukXpNTXFIqXGRtZ7iz0uCUp+CEI7d3KfStuu2trktl1hctWDNCGb6QYGyOxa05yw19HGB7Ql+eyswa8TCjvPUkxk96pftyCemqJktxvh1dRwwbKQfJPzDB+mi6pcNzxMiVZWxs17/rxJxAmioAYCdjOLp57is+/cYVZaUxMTSySXf88envT/8A9uxNQg9dEraaSh6PnzpgGHF8I6iETyiaoJkBEmJvjsRILXSGpybS3fZXGRm3jbNrY6Kyri73bsIBNcvgz85CfEy4/F0iMIAVyjoOuCDsF0B719KNy86Q4P+uEDAtwza8WPFOyFhx5KX6ocOmxbU8PTvqnJfLew4A5LrYFy2mkHuJMVpIuq7c/o7TXlrLdvk1m2bKFKavftdpHXgTc9zUqqkpLkZhZK8V5PPEHJ2dyc7KiZnjYOK4ldy+doNPVdTp2iRtLXl+o8a2vjs999NzmtemCAh046f47tEd69m3Nz+7aBdBbhARgkGpsE2FE8z4LhL/axqMtAuChSkGPR5Wi1w37pHLBy70OHqFbb6co2PqArKmPXSkxNMZLxm99wrv3mVg7uV1/l+iUS4RJyFheN0Pr2t1OxG95fuMJCU+IpttJ6w1KrlPMMLwtlO4fKypKhkmRCm5vJiLW13FCNjVzwdGGZoMIWb7hFupnMzJApBcFG+oUDlP579zK6sH8/GR/g3586Bfz0pwxhFRbS5Dh2zIBZClVXk8nr66mtlJRwPOPjPHz8mMDOHpS2VIkEx/Tyy5TM0vp6Zoa/Lyzke8/OUpIDpo+f0O3bpqbdu7ldUSSXo9l1nS1543H6U86eBb773czr/oOiH35RGTnAFxboGwPoXygpcR8wNvNKJMbOP3CFdkNl2AmJ4yOR4KTbPcayULqX8wwfJlmhv58qcEUF1auKCs7XyEi4sIxX+tiFLd5wi9izkYhx1Mjh4+3pduYMkVSOHuXiDg6SWaNRrt+VK3y3+nrTCWd4mBrdG2/wADl4kBtwzx7es6bGX6J4w5KlpaZDj51PPjfHUlBxUAK8traWufHCKE8/zXedn+dhoDXnQGxev7yFTMKjcqDLfN27R2YYHeX82Ek06SrrgnJW0oVCh4aMMAk6YOwDqqrKFCBJ7N1lDoQRWkkkjo+PfMQgemYpHh/KhldKfRLA/wDbRf8frfV/8vz+LwH8GwAJAGMA/rXW+sa6RwfjbJFkBQGN2LkzWV2LxUzKYmcnrxkdDd+Lz3bgSfUckBpuiUTILJKM0tBA2z4aNZvc7ulWUkLn2OHDXLtLl/i95NAPDJje5ja8thwC/f08QIJ6pomDqbfXqJhSkPN+yqYjJBiL8XCU+vqKCqYxt7UZG3x5mYy6smK0zNlZvp9Ai3kpE8+3HOg2M8zPc64KCvi9y/kJ+NvFLr+WnwMQMIdRYyPXRPrvSRTBJrs1lVLUSurq+P/wMO/f2sprXa2/5+dNcVZra4CDMNu4X6uUluGVUoUAXgHwLIAhAMeVUoe11uesy04A6NFa31VKfRXAXwP4XDYGKO8diXBh6utNssLICBnvwgUyVns7mW29nXb9wi2SJvrss+77unq6LSxw87z7rvl5aIgbprycG7yoiMzmhdeeng7fM02kqtQYLCxw4+7ezU3mmlPbc+1FjJX3O3SI715SQpV3504yoyTcfOELqfOQCXCLjMEb3nv8cd5/bMzdxGEtFWwuHpJ7NDSQ2ZeXua8GBqgtdnaaa72tqRYWyPRiGskh6g3tCvrwwIARAhLG9eL7JdEGAFqGUek/BOCy1vqq1voegB8DeNG+QGv9htZaLKSjAFrXNSoPCWTS175GWzSRMKmWEu+Mx8kYra30mEoDirU+T+y63/6WquWePbR/w2wo6XIr2WHV1caJt2sXGSYWo1dcwlOxmBugQdoWj4+T2XbscKOyiFlj17lLo4i1ZA9636m7G3jxRY5d0psff9z4J2zKJItR7h+NUiOTOWtr4/tGo25nYLbg32TO29r4nHOrYmxpKRV7Qhhaa2PmlZdTEzlwgGvV0uL2cdTWmgaeWnMfVFQEYBpmWqARksKo9NsADFqfhwAE6RpfAvAr1y+UUl8G8GUAaPfi+YYg+4Q+dsxMOECpd+kSpdrBg9lp3LG8zANmaYkLc/RoajjQNUZXT7f6eoPEs3s37zc2lnw/L0CDeP0Bc8ADRi0tKKBqePw4tZzt2ylFgOQ69/p6d/OJTCSxjTUg5FemnWnBl1/YLgiTwB67JELF4zQ9MhGENvRYZSWfL5+92BN2ayrBJaysJOOurHCfnDljsjxbW6mtTEzwICku5torxb0lf+sc63oyggIoDMO7eqs667qUUl8E0APgo67fa62/A+A7ANDT05NRbZhXuxkYSE6YkAUaH8+O6eP1rErS0+nT/NzaShPCtbn8ADVeeIEMOD/Pg8SbdGPH/MvKGK4DjJQXFVGSgWwGKSnhgffww5wjMWt27XKDU3R1pabVBmH3pUOL8a5PVxffNSxiUJgkG9d4EolUf0km4BT2Wq2scE+J6VVdbQ61iQn3fEmX2Hic61Vba0yqvj5qKceO8ZqCAuODkgabJSU+A9sgQMswDD8EwI5ktwK45b1IKXUIwNcBfFRrvbiuUXnIZa+JV9WWONlsuOmqXZ6ZYeJJdzcX2g91VTZvX59p87xrFzeDN3HGfrcdOyiZ33uPm6uoiAzs6i3uFQDSI314mAefSNXCwmRNSMJfP/oR3+nyZf7NzZs0hewkIZuBBdVGmnTeuWMOMdf6CE59EDpNWIebi4L8JZkgQtkHzcoK/wmzA3wXCZ02Nhrb+/RprqXMV2+v+/43b7I3XVeXOZiWlxmurKw0h7esrczHIwU1qN6AjrJhbPjjAGJKqQ6lVDGAlwActi9QSu0D8L8BvKC1Hl3XiBzkstfEbk1XcbZWcoUDBwf5fU2NcboF2Y0S//7wh3mPIBQUeTdJFopEyLjFxSbOa4elJMT3zjsmk86298XmFXgpm65fZ7y7qsoAWV65wvv5JcNcusQN399vzARBq+ntzcyezoZ5GuQvCQOMaecJiB39J3/iRq7Vmu/T0sL8iqoqU/gjh5oNhCrVffv3J6dH79nDsOPFi9xbEu9//XUm4djzcXwyhvhwiJLKDCmthNdaJ5RSfw7gCBiW+67W+qxS6psAerXWhwH8FwAVAH6qWKUxoLV+YV0js8il3UiWm6snmx/Z6CSCMtPWFqyWSzjw7l3aydu20R6T0IuflhXWBPO+mxwqo6NceEl+GRykuike+cHBZG+xQC0fPJh8f5cqfvEimVfu3d1N7WJ+3oQXXWM/edLdpPPECR5qNgVpn665iceZb19VxZ8rK/1NJiE/f0kQbHd/f7Lp5PWou8yK48fNoSkhUlH17eIqqckXn8KJEyYc19LCv6uooB1fVZVsDgGeFuDNUVxaeAI9JSFtnJAUKg6vtf4lgF96vvsr6+dD6xpFGvKzHyVLKoi8i9zSwgQmKaopLeU1fmp5JMIkmHicGzASMWguYie7NldYE8z7bhJr7+gw4bSSEh4AjY2mq2wsRoks3uKFBX7/1FPJ93f5EyS5xY/8xj48TLXf+z2QWT669/7T09QwRJ2VtSkrMy2ZtU51XE5NUdM6f55z4K1dsMk2O+x0aRn/jRsm0SlMQxDv+/k1+ZCQ7OOP83AZG+P3drq3bwvw+ezH4nM+0w4IDxhh08QEc85feYUn7ciI6YKiNTeRMKCf+inhwI9/nAvX0mIcO3V13CB+wBU3bxLVxQv75EJ2sd9NYu27dhmgydHR5PCVeIttIErxCofJYX/uOW4ywZWX9ODubv6NX1hNauC934tPI+z6eO8/OEgGWV7mmsja3LhhcO1F1bXV30iEzJVImCIgu3bBJlursNOlz5/PDmCJzPPoKOe2qorqf1cXmV0gz6NRU1UoVFSU2gY8m/4om3K+Wg5I9eAqxcX2a9Fkgz9IS6STJymdJGNMcO3FNra7z3qdSSsrBjnYGwLyagby7CAHT9C7dXaa8N2WLTxcGhvdtfmyaaSL68qKyVl3PUMoFiOT2I0Q7bwFSRSZmDBtqqNRUwMPJIfb5N6CLSDmkmgi6aIYIvXKy42/pLSUpkdXFzUS8Q3Y6u+ZMzwcamt58D35JMdz506yc3RigiHVggKTDiua0cWLdIwC6wMskesEd39mxqTbNjfz/Z5/3uwPG1xUfABrbkKZAd0XDA+YSfeGo1wZVi7wh5oaYx+LQ0fSZb3Zat4Qlqjx5eXGhpNwjEuSLC9zYywsmIq1IGQXF1pNmBrwtfaIE80lKInLC6gpWlHQxpcmFU1N/mtjv6/cJxrl2GXOysqSuwvZqcSi/k5P8yCVg6CsjGPxmk2yphIWu3fPgGhK70FJpMkUsMRLQb4VO5tOKuYAanKHVg3isCHJ9dB9w/BCYZxhYiMqRQfb8jK/HxszYa7JSUrElhZzmvrdWxgXSH8CDw5Snd+yxdTK373Lkz/sAqbbXPL7v/97MoA3LhwmJBX0jP7+1DbV9n2D/i5srogUtPT3kwH7+w1e3cKCWRtvKnFREcdy5gx/li42fj4VGZMdFqurowROJPizKxS3FnU6nW/FFigf/rDZRzIfG5A6n0L3HcOHwSsXiON4nJNaUWHKQBMJqvZakwkbGtJnnglEVpgTOB43NvHcnMm/90Izr5eiUdOR1m5Sko1mo2vN+XA5486dI6MdPUpbXzqs2Ju/oyM5DVhrSvWaGmPeSD69pNoWF9OJeuECf9fRQalZUJBcvGIf/nv2GHMsEmEYDjBanCtn30V+OQR+mXhy8Anqj31AA1kBsglN9x3DCzML5Fd1NSdacp5Fcrz9Nhn9kUdMhdOuXWSQZ5/1v7fLG1tQYPrbAca55SKlTIy7ooIOolu3kgFM1kNe3LulJbPB/FBxMq3BCOOVdt23oCAZX85OjBkeJhbAsWOEyLK71UxPk4mXl8l0tunjNW8OHeJzZmf5LxYzBSzXrgF/8AfJobbCwlRzTGC5xAeUSVZgUNGO7VuREulLl7j+Q0Mc444d6SvyNpJynuFdGV9vv82N7cIrF3uxtZXhtytXeJ/du8nwXmQXm1whLIFRHhjgQkkW2cAA8JnPpG4MkTbSnKCighsjbJMJO4zojUcDyZttaYlglJJxWFycevitpaosTC68676Tk3zPlhbOz507/JxIcL2am/l3hw9zfTo6kkuJpQ7eHp9L1XWh2R4/ziQnybyU38k6yLuMjJgwWdisQJuCzBZ73paWTGp0VZXpMDMxYQ5AqcjLAhhtaMrpsJwrI+vSJTJ+Orzy6mpuuKIiSoCbN9mI0lZ/veQKYUkzz4kJw/C3bwO/+hXwT/+Ueo+qKm7erVsZltm6lZ9tmOd07zs2xvHOzVE6jI3x+76+5Iw2wUaQ2HpJCe3d5mYTZlxLVVkQkISQ677NzQZt6OZNsw41NQYtp7DQtJ/y1sEvLvJ90o2vvp5z8cYbBtve1QxzyxYTSZF3GR0ls7uq2sKsz9GjjPi4UG7seTtzhmsu/oeaGh5Uly5RU1xY4LtLcxARTBtNOS3h/U5TrXkqejO+bJVzZoYnaF2dUa1v3yYTBpFXohw5QqaLRMh4xcW85/g44/y///vJjNDWZnDfxIYTxgz7vteucRMJGMT4uLFRvRltxcWUlnanWLuKba32eDonUjp/B8DxXrjA+Qd4KBUVkWErKrhmQTDXLhLgyFjM5PRPTlJ784tl2+9y5Mja5sPl7Re13HYUyrNs34GgJslnpRgO1Jr7YmIC+PGPga9+dWM88zblNMP7bSoB+pfPLpVzaIjMHY8b1XrrVn6fCdXUcHElA6642MBUl5SkOlwkNNXRkQoqEfZ9pdsLkJwrAKTa1rbX2m6+IQdMWHs8U0p331jMoO/E4wYQVGzW6WkyqSQW+cFce8kWAqK+z82lRlL8Gou4xj0ywjFIM02/Jideb39pKQ+f7dtTC47Ev9LSkoyaVFpKDScS4XOqq6nZXL1KP9Fzz61vXdJRTqv0fhlf7e3hkFLLy7mJHn00VSMIS5JvLYktYhMWFzPENzCQDNYIpOLjSc16ugIReV+RCIBBVent5XP7+ky317k5MvzYmAGliMcNRLaMP9MsRaGgjkfp7huNJrcJi8d54IpKv2cPN39TE9ezoyMZQdZvfH7os1qbeb92jWr3ygrn6sQJk0jkHffwsMHbDwIGFVV+cJDjFYiyxUV3wVFjI+87PJyMfVhXR43xoYe43iLxGxuNUzjd3K+Hcprh17NZu7sNAKM3fTSTyYxGgZde4ikdj1O6Nzeb9NqhodSqL4CbQLLBTp3iwostng5a2naCjY0Zhha4JMloKynhuJ5+2jC7F4nGtiuvX2c57OysQfv1o3QVbWHs/GgU+KM/Ar71LeCLXySDNzfTrq2pMVJa7P4wzVL9hIDg/01Nca4lvbWmhofM9es8NL3jTmfT26p8SQnXf2CA8/57v8fc+2g01afR0pKcUtvQQFzKr3yF77u4yMPj3DmupS2MNgjsBgCg9Fp7FC3wLDcAABR3SURBVK+Tenp6dK9fEbFFtpokp+HUVGprKEnxtMM5r71GppH00Npag4xjZ+p5/9ZFV64kA0zW1xvPrF2TLxl4sRjw/e8nZ13Nz5usKz/72OulHxnhuLq6kvupC2OITWo7I8WGf/755Pu68Ov83ls2nNdPYuPJZ0phxxpErvcYGTHRgS1bgB/8gNd2dxv/wd27nP+/+Av3mOLx5LyOigr2NJR5sIE2tKb2sH27mb9M3u173wN+9jMegDbu/6c/zQPytddMjYCAkQpYRpi5V0r1aa2d8K05bcMD7pRaSVeVaidXAoNf+qgXyUZi15GIf3weMMjBfX08laenuYFs7HYgudOJjT4r10nkIN37ep1Mfsk1YW10P0Tbvj5KwvXAX4UhF2IMwMN3cTE8RqMrr100BJmD4mL+PzKSnC3oIm9eR2Ehxzg7a3I8OjpSE3e8dRSZ+Eq2baPgkYMkEuFcV1Ul12KkAyNdC+U8wwu5qp0ktCGgB2HynwcG6K3v6+OiScHEjRvJWWB+iSoCarFlC5mor4+L503LlAIdyQ0HeKLfvk1nVRD5OX+EvM6xsDHzigoeVJcv08x47DG+9zPPpMboxW/glTJrcfa5CopEcm7ZkgrhFZbphY4cSbbrOzoYHVhaMnnyU1NcNy9JklYkwnc9f57v/sgjphGp5DnYdRQCYSWgl62tPOAl0y4oY29lhZDzkowjlY6JBNddhIQtKPr73ePPlO4bhrcljt0cIqj01EsCM3z5Mq+XRBWAi9DXx81nJ5SMjHBDtLZyceyOrgIrJTDS9iL393PDXb3Ka0tL+ax0DUS8psi9e7z/008nmy+ykcJUcvX3m9bWktM/M8PusU8+mRr27O3l8+NxA+zQ28ssMSn0SEf2oXXpkskTiKzuuOFhbuZnnkkuFV1LmqlXuu7aRb+H+G281YA2SZKWRDoqKkwjyulpoxVWVSWbEDMzZr4BHg51dfw8Px+csWeDZQAmI096IbS3m0o7ASMdG8sOmtN9w/D2oobtxe0lsbnfeosbT1olj42Roc6dMxJfFvzqVV47N8dFOH2ajNfczHHs38+xeJlNwnOdnVTjb982GHBBEqyvj1K3tpZjWFgwaaNFRe6N5NJkbIYTaWdTcTHvKyCKdtnv1auE5O7pMXZtVZW7SaKXJiZ4OBw7RtW9uZkYfVu20KYWBKGtW026q1BYk8EPb0/ucfcun1NdzYN8506jvbmovZ3MJmq8AE3a/QNtZKXaWo6httZIYKU4x9XV6Q8sv4y8/fv5XlLTn40eC166bxh+Pb24ZYO8/jrtJ4nTFhYafLJTp4xaKAeHZIFJm+XpaW6g+XlKwJMnucBtbcQldzFhby//rqiIG762Nvg97QaOgMnam59fm2Orro7zc+qUaSMliC979/Lad96hP6OmhhpMIkGJtXevmQs/SGr7mcLoY2NMThkfZyvl6mrO4egow3DDw9SyOjs5N2Gr1LyHSSxmsi8lH/7aNWpxjz2WrBEFUbruRl5kpSNHuGdse100uDANXm2t7MQJ7kFxyorWODKSrDWG7aCUju4bhveqrnaLpyCyN/+2bZRWYpc1NvL0Fsir9nYyh9jlkgAjSR3t7dxMIyNkGkl9BeiR9/YGn5wkI4nzLhM7dT3kQrQ9c4Zj3bfPRAzKyogANDXFg2hpiRlgnZ3p2zy55vjGDR7Avb1kAIk937plMPJLSjgXRUV8fm8vJZskEPlpaS5Qk7NneX15Oe8tTNnUFK5EV0j2VmGhOUyku9HcHPeNjesv+AO2f2ZhwWhgYciVkQeY5iMurTEblNNxeC/JJB04wM9hklnszd/ebspiJXHi1i2T59zQQOYAKDUqKkwsX6RlayvtUanWqq7mxo5EGLaTsUiRSCTCDSj2/NQUyyT9cgB27XLnD8imC5M74Opg84lPcPPaDUlnZ/l9QQHHJ9WF5eXUZKTNU7r8BzvyMT1tQClPnuQzbt7k4QcYyV9WRilcVcXNnS7+bj/Dbsg4OJiMUuuXmJNO8kajzHJ7+eXk7kZ37wI//CElcSTCPTM5yTmcnOTvJWdCTLkwJAfYhQtGCxQqKmJ83+6ymy26rxgeyDwpwd4AAhUsTfw6O+nR3bPHxPTt9k7Shbazk0w7NcUN+/DD/Lx1K/8Jos7ycnLRyvKyyaYqKyMTHT/OsfqNvaeHzrHlZT5PtIPl5fDv7EpOqatjXNluSNrayrCVYK/t3Gkq+4LaPHnX4vXXjXNyeNj0m08kONapKR4obW18t6YmMvr0NN/3kUfSb2xZRzsLUTr62tqHX2JOppL3wAHO+dgYx1tYSI0ikTD+m337TA3AY4/RoRmGOe09LG3SensNhkI24da9dN+o9EKZduDxenDFqRKNkrGvXuWm0drEhuWElfh/f7+x26VoQ8wEqXNfWCBj2pLGG5abnORn6QHnh58mDRwl2ejiRY5jYSEZOMEvhu4XqnMxldiogm0vQJpBbZ4At6k0O2vyDBobydBzc5wHqZiT8uFEIpVZg0jW0TVW2xTItM2VH7lg0gBqFBITf+654NyNdPeW9d+INml+lPMM7808u3KFi9rebjZ+kHe3vj41Q85u+yQtkmMxk8s9PEyb1i6msJlfvLb19dx0Z8+S6R56iJsf4N95w3Kjo/xfDpbpaeYFSCmpMKw32WhykuMfHKSa/MwzlHTHjrlj6GFBF+3usX797lxrIfkBEqJsbzchLWlrPT9PJ+W9ezSbamspESWDTNTjvr7UAhcXyViXl6llnTrFez/3XPJBFvbd05HY1qJRiPN2ejr8IRWEjGMnNWW7TVoQ5TTDy4ZfXuYGE0QVga8SHDK/BZB02Hicm0xsLXGu7dyZzMjSoFEpLq4LiFGy4PbtY0ljb6+x/ZeWTO28KywnqnF1NZ1/R46Y70tLme9tt6IWs2B6muOSSrq33qIpUV/vr+mEwUizmcPb785eA1fzhtOnU7uqDAzQN3LwIN9HJL54+Ofnee177/G9mpqIhLtjR3pgDkkvlsN7/35zePu913oorEbhR2GQcbJdwRiGcjqXXuyca9d4mpeVcQNJI8nKSjKU9IlfWUluVmDnso+Pc8MWFXGTPPaYu7NJJjnk//iPlOB+Oc9+8eLlZeAXv6DkKyujViCVVE89ZdTEI0eobYhELSnh+G/f5vWf+1zyJsk0Lz2IvCGwRMIgvNopplVVZvNLBtryMv8Jou7sLP/+8mVe9+ijRr2X+9lIwH7Maq+N5A2MjXH9/vAPeU0mUF7p3l8YVroHSyQgKKbvGquQXWdh1wPYpbx+nZAyofs2l95VHy5Oq8pKMsHWraZPvC2RIxH+3coKmWxigswlJ6kwm911xotfLvayn8mgtcGrt7+Ta12SpraWXvobN/gcwMTFr1wx5ZSxGMd5+jQloaTlTk5yDkpLs9u8wD6cCgqMpmLj+u/cyXeTA3dmhmthgz/K+9qIurt3cx6PH+fvDhxg7D9derT3wBwcpDbggsV67TWOs7k5PJRXEIXRfoIoqBbBvrfkDbjaXm2EHZ/TDO+tDxe8cilPlZx0b3dUgFhvgni6uMhNPDRk6thl8js6kvHIBNFEEmuamrgZGxqSY7HCkJmqZtGogcGyawNu3uR7NjQYL3xXF7UReebWrTwwOjs5Tkko8UogVzOKIPKqn729lN5amyhESQlj9gIaWVzM51ZWum1lF6Kune2XLj3apRIPDho0IQnLzc9zziTsJ3kQYeLvfnMRRktId53sjUQiGWC0s5O/t4VBpnkD66GcDsu56sPv3uVnCV34xV0lnAIYW3N+nswkElO+n5pKRjQZH+fJW1DA342MUDqNjSWHxerr11avH48zNLa0xH9zc2SMuTluCDkI7tyhvyGRSI6fFxZSrXziCTLN22/zvtKNNNPaaW8tdyLBDSsqOsD7Li7StJJNWVbGw9MVL3aFx+yWSm1tJsdA4K7suXNh5kle+9gYxyMhsbY2M5fefRAm800obMg3zHWxGPdNb6/pbhuPG81JaK15A2ulnGZ4OQUbGigxysspHUdHTWMEpdxx14YGYx8XFvLa2Vnj5PF2nZGJr642hRKSHy3PlzZXNkOGQd7xUmUl71dVRZNDpFNTk9FaZNGlLNeOn9uIrtXVdHwdOGBAJcKCMgp5N510epF3PHuWocHSUs57WZlph+znAnKBl0gu/tycSY+enqZ5JYktgD9YZHOz6Z83OprcIjob/dnCAn7a18XjFA5nzxrceYBjrK3le05OUrvUmj9L7jyw/ryBTCmnVXog2TM+MWGgioaHaQePj3Mit2/nJpMUzZ4eSqPr1w1wYkcHF+i99+iwe/TR5Oo2Uc+1ZkhpYcEUmVRXJzeT8NpjmVB7u8HUv3aNEqC2lszuSmUNekamdesuVdRrmtTUmIaNwkRKcQ5bW3m4iJNNACa85AqPiTNSvisuTtZ0rlyhf0DqI1xgkeJotZ1ecpiIlrTW+HvYubSboQRBbK+scKxnz/JzaSk1kmPHjOMvW3kDYSmUhFdKfVIpdVEpdVkp9e8dvy9RSv1k9ffHlFI7sj1QgOrR9euU0pEIN8fEhGGMd94xGGM9Pea6J5+k97u6mows/b1taWlLJDultq3NQGLbPc7WcwrHYhzb3r2Ez/r85yndd+zIHMorEwnhp4rapsnUFKV5fb05fMrKiMTy8MOcG2nskW6MwvS2ym9/pxSZqbDQQFG9+y6lYVdXckad3anXBa/17LNMWMpU21rLXMp16SC2a2r4s1wjNe6ClmTP0XrGnQmllfBKqUIArwB4FsAQgONKqcNa63PWZV8CMKm1fkgp9RKA/wzgc9ke7PnzppLsyhUyYEUFbbpDh1IbPD7xBDdKQQElwKOPGmb3JjnYEqm8PDkZp66O2kRHR/h2REHkKgT6whfCdz+xKRMJ4ZelKKaJXb3V08PKPSkeEuBJSRSSdtbr2ZiuysBIhCr+xz4WjDDjp/Wsx9EVdi7lunQQ27EYQ7dNTQaIY36eUQvbRs9G3kBYCqPSfwjAZa31VQBQSv0YwIsAbIZ/EcA3Vn/+GYD/pZRSegOD/CKJBTQASFW/olEmgXjjoX4S0Gs+ZIMh/ci1yGvpQJJJZlmYUJELT1086VIotGvXxm1QUdGB9J16s01h51Kuk5ZVfhDbct3Vq0ZD3LmTh5qfKbTRFIbhtwEYtD4PAfAu9/vXaK0TSqlpAHUA7tgXKaW+DODLANDe3p7xYLu7KYGU4saYmaGNJ2qli5HXaiNliyE3g8JKiDBhxGwAjYSlXbvoT5HMRklZFtzCzbBpvRR2LiXZx+tL8I61p4fakRc8dLPex0thbHhXcyav5A5zDbTW39Fa92itexrCtGLx0P79dM4tLxsHiDi7/GzKzbaRcpnCwH7b19h46uJIy+bcuSoDu7vZbPJ+WK8weyvX9l/a1Fql1JMAvqG1fn71838AAK31t6xrjqxe845SKgJgBEBDkEofFqbaS96MMEnPXG8q5YNCYRJLMu02u9HjyVNmFJRaG4bhIwAuAfgEgJsAjgP4vNb6rHXNywD2aq2/suq0+xda6z8Ouu9aGT5PecpTMK0rl37VJv9zAEcAFAL4rtb6rFLqmwB6tdaHAfxfAK8qpS4DmADwUvaGn6c85SlbFCrxRmv9SwC/9Hz3V9bPCwD+ZXaHlqc85SnblNOptXnKU56yS3mGz1OeHiDKM3ye8vQAUZ7h85SnB4jyDJ+nPD1AlGf4POXpAaIPDMRSKTUG4EbIy+vhycvPEcrVcQG5O7ZcHReQu2PLdFzbtdbO3PUPjOEzIaVUr1/m0AdJuTouIHfHlqvjAnJ3bNkcV16lz1OeHiDKM3ye8vQA0f3C8N/5oAfgQ7k6LiB3x5ar4wJyd2xZG9d9YcPnKU95yg7dLxI+T3nKUxYoz/B5ytMDRDnD8LkChb3Gsf2lUuqcUuqUUur/KaW258rYrOs+q5TSSqlNCTuFGZdS6o9X5+2sUuqHmzGuMGNTSrUrpd5QSp1YXdNPbdK4vquUGlVKnfH5vVJK/c/VcZ9SSj2e8UO01h/4PxBY4wqATgDFAE4C6PZc8zUAf7P680sAfpJDY/s4gC2rP381l8a2el0lgN8AOAqgJxfGBSAG4ASA2tXPjbkyZ6CT7KurP3cDuL5JY3sGwOMAzvj8/lMAfgViSB4EcCzTZ+SKhH8fCltrfQ+AQGHb9CKA76/+/DMAn1BKucAzN31sWus3tNbSwuAogNZNGFeosa3SfwTw1wAWcmhc/xbAK1rrSQDQWo/m0Ng0gKrVn6sB3NqMgWmtfwMiRvnRiwB+oElHAdQopVoyeUauMLwLCnub3zVa6wQAgcLOhbHZ9CXwFN4MSjs2pdQ+AG1a619s0phCjQtAF4AupdRvlVJHlVKfzKGxfQPAF5VSQyDS07/bnKGlpUz3YgrlSm+5rEFhbwCFfq5S6osAegB8dENHZD3S8d37Y1NKFQD47wD+bJPG8/6jHd955ywCqvUfAzWit5RSe7TWG9Q3NaOx/SsA39Na/9dV1OZXV8e2ssFjS0fr5oFckfBDANqsz61IVaPev2YVSbcawerPZo4NSqlDAL4O4AWt9aL39x/Q2CoB7AHwplLqOmj3Hd4Ex13Y9fy51npJa30NwEXwANhoCjO2LwH4OwDQWr8DoBQsYPmgKdReDKTNcEaEcFZEAFwF0AHjSNntueZlJDvt/i6HxrYPdATFcm3ePNe/ic1x2oWZs08C+P7qz/WgqlqXI2P7FYA/W/151ypTqU1a0x3wd9p9GslOu99lfP/NeImQL/opEP/+CoCvr373TVBiAjxlfwrgMoDfAejMobG9DuA2gPdW/x3OlbF5rt0Uhg85ZwrAfwN7FJ4G8FKuzBnomf/t6mHwHoDnNmlcPwIwDGAJlOZfAvAVAF+x5uyV1XGfXsta5lNr85SnB4hyxYbPU57ytAmUZ/g85ekBojzD5ylPDxDlGT5PeXqAKM/wecrTA0R5hs9Tnh4gyjN8nvL0ANH/B42zVs3aX877AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "\n", + "np.random.seed(seed=42)\n", + "N = 1000\n", + "x = np.random.uniform(size=N, low=0, high=1)\n", + "y = np.random.uniform(size=N, low=0, high=1)\n", + "\n", + "accept = (x*x+y*y) <= 1\n", + "reject = np.logical_not(accept)\n", + "\n", + "fig, ax = plt.subplots(1)\n", + "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", + "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", + "ax.set_aspect('equal')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3.112" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "4*np.mean(accept)" + ] + } + ], + "metadata": { + "celltoolbar": "Hide code", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.2" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index 27c1633c064dc795101f30530b60663da1004a01..95e8196cbedf0b39fa57c4659d30160af17973e7 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -5,11 +5,15 @@ "metadata": {}, "source": [ <<<<<<< HEAD +<<<<<<< HEAD +======= +>>>>>>> 351bb4e8988e8cf7c7d01feb35d88025edc0636c "# On the computation of $\\pi$" ] }, { "cell_type": "markdown", +<<<<<<< HEAD "metadata": {}, "source": [ "## Asking the maths library\n", @@ -19,12 +23,20 @@ "## En demandant à la lib maths\n", "Mon ordinateur m’indique que $\\pi$ vaut *approximativement*" >>>>>>> ff5bf62e6a54b420ff906287a58051154df436c2 +======= + "metadata": {"hideCode": false}, + "source": [ + "## Asking the maths library\n", + "My computer tells me that $\\pi$ is *approximatively*" +>>>>>>> 351bb4e8988e8cf7c7d01feb35d88025edc0636c ] }, { "cell_type": "code", "execution_count": 1, - "metadata": {}, + "metadata": {"hideCode": false, + "hidePrompt": false, + "scrolled": true}, "outputs": [ { "name": "stdout", @@ -41,8 +53,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": {"hidePrompt": false}, "source": [ +<<<<<<< HEAD <<<<<<< HEAD "## Buffon's needle\n", "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__\n" @@ -50,17 +63,22 @@ "## En utilisant la méthode des aiguilles de Buffon\n", "Mais calculé avec la **méthode** [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** :\n" >>>>>>> ff5bf62e6a54b420ff906287a58051154df436c2 +======= + "## Buffon's needle\n", + "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" +>>>>>>> 351bb4e8988e8cf7c7d01feb35d88025edc0636c ] }, { "cell_type": "code", "execution_count": 2, - "metadata": {}, + "metadata": {"hideCode": false, + "hidePrompt": false}, "outputs": [ { "data": { "text/plain": [ - "3.128911138923655" + "3.1289111389236548" ] }, "execution_count": 2, @@ -79,8 +97,9 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { "hideCode": false}, "source": [ +<<<<<<< HEAD <<<<<<< HEAD "## Using a surface fraction argument\n", "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:\n" @@ -90,6 +109,10 @@ "sinus se base sur le fait que si $X \\sim U(0,1)$ et $Y \\sim U(0, 1)$ alors $P[X^2 + Y^2 ≤ 1] = \\pi/4$\n", "(voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :\n" >>>>>>> ff5bf62e6a54b420ff906287a58051154df436c2 +======= + "## Using a surface fraction argument\n", + "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" +>>>>>>> 351bb4e8988e8cf7c7d01feb35d88025edc0636c ] }, { @@ -99,7 +122,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvVlwXNeZJvhdZGJNJDKR2ImNAJiQSIIUJYICJduivEmW7ZJdbneX3YqemqqIdjjKVc/91vMwLzUdEzFd0+WZake3u1weRzm6NhVdXijJtijbkkCC2ggSJJIAsZEAsSSQWDKxJHDn4ePvc/Li3ps3gQRFWPgjEAByuffcc/59NUzTxAEcwAF89KDgw17AARzAAXw4cED8B3AAH1E4IP4DOICPKBwQ/wEcwEcUDoj/AA7gIwoHxH8AB/ARhQPiP4AD+IjCAfEfwAF8ROGA+A/gAD6i4P+wblxdXW0ePnz4w7r9ARzA7yxcuXJl1jTNmmyf+9CI//Dhw+jr6/uwbn8AB/A7C4ZhjHr53IHafwAH8BGFA+I/gAP4iMIB8R/AAXxE4YD4D+AAPqJwQPwHcAAfUTgg/gM4gI8oHBD/ARzARxSyEr9hGN81DGPaMIx+h/cNwzD+b8MwbhmG8YFhGE/kf5kHcAAHkG/wkuTz1wD+EsDfOLz/AoDo/Z8eAP/v/d8H8DBAPA7EYsDCAhAOA9EoEIl82Ks6AIEP8XyyEr9pmm8YhnHY5SNfAvA3JjuBvm0YRtgwjAbTNCfztEbP4HkfvXzwd4Fo4nGgtxcIBICqKiCZ5P89PQ/+Wez2E/jw93ivztl63epqYHZ2+/N/iOeTj/TeRgDj2v8T9197oMSfDc/lLFbG4zg03ouGaACheocNzwfRPAhkz4a4sRifIRDg//I7FuOzPCiw28/XXgNME2hoAPx+4Ne/Br77XaC1FThzBjh9Ovve7JZw88kc9bUYBjA/z2erqgKmpoALF4AnngDq69V9fD51PokEMD4OzMwAk5PAl7+85wwgH8Rv2Lxm2w/cMIxvAPgGALS0tOTh1gquXAFGR4F0GggGgeZm7mksRpyQM25YjmHVH0D/cAAtm8DCQgDJGSAwGcOhL/dwv3dLNHZI9eqrwPIysLHBn8JCYGQE+Oxnd3bITojb2akkzI0bQFdX5vfKyoC5udzvtxuw2894nH/X1ACXLwN37/LgpqeBf/5n4Je/BJ59Fujutt+ffBBuvpijrGVzk3t/5QqwtcWzDQS435WV/N3QoO7z7rvAxz5Gwu/vB0pLgdpa7sED0ADy4e2fANCs/d8E4K7dB03T/I5pmt2maXbX1GQtOsoA2d8LF/hbcEd/r6AACIWA9XXu5cYGaUA/Y9/yAorDZdjaAt64CGysA8HaMpjxBXXdhQUSiQ5lZXzdywJffpmIEAhQCgQCwMQE8M475PbhMH+PjhJRdgL6Q8k9NjeB8+eBtTUSRHExr59IqO8lk7z/gwS7/RQmOD7O9VVUUAOYmCARmCYwPLz9sAXsnl+4/W7Wle2c7SAW494PD/OZSkr4DL/6FZ9taYmIubSUeR+A5zE+zs+XlvLsampyf5YdQD6I/zyA/+W+1/8sgES+7X2hK8HptTWFE/E4ae3ePQrSlRW1j7EY8Vw/481gGAWrSSwskDmXlgK+tSRWS8IYHQW+/32g/04Yialk5iLciMa6wHgcGBpSRJdIAH19wJ07/FlZIbLE48A//IMzgruBHeLOzmYync5Ovj44SGJaWeGPmCAPCsJh7p8OhYX8WVqiulZUxEMMBvmTTvPHiQicGMrbb9tLCK/r2glzXFjg3gvilZeT8W5ukrCDQeJAMJh5n6YmMudf/YpMb3YWSKWotu6ECeUIWdV+wzD+FsCzAKoNw5gA8L8BKAQA0zT/CsBPAHwewC0ASQB/lO9FOmlnfX2Kho4epZY7MAA8+igF69gY0N7O19NpMuSi5SjapnsxGweqW8pQkEoiNbuCd9CFgipqD4u1UQy+04vOJ4BQfRkPamVluwrttMCaGmBxkQcPUA1ZXyf3T6f5P8AFBQKKm7mpebpNWVAA3LzJa9bUEFlCISJPdbX6TihE27m/nypnOMxn2KkquVMbW+wugEidTPJ7pkmkHxujrXvvHtViIZTWVmczRQhX9jyRICFVVDibQdY1263L7ZydIBwGrl4F6upo2q2s8HxCIdrvXV3U8tra+MzJJF83DK4hHqeqv7QEPPMMv7eysucamhdv/9ezvG8C+FbeVmQDCws8Tx3KymgyPf448X99HTh2jHs8NEQcKisjfbW0AD/6EYXLyZMRDJs9mB2K4XD9HLaKwhio6EJBERGiogJYLYvgZqAHQz+P4bHDczh0LIxQjwvRWBfY3ExkmJnhYRsGESOd5vvLy/w7EgEeeSS7rTk0RHV+c5MPNDfH6xYVkclcvQp0dJDj6cQPULqePbt7B59uY/v93PxXXuF1OzqcCQzg3z09fD5hQqdPA++9B1y6xNf9fq7/3j0ifnk5iWFqigdsBSvhDg7y785OZQYsLnLfTp+29wvYrWsnzDEaBd58k1rd7Czv39ysTJcnngBeeonvyX0qKxXz/+QnyaANg3sYieyMCeUI+yLDz0k7A3juzc3Ulnw+agD19RSOp04pHDh5kvs9PAwUN0TQ9gc9eK/2ecy09WB2KwLT5DXC4fv+gmAEM+09mHn8ebyZ7kEcLghhXWAoRIKIRIgQwSDw3HNUQzY3idQbG+RQR4+qB7FT8+JxIrDfTwZy545CoIoK/mxsUHK8+CI3YWVl52q+k3NFtJt0Grh2jfepqyPj+cEPyOisNpkOQmjPP8/1XLlCwjdN7ktxMffJ76fq3NBABiAeWytEIiT0W7e41ps3+blQSH3GagbZ+QX0dQmDdHIuOUEkwr2fmlLayJEjZOyf/CS1m1u3+NkzZ3gf01RmSyhEQg8Geb7FxQ8k3PehdfLJBZy0s2PH+Lfs3fg4aSAS4T7W1/M7S0vEy6oqaoddXdz7wkLu89YWf+QapaX8XkWFRwew3QJ9PoZrYjESRCDAC46PK8dET49CVidbU5xJ1dVE4M1NPtzCAl+ThxGPss9HqQxwg3INTzp50BcWSJgXL5KbVlbSMz05SfXc6sl227C+Pjpo1taovRQVkXm0tQGHDnGPlpb4nOXlzt7+wUES2cmTvGYsxv2UPbWaQXI+TtGO3UQQZD8mJpSzqbWVz1lYyDVOTVFDaG7mHooAALjm9nYKgwcUht0Xkl+Yc3Exz00Y4+nTSrhVVBB3jh8nzbW0KGEcDAKrq/wR34v43wDgi1/kOfn9PBPRAprvxzCy+l6cFhiJkDFYF/mxj3Hxfn92CS1EvrrK/4W4FhaUAymZJGPo7aUq+bGP0R4SM8MruHnQCwoorYXwNzboTEml7D3Zbhs2MKBU38JC3isYJCPx+3l4x4/zme/csZfA1rXaOTftzCA3h95OIwjCNIqLec9Dh8jc796lHVpayn0bHubzLS+TUbzzDp/5Q3LG7gvJDyj6soKTyaYLY3GqAny9r484UF1NR6vPRz/L3BzPJ52mxibgyQHstEA7u/Kzn+V7loXHEUGs12I6h8MktOFhfqe2Fnj/fS5yaooPs74OHD4MnDiRW8za6sAbGyNz0kEkpWGo/9fX+b+orhKqy2nDQLNhZkZ5yhMJ/l1Tw9fLysgk7RyiVj+LnXPzxRfJDFZWvDn0rNdMJLgnIiWcHJzCNEpKuC/Fxdyb8XGeF6BUypISXvfECfoCpqfJAHfrjN0B7BvidwIvNJdKURCaJoWOz8fzSacpsKanaTKeOQN8+tP0r5lmph9tN76XOCKIoQcLAMJgEUQkgoyFO2mcZzujqIzHqRLOzhJxIhE+1OAgkau2lkgvxChqr5OKG4+TG/b2kgNGoyQwibGLKgooQl5YIHENDKgklvJyZrL5fGQaklQxO8tni8ftkfnYMZomlZWU8IODtImPHOF7y8s8oJIS3i8Y5KbojMzq7QfsnZuVld4devo1JfHGMIDGRveIjDAN06TaPj3NZ/D7eW6mqWL9c3Pcl7fe4v4Fg/Q3fAiw74nfDewYg2lS01pYIK6XlNA38P77xMevfIVMeWCAODMyArzwws7X4NWMdApnDs5G0CNcrLCQyLW4SA7l89EHcPs2Fzo8TGJ84QUimp0ElgWNjpJpGAYdeF1dZAKxmHIixmKUwD09VPsLC0mcS0tcQzJJBO7sJHG8+y6l9lNP8bNOxHL6NNcxP6/UrLNnVbbj3/0dVeaiIh7Q6iqfN5VSB5qvMJ0O+jXHxpR209LirEnF49QMrl7lnkQilBipFLUx8e+UlPBzIyOMRYdCRML5eWcmucfwO038VpBzeustCq5QiAJmbY344/OR6AEy/VCItFNSsvNsS68ZpE7hzLk5bOdiFy6QOE2Tav/oKB9ofp7hs0iEHMxOZdG99qGQUufHx5WdLVKuuhp4+mki8nvvkcA2N8ktq6v5elcXJdytW8C5c5mSeHGRGViNjZkhwEiEhO6UM7C0RGYjntfSUq5L9yt4CdPl6sDTr3nnDtfd0uKsScn1a2u5trIyIlBbG9fc0cF7VlbyOaemyBCqqvg8pqkY7oOstbgPHxni18+pvJzCcm2NuF9QoPxC/f3Eo0iEpu30NOlkc9Mej7OBG1HrJvedO5nOX8DFdA6HKVlv3CDhi6PJ5yMTGBqiPW1XHCILEi+obocmk8rL+cwzSv0dHlac8OZN/nR18ScUUurUyZP8biJBIrh6letsbd2uNjvZawA1j6UlMheR/FtbmX4FwP0awM5y9/VrSpRGwHog+vXLyshA19a49iNHqAXpiGIYNAckiamjg880MqLO5gFWN35kiF8/p2efJRNeXiZudXURz4aGeBaSbSoa38AAX9vYIH5LUVplJXHS7bzsTNNkkgxHF0obG3T+6oVfjlpsNKqymba2eLHVVS6gqUnZqVYpGIuRYRQXk8uM3p/tYJqU3nLDy5cVx7I6qrq7KdGDwcwwZUMDf0sG4+QkuWxhoTIrAgGVheeG6M3NKplJCKWhwT7Zxw1c1aks4MWs0K8vIcbjx3l9Ozu+uXk7Q5mcVI7BB1zWuy9CffkAPRW8qQn4gz+gLwYgDp44QdwS/8zWFpl3VRW1hIICvm8YxO+REdKeW14LkBnp0yM6ppkZVWpoUM5fa7RwG0QiwGc+owh9bQ2pSAMmSjsQmyzF3bENJAo0CaXXHnR1kXhv3iRn29xkVl17u7qhnrS0tKSkr5RLbm2p7EV5oHPn+HtwkJ9Ppfj91lYyj/FxcjinIg3rpokT8exZ/vb5cg+D7SZ33y18u9Pr2yGDJDHtpkBph/CRkfxWCdzcDHzqUyS2hga+/8lPEm+PHaPw8vmIw+vrxHfRiMfH+XmJeLlpk06m6eXL2+tS6uspKD05fyMReid/8xsk78YxsRhE0SYQXJ9DsrIZ1+ejeEL8SFb1t7ubRDo6SuKySl9d6pWXk3OaJtVUyV4ULqXb2pWVvG5BAaV7JMLvmyYleCxG+yqbGp7PtNvdOAWzmRVO129s5OtW7cbuuZqaVDaawAMqu953xJ/P2hJJwrPr4XH8uIpaHTlCwSha7tISzQK9SMvtvOxwyMkcyKmW477X/F58AiWJuyhKryNd14SV576GokhE0ZRdTLy7mwvOFicNBOhIjEZJ0JI88+Uv87OxGDmZHMbZs5Toov6nUsqsmJmhAxFQzSsWF8lZneoBdgP5YiK5XL+xkQzQyclo91y7RoSdgcG6nAcP3d3dZq6DOnXi1BmtnXq800Y6Tt/T79vXR5zt7lYMYWVFaYb5fpZsF3r7+zFEChawWRHGWnMUm6HIbzN+n38eStXWESyXBXvZFHmAzk6F/BIulLi/aVK1EsYgdftbWzQPPoz2YtmeM9f1yF6n0ypNWeL9zz1nf8+8IIICwzCumKbZnfVz+4n4rTicSBDP1tYytVev+5nLWTt1adrNeeWrfVxW2t4DBHO9qYSvrA+m5xgUFHAj9XBhLtwzXyCHMD7On2g00+Oa6x5duMBnuXZNOUpTKfpVvvUt5zqFPLZ380r8+0rt17VXScAqKSEe6ZEkLxGenYaABeS8vGiTTmcracjynvh+8m7a7kb9dVq8nSd9Y4OJPvLZM2fsVXndLyB+BFFVHiToSDA1ReIfHOTeHD2qHG9uDMm6P4bB/6WxB8DXamqcr5UPE2cHsK+IX7eTBwYYJZGqPj0WPzmZPT9jt+3bvJ6XG5MBMt/Ti76am70zAk+0vRMEc1u812YaVm4aiSi/wIO0c+2YmLVMORIhwU5MEJmOH1dRC6drWvdnfp7ZgYcPk6GtrvIax4/veWeeXGFfEb9IuMVF+piWl2lOhsM8r8ZGEntjI02t/n6Vh2LFrZ2EgHeinVnxS0xAn4/rEgYkuTRS9OWluc+egxuH9NJMQz5rZTp7kZrrBk5MbHmZYcRr15TULiri69IH7vHHna9rtz/Smam/n9dqa1NmTXm5+xofcBvzfUX8Irx+8ANKybU1EnpxMWPx9+4xrb2lRdVkSCsvK27l6m332hpcumyZJn9u3OB6JFcmFKIg6O1lircU0cn74guTuhCfj34iN9zIZW2e8SoeZz88Uc+lVZhwSDmMK1eo6g8MeO8U7KSqACpEJpu4uKiSilpasi/eTcJbmZiojktLvPbQkNJITJPRCbfcArsqwKEhlfBTUMADldBSV5e781S6/169ShXwxRdpFu0R7CviB3juW1sknKkp2vxSEr64yN+hEM/yyhXuYXs7w3V6U5hEgvstGZiFhfbCR87q7bfJZOwEm94a3O9X5cOnT/M7r73Gz4gJODNDQfnOO7ze008T/3w+MgspzBMm0dHhHj3yIqBz6k+h16enUkwIevttbk5ra2amXTpN6Sg1/W7qlvUgrU4U6yYmk1yDtPQqLeXnnBafTcLrUFamQpd+Pwm1slJFIVKp7T4LK1glyPg4r9PaSmYpffinp1Vo1G59UqA1PMx7BwKslfhP/wn46le9zTDYAew74hcwTZ7n3Bz3UKSq5JOMjXEP6+v5s7jIcxgdVbMinn6aBPLWW8Qnu2iAnFVBAX/6+8lYEgkKjnv3SAuRCAl5YoI4BPDvzk6aKFNTPO+xMc6nED9XIsE29Z2dxBFJZ796VfWiuHiRzMvJP+FmwuzItyFfamgAfvpTSl3pgTY3x350+ucCARLCBx/wAaQSMFsttLW4obaW1+rv5/3m55lJJX3a5uZ46E6LzybhrWqeOFb8fs4JmJ5mTYRk3yUS7hV3VvNlZoZSRLQk3ZEZiShksq7v3Xf52dJSMoGhIRUSHRri7z2w//Zleu/Ro9yjdJoJUi0tVP+rqniOUo05PU0mXFhIIn39dQqUiQmFr2fOsIZFEtJ00HGpooLX3NoC3niDeHn3rjItUinirGgjJSWqhPvxx4lrohUeOaImOJ06RTwfHVV9Of1+pYmsrfE7bu3l3bJMd9SaXr60sEAVq7ycnnzDYA7y7Gzm54TbtrSo1l6xGDmaWwjEqd25pBRLQQWgNtRt8U4PKxLerrehVBiePs17ADyQI0d4IG5zFawpwFLOq/cR1LUfp/UB3NOSEoVAhsF1uLUv3yXsS+Lv7iYOJpPc8+VlEmUwSEFx6xb/rqvjuQwNcS8Ng87XWCxzjoWOT3r/yrffVrgnwmdqSqXDS/eoykoymtJS4pTeMgyg47etjUVB0qdydZUaSXk58NhjZGLd3XxvY4O+omPHMjt16aDjlFP9QDS6w/R2+ZI0P+zoADo7sXT4BK7O1uPyaxxwkigIZw6dqK7mg3ziEyQmYRJ2YG2ZVVND1Ur63K+uKi4IqA11W7zTwzY3Z8/Tn5jgAXV3k/Crq3m969ft7yWIcvky/z9zhqq9WwNVp/UdO8bvLSyo766t8fPB4J718N+XxB+JcJ+/9CUSeCpFbeCLX6Qkrari2dXXUyAVFys7vaxMVV8KCD5ZhZE+8EaahCaTxMmNDSUUW1pU+ntZGbWC+XnSgWTDvviiak6ztkb8EudvIqGa1cq5b22pStYjR7YT99QUTZkLF0hHtbWqke2tW0roujEGR5Av+f3c3FQK02Mp/Ox6M/ovJTG1GsbMDHB5PorFyRWqu+If8Dp0wioF9YKhpiZuoHDK+XlufFWV++LdHlaktHTp3Y0K7TRFBsjsKKwfhNv6Tp8mgqTT6tAbG8kMm5v3LAy6b23+SIRe8FBoe8hYHLzRKPFGiKypSYVtpShNjzJZTcbOTqbyDg5SIPj9lODRKAXI+jo/5/fz+zIB6NgxlYQE8P/KSgrQ6mpGKzY2+PlEgmt8+mmaE3V1xC2ZyfH442Rs3d3KOS4NZoqLST9TU6ocWEqOr1yhib61xfVJuNlTfo8Qit8P9PZiqbQaF2ePwyjyo6ZwBXerurAwDLS3RzBY1IPulUmqPjU1/BFHl4Qa7EIOhrHdDk+nafsXFnKzgsFMb7+1Pt5p3XoUIRBQyR8NDaw+tPOgHz3KhiWGoaoYFxYoTazg5FuQKTLSUTiZJPJUVjoX9shhRCLAH/4hryGNWMUfsUdh0H2V3msHFy6Q+UpDGoCEMTJCpvnaa6q7Un29YqTT09sbc9hda2GBRPzoo8pOHxxUfpmCAhKY9Prr6SExy4yN6mr+yHuRCL938WImPs7Okl76+9XIN2lc88ILwO//vsJ5a2Ztfz+fsaKCOCLdiSsqyDR2lc0bj6P/5RgG3lpA4FAYyw1RrJdHkEqRRhsagOfPxFWoym5T9Hx/ievLxJr6ej6sHiIRh8duJfTQEDltZaXyrs7P02FpZQDxOJElHleDVKV02roGJ6T7zW/IrXdaQ6GvZRcx/9/J9F47KCggouvTef1+ZebpoS6naj6BXHtCrq5uF0qAmrEhHbeHhxluFCd1R8d23Lt1i3Rw/TrP3OfjfQoKlN9Jmv5avfviWFxc5P+5lBxnxbNIBHcae7DyMWBhQ4UrS0ro9zh6FEqivfwyCUcfIbayYh+uaGggBysupre7ooJMQneW7ba91cWL3EQJv8jvixe3H4AQuheic0oSAewdetK2qa9P9Yk7dsw5hPeA0n33NfFLD8jFRZ7H2hr3t7VVEUouae1eE8/kmnbnIwJQZmwIsczOKt+VHQg+TU9zHeIb8Pv53qVLqgHOnTt89vV11X14eVm1APNacuy1vsHaPbykRDGo35rfkQhVqZMnMyViWVlmiy/9dWnIKdzM+j2919nYGB9MEo68SMPJSdWEQSAUynT46OCV6LJNkbFWnsXjdAym0+zpD5DhxeNUzdxGne0h7Gvij8VUL0mpnqyoUCaWgNczzUf5tz5jw1ZK3gerxBVzYn2dhLu2xmuIs290VPmX5ueBf/kXahOGwWefnGQ+iIQKFxaIVwJ2PiOvOQAyS1K6h9+7p5yYujlv3ggjWJxEU2dACXC9xZddOqXe/VbXGPReZ5ubjKsWFKgwoFuyj4AM/RSJDyjvqldwUo3cMhSBTFOmooIpqOm0CvEYhhrjJX3cCgt50Hamxh7AviZ+XWAIsu22OCyXgh07nHCTktXVxA2pHm1oIIFLQs8zz5DY33+f3nsxmYeGMud5rq0pM6KuTiWUSfPR9nYyCBkI5KTBZKtv0J9RUo1lvKBd+XSwK4qtK70Y6AOOni5DqDCpWnxJ7r94KGMxLvbNN1ULI+vQUZ+PF759m9+TzLtsyT4Cjz0G/Nf/yuvU1vL76+vA5z+f/YBlA9xUI7t7C1PQTZnr18m4ysvJOcvLiRjvvMP1SHLT6iqdVX199rX/eYZ9TfxOppdMrnLKg99JQw+nzD8rTjhJyWeeUT4vKdx5/XU6EuvqeK833qA0ra9XfifDIA7pTuelJTX4V6S7afJe4uvwUnLsVt9g94x2Pjhde9hCBJvdPSgajOFu/xxCZ7Ubi6Pk9m1KvGiUGyQdflpbKZX1dFjpdSZODUA1EvVShTU9zV5t165RuygvB/7dv/OeL7+b7r+6ZJIBpAA3ESChS5sovUW5TJZ5WIjfMIzPAfgLAD4A/800zT+3vB8C8P8BaLl/zf/TNM3/ka9FOhGjbnpJ05ixMeLFqVOqJ4O1hNatfsKLHZwNJ6wzNiT0KPM1Ll0iwxc8lnySe/e4rtOn6ZOS2ZfiABcIBonPdXXqtdVVXkdC6140GDcfh9MzWpvvjo8ziUlgMxSB2d2DsTngqH5/fUF1dbzgyAgvsrqaOUFVsuWEO+ltxr0k++iHVFurHBOTk1SrpBQ0W3un3XT/1Tlrc7Oa21dZydclz0HGeX0IkJX4DcPwAfg2gM8CmABw2TCM86Zp6qlP3wJw3TTN3zMMowbATcMwfmCa5vpuF+hF85LQaE0N/SkyFl2fXCXZkdb6iViM9RP/6l+pWHo2Zp8NJ+wIb3ycwkfOWxqRrK3x/fl54vT162Raeqh4akqFBcvK6BOYnFSzO8NhapXSiNQruPk4nHp19PZSi5GzGB/nc3iaNwCQO6+sUP2RoQgyPtn6ZeFOVVW0fSQBpqHBPfZtV5EI8Bp6//VXX1XhRjvkMgz7UJJb6addu6eKCraH3tzkmmR+XEeHmkSUTnNvpqcpuYaG9twR6EXyPwnglmmawwBgGMYPAXwJgE78JoCgYRgGgHIAcQA5joi1h2zEGImQwGVYzFtvKWEyPp5ZhQqomZA6E5C/NzeJU7okA7Yzezt1eWqK53bhgv1ZLS6qITT19fTzJBL8TjhMnAoEKJhqajKft76ez1NcTGE5NcVsxuvX+f1EQtXR2CW/uZkxThqCXQg1FqN2ofcm2NrimisqPJTmx+NU+YWA0mmWMR4+zIeUjDf5ss6dUinl0XVL9tErEgsKqGL196vKLOm/HgiQOAGl9lnLIe1CSYcP0yHndF9dSt1vq45Uivf9kz/Zbj+m02qsd1kZ11JTw/wEfYjDHjR38EL8jQD02MgEACu6/CWA8wDuAggC+APTNLfysUAvmpf+GdEQRaUGMoXJ1avUOoeHiR9AZv2EUwGYzuz1piKzs9Tm7txh628nUyEYVENoAgGaAxcuqCw9ielXVvKauiTVo2KA8g+1t6tkumSSZqLVt2HXmi4bHjmFUOfngSefVFWvUnY8O+sxg/CUEBQyAAAgAElEQVQ+Ua1cHcbk5CqSG1Wo8B1G7cgUyo4c4WZYv+wWV7UDsa+EQ4XD3LBYjOqUHvrb2CCz6e/n4QSDKg00FlODQqyhJGC7U8lOStXXuyf4SFHRyy+rCT9SClxZqew+T6WYuYMX4jdsXrOmBT4P4D0AnwLQAeBVwzB+ZZrmYsaFDOMbAL4BAC0tLZ4W6KXphtW86u8nMhoGfUbSPLa9XdVPLC9TfV5fJyJPT1OCLS3RL1Rf7yzJpHxXsvjSaV57ZoaMRTc15KxaWngfGULT1MSU3sJCnrlI17Gx7fUw1sIw65AY3UwGMoWQNAWxM4PsehLq1bXd3Zl4LyFLa3u61lZeNyteLiwgUVqPGyhDhTmOEBJIVtTjhnEEhz/1Va5fFr9TdVe3r06e5P83b3Kh1oq7hQUeelOT0kTu3aPabQ0lSeXi668Twazc1IvK6ARLS0oSyf961lYu18oBvBD/BAA9U6IJlPA6/BGAPzeZK3zLMIzbAB4FcEn/kGma3wHwHYDpvV4WaHVKSZRIGHg0mvmZigoSosyVbGlRQ2MHB2mvvvEGpZnPp5xWjz7K/S8szGy95iTJxDEnpkYo5GxqyDrjcUaohKnE43xdl/LV1ZSwTiPlvTBDXQgtL7ubQcB2jfXqVeLfiRPqvpIyPTCgSt5zbk8XDmPi3SQKq0NAcwhJAAWpFWCzmMwo6sHbmi0Uo9tXABNv5ue5YJ+Pqt3sLAlZbMRAQMVnxdaXXINAIHNcd0EBuenVq6o5hN+fGbJzOhgrDA1RggwPU+JsbvJePh9/67MJ96C4x0tV32UAUcMw2gzDKALwNVDF12EMwKcBwDCMOgCPABjOxwJFyt66BfzTPzH9ur6eTFYvptIrNmtq+P/nPsdKSznfQIDM/Q//EPi93+N+Ly6qGPrqKu/V0MCzdysA04vSdFND8vGtZ6WXft++zecJh4nHk5OqyEuvALSrPs1WpSe+rvffV4VF2dbmVl0roFfGSkFSURGZQ2GhR7yMRpGaWUGZycUXpFZgpFZgRKNkHtaFyN/irXWqptPHfYl9de0aN0GcEw0NPNxYjMQvU1EjEdU3IBAg95UhIrK5+rju8nIS+9QUbXVp1zU5ydecSi+t64zHVR74sWP8/O3bZACrq2RYVVU5lGLmDlklv2maacMw/hTABTDU913TNK8ZhvHN++//FYD/HcBfG4ZxFTQT/oNpmi7F3N4hHqfEPnJEJXg5qde62nnhguozIapreTnPt6dH9W/4/vd53aKi7F2knabq6qZGMLjdbyUg4cl4nOvXNZnVVV5HtAynULSbhz4epwP77l1eLxAgMykr47M7rc3qV2lupmCzq3wEiJ96rYTnorP7i08Ox1CemMNmMIy1ji4s+SMIl9ssBMhUU7J5f+NxEuH163xwses2N7kBw8OZ6prU3st9VlZoIkgZbmcnY65vvMFNOX2aCHXjRmaDE7F9KisV17aWXtr1XtPzwI8doyYxMUF19aWXyKT2YtLQffAU5zdN8ycAfmJ57a+0v+8C2JOsBL37rWhekm129qyzKRQOk7DEox8KkWCnpvi+9IL02kVaNDQ5r9LSzKm6knFXXm7vt7I+j9xPIkG5FH45eeivXCH+NDQQhzY2lG9DHJp2a7OaEm7j+IDsvTfdTPX27gh6N3uwbMc8Yllsmmzzznt7+dCRCAnvzh3WGxiGilM+9RS/FwxyU2ZmKB1OnFBdV+fneeAidZJJSuULF2i3SU+2QED1MDh+XLXbAoBXXuF1ZmaUQ0ef837jhiodLi0l4hw7Rp/D2bP21V95hoc+w09SS69dIxJL7Udfn7I79bJxgWiUCTx+v5r2PDJCc0HaY/X2qmpTwFmS6Rqa5O0vLvIe09PKaff009mZ827yRrLB9eukk7Iy5ZxbX+f6nYbFAN7mGOpgZT65DEBx01zmq6O4d74XiU2grLoMLdVJhHxZHB4SY5XR4+k0QynvvEOVbmGByR9DQyTC997jjPbmZhUOCod56AUFVAkrK1UlYjpNtVG45/y88hrX1CiVUaqyLlwgkr7+OpFNnEG9vUTYoiLV0mlqir+rqx2qpfYWHnriD4eZJl1aqrorp1I8q+Fhalu1tduRLRLh+S4vqz6Mjz6q8kkEfyQS4JYKa9XQxJckrcOtU3XdfFK5tgy3gtdS7/Jy/jQ0cL/cmNJuC5pyzYK101zicaB3MIJQtAeVszGkZ+dwbT6Moy92oVJ3eFi9v6J+CfHeu0eCqqzkYd+6RRu+pkYh0yOPKHXt2jVKXLHfxO6TSsRr13jwlZWK0Rw9SoJ+6im1jl//mvdYWaHaNTdHxJSahKUlIoxUPXZ2UoL4fKrJpF4t9QDgoSf+aJR2rDhSZfqxxMVPnFBl41Zka25WKr3ukZdSV2sLeicYGyPDkM68kp1qrdQDskvB3cyryHZtu2Y0d++qRiVuzGI3JeT50GaEgRQHIkg2cCHpFWBwFugR7dfKpaanSfgNDaq1kgxJkIyokhLVrtnnY7GPrq599av8rJUbSyWihN0Mg8jX1kYV//ZtZd/fvk0Cl3jorVtEzps3ed2SEqVuSpgqFKIPob9/e7XUA4KHnvjlvKWxa2Wl6nhbXOw8jgvIJDTrmHnAm8SVpDQx75aXiQ/V1WompQ5eMhJ3KmWzXVvi8oODFCoyz6C7O4ee/R7ByfkpkGtkyjMD0bmUdNQBlNe1rIxEXVjIsMfJk6pKMJUi8qTTSl0Tjio3FG4slYjSx1CGioqK39Ki1nHjBh9eVMLKSt4/maSan0iQAejz4wD7TjEPEB564gfIIMXkkmw3L/XqOqGVl28fM+82pEPUarHth4eZC7KwQMExNQX82Z9tJyIvSOxkM2dT5bNde35eZSiWlSnfV1lZ9o4+uYCsVwqkJiaoWX3608o/Jnvr1UzZkTmkf0k6rA4OkgjPnqVNODtL5NnaojR+991MJ5Fbbb7fz8+NjlJNP3XKW089acmUTivHlMw+cErgOBjXZQ/6+YyMULubn+c569N2xCSw67vgpczVTq3+xS94XfEzBAJMcTVN4pXE6/V6/lyQOBdnWbYS3PPnSQOtrcS3d94ho5PkHiA/zkXxgUgkpa2NAu7ttylgW1oyIwCBAGnm3XfpBBctxeqgzdkcsn7J7+fDy+ZVV3NTlpaIFFLTb3USWbmxHto5dEh5+ONx9XD64q32ls+negfMzqpGjisrlBx37vB7x47xd64jo/ME+6Z1t9jLgQAZsNRWvPmmSs4ZHHTO/xgaYpTltde499XV2/dVV6ulr0R/P+8hxWGlpVT3Fxbs75Vrq+xseS06uF1bCFIa48o6332Xa3v7bf68/rpqA7ZTWFhQBVKlpcoclgEqeihbwrTXrpEmpK7CmvOiJ0E5tdYHkDlYQQaD2H1JEkSiUapAq6skvMOHVb683SbroZ26On5XZvbpD6dDdzevu7nJzb11i8wiGqVP4sQJdc/xcZVQ8v77wPe+x2lBXpEgj7BviB/IJJRwmNl7585xH2dnnfdPmriurJCAV1b4/9BQ5vX1ATT9/VRnjxyhnX/jBpFYGoUII7LeyzMSW+6pg1PLe7dr6+3DAOWbuHWLTr9f/pIO6eFh4t/3vrf9+b1COKwGzAhY+wnozyYzPeTHaQiNPJ9jZqVdhp8QuPVLgiwyEKG2lqq/DGJw2mQ7Llpaqspr7SASoTRqbyezaGujNhAMEpEkpDg7S6ki7Znr6shkXnlFTYcR2KNBHTrsC7VfIJvN6/TetWvemrhKYtClSzwjSRU+epTm4tAQNT4p/HFaRy6e81zNBKdrW9uHDQ9TYNXWqjTme/fIKNvbuZfnzzPV2YtmaZ1CLG3tpW4gldreT0CeTW/EI+bvjsyPXGKKgiyJhAqjyfy//n5ugj5wVP+elyaMVrDWlvf3q6oxyZN+5x0ygMOHqUVIxlo8TrW0uzuzh6FbS6o8wL4i/myE4vReX5+3Jq7V1dQmZ2dJNGLTnzvH/xMJ4szWlvs6cvHd5GtUvbV9mCSQ9fQQb6Wib2WFOCWdg9ycf3rjXOm8JYVsDQ10Lq6tcd8kkqabN/JsTg7znOtUcmk6KCGIuTkS2sSEqnIyDH7u6ae330PnoisrysNbVMQH9bq+UAj41a9U3cDt22qmnGGopKOrV/n+xARtp4UFtUGmyUPcIz/AvlL73Wxeu/cmJ0mws7P0xywvq2vZNXGdnaWJJpV1jY38zOwsf8bHqS1UVPDaduvwUnuiQzYzQTdxvVynpoZr7uhgDorkJCwtqTZygL2aroP+HDK5a3iYGkQgwGft6eFYPil7t+KlrElShTc3GSIXh3nOiWzC/XWwNh2Uja+tpaQdGOBhLi+TIQgBNjfbE5EgUiLBw756lYfc06PacGdbn5T/ytiymRn+nD3LzZN6g4sXuZ72djoqZ2ZUh5fKSuUn2CM/wL6S/Nli5Pp7BQXK+frMM8CPfkQGcPIk931+fnsTV+kwJaWwDQ08k3ffJd489hidjYWFNA+kSYu+DqcpzF56PlohVyewfh2JaqVSpINr17gvjz6q0tHd2n55KQvWG4y4nZkUUYlQ3twkA7h8OUdtNpemgw0N/PzLL/PidXV8+IICcj07lV/AMPjQLS1qyq/Y524HKesbHVWTdmWTKyv54M88Q41ANJPWVq6ps1Nl+zU0kCk4DQDJE+wr4gfcCUVvn3bjhiLO5mZmTb71FkfIP/kkCV+394eGOG1pbY3EUlVFZiCNYJ56KlNTsGvSYtc6zql+3otZsJPmsQKnT6uOPOk0Hc6S7yD45ZZGnkt3JDuwe0YJt1onKHnWZm24/3xjFwZjERS8toCSxqrMPJq1Naoa4TBtb8mfd1L5h4aA736X9lAyqaq2UilyvePH1UHazVzr6FAagiBBRwe/u7ZG9aurC/jCF1ifXlCgcvulHHh1ldeScJN1lkEea/r3xay+XFppy6yEmzdV19tUinteUcGzs8vF/973eD6zs6oaU7L4mpvpo7GOZtOvJT6bX/5Sdb5pbWVrL79fMQo75HcaS+c2O7CxUY0KkwpF6/ftBoN47QmpzwPUe1kEg9RS3UbpuT1jLLa9inIn4+ys96kZ7sXa0hpWzAC6uu4zgF/+kg8tKb96Xfe//teZF5OQ0O3b5IrikX/uOR5+IqEKcmTaqtMMQOswRbvhiVeukLGMjJCBBIP8jjgcJQ3ZbhhkFi75OzOrL9dW2v39PBNp2xYO81zGxsigpXekjvgS3ZHBnffu8Tuzs/zMnTv8Wx8lZ2XCv/gFQ2nhMBnD+jrDuEVFPG9x4OUiza0OzkSCOOPzcU3S36C01H6AjZ2W5LVK1K47kpeS5WzPmM+qRv0+ay1RlPX3AgYwNlaGE+1JNSlF+p0BitNY4eJFHtbGBpGhpYWM4PXX2S21tFSZGC+/7B4+sks+OnxY9eWT0dsDA7TzCwpUYVJnp0oQOnFCNWmUWQYfJW9/rq20l5Z45svLVME7O3n+16+TQH7v95QTzi5GLtVwS0tk1qIeX75MLewzn1Fj4nWP/G9+o6I95eWMrd+7x6Sis2fV53JBfisOSelxcTF/ch1g4wROGsLUFKMdhkHi1+cbuIHbM0o4dW5O9cysqnI3wZ3WnGliRYCuHhSPxbB8Zw44GlY9227cyByXbBdKmZwkwdXVkdB8PqpuQ0P8/le/qgZrZpsBaOeckhFcIs1qa8kMXn6ZiHfiBEOJ16/zgRYXnZs05gkeem+/lyQYqxP4xg0iWGUlz/GNN2junTypvNW641QQXhxhpqneW18noXV38/fPfsazskrZVIqCQ2Bri5pEVRW/J556N4e1FayRgLU14h/A5xEHdm8vtdSxsdz2FtjuJJ+ZoUYrnv36ehJmbW12Z7eA2zNWV9MJLyPFFxf5f7Yomt2ahQlKd+44Iphp78HWZ55XzRaiUcXNJCPQjogaGvjwoRBTFX0+Lrqzkx7Lz35WfU9mAOpgDR85ZSxZM9W6u+lLKC/nvYNBXkufsroH/fuAfSD5vSTB6BISUK272ttJJDIT4e5dJT2lQ7N83zpia2VF4Ynkejz+uEqUseLP8eOq9Fuk+Ooqr6lrK7nG9XXVXcLTIyN8nnRapapPTW3vUrSTSsG5OTLNgQGVzpyrdpHNKf/EE7yeMIC2Nu57rlO0OjtVG/GSEp5ta6t0BdIeTIhyZcX5RufO0SMsElZ68507t13KnztHDglk2vx2MwCtapV1xJG1Z1pVFaMF1dV8fXZW1fnnGR56ye8lV16XkDL+qrVVNVZtbOQZ3L1LKba+TttZHGnWGPknPsEJPj5f9hRWgc9/XjGquTnV6/HjH+f7urYiRS6/+Y29FmEX29d76Tc28lnGxni/wkIyBJl7kS23QAerZiXZeHr6bjpNPHz/fara2a6bLQ25vp4E+tRT/F1fn1smq6xZCvlkqvHamraXueRNA2QI3/ymmp5bUkIiFweR9bMvvaRy9QMB5ezTwU6t+vWvgR//WKX9Ss+0SESllH7hC+TkUhQUjXpXu3KAh17ye61/1yXkr36lJiGZJv02iQQZqgy8TCYZETDNzFAUwD3u6+N+373L99bWVOhva2t727CODuDf/3v6fJJJnulTTymhoWdrBgLAxz6mJKIOTg5Ovz9zhoQMejVNrs2uS5FM2LGLSIlAku5X4swUrVNvV3bpkspEranxFpqTQiwReqL17LaTEbC9klcyF4uLlVl9904YK1eTKKsJoOV+pCzrjU6fVupNtpCIlx57uvaRSNCWqq+n+midSKw78155RRVBGIZyGn4IQzs+dMglV15698ko9EuXKM2iUUqIoSGeb3GxYsh6BAFQxPfCC8DPf04JHQwqbWJ+Hvj2t7eXplZWUv2XMlrriGwZyeXmvHRycL77LhmGPo58bY1aDGDfpejqVTX8RVrW/eAHFCzT07x2Vxe1oL4+4r5onUePUpu4dInab2srn0OS07LhoRMTy9Yz0Sl8bj1jJ7NC7huqjaJ6qRfJRaD/ahm6Oiz9AK2L3Ytaet3zKdVNlZVq9LKdF18eQNpTr65SSzh+XNmpeYJ9QfxO4HRmL77IopXRUSJOYyMR9tgxMtnxcUqwiortTS4ARXyBAPCVr1D9TiZVFKCigkQm8/2sTOPwYUrlWIznJSXgMnFaB7fRY/pngEyJ2dxMR6b4M0yTtv+TT6rP3rpFBmiNSP3jP9IPJdfq7iZB9vczMiFdo2/fVpWtoRB/+3x8T58abAdWJpZO8zwGB3kOdkNRJNRuZVYvvaQmfMtZd3aqNcqZxGLKoVsciCBZ1oPi8Rh8M3MYnw4j9GUblXEva+l1FUXsqdVVZffYefFjMTVPUG8YGYvR6ZRH2LfE73ZmHR2sVpOe/BIP9/ko8Scn+R3dj+NWHSjOtelp5QA0TaViW5kGYN+S24vK6xQKO3o0s8V8Mkk8qq1VdSGrq5l+EV1LEAiFKOl1JhQKkQHMzam1dnSoxrcbG3zm5WXe5+5dRqYkGcpOWOpMTJKESkpUUpueJCRn+cMf8v3aWjW3EKCJLCXUVVXcnzff5H0XFrZPzpLu3JuhCJKhnt/SWJcdLe8mjTIb6EMd791jGE98CYC9GSIPdO0a/xfbbnb2wQ/teJjAbp6c05lFIpk9+SUCMD3N71nHttlVB46PU7qOjFDqiwovzVqspak605DaDmnaYh0r5uTpl8pCPXlsYIDEPzFBHJDZfh//uHJkJxKZ0rurSxU2CRHJ5xobvdnd1gI3mQXg8/Es3nuPpoI1b0K+K0zs6lWaXBLalvteucI9lfHqiYSaYHzkiIp+vfkmfTW66SyFRrW1mXMIq6uJA2fOuD/bb2Eve6lHImqoY2EhEae2lgjl89nnHITD3NCuLiJgIsGH3YOuPg+9t1/A6jiNx1VTTwGrM1ePFEhI6fhx4I//WA1rcaoOnJwk4W9uksBKSmjrp1IkaqkZEMTSY9si6ZaWSGhOY8XsGn1IZaHEwAvun9Dly6q3gN/P9YlGCCjp/eij6prnznHN8/N0UsrfX/mKt25D0Sj3qb2dhC+NQCRLUkKCt29TUL38snJI6/F8w6Cv4MYNRYQyQ2N4WJkTiQQJ984dMgZpu15aqjQVMZ3DYeUA1kvmo1Ga0m7jzPRISqIgh8SLnYBI7NZWPmgyqcqE7QhaENDvJ7KePMnvSoJHHmHfEL+13ZU+T06IzdqiyinkJPUXdkQo35meJuJWVlLFlQ7Rd++SqK2lqU6j3Vpa7Dv9OHWrkVBYczOl++3bvOfGBglAxnmL000HK846RaROn/bWbUjWWlTE/ZB8F7+fzCCRINHLjEohrHg8k4nJrIpHH1XMWSIRkqsgE7WmpsgIlpaoWdy5Qw1H6HNpSbUll4iEPoewsND52ezKrS/PR7E4mUPfNa8gN/vRj+g1npigxFhcVNVnbqWZXltB7QL2jdrvNE9uZER1lykszN6bUcAtghCJUGJ//OPK3gVINOKMSqeJrHYlxTIlSqaQ9/fzzGX+o9s5irosYeCRERXuXV5WIb7KSiXh3JKFnCJSTqE4OwYQCrEITvpSVlZyLVev0icgiUA1NYrJLSyofaupIfMwTe7DygrX/vTTar6FMJFIhHu7vq60mU9+0r4F+xNPkNFaZyQ60YqteV8fweBqD7qLY2rG3o7qjaHs0uvXmRQhhSFbW1zo4cMqnv/++9vjxfqmP4B23vuG+K3OMsmNeOstEqhe+Wg3wCNXKCjgGUl33pYWImVFhbcxVmtrar6gNNPc2spkTHbRChlSMjGhaubjcV7r+nV681dX+fn2diUgcp2yk4uT2+qDqq3lPaem+PlUigyqooI4vbXFDMqhITKKQ4e4zliMTFGEWWEhz+utt2iOlJeTwZSXc8KytMD7xS+o/Swvq3F6p05RQ5Lwt1PBkb7HN25sZ45lZcBcKuKt3tgtJCgdf5eWeFChEDmdzDaPRFQVVmGhCk9kq0/fwzbe+4b4nebJPf749nLbXP01doUt8/NURTs76ajt66PP4Otfz34O1p4OAAm2pSUz3DU/TwS2El9BAb83Okoc8vv52Xff5Ro2NvjM1vbXds+Sj14BVh/U2hrNUL9fOUABqvamSeIfGCDDEmdjIMDvnDqVSWdTU5yelUrxGR99VA0alTOWCsZAQHW40sexy4xEu3McHFQMrriYvoTubofqTLdNkUO145aA6vi7tUXEEUklHE6cLocOkTNKqCLboiW0Ia2R88gI9g3xO2X6xWK7n31nPdPz57nHMgGnsJDE1t7uLf9c1qr3dKipoeYn4a6hIQoGmf+n41kgQAFx9CgRNpmk8JiY4DVeeMGZ8HOR5l7b4RUUKEZ1/LgyMb78ZT7j6Ki61uoqz2V5mc8qA2uCQTV8xbpHfj+98/okpMuXqcnJNaw1BnaNVJzOUVqHT07ydyzGhKltRX5um+LGGAA1zFGyqmS8U0kJ1ZJkkpsnQyCKi5lieukSkUPSSGXR1tCGnredJx+AJ+I3DONzAP4CgA/AfzNN889tPvMsgP8MoBDArGma53a9OgvYmUK7bYBpd6YyiUbmAAIqHyOXteqhRlH/ATKDpSVV52EdqHHsGDsO1dfzvj4f8ePUKa5tYECF/3QmkIs0NwxqM4mEal0mnX3tCEkGz4gjNBhUPQ6sjWsk5DY7q2LuAO9TXu68R3o41u8nsxgYUJqFdBKy0+ycznFkhEJ3a4v3r6+nJjE2RoaWMRfTLRFDxkVLGCcYzKwOE++j3FjstePHyQzef185psrL1YLr6ngY164RaQX5GhpUaEMePJ85CPBA/IZh+AB8G8BnAUwAuGwYxnnTNK9rnwkD+H8AfM40zTHDMGp3vTKP4DX33wnsmL0gLqDi7Ddu8OwLClRZdzbQGdPiIpn96ur2zk4CgmfyvXicji+/nwQ1N0cEfuwxfv6997h+KRX3GrKWIqF79/icMoQklSKeXrlCHJTsOUk0Aoh/Mnw2mSThHz1K/NRpRkynbA5Ja9OQtjZe/+RJ0om0ECstVY49p9wYu3N85x0y8Tt3uMaSEpWqva2a0E2S9PVxYyQBY3WV/586xf8lISIU4qbJvDRJCPmP/5EqiCSpPPEEOZNMPQGIFDry6VmB1umyeQAvkv9JALdM0xwGAMMwfgjgSwCua5/5twD+0TTNMQAwTXM6L6vzCLtxjtoxe0HcyUlK4LExqp4tLbS74/HM8u5s64rFKHkkTHX5Ms93cpJa4NGjauSYMK6vf11NjJIy4du3iZ8S8zYMpZ739HgvmonFVFfi1VUVZpMW3L/+tfJ5Ce4NDXF9H//4ds1COvwCmTTT3Mz9AqjNOIUTOzu35/NXVpIOq6p479VV7mFDw3YmEo+Tnqwt76qruTaJ4BUVkZm2tyv6zKAjN0miO5V0MIztNeGJBAn97Fk+uNVOv3CBHH16mveqrFRxzooKXmtycufTZT2CF+JvBKB3uJ8AYCW1TgCFhmG8DiAI4C9M0/wb64UMw/gGgG8AQIvEwT5kcHIkvviiQshIhIRfXq4cU141L8Enafsm05/SaZ5/eTm93T09mcQhKcpidycSfG9+np7vsjJqjCJMnJ7FTtqKlDRN4qbkJIhKPTNDQSNmSmmpytQLBrc3J5UuvtbOybW19JXYVS8KyFStI0co7UWbkP2IxVR1YTCozGNrHUxtLQnaWiz33HOqVF5oyOdT+7ONjpwkydYWVT5JcNCdGDrTKCykU88w+B07MAxqDZGIqgG/coWb2tysYrDhMK+fbbrsDsEL8duxPGvXTz+A0wA+DaAUwFuGYbxtmuZgxpdM8zsAvgOwgWfuy905OHnB5dx+8QtW76VSNNM6OymVV1bUnAdANYDNdZKSJL1cuqS84G1t6reUo+pgbeRx/jwJMRikBBsYoPoqCOzVBBINQVep5+a4R6+/zj0QLaWkRGkdEk6TzjldXSrbT1+rdNnx4nvI5qeQHyfQvy+jwX1UIrAAACAASURBVPRiOVmPhB43NqgN2GkQriAhj+Zm1Qz0vfdUhZMg1fy8CvltbHCD3nwzsweaIJOEL95+W7XqFkeTxESFEezEps0CXoh/AoDeyqQJwF2bz8yaprkCYMUwjDcAPAZgEA8BZPOCz88zNNvervLpf/ADSsXCwszJTaurfC1XzUsy92preZ5WaZvNjDMMag/xuGoXtr7O9dg1NnED0RBEpRbibmvjs0WjxN31deJ7PM73dGaxrXOO5Vm9psvvNrXeOiTHruWdFw0iK0gCxuioKnq4do0qod/PjXrtNRW+kLxm0yQR67PRdC1ibU1NPNna2u793cOEHy/EfxlA1DCMNgB3AHwNtPF1+GcAf2kYhh9AEWgW/F/5XOhuIJt0uXjRvhnr5CRV65ERniFAZGttzT370yptNzeJRyIc2tvdv7+1xQ5DN26QUAESXV1d7oJA1xBSKQowmU4klY59fVSPu7upDRQW0jchPfdmZsgA7HwfuTTs2G1zDy/fl+f1SkP2WmJEzfqTGfEnT/LGExOqmcC9e4rAZVrqwgKZhO6ckcQJgEghPc12sgk7hKzEb5pm2jCMPwVwAQz1fdc0zWuGYXzz/vt/ZZrmgGEYPwPwAYAtMBzYn69F7jbhKZt0cWvG+tJLJISBAb7++OP23v54nGbb9ftuUGsYTpe2uhNRRr/LAFcx+ewIam2NPqSzZ1UV3927ampwLnuiE0RFxfb5AKdPU7UX4VN7P34jU6iamojfg4OkCf3euYRfdxuqzdesQwFXLdE0eaiGQUeNSGmpLtvY4KHKAI7iYuXAk/7xPT3bFy0dVNraMru/5Mm2d4KHfmhHLkMunMA6QwHIHBTx3e/yf730dX6en//jP85+/Xg8UyMEyHAOH1ZhOPlcLMY6D3HgSYOQQMB9IIbdYJJkUoWXxUnptQlmLvsj9x4dVc48GYSiDySx7olXhr1b5p6PbFi5xttvZ7Y18yXi2BqMoXRtAUeD9+vIGxrUFF6ABC/dWlZWKC2k0cHKCrnkiRP8riCU20QVaeSxtbWjB/qdGdqRj14L2aRDLs1YddAR5u5d4oRTGA5Q0lbyRSYm6JmWDNDlZefn00Nily4R38JhImoolPvI7Vz2xy5jUZJ5nJKfcjFV3T7rhbB3axbrjFWav/T3A6da4qgf68VWSQDzBVVA7QZtnieeoOpz5QovcPo0N0xMg+lpqo2zszyo48fpKNHVertFS3PFHc8zyw0eeuK3qux2TTJyibfbOU2l9PXiRZ5ZQ8P2WX5WsCLM6qpq+iqVdxIVsCLw8rIqejEMfv/GDeVHcErMkZDYygqfXzrtZBu5nY2A9P0ZGVFOMb3Sz5qNJ7CXpqloVPPz1HakS7GXHAuv17dK+4oKCvTSUmDxnRjqmgNIIoDyChAxnniCxN3YSBvQNFWJ52c+wwtLymQ6zd9SwOFlMsledhaywENP/LpDR58ZpzfJ8MIUs0kHvfRVkEIq+uwYjH5GFRUk2HSa5t6RIyoqoHfsFRtSL3oJBFQpudjcTok5+v1kvPu9e8Q7p7biVhtWb4FlmipmLxWF8XhmBp++v/m2r7PBlSs0NWSfVlf5/5UrZAC7ASdp39KiajDSMwtYaapCalUTBPX1PFjrwEcdvvxle1tV9xI7ceS97CxkgYee+HWEu36dhy81EsJYd8IUrVN9xcQyDEqahoZMYtHzL6xn1NxMtf/uXUoNadYi1YZWRi7xcylYWVykr0fyz90Sc+R+H3yguve6jdy26x69tsbvS6ZbSQn3I1t34d2mUns9D6GF69dVpx5A9RH8yU92bA7b7otI+60tavWBADWrQoQR3UqioyugWr4lk+QUvb3eVCm7jXLzKuajt7lHeOiJX/axr4+2bmMjJavUWOyko7GUXm9uEvFnZ8lcZYb84iI1tMVFVVS1vJypaVh7x/f0MJVVGracOkXHsF3HXr3opatLee7X1pyHYFrv94lPUCWWWhGnkdt23aPjcUp9KT6TSjlpD66DVejkO+wcj3OY7iuvkBk+8giZZjxOJqi3KlteZphTBttkM4fdzB0rM+3tJfOWxqErK8BESRSPzfUCSQAV9yX45CQ5enGx+yLcNspL6TCw5+rVQ0/8APfR2k1GINeOxvG4Kr2urqYKvrxM5JiYoDYh1XaAc1GV3SDWY8eAP/qjTBxwqx2Qohe/n7kDbuaL9X6RCOdQVlbad9C1G8ohdSJCDEBmpRzwwITOb9f46qscshIMcp2Dg1yndAf+4AOVRbiwoIbXWsug7fwcTnMDZme3DyuRNvprazz7I0eAsrII3l/qwWoshq7UHCpawtxwvYopm01ux4HcVPu9VK8ssC+IH8hfR+NYTBXLGIbKB+/rozknY9Sk2s6pqErO6MoVVbxy9Oj2+7nVDszOej9fO5xwcnzpiK8P5ZAGpwUFiqD1Sjm79uB7adPHYmSCfr+aoWAYPI+REVXfv7bGzw0Ps6JR32cnc9hOuC4ukvGfPr19WEkqpRqUiDlmmkBiPYL0yR4MSDjzwoXswxcEnDiQDAF14rJ7mNWnw74gfqnaisdJ9Ovran5dKOTcf84O9HHcm5tEKoB/FxUR4dbWyAjEY+9WVDU/TwkiFZ16iS3gzshzjcl7xQkr4stQjnicSP3kk3QUzs9T6ykqorTr6VGScY+FDgDu1cYG7yPTkOUMbt5UNRaSSi+9CwFVVu/32++jXZSot5dMRXI4xFHa368SmUZGMrsvWduz52STO6n3MzOUYiKFrF1FDtp4EfSqrakp2mXinGpqIsLm4vXXe9FPTvK6o6Pce2nMubmphlbMzzsXVfX1EVl0b/TICF9/7jl1zwfEyH8LVsTXh3KcOUO88vn4/IuLqr1WYaGqqLP6pvYiWSccVnUSErqVNmDr6/y+5OsDlPivvcb9DYfJKOSMrL0w7aJEd+6oPhvSCkwGuX7qU2omYiqlEpmkbdhvaTsXm9xOvd/YoK156hS57OxsZleRvZwgZIGHnviFeabTatpLKqWm72Sz/aygl16PjhIZZBrzq6/ymh0dKoVXEFpKVX0+1di1r49MW/dGmybPVif+Bw1uwklP67XL7APUPuaChzvB2WiUzHJ0lPkKo6N0xkoJ9Xvv8TyCQTJmcWxKXX4wSKZmN8NSp1FppZ5KcW0VFXzuyUni1cgIr9/ZyfOVISJ6e/bf0nYuNrndQUjP8oYG+9HhB3F+BcI8r13j76Ym1QdOWqZJXbmXUKh+dtKRV+rl6+qIFAsLZARiUzs1dh0dzRwo8bCAVThNTfF5m5rU+15Cyrng4U5wNhLhHl+5QoaaSgHPPkvG/P77PPMTJ3gmfX30xxw6tL1hq12WoX7O0kq9s1O1wkun6fRrbeU119aU1tPdrTQYa3v2jItnAzstQXqW66Bv+kGcX4EwT/FUA5QApqk81UBuXmlJWFlcBP7+73nt+nrlcDpyZHvDDjvk7uykpCovJzKNjTH5q6ODzGNhQQ2RdCrYcYLdmH3WjL3xcX6/tJTOyVdf5fuG4W6+PojSXGEAIo0DAarojY1cRzyuOl1XVvJ3Msn9Fl+Ak92v0+jamsrhmJxUmbkbG1yjRBX8fq4nL0LWTkuQnuU66Jt+EOdXIMxTt8XE876wkDmswatXWpfiEt8eHSXRd3TwdWvDDjvkPnWKZ7q4yPMtK6MUWV9nYpD0oNMTabyYbvkw+3TEr63NnCFQW5uZXlxfb2++PsjSXH1/hdGXlPDcn3qK7wtTePddajPl5Vy3NEJxmoGhV1TeuaNCm4cO8f/6eqr7krvjtUejJ7BqCXK4gP2mH8T5Fcje+f3ck+pqeqtTKRKcdViDF4mpS/GGBtVyrbRUteqyNuywQ+7CQqqpExNkHDU1yns+PKx69euJNBKZcFtjPs0+3WwqLc2cMNzQoBKL7MxXNzx0ajdv91kd5Hvj46qGoKWFhCf7Kz0PAP6dSFBSi/S/d4/XKShQoctgMDPt17o+iWIA96v1fDwr0Yju3SNjkUGfss95d7xn8xkcxPkzQVRDycBbWFDDGgC+dvmyUusCAR701avbOygB27O7JicpAfTUXGvDDidC6OkhMZ08qcq8S0qUXwLITKQZGSFCuUl1NxXarm9AR4eqBrUiqJ3ZpIewpP+e077b5TLMz5PQpcv01askpmee4XM74awIvc1NNYhDhthIe/CGhu0Fc8JUJOxXXq4YbGUlmdf4OJ9F5llaNSex52VvFxeBv/s7nk1hodIajh9XGt+ONLB8lCEexPm3g5MGJYfT10d1sLiYHLyuzr7U1Zoq++STmam5dg073Biyfj2RWn5tZ/VEmsVF99Hi1vUJSEq5tW/Am2+y/+DHP545o95ajJM1hOUC6TT3RJje+fN8noEBEnI4TCJ64w33kmLRaG7f5rWsgzhWV1U059QprjWdpnZy+jTP6vp1En5/P5lFKESmPTxMRh6LqX2122PZW4BM5NYt3qepSfUnkNkCXjQwndZrl4bQefM8AsX34/cbG95tvQ8B9hXxW5mqpNzKoQiirK+rzjx2pa5eU3Ot4MSQ9euJ1BKJIuOxpWGkSFwdrI4xJy3D5+P1KitVeHF9XTmtGhqci3GyhrAcwClTrrdXdfBdX1ez+txME5G6uhaia0VOWoh0MQK4fxsb/Kyc1cYGryPzBwBnzenMGcVAxcsvA0Il+1L2xMtUIxE+tf44gr88j5FNP1oeq0ZwY5Ucqb19T8J0+YB9M6Lbbrxyby8PXkCkq/6aXamrEEQuU5Dl/jLXPR63v146Tan19NNq6lJjo+rR2NKiJI+AnQT2+aiN/OY3fFYxLwTRBTY2lPosIGm8+vqeew741rcowdNp75OfFxa2M6t0mvZyMKhqXAyDa3HramztYwi4D+IQ0MefNzWpMWfl5WQcppk5wFSX7gJ6noNEDQoLaUqcOKHGkOt74nYdIJMxlkzEUOzfREFVGFPThnKwiD32EMK+kfx2Eqimhq+fOcPXmptZ+Sfz3cfGuO9HjpAAge3aw5kz2QlArwJ00ubstAL9XgLZnLm6NPnYxzJ73ktGnN5NuLCQzEEiIAC/I30ErKankwAaGto+OKOjw9nRKVEMaSNumtm7Glu7BrsN4tBBN7nEJFhYYLZnOKzyNaTFPeC+x3orPgFrx18vZ6VrBr6lBaTD1ShJr2Jp5f7hlJRQ7bQr+ngIYN8Qv50KFo3SwaZXx50+TcTq6yNz6Owksc7PUx1/4w17IgbsvdDV1ZlVgKsetTk3Z5GbMzdbtadkxEnrxaIiEpAM4Ugm6feQPAgvjqqhIbYxq6wkA5XW5S+9lEkAGxtcx8QEE2303HwZsOlWZKUTca5ttHXGdeaMchxKhqwUS8k13PbYjqFNTVHyX7iwnVl6uc5mMAwjzbzxsnIA5v3CELs664cEHvoGngJOTSbX1qjC6RKur48Emk6r1NBkknnhIs1WVylFZMa95PQPDVGN3tpS2ZZLS3RIiaSQUGBDg3NDl95eJnPNzWXOuxP13wkuXNjeSVdGvDc3U5uZmlJNP8XbPzSkOgwXFHC9kj0qe2XXaBPI3sBUIgwSaq2r475IA9G5OX7+scfsp1PtBpz6XFqZdK4JVHq25tSUas0nTlOJ5ADOznv9OuZcHMs/70ViYRNd9bNoD86ivGIXXVV3Ab8zDTwF3EJt1kO3U+vGxlTdvmEotVlGqz3+uL0XenOT0k1Xtb1oc2NjaqyWPu/OLbQGOEul8XFGCdraSHyTk6qWf2iIxCce+ddf52tyb9kzp2w7t9blAPe3ooKhPFlXKKQqBSsqqHEJ4bz6qnOfgVzAam7Nz5M5PvFE5hiwnbYtF4k+Pc1rCrOUZ7xyRXWL8vszsyMlGiSh0N5rETS29eB4cQzGaiE+8B3F0RejqOx4+Lz8AvvG4efFSSec+MYNNX5aQKYei6MJUF18VlaoKfT2UqWVsepSTy6FWH19DA3duZNdm1taogSWIaylpdsdc3agO7dkwKSo/IGACn+NjnLNVVX8PTrK1w2D2kVBgSJewN2hJolOOkgSkIDV8SeVgoEACaGhwX5t4pjVHaReYGgI+C//hc++vMz7S9fiubnM9mgS3ssFBJ+ef57+oPr6zPfLyhhWlKKya9d45pIdKc+kM8aTz0bge6oH6598HunTPRicfXgJH9hHkh9wd1g5NbA4fZoqus/HENf0/fnBUqsvU1yXlniwKysk8KYmSi9Bto4OSu3paTKDb37TXdoYBglAes1JKq3evdntGXU7s6kpEznHx1UNvBCcdB8KhSjFr15VAyqzZYh6aV0uGok1p355OZMpWNcmUrSvL7OLULbS4PPnVV+FjQ0y3GRSzREU0JOfdpqJ55RXIde3y44UpqMnDumwR7U4eYV9RfxOMDREu3V6WnVXlgYW/f20Q5ubKb3LyigVEwkiV0EBkev2beU029hQuf6xGGu919eJdO3t/JyewWeFeJwIUVdHTWNhgUTS3b1dvbYDOyanI+fSEpmSePiDQT6L3n2oo4P74SVD1Evr8miUPpORkcxaetOkWSJDMnt71ZxJgY0Nvn7unDcHpHRbCgZ5v81NMu90mgxNH22mRzb0jEO7zE4ncDIpjx7dnh0pjOb998nYo9EHWouTV9j3xC+e6vl5NVX3Zz8DPvc5Etvt20Sa2lpK31iMCHL0KJFlbIzfi8f5dzDIQ93aovqcSmU6+wDnQRUCoqaL6iuNQaam3Ds+O4FdUtLCAp8PIEPp66NWIZLe52MHaa/ST29dbgcSHx8fV+m2hw/z3m+9RWYq+fLJJNeSSJBo3nuPr3/wgXLAbm4CL7+sqveszTVFM0ul+MymSd8EkBnZWFnhfmxucr9LS50zO92ezc6rD2RmRyaTNCkffZRm59aW6gvopa7hYYN9T/w//rEqnU2lqCYGg/TeRiJ8va5OceUzZ5Rqf+QIv7O2Rts+EFDz83TPeK5cXSbyijRMJFT57OXL1DZkXrybiqqrsj4f13nvnpoTOTjI7xYWkhArK/e2FiSRICE88giJUzoXDQ2RiAsKVJ8Aw1D97197jR750lIy4rv3ZzwXFrImwqoJSEafjCNfXOTzhsNskVZTk/mcly+ToYtqDthndrqBk0mpZ0cuL/PZA4HMcWWzsw+sFievsK+JPx6nxGtq4s/ICCV9ayulxMqKGqihQ1kZ3z95klKov5+fnZ9XvQJffJGfzbXCUvoNXr1KJNWn3lZVEVn0ohWnFmR2eQLSNfrUKfov3nsP+J//k8975kyeS1FtYHFROTEB/p6ZodSVXHxA9QC8dYsE095OgkinuTfimHzsMftOTDIN+/BhMhwxAZ55hve0Emk4zP2uq1Ov2WV27sQvINmR3d3A97/P5y8q2j6u7EG3assH7Dvi1w/wzh3Vk6+igsgiXWuOHlXc2E5yNzTwdyhEqfTGG2rwRTSaOX3WK1fX+w1KV+CrV5V/QKrSJJ4uk52B7RLKLtlHmo12dJAoCgv5fWl7vUet3n4LktWXSinJn0ySyemhUPGJSIl1IEDtQAhFzKFnnuFzSMxebGjZ86EhPmNbG5moDAW1QjRKG1+IWnI49CEmu+2REImocWXpNP1Ht2/z/85Ob5miDxt4In7DMD4H4C/AEd3/zTTNP3f43BkAbwP4A9M0/z5vq7wP1gO8ejUzHl1eztc3N5mcole1AZmS+9w5EvjiIiWxIG93t0o3tRbHWNdhlSA6wYrKPzNDJvXFL6qqNOtkZzvPsFPvRwEZwGGdKSB173vR+FVU97k53jMYVOFOGZxSoiW2BYPKodrQQFNMuiQfOqSSkiQ7UGxoiaNLjD2bxhWJUFM7f56qvrTI08Ox+eiREI0C//RP9HHMzKhmIjJ/oLvbubT6YYSsxG8Yhg/AtwF8FsAEgMuGYZw3TfO6zef+DwAX9mKhQGYzz2vXKOW3tijxt7Z48MEg8KUvKedVNsl9/jyvc+gQJfLoKK9hmkzqsB6kmwTRCVa6zpomi3Okc5O1UQVg70NwyqkXEA+0PlNAvOrPPKOSUl55RfWl2yki6g04JBpgmmrIRUMDtZ3ZWZ6BPpdgZoaSfnaW5yQVdM3NjEZI+bU0PhkdJVM+eza3NuIdHXTueZnQI7CTcNzkJM+ltJRMTKYkT0zQl3H69A67Lz2gdt06eJH8TwK4ZZrmMAAYhvFDAF8CcN3yuT8D8A8AzuR1hRrIaGuJu3Z0UJrEYiyCOXmSBPzJT2Z+z0lyv/02r/PYYzxEyewbGFD+AutBukkQp5DPsWOqOMdusrOdRLPTWCRXYGWFUsc6U0AawwpzFM/38DAl7k5MAp3ZHT5MBvOLX9DB19rK+62skBAaGmhuCd5WVmZ2Sk6nyRief54MS5y1RUU0HcRBWFCQ2VDTumanIiQ3u9sw6HfRU75lEpDdM9vRYSzG9TU2qopGGSiyvJxZUp2TZvEA23Xr4CXDrxGAliuGifuv/RYMw2gE8PsA/ip/S9sO4TA3U7y6Mt46GKSE4Vrcr6GXBst01qUlSphUikzg5k1+trNzeyaZXYmrlNDaZeetrJDI9ZLfxx+ng8yttNYuo/Gzn6W3u7hYNQ1tb1czBWZmuAYxCeRHH2iaK+jMzjDUuKzDh/lbOlCHQiRqu0rHmhpK9aNHaf40NfHz0SgZr8wrlDOtqHDO3pPQ7soKCXhlhf8PDbmf+fw8TbyiItUNeGpqe5amU+m45G5UV5NprK/z85LvsL7O93Swllbb3ujCBcY8NzdVs4Tbt8m9X34599TIHMCL5LcjJ2s10H8G8B9M09w0XKjPMIxvAPgGALS0tHhd428hGqUaW1dH4hobIyGcOsW9kzCeG7fVkVmms1ZX87fUdPt8qnOMgKiIXnriO5kY+fAGyz2knbjcyzC4XmluKdqA7dSZHMCqLou5sbioXnO7tqxX7ygkMXpdk1lc5FmuauOw7a578SK/J05T+X3xonOeQixGBlVSQq1rdpZ7ItqC9bNumt3GhhoeI8lV6TSvbyV+x5CwnfNqaUm1gJYuq9PTe6oBeCH+CQB6XloTgLuWz3QD+OF9wq8G8HnDMNKmab6sf8g0ze8A+A7Aqr5cFyuINDxMSbG+Tmni9ytpnA3Jrf37+vuJFFtb9CrX1tJ8EPtavNEzM7z/kSPuCR35Cvno+OFkv8u95LPt7ZSAW1s0Xdrbqdnk0rLLClZmJw019TRlL9e2Y4zSbDMWU4lVXV2K6VqvG48zvz8Y5DXq66kB6U5fOxBzcXRUtVAX887a8dfNN3DmDD/f1cX7ymTl556jABocVOXlriFhK4eRkdDiHBL7qKkpM484z+CF+C8DiBqG0QbgDoCvAfi3+gdM02yTvw3D+GsA/2Il/J2CxPLFM9zUxMOSg5c6bInxStmsE1j793V18dC2tlQXYIDEtLioSnwLC8kYBgcfzDw7q3PTzX63Rhn8fvpCJieJmF5bdtmB1fdQVUUiamvzVjegg84YrXb1F7/IvdU1A7smJ6EQnz+dVolaEk1wgnCYzFNPAjKM7Z165bNeNLvCQjID3S8nGaRZ8cLKYZqb6YD64ANVjCKxYulZtgeQlfhN00wbhvGnoBffB+C7pmleMwzjm/ff3zM7Px7PzCcHSIxVVfxfylk7OlRl2ugo89SdQHLU43Hua2EhD0gfrgnwkF9+mZ+RZJ1QSE1W2uuEDr3l9tYWw4XiS2hqykRaa5Th7Fk6pS5eJE6JUwzwPndPwCqxa2q4v7thfnb+rWxMVRjc008DP/0pibeoiK/L+HanZ7Oai5IHoHfqFciW1OWm2emamHSUtt1nK4cJhSh5amuVPXTsGKV/LJbbDPocwFOc3zTNnwD4ieU1W6I3TfN/3f2yCLEYN1JvWCm94iSUJqmei4tURdva1Ngz5+dx/x/gYTU2qpbcAvmu1nLyLAt+TE3R5CgpIbILw1tdde72m0iQmB55hCZCMkntSQZ05OpQtkP43fSncLKr3ZiqMLhAAHjhBdrusi9f+AK1P6uzXJjJwgJxZWlJzfjr6Mjs1Gt91p2m6npy3NtxmFQK+MpXMhM4Uinlxd0DeKgz/KRNlGlSxZP4ammp4tj19Zkqn7Xoxkpci4v8/JEj6jNOTsK9rtZyQxTBD93Zu75OpN3YyHS4WXFJ73Mv0Qo9OxDYWZJLvmAnMXf9LCSdW7oTSTTD2mH4/HkVd29vpyn0yCOZ3XqsA0i81l04gadkIjsOI6EdcWBIIcUehvseauKXuvBYjFK9vJzce26OZbuhkHN/+95elZQSjaoDlxg1oOK9FRX2iLfXk5OyIUpPD23VsTGaJ+3tqsBHb9hpxSW9zz1APJI059JSZcLsVotxy0txe28nTNXuLKamqBVeusQzbWlRzzw7q6JngCr1np5WjUZ1/444Vr3UXbiBU2bm9oQxizplbVt0+DAPW0o39wAe6k4+0SjVW+kOu7amKvAMwz6uPjlJKbe2xsQLv59OssVFSojFRf4v/eb7+4lEdojnpXuQG7i1+wbccwbk/p/+NJ1hjz6qUmM7Oojodmt9/nna/Hq0QgZcCDPt7+fru9Fi3OLhbu8B289NBmdKPwC70Lb1LFZX+d3iYhL+0pJ6LoDEbw291dfzs3o+gs6AJyZU3P6nP2W4fXPTe35EPE6t63vfA/72b+lvmZjgsxUXu3Q2ki9Go6pJYSxG1W0Pk3weaskfifD5QyE6/QCqbY8+qgpHrNpTZSXNpUBA9exbXVWhoCNH6FQdGCBH3twkQ/iTP3Few07UYi+2ny4BrSFFCUFFo/y7rS1T+3AzA+1m0+sRkJIS4lpr6861GDetRf530mj0c7t9mwSia2dO0lY/i95edc4tLSR8KSMWDclL3H1sjPu5vEyckLi9zFyU+oVsOCD5/TpR37xJid/UpHpK2poB+maKDSue5T1s/vlQEz/Ag62r46RWAUlvBbYT54ULSppKHr0+yhtQ7ZgAcmRJvc0neLH9hEjtwzYCQgAAIABJREFUQoo6AXR2ZqazPvaYexq4Tlwym/74cb6nV9Dtxpy0qreJBAlJzIu6Oq7VycTQz02KhUZGVJfjbL4Ia4Sjq4v3v3OHdRotLWoEm/Q8sJps8TjflzTfuTnuj4STCwoYPdLNEyeIxahxHjrEZ793j/8nEswBsEsYc9xM2w/lHx564s/V7talqSTxSJbb6io7sXR2KqmQSinVLp+OLy/nKQTgFFKUjkCDg9RYTp6kifLjH2e2mbaTlDpx6S3P5doy1nqnYNVa+vuV09owSITCdKXphZ2Jka8ux6EQJX5jIyW3DHKNxViFJz4U/Zn1jkurq/xeQYGaHQiQaSwv269B92vcuME1Nzby+cvLKWB8vsymsYCNBvIh9QF76Ik/19CLziykH5+ouI88opp7ZIv37ha8qPTyfG4hRasGMTenOvbYzeZz2498OS3jcTWvTwqJDIPOtJYWMtNf/Yp97goLgZ//nOO0vva17dfSuxwD/L266q3LsdM8Q32/JOXbjtnpHZeuX+eeysyGlRU+m2RJ2u2Bni9y965q9Z5Oq/Zi4TDX5Jr5t9eeZQd4qB1+ArozS7f53Obmra6ywUMgAPybf8MptmVl9OJubZEgi4q4v9nGTO0ExKk1OcnU7cVFpdK/+iqTTmT90uJLB2H8Vqeg5Na7zebTYbdOSyuIL6O4WJlily7xGerq+Prt2ySIpSXu9fQ0JeN//+98bv28Kir4mVSKDDmV4v9euxxbn8s03Z2oOgiDBnjPxx6jtnbokIq6bWzYz2fo66OZ4vPxOpJkdvGi6mwcjxMHnnkmy/7n+5A8wkMv+a3gxZEWifDgzp3bbq9JHYBTk4h8lVU7qfQApcz8vErAmZ9XCTjWNVk7Ee0kt94trXa3cWyZkwhw/Tdvcu1bW6p6T8aHmeb29OTmZpoHeoOQhgb3FG275xLIRYOWUWzDw1TTa2rUvmxskHGfPm0fbRsY4OdEY6mupgYn1X5S/djaSk0gq0mZr6KQHGBfSH4drCWmTqWfTmE0cXRZmSxAqfTtb9NR5PfvfOCEgKj0zz6rClakr72oyuLgray0Z/zV1QwV/fKX1CCKisgspIOthMy8JIFlC8F5Abt9jUZp0lRV8VpLS9S8JH+irk7NF7CWF0ejlJ5tbQxRtrXtbrydU1m1XemuRNeKisggZG6jVHuur+fWF9E06Zv5+tf5c/YsGeJDOqR3/0l+LzPT///2viy2ruNM8yvey03cN5G0REokTdmkJduy6DhOlMROvCaA0+nkIY6R7gm6ESRIBvPSQAbz0DPAYIDMW3ejkw6CIAimgU6A9HSnM0AyhjVJJ2nEi8jIi0QtFElxkUiREvd9q3n4+Lvqnlvn3LrkJX3Zuj8giLw895w6VfXXv39/Tw/huzc2GBbs6DAJQXaBhpAwxdCQ2ajnz1MKLS9TAqQDg21TUBKNj5vMRTvJyOXgsjeo3ZDy7FmqnO+8Y/L2fcaWCSirsOYdHR2mbn9x0WD7i4YyPc13Li5OrFXZbTptkHzvZ8/Fww+T0QXV+cEHqbVsbSViOdrU2UkhoZTBM9zcTM6/SNtvt4+IPgeO+SsryUCuBpgSax0a4iIMDlJazs5ygWMxtw/FrqATb/itW/yso2N3ZdXBLrcjI3zOI4+YhJvWVrea6wr/jo2R6c+cMbDXYRs0SJmIKAmO3YULnE9JQ6+q4t8EeffKFR5WCwumIUpNDcfY08Pwl1CmNV6f+7lKu2/fNmCrKysmSuE6HM+cMSAhMzP055w+zf3oVdbron1G9DlwzB+PA//yL5zsujpuLqnkk1irFAIVFzOUNDZG9StMeku998QET/7FRS7i5iZV47q6nZdV25LowgWqtWtrfJ5IjL4+hqVc4woyazBtNR3p7RuBSEXj45TqsZiRfPb8PPss7/XWWybkV1Ji4uaSbSloPnvs10ogEaxXrtC8kiQy8a8UFLihuYNUXc33DAppYBdaTCZUszToQDH/1BQhttvaTBus+XmGkaR6a33dzFlpKSX3zAxt77BFyMujNKquNg642Vl6fZeX+bzd5FzIASDMPDdHxrt1i4fX1paJOdtjdDmvXGmrvmPzTSqKor4+Ms3p04kty+/cMSnFwhjPPgv89Kf8zvw83/XmTTKV4PTtA1Td+5Sqn2NrK+fILhSLUtvDNIwd8+k+J/scKIdfXx+l3pEjdKx0dZG55SCQ3PXeXqbwXr/OeUsVypNsv5ISw+gLCwYX3/YX7IaEmaWZpqA1tbe7nW8u55Vv2iqQXFsAGCSk69cphWMxE/3wyWEXHDtXt2PXGCSOL5DeJSX8WQ61nWIL7oRswVpZyf1TXk6Vv7CQiMMSk0/XmZoRkg0iWVOvv87TyZVokAE6UMyfauPV1lKNnZ42HWTffZdqXNQCas3Tv6DAhKE+9jE6/wQcMxObwGZmybnXmv4JFyO4wr++GzTMsy9azalTBrX44kVqTD5eaZnn5WUTmxecftf8KEWbf2GB10rXHtEaIkEuM0xhbcYffJDz3Nb2gYTbDbW300bt7uaCFRSYXmV7AOSZ9Wq/jRl/4QKZc32dkrOmJnHj9fXREz40xA0HMHuvqSl6AaU3nO2YGRvz73LrS66ce7sM1aXhuVTLMLioYDejw4eTzcff/IY+DKX4T+LUvoAxUmjU2pqI0//xj7ud1FrTz7GywufF4zSnRNuK0qh24vjebSlxlLMwE474yHtUV3Nxp6cN6khXV7jXcZeU1cwv0mtzkx7tmRkytbTaamigZH7pJc6bpGs2NjLGCqTuqAu4syvT7XLrS7K5xO7u7U2NIx92D5vCAGElZ17ebWyMc3PpEj8rKuIc3bnjp9nYB1h+Ps2u2lquj8tJXV7OcdTUUJO6coV/v3OHuQvS4CNIO3F8p/rObrJoM+GId4GyvvYa7/F+PoHWpgRQyGcT74CyWu0XG21oyAA3SDnv2hp//9M/NVWPdrqmUCrJ8uabjOnH45RO+6HuheHIj43t3LQIJj/V1dFUtFFtpUeh+DIKCmgCpFvhF0y3vnMnPPGqvJzrdfUqD7vKSj5PfBdSuBTUan2TudL5zm6yaH3Gkwq/IQjKGotRO+vvt65PdxPvgrJa8ovzc3DQNKMsKCCjSntte+HSOdldJ/ni4s6ZPh2VsK+PGkptrUmUKS/3i9WHkQsQ9r336AOx0XClR2FJCU0i6f6rNTdtMGSVCtpqaoqgFXl5fAe7hPfGDWpt4qSdmCCUVn09QUok3dkFoybvIyHJ+XlGb0pKUuP82RRVSryb+ZV7C87E8HBqXAIblFVC0VqbXot9fcAT+1jkk9XM7zoE19bC66vTyRbbaUjVxeRAeiqhbAJptAHsXrNzlbi2tbn9FrbPIC/PxOplr732mqk1iIK2kvcuLOR9JGlJkmPm5nhIFxayym9zk88oLSWzlJeHw4lJMtfAAJmkooLzJr6v4Ly6WqNnKkrjml+A4xsZofSWKr6BgURTy95Pcg8pzgIcTVUynfIYQVnN/HIINjZS9Rc4L+m77nJQiW0nDOqKnwM7C6mG2X3BMtKNjcSGkz7x+91u0lR+izDNRJjXPgRtsM+LF8Nbisv1jY10JG5tmfTdzk6zqQcHDQyZJGUdOsQD48kn3e8ubbftZCitzdq60rODrdHb2sKzOjMxv7K3XKhRrkPN7lokuAeSR5IwB/tU5JPVNr/MwalTlBZ5eWT8oiJWS505k/wd3+KVnZhWYXbf5csmhCQhWukD6Bu/jwrXhdmQrrmy7dkTJzjmn/6UuHJSfBPsPxcs1FlfN+3A5+c530VFpoxYwnOSVCXp1DKngsHf3Gwk3cYGbVtRd0VLGBtzv7tU/EkVo5RfuwplZF0aG7lXyss5rokJPzPOZ55d83v0KMcDJKJGyTyFRRJaWxkl2dyk6SVNVd6fg3QWfheU1ZIf4IQ99xwdoD42dU+P6QgrXnRXam7wJB8f5zVih/pqC+vrtPukbHd+3oTPpOEkkPh8H81uJ97lYOmufD9MJe3udqvKdivwVC3F7U44Ev/f3DTRA5F0Q0O8vqiIh7YkX01MhEdVmpoSUYgAUzSUal0KC1MDggTnKdU8uwRyGGpUWPdl134uLbXW3w5x3bnDxfn97xkSyTCeX9Yzv5CPJmSrfwIJdfEiT9dgxyObAX1BJIMVbWLzNTRwI8/N0ZnzwANUN6MaToaF61LF6X3DvbaW4gIy7e2lHV5fz3GXlJjuPnl5/F/alJ87x++ePk1JbavSUZ1w5B1jMe5fyWuIxzlfn/qUAWJ1ka/vy16Xixd5EBUW0gyx19Fl+uwmnd4eX3k5JXpfH5lZWr/5HNRJC7e5aZwd9fUc8M9/ztBWBm3/A8P8Pt70nh7TbruqivNWXByewGIvQH19+AawE42uXjVdWWdmTE/F48dNddf4OMNgroaTYe/hG6f3dQra0tBWSW/dohp99arpTxiL8bARZ+pTT3HMk5PUDuJxXie5Fi+/bOZe0oUFiCPYCUckHcDrNjb4HmEdc1zrk8r3JUw4NMR3BJKr8uSaoIRfWDB4fUK+81xdnQyuumsBPTPDDWw3FqyspJ2Q4USfA8H8PpqQXNPQwI28sEDmOXKEP0fFz6MaLdiNP44f5wYbGOAmW19nimw8znucPEk78Nw5Mor0AqyqYpFLlIoZlEDSuPXyZdOsJB7331hhQKYLCybZ5/hxSiw5LO+7j2q2SP233+bnra3G6XbzJgFEH3iAz2hrM1WGUdK5qyv8uqgD0cfUk0Pi2jUTcgxW5YVJ+LGxnTtfBW9BwFWjyqu9Q8GVldzg0nkW4MSLlzuDlNUOPyFbE1pf57zE49SExBfS3U0GEVy1vDzTSz2V0yfo/JudNY0Wgo0/CgvJ8A0NdC6JN1rsy+Xl5FCkJGsFkzzefZeHSU9PsuOtqYnP/sMfEtO8h4cT8f/CfEG2U1FU0o0NSnuByhLBIgg7NgmopUBVKcU1EEYSx6E491IlzoQl2ABuB60kvviiDlVXM7LyyCPuNt9hyE527cbMDBO+fvtbznXYs+QQ//u/N/6lqEQk2wktmX3f/W4yzv/7CxeLcTACari8TObPcKLPgZD8qTQhUelE6m9tcd6OHycDpep4FNXrThhA7OWyMi7i/DzDWUEnT18fgSrsslD5XPwEly7xns3NprXYhz6UHKcvKOCaS5r3iRNGoxD8P5dvQqSMAIiWlfFZAmW9usq/Xb3KTRuLmUYVoiFJay+bbt8m0wKJDShcDTbDJF3wOtGEghgD//ZvDAOmY4tH+QiCWIjyjk1N/F53N79bV8fn5ueHz62MWSI6ktsQlrMQPPSlmrO/3+D7JeT3v/QSJdvt29wAjY27wzYLoQMh+SsrucHEngMSNaG+Pi5aaSlVsNJSTqqP1AeSpZLd6y4YwmlqMuAftkQtKeH3m5p4CNlVmQMDPERGRvhzdTXXsr+fG1Daj9lov7/+tckTePJJbq7Z2WT8v7AU09VVHn4yH8J8ohEcO2acm4BB4+noMJLw7Fm+q1TvSb2JbSO7qvLSwQoUiSzztbZGxpiY4PzYzVZSVQBGpe9GhVdlf9TVcW5HR5OxBoVs86G83BRHiSPVZTLIO0oDXvkX9gy0tdG597GPGTTTPcg395L8SqkXAPw1gBiAH2itvx34+ysAvrX96wKAr2ut38nUICXhQ6SIeJUbG41K195uTtXWVv59YsK/z6EtlaTKD0gO4cTjZBzBzpfmEPa6uDLT+vvJyNeu8XPJ6R8eZovpjQ1KdrtXo1LcGNKOfH7etJASCuIX/uxn/N8O3QFGYtpOtPZ2HgyCD1BaSgZvajI2++amyQcQPPuFBc5JWDFSOh50MblsxpC1ldoEl+NU3tdHu7DXN6wa8s03aU6mihLZ7b2UonkgAC1jY7z/0aO8VsYj7zg+zvtJAtbRoxHOxX1I9EnJ/EqpGIDvAHgWwCiA80qpn2ute63LBgF8Qms9rZR6EcD3AWRs5FGaUG0tmX5qitJrbc3YVjs9LMNCOCLdBaYq7LuuzLSqKuOBHh3l5ikp4WbPzyfj3blDjUOYZXaW6ui1a6ayc2Ym8UAThpANPDVFybm6atTRYBdi2Ve2BzzYB1De75lnjMki8FtVVaYY6fhxXmNTOtmTMobJSY5bTNzHHqM9HaxNsCHWd5MHYZNojqJ9SautmzcZjhQKtveSMuX5ec6HHKjBcHF7O53Aw8MmDCmZiOPjETDlewzm6SP5PwTgutZ6AACUUj8B8FkA7zO/1vr31vVvADiasRFuk2hC9lxIKamkdWpNSSVpna4MQB+STdLdTecMwE3nA+NcXW16x9vhr+FhMvdjj3GMUtQh0vTkSTqbbKapqOAzL14k47S1GaCSIEPI4VRXx40o9vrICNV0l6/IR0LbDHP4cCJqb1gxUjrpy3J/wU+oqzOeesFVdIX5Mgl3J5rj+fMMhUpashwCUksgzC3tvQSbcGOD/QuCadL2eCRqcv06tbeODn4vDL9xP8A8fZj/CACrMBSjiJbqfwbgl64/KKW+CuCrANAcxDj2oODJbTuLxKaanIzOGkuHNjeZH7C+zkV64w0+v6sr+t7NzcmZabW1hnEfeoj3m5xMvF+QaWZnjT3oAojMy+Mhd/486+RPnjRmCsDNODFh7Hm7ak/wD3wldDrFSOkWplVXc71sLUQgy6JAV2Xs4iiUBqTpCkgx88rK+Pz1da7T6dPUMIWB7fZeIyPmcC8t5XPFdxGsQmxvp8+noIBrL5ET+a5zrPsA5unD/MrxmXZeqNTTIPOfdf1da/190CRAV1eX8x5h5NKAgp1a7bjubhnf5aGtr+epPzNDZtracmtjYUU2L71E6b+8zI0VTPCxcwqKi8Or6STxyGaWwkJe39VFJhsZIeMXFiZX7b35Jv0L6VTBpZLmwfU5cYLv6luYlm4xm29Wnw/Jei0vUyKvrvLnzs7Ew1ApaoOSOt7ZaRKgALevZ3SUe1IqH6WYRxKQ5LtJtA9gnj7MPwqgyfr9KIBbwYuUUg8D+AGAF7XWGYUdCdOA4vG9a24aVnt965aJAYeF22Qj9/QYs6GjgwdGMEnHfrfjx8mkb79NxszPZzKNq697UDCcOJHoH2hpoZoeixn1FOD/c3PAj3/Md7p+nSr3zZuJvQ2CzCwm1txcYgORl15yr8+1a6lRd3yddS7yyerzvVeU6SG1BDYAi2gKQZ+Hy9dTXMzvnjhhDqnNTWphZWXmIJe1lfl4MK8SFXu1ubfJJ9R3HkC7UqpFKVUA4IsAfm5foJRqBvBPAL6stb6WsdFtU1g1nR2yyTTaql17bW8u2QypEjsAXnP6NPDRj/IeUegu8m6HDhnAkq4u/nzxItVJO9QlFXUSThSNYXU1dePKGzdYz1BebkA8+/sptcISb8S30tdn4MMFhae7270+Yag7mWgbJgy7umqSoOxYe6pkOBey8R/9EdXylpZk4Na+PpoAXV2cr7W1RJ9HWBViQQHXSXoDrK0xv2JpiSHcwkI6A197LXE+zk+3Y25sjzb3NqWU/FrrDaXUNwG8Cob6fqi1vqSU+tr2378H4C8B1AD4rmI624bW2jPIlprCNCBpceWrKtrSJgqdBkiuvV5aotNOmO6o5dKMSuxIZbIF3016+U1MRDvulKJmUVVlwlOSYCS59IBbXb96lYws9+7spAQTZCTbl2KPXToFBavsLlzgAWdTlIbqmpu5OYYpy8v5syQmRdnvktUX9K9EQZlL5EIOy6BnPmw/+fg8pApRnKK9vVT7Dx/m3ysqaOM/9BDf0zaZAOZkvD/fDdW4tvIEugo9N/cOyCvOr7X+BYBfBD77nvXznwP484yNKkBR9mYqVdG14FH2dFB1j8eZcDM3R1VQGmWWl/OED7OTfU224LtJLL+lxcSYxXF3+LBxmimXJ8bxucv/IIk0YRQ29rExmgbBz4H0zK/g/WdnqXmIypuXZ0qjb9zgAWcf0kDiIT48bDAI7FoKm2zTxE7ZlvFHga8AfhEMaVU2NMTPCwr4DpOTpmvU5CTH2GQZ0oKdEJzXu8t7G+s/EOm9O4E1m5pKTNnc2DALHouFo9PYc11dbTaRpGKKY0ygqFpb3WMJOofCEmKC7xaM5YvjTg4j2ZRbWzy4RkeN1/nMmeQcfZcj7bnn+D7Ly8Y+tZGRwja6oCYHP+/s5Bz4rk/w/iMjZGKB+ZJEn6Eh3sduZ37uHA+CxkYeIILDUFdHZpO5D1JYifPly3xuUVF0FyGfPVhdnYy8/fGP89qJCTJ9dbUpORey8RPsed0DzM4EOhDMH9zAgv9+/rxbZXd13X3nHUqteJxq7yOP8FpJHxWp7HJEbW0loinPzpLxb96kI88FxJHKORT2bq2tJiR46JBx3LmwBVZXeahIaKmvj98Pmz+h9nYeEnaTSRsZSZJSpqaMNK2uNuCfMl826ClgsBEkByAMQi3ISCINS0qMf6WoiOt04gQZSXwJQRX57l1WbpaXG0YMAoIGQUaVMnH6q1fpVAXCwVdc6xSmhc/N8b4LC+YzwXt4/nmzN+1mntXVxqzfY8zOBDoQzA+YyQ+GuFzedjtMV1HBxa6sJJN0dPAaFzqNUn5RhYoKMllHR3jGmIxPmKWxMRydN8iccgClqmE/d45qsaiYUQCXwee5mkza39GBQKxkKUYxgDT0qK8PXxv7feU+Ig3v3uW6FBcndmWy05lFRZZ4umh2S0uGWYIpz0GQ0bk5/q201Ph9VlaiwVfscYfR1BTHZGcAurowS2UfwD0kAsHXd5UpOjDML+TjSLOdM729VOsASpjGRkpgAak8c8Y4UuNx973Fyw/4ncwjI9QKDh2ihrGywu/YRSpR5BPyEhVzampnzV2iniGebZGuQKI0jfqeb16KFNv09ZEZ+/oMPt/KCrUtAUyx05nz8zkWCZsdPsy1nJ93+2BkTHaorabG4ArW1PBZrjLgdMmVAWh3YbYF10c/avaRzMc+YHYm0IFjfh88d4F9npvjBJeWUkWOxfg9AaKQ3nGCoXb+vLvmO92owtgYTQ45TOrrKXVE4mSKguYIkJnmLjvNL3E58oaHOW+XLiV68AHDCC0tBnFJ1qWsjD8H05mrqzmOggIyl6z18eM86ONxU2IsBUkiCCT5aW6O1335y2YcrpTpMArLUQjLAJRDMFXR1X7TgWN+WewoPHcpriktJWS0VGJ1dNDuD3qC7Xu7HFp5ebTZL1/mZ52d4eObmiLzr68blNreXm4KQXrdDQVx/tbXzWYLQ/tJtz7ENzc/eN+8PPM9KdFdWuJ1Ei5tbzcefLuO/+5damhaJ6b0Bk2gZ57hcxYW+L2qKuCFF+j4fOstSli7Hj8WM2OSLFBJ5hGfUTrZiFEp9zJv8pzZWZp9t25xfPPzPKSiiq72k7Ke+V2ZZqnw3KW45vZterUBxlalmCKMXB5dgZYeHuaiSfba8DDwuc8lb5K+Pkq3lRUu/uKiqQb0KWewQ5PBeDeQuPHW1wl6UVxMFdll9++kPsTHs+267/S08cRLF+KRkUQv/p07/L2/n1EHOSREhZ+YSByfSx12ofqOj5PxH3888VoBLpF3GR8nOtJjj/lnI9oUZdrY87a+bsLJ5eWmM49Un46NcY7uvz/joLzelNVgHq5MsGvXeAikwnOvqOBGy8/nJrx5k2i1YfFxwA0GIaGbqSnD/LdvA7/8JfCrXyXfQyrE8vKIiXfqFNVakXo+7zs5yfEuLlJqTE7y856exEw6wXmQ2H1hIc2AhgaTXReWHRmWfRc2D0HmcN23oYHzVVjI8Yujrq6OnxUWkvErK/lOwTr+1VVem2p8tbWci1//mrUJY2PuRqOHDpk+hPIuExNk/MZG//mw1+eNNxg5kqxLeY6NVixtz8vLjb+ispKH1rVr1CAFGer8eQNbtt+U1ZI/7JTVmqdlMNPMVkvn53my1tRQ/V9YINOeOhX9zKCkefVVMmA8zg1bUMB73r1LLL1PftIdghP7cnbWH1tA3ndwMDHeffcuDxBXJl1BAbWcJ580n9l2/07t91QOqFRZl4BRb4XsVmt1dVyzYB1/W1v0+AQ0s73d1BhMT1OrC8bLXYlgr766s/lwRQ3s1mSy9+RZtq9B0KDkd6UYYtSa8zA1BfzkJ8DXv773Hn6bslryh4Eu2k0RwtKeR0dNp5/FRf5/6hQ/T4cqK7nQU1NktIIC4yQsLEyWGAIXJaW7Dz/MGLoPopC8r11PIPBhdiadTfn5ZiO+/jr/Hx83mzEITir32G0CSar7yjw0NhrgipUVzsu77/KaWIzzOTGRmJsfNT45IKU7z9NPM2Lj2hNjYzx8bbBT17jHx6mpRIGi2lEDCUMWFfEgkr1n1wvcvMn7ApT4y8tcX1nXeJy+I0mzHhigX2k/Kaslf5jjSWzgVN73kpLE+OrSUjIsUyqS/O+BAYOQs7REle6BB6hdAInOtGBk4MgRP4ebvK9ICol3S7bg4iLVXTsnPT/faCTiZBoaAl55xYw/3exIoShHYar72unR4swrKKAWJZB0+fkmCUu85GGdboR86zwWFvhzURHNhPV1U11nJyq5fABBn0gwSai5mfMs+AF2MZTtj5H7NjQYNKiaGlZt3n9/Yp3G4cM0B6QuY49BfABkueT37Wnnos7ORPBJOXk7O9PvgffFL/L0npujlG1ooBpeU0NNIlidBnBDPP64KZ+9cIGMEFXBJu9rO9AmJ/lvbs5AQkkmnQCGnj1rCmLKy7nh7twx4xc79MYNlvAKY0S9d6rKOx+/gCQT/cVfAH/8x2TCU6eY8lpZaSS4+AmioL+FwjQOwTuUfP/Ll3kY1teTEQcGTN+HdHwAtrov1XzDw5z3Rx5hLYCg/AT9MY89ZpCI6uqIRPW1rxkYNCn+GRxMFHCZqHr0IaWDqVz7RF1dXbrbQ8+xT0CxlwQkwZaAkmZqn9avvUYGsgs+urpMf/pgimrUydrfnwiuWVtrPLxBmO7CwsQe3Fk1AAAT7ElEQVR68zAQB5dNHfT2j49zXCdOmLiwPOOJJ4wN64r1P/984n1deH1h7y2bL+hXCRu3D/mONYpc7zE+bqIMhw5RSzp/nmstTsflZe6BxsbEZ8mY5uYS80ZKS4EvfMHMgw0aIvBrx46Z+Uvn3X70I+Af/9HkKRQXc24/8xng85/nvpVaErsuxHfulVI9PlW1Wa32A+60Xp9e6GEprEGEHomNx+Ph8X/AYAj29PC0np3lhgpi24vzyJViDHCDPfRQuINJ3jfooLI3le2g8o3Jd3eHNzCVeQlDSXI9dycULHaqqCDjrq76q7auHHvRHGQONjaoRg8Pc64BMtrt2ya9WyiYNxKLMYKwsGBySFpakpOERN2X8aaDW3jkCA8mOVTicc51eXl6/SZ3S1nP/EJhVVlhvdABt8d6eJiboKeHCyjFHENDBqAzyt4SgA6RMAKd5eoQU1OTaL8XFfHQ8HG4yRiuXDHttl3pp+nE5EtL+fzr1+l0O3uW7zM1lZwHsLhIdTRVVaIvBYudpqbY4665mfD0YdV0LnJFZGzHcFkZmefaNVO5ODPj7nthoy1vbNBcUIrJYVL5KHkUkryzuMg1FUEAMOKyuWl8F1G+la0tvrMk/pSV8fsC6Cmw7dITAODnrn6Tu6EDw/xhjScl1urLUKOj3PxLSyYpBuCC9PTwALAdN+Pj3BxHj3Kh7M65QeisIJru0lIioKbWphd7lMPNNjGKikyq8pkzJrc96FiLcn729XFDCnpPdTXf5dw5Oi0ffTQZWOPqVT4rVVVi1FwHbXAJ9a2v0xsuSVv2uu0k1TUodZuaeMDffz/f4fZtAzkWPFgkIUzqBUpLeSBJ5qFoReXliWbG/LyZb1mzmhr+vrwcnSloh4MBkwkovSKam00TkKIi7pvJyYw37Dk4zG8vsG8v9CCJivu735EJFxa40ScnKQV7e40mIIs/MGAYdmSEKqGk6jY1JUJr2wtuY+KHofW6aGqKjB+PkzFWVkwn3YsX6WAKbiqXhmMz35UryYARBQW8Rhp32rUSt2+TaZ58MjVMt2v8No5CQwM39tWr5vBaXubfGhsT6x18zYowfEG5h6jRi4s8ZBobWY4clkknaMui6ot/pqyM45c1sM2MqSn+L5JZKQPXlerwCssEPHOG79XXR8EyO5tenki6dGCYfze90GWznDtHe0tCPLEY77W+TjVYVEc5RCT7zG5tvbXFjbG2xvEI3l7QPLAlssSxH3wwEcTBRX19iR17iov5szirfKRiMPW2sJDvJ624BMnm9Gky329+Q22ospKMYLdGk7lIVTBkM/3kJKX93bu898mT1JhGRw3wx9WrNLVqa6MRkcKeUVdnMAulWajk5+flkXHb2420DuueCyRDtgnzt7UZ7S1oZqyvJ9r3Ylr4NNK198aFC9yDYtaJNjk+nqhN+naeSocODPMH1VtXmywX2Yxw5AilmNhxhw/zVL99mxumuTkRAnt+3jhdFhf599FRLnB9PTewNAK9cIGb+ZlnEsc0O0uVt66On6eybWdmjMQXqRLmrAojF7LvxYs8wE6fNu3OpDpSQk2inivF94tqleWa46EhHsbd3Ryz9DG8cIHf7e01lXeFhTzQDh2iNiWNVsK0NxdAy6VLvL6kJLFZqITmfEqLAbO3YjFzsDz0kNH4jhzh53YBU35+4hqtrBgzyYdcmYBAcqOWvaztz+o4f5BkwqR4Q/Kio+KfNiM0N1OClZebXnm3bpm867o6MgpASVFaanIFRIoePcrvS8VaTQ03RyzGOLpEL2WzDgxws8Zipq3Y0BDbO7vGLmqspLtqbWrc5+b8chOCmZEVFWw7Ja2o8vPJmOPjjFU3NfFd19f5/7FjBnvOJ7/CjmzMzhq/wTvv8HAcHKRNfOwYnzE6ync7e5bazPo6taMo1dZ+ht3scmQkGa03LDM0VZPP554DvvENHpAbGwaH4R/+ITFPY3qaczg9zb9LToaYez4k++PKFe4ZG+shP5/m3fPP7426L3SgmB9IPwHC3ggCnywNEltbGcY5edLkDMjJu7pquv22tpKBxXn11FPceM3NLN4R9byy0pT9ujbr1hb9DdLa2TV2ac/e2mqcVbOzZJLCQr93diXC1NQwbm03fj161PgvjhxhKnJHB8fd1mZq58MSb2Qtzp3jIQcwpXZjw/xbXeW8LS2R+cvL+X9zswHReOopPj9qk8s6irMXMKnPQa1kNynNtoDZ3OQBaB/eGxvG33P6tDmkH300WesLI3sPnzzJg7K7m++4BwjdoXRg1H6hdNBigGRPsDhkqqvJ5AMDps+fIKrKySv5BX19XODpaS5KebnxzNpoNza5Qn3T09xQSoXjxdnmTX4+D5erV/ndwcFEEIieHt4nGJIMC/+5GDgsIhHVKgtwm1MLC6aS8vBhU9IsHv2tLR6oZWW8//y8GUMqxpR19Ime7CalWShVnsbyMjWFqNyQVPeW9ZfEszCH7l5R1jN/MOOtv5+L29xsmCDKS1xbm5yZZ7fOkrbUwtRSEBLsbWcfBHfvmkKOlRWqzzMz3ChPP83nujbrzIyp1GtrSwQCBQzzBhObVlf5jleuMMf8oYfIcJcuMVXWlZPugzyUbkQiCCQiYc/mZhMmk1bi0u5qbY2mVVUVNYuFBRMbB2i6yTOjsAftsTY1cR7EKXbiRDRG4E7s5t3maQTnK4j4E2zI2tXFse4nok9WM79s/s1NbjZBipG4d6oqsKkpk8wj0Fr19cDLL5P52tqSmVpScYO97WymAqgW/vM/0xaMxUy/POln72KslRUyysmTZJBXX6VaX1jI5924kdj+WyREcTEZX2L0t27x95aWcA3IFwdQmCTYP9CeQzl87UYX771nqg3FnBoepi/lwx82CLZ37phIweQk7ymq7d27PBA+8hGDvBNm48pYu7t50LS0UPLm57s9+bvFxEtH03CRD+KPTzbgXlJWM7+rvv3YMW6ylhaDmz8+7u5C291tIKME6urKFeA732EM2+4Ik66nuLqaG2N9PTkLzga6tBnr2We5UZeWCAZy6xbfqaGBB9PCgklLBoyE0NqondI0ZHk5ucnjTtJvw5gkqu/BoUP8TPLhJfOttZVmyuamQetpbuYzNjZYzQaQ4QsLDXKuqxdh2FgrKhizt1uFS3q2xMkzUQnnOrwlouDTqt0X8UfCzn19xuzciwo+F2U188vml5AbYBxeZWXUBu67z3RBDUrq7m5+d2SEm7migsx644bxaE9NGWkTLN0U+zqMqbSOBtB0MVZVFYEcpeAHMHH3/n5qKOXl3AC24+rBB+kRl25B99+fCG8N7F56iJQfHqZHfmsrse9BWxvfTQ7f+XmuhQ18Ke/7s59xriVsVlFBFR+g1vT666lTtF1q88wM50oaqFZU8CD81a84Nw0NmWln76MVRVFUbYR978HB5CK13Yw7Hcpq5g+rb5eSWol7B7vQAlT3h4b43dVVMtrgoEFTlYVoaUk8jQWpZXqaG76+nhusri4x1mszZzrqW3U1mbe4OLFWQWCv6uqMN19qz+NxAwtWVUWVc2mJ415cJJPZkikVbr+LXIVTvb2U0mVlnJe33uJ7K2UaUJaVue1qiR7YB6OdZZgqRTtMbY7F+K4SQQH4jK0tfkey+Hw0ibB58NEeUl0neyOooUhTFVsw1Nf7O7AzSVkd6nPVt0tsXcIhYTHd3l4yz/q6sU3X1niP++5LRMiZmUlEarl7lwdFXh7/Nj5uHFN2qK22dmd4A3NzJr69vs7vKMX/W1vNoSDM3NpK38Dmpkk+EaflygprDwDT9XUntd+uwqmqKgNWUljI97ahuIqLWRvgike7wm35+QZqy0a3EbQle+7CsAeVMvkHgtOwvMyxBlOYfbr12uQbRva5rr2d+6a723QRnpszeJBCO8lJyBRlNfPL6VhXR0lSUkKpOTFhmkgo5Y7pAoy9NjRwk0hIb2HBZPaVlSVW4YnzSoo4JF9bni+twoLM6QtEIVRWZlpMbW2ZBiL19UabsUEhg8kn8hzpIf+JT1CVFoAMX0BKm+xNKFK5qYkb+NIlhhuLijjvxcXczGfOJHf2EXIBsYhTbnHRpGjPztL3IUk0QDRQppTSbm0lArhWVoZj+PmSL9ipfd3cHAXFpUsGlx/ge1ZV8T2np6naa82fJZcf2DuYNR/yUvuVUi8A+GuwRfcPtNbfDvxdbf/90wCWAPwHrfUfMjFAu759asr0kBPv/d27nNRjx7jhpOpNAB07Oqh2LS9zIaRssrmZammwCq+khPfr7CQDFBQYn4OrCGUnXuXmZmOvDg5SMlRVcaxh6bRhz0m37j5MXbVNmMpK5uRPT5PBiovJDLW1TAx6/HFT2lpa6n6OK9wmjkz5rKAgUQPq76emIfUaYUCZ7e3UgmxAj6oqoz3tNLbvO5d245go2PGtLY710iX+XlTEffjmm8ZpmImchJ1SSsmvlIoB+A6AFwF0AnhZKRVsW/EigPbtf18F8HcZHicA472PxbgRhocNKCNAJ9LqqolTLy5Scj36KOPvx47x54oKg5wqC2VLKjutt6nJwITbPeN2czpLFt+pU4QI+9KXKPWPH08friwdyRGlrsr7j41xjgVRV5BmPv95qvjSndhnjHIA2GaB/ZlSZKxYjM+JxYh7NzoaDZTpghB79llm2KWrhe1kLuW6VLDjlZWJ/gmp0RcUKHuOdjPunZKP5P8QgOta6wEAUEr9BMBnAVipGvgsgP+liQn2hlKqUinVqLUey+RgL182m7G/n8xYWkob8JlnDMyUTNwTT3DT5OWZJBNh/GBChS2pSkoSE39qaqhltLT4t3SKIleR0iuv+HeNsSkdyZEqO/KJJ4yXXjDt7ruPTLi5aWL5Yd2J06XeXrOeAP+Px2kGPPVUNHJOmCa0GyeZ71zKdalgx9vbCe9eX2+agS4v029j2/S7zUnYKfkw/xEAI9bvowCCQ3VdcwRARpnfJpHQkmYLJKto1dVMOAli0YVJxqCJkQnmDCPXgu+kc0s62Wyp1Nrq6mQvve2RT9WdOBMkCL5AInKOfajvFfnOpVwnbb/q6oz/xe4fIdcNDBjNsa2NB1yYubSf5MP8rh43QTePzzVQSn0VNAvQ7NO7KkCdnXQMKWXw7dfWjOrpYuqd2lSZYs79IF/J4ROazARoii91dDDxRzIqBTRDwo37bQMD/nNZXc3aBxtM1DU/XV3J/on9fJ8o8vH2jwJosn4/CuDWDq6B1vr7WusurXVXnQ2o70lnztBuF3grCfEISIXLBv0gbapsIx8odPsa8cjbTUoyOXddXfRzbG5SK9nc5AH/8ssHY7189lY277+U0N1KqTiAawA+BeAmgPMAvqS1vmRd8xkA3wS9/U8A+But9Yei7usL3R2kIDacxHv3qrHBvzfySWLZj4YRH8Sz7hXyhe72wu1XSn0awF+Bob4faq3/h1LqawCgtf7edqjvbwG8AIb6vqK1juTsnTJ/jnKUo2jKKG6/1voXAH4R+Ox71s8awDfSHWSOcpSjD46yOsMvRznK0d5RjvlzlKN7lHLMn6Mc3aOUY/4c5egepRzz5yhH9yjlmD9HObpHKcf8OcrRPUpeST578mClJgEMeV5eC+DOHg5np5St4wKyd2zZOi7g38/YjmmtU+bPf2DMnw4ppbp9Mpb2m7J1XED2ji1bxwXce2PLqf05ytE9Sjnmz1GO7lE6KMz//Q96ACGUreMCsnds2Tou4B4b24Gw+XOUoxxlng6K5M9RjnKUYcoa5ldKvaCUuqqUuq6U+s+Ovyul1N9s//1dpdRjWTS2V7bH9K5S6vdKqUeyZWzWdY8rpTaVUl/IlnEppZ5SSr2tlLqklPrNfozLZ2xKqQql1P9RSr2zPbav7NO4fqiUmlBKXQz5e2Z5QGv9gf8DQUL6AbQCKADwDoDOwDWfBvBLEC/wwwDezKKxfQRA1fbPL2bT2KzrfgViMnwhG8YFoBJEgG7e/v1wtswZgP8C4H9u/1wHYApAwT6M7eMAHgNwMeTvGeWBbJH878ODa63XAAg8uE3vw4Nrrd8AUKmUasyGsWmtf6+13u67gzdADMP9IJ95A4D/COB/A5jIonF9CcA/aa2HAUBrnU1j0wDKthGqSkHm39jrgWmtf7v9rDDKKA9kC/OHQX+ne81eULrP/TPwdN4PSjk2pdQRAJ8D8D3sH/nM2QkAVUqpf1VK9Sil/iSLxva3ADpAENr3APwnrfXW/gwvkjLKA9nSpTdj8OB7QN7PVUo9DTL/2T0dkfVIx2fBsf0VgG9prTeVcl2+J+QzrjiAMyAwbDGA15VSb2itr2XB2J4H8DaATwJoA/CaUup3Wuu5pG/uL2WUB7KF+TMGD74H5PVcpdTDAH4A4EWtdUinvA9kbF0AfrLN+LUAPq2U2tBa/+wDHtcogDta60UAi0qp3wJ4BESK3kvyGdtXAHxb09C+rpQaBPAggLf2eGypKLM8sB9OFg9HRxzAAIAWGCfMQ4FrPoNEZ8dbWTS2ZgDXAXwk2+YtcP2PsD8OP5856wDw/7avPQTgIoCTWTK2vwPw37Z/rgch62v3aU2PI9zhl1EeyArJr7XeUEp9E8CrMPDgl2x4cNBT/WmQyZbA0zlbxvaXAGoAfHdbwm7ofSgQ8RzbvpPPuLTWl5VS/xfAuwC2wO7PzhDXfo8NwH8H8COl1Hsgo31La73n1X5KqR8DeApArVJqFMB/BZBvjSujPJDL8MtRju5RyhZvf45ylKN9phzz5yhH9yjlmD9HObpHKcf8OcrRPUo55s9Rju5RyjF/jnJ0j1KO+XOUo3uUcsyfoxzdo/T/AUC7Rv8D5vBgAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAAD4CAYAAADIOotxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9e3Bc13kn+LvoxhsNNBpvgXiSDQkkSIoiKFCyI/ohyVZsy55MvIlHk3IqU3G5Ymdrt3a2ardqK5XK/pNKzdZWKquasSfjSibjimsyM1boJyXZEiVLFERQFE2QINECSDxIvBsNNIDGo4G7f/z46Zy+fe/t20CDIix8VSgA/bj33HO+99MwTRP7sA/78PGAvI96AfuwD/tw/2Cf4PdhHz5GsE/w+7APHyPYJ/h92IePEewT/D7sw8cI/B/Vjaurq83W1taP6vb7sA+/sXDp0qVZ0zRr7N77yAi+tbUVfX19H9Xt92EffmPBMIwRp/f2Vfp92IePEewT/D7sw8cI9gl+H/bhYwT7BL8P+/Axgn2C34d9+BjBPsHvwz58jGCf4PdhHz5GsE/w+7APHyPImHhjGMb3AHwRwLRpml027xsA/hrAbwNYAfCHpmm+l+uF7sM2IBoFIhEgFgOCQSAcBkKhj3pV+6DDfT4jL5l2fwfg/wPwnx3efw5A+N5PD4B/f+/3fYWs9s3Lh/c6sUSjQG8vUFoKVFUBKyv8v6fno3kOu/0EPvo93q1ztl63uhqYnU1//vt8RoaXjjeGYbQC+LGDhP8OgNdN0/zHe//fBPAp0zQn3K7Z3d1t5iq1VsftkhLu2/Jy6r7J/i+PRfHQWC8awqWoqHf5cKYLelnUbiO4G7L29gJra3wGgeVloLCQz3E/wW4/JycB0wQaGoCNDeD994HBQaClBTh1Cjh5MvPe7JRYc3HOdmsxDGB+ns9WUsJnfe894LHHgPp6dR+fDygq4v0XFoCxMWBmhvf+yle2jRuGYVwyTbPb7r1c2PCNAMa0/8fvvWa3kG8YhtFnGEbfzMxMDm5NiESAzU3g1i3gnXf4e3OTrwPqXNfWgIalCFb9pegfLsXYHQNXb5Wi91op+l+KIBrVLlhayh/DUH/LBTOBfsOqKv5+5RXghz8ELl8mYl++zNc+vGmWYHeP3l5gaIi/X30VGB4mIgmUlBAh7zfY7Wc0SqJIJoGLF4GRESAQAKangX/+Z+Df/Tvg5Zed98fp+bPZz52es3UtMzPAxATwox8Bb7zB1w0DmJsDKiv5W7/PwADPZGEB6O8H1teB2lp1ve3ihgvkguANm9ds1QbTNL9rmma3aZrdNTW2xTyOIHtw7lz6XoyOEs/X14GKCv4eGuLrQOq5+pZiKAyWYGsLeOM8sLEOBGpLYEZj6rqxGA9Ch0zEoi/wpZfIcXREGh8nl/f5KI18PiL5pUtZ7cOHYIesm5vA2bNE/sZGIB4nIgnRr6zw3vcb7PZzY4M/Y2NcX3k54Pdzn4qLKf2Hh50RPxfEup1ztgOROMPDfKaiIj7Dm2/y2eJxImY8nnofgGcyNsbPFxfz7Gpqtsd4PEAuCH4cQJP2/wEAd3Nw3Q/BjZlHo9QGb94E7t6lplRcDOTlqf3Vz3UzEETe6gpiMWBri5/1ra1gtSiIkRHgH/4B6L8TxMLkSuoi3IjFusBolBxnYUFx77feog23uUkE3dzk5/77f98eN7dDVrl+aSnQ3EyiMQxyvuVl/ohpcT8hGOT+6ZCfz594nFK+oACYmqKUDwT4WjLpjPhOTOSdd+ylgtd1bYcpxmLceyHasjKaTpubJOZAgHgQCKTe58ABMvw33ySjm50FEgmgqWnXtLFclMeeBfBtwzB+ADrrFjLZ79mCzswB9buvj3taWMh9Xloi/hw4QDw3DJ77jRvEnaIioGApjLbpXsxGgermEuQlVpCYXcZ76EJeFRnFYm0Yg+/1ouMxpNr5XWkuDPsF1tQAi4tU2TY3ubj8fEqwDz6gbSc2bGmp4mButqNuI+blkcOtr/NeTU2UILOzdA4B/L+ri8R+5w7Q2cn/d8tn4AbhMJ8PULZyKMTnHx/nGmdmSPANDYo4Wlr4+bm59GsKscqeLyyQeMrLlQPs1VepSm9t2a/Xbl1u5+wEwSBw9SpQV0ckXF7m+VRUUMXv6qI219bGZ15Z4euGwTVEozRl4nHgqaf4veXlXdHGMkp4wzD+EcAFAA8bhjFuGMa/MQzjm4ZhfPPeR34KYBjABwD+I4A/yfUinTSvgQGed0sLcb60lEw+GqUpFIuRlpqbgWvXeCYbgRCGa3owMV+IsvU5bBUUYqC8B3nVIRgGaSkyF0IvenD+QiEWb80pR5cTclsX2NREJLt5k1wGIBKK+jkwwNfW14H2dnd1NBqlLfvii7T7Ewn+jkb5/cVFPtjEBM0EIXiAiNPeDjz99M49v7oW4/dzDS++yLWJ38BJsoZCvH9hIYm3sJBOOb8fePddPvfSEtc/NcVnMU0SwOSkPeKHw0prMU36RQCgo4N7nEwCt29zbU42vt26trNP4TDXfucOGbppEgcCAar5BQXACy+QOct9KivpwGtoAD79aTLktjbi0i5qY5689LsB2XjpnRzOly8Dn/gEcb6/n4K0sJDM0ufjfjU08L35eeLSxgZw9CjPYHKSeHflijpzwyB+yHWOHPGAA3YLnJgAfvELElx5OYnvxg0e6NWrwLFjfL2nh++ZJhfwuc+pawiRjYyQEwmzaG5WmkEgoDy7Z84Q8XMdXQiF1DMmk2qzhSiXl9M90Jm0lVdfpUS+dYvMcWqKv1dWSAynTlFVSyaBr3/d/lpDQ8D589zr2VlKx+Zmvtffz/WurwNPPKGQJlOUYrtazNAQ8Dd/oxxvwSDPrKaGTLqxMfV6584R0Yx7LrCFBaWNPf30jiI4bl76j6zjTTbgpHkdPsy/RXsdGyORhkKkg/p6fice595WVXFfu7qIq/n5PP+tLf6Ul5MRFBfzjHTfiWsky26BPh/w3HMq7ALwBoODRMSWFkqjigq+Z2c7iqmQTPJzhsGFxmJKasnDiCfY5yMnBLhB2RK7U1w4FqNEPn+eHLaykog9McFnmZsjd5Vnddu0vj5K37U1bnhBAZlWWxvw0EM8yHich1hWZr/+aJR7eegQmWdfH+9ZUaEcZAUFqXazk3ng5fkz7WFlJdc6NERJcvAg1zU9TSnT0sJzefllXs8wUk0S0cY6O3c1bLonUmudNK+TJ5X2U15OfDlyhCHM5mbljwkEgNVV/oj/pK+PzBQAvvhFnkciwWsnEln6TpwW2N2dqnb6/bzRt7/N334/X3dS4cRUkAcAyBRiMfUwAB9UHBZFRVR7Tpwgo8gG3DzfeXmUyELsGxvUWBIJew+026YNDPA5KivJdQ2DzzIxwT2pqVGJKouL3rz0HR18fXBQ7XUsxkMUyOSQ267nPxpliDUWoyTv7CQzu3CB+1NcTJvS56OdPzxMlXNyUuHGfXKq7gkJDyiaskJPD89jbo5nKX4pXeiKMxTg6319PPvqajpIfT5qg5EIQ8KFhYD01/TstM12gZWVaa9HEUKkV2mTj+QFUbGyQqTt7+f1xDl35w4Rqa+PamRrK20Vq2fTTdJa1dfRUXJNHUQqiupZUsL7GQYRVeLI5eXqO143ra6Okl083AsLdOKZJtWz/HxqEXZSVrQcgYoKSoD+fq63vZ1EJUzVi0POek1dzQac1exIhPc6dIifFQY2MEBkCgSUB980ed2GBjIFERI6buwi7BmCdwInOpPXIxEy2RMnuNcDAyTwwkIKwHicWtfNm9SAm5oUrvb1kY6efnpnC4yGexRdRQRvUhdup01enA/jcbMX5Q2lVF0iESLtqVNc8NgYCaK2loguBChmgpMKG42SA/b2kuuFw0Q+iYE3NKjPCvHGYiSogQF+d2uLKuz8PDdUHE6RCAm4p4f3sUPgw4ep3lZW8rkGB+nsOnSIr1VU8NqGQdXf7+fPM8+oa1i99AAZxOnTal+FoXklKP2aEk41DEptt0hKLEaNp6qKGtbUFJ2QRUV8HtNUztu5Oa7ryhXu4R/8wX1NJ97zBO8GdszANKk5xmLE76IiCpMrVxROxWLUtqJRMoWWlu37ULyahbahx/oQBld70F2oca1wWHGxtjaVYnj7tlIVn3uORGMnaXVHYG0tEfraNRKDXLu8nAgciVAC9/RQpc/PJ7HG41S1V1ZImB0dJIjLl6mOP/EEP+tEICdPpmbaPfwwCfWZZ6hi+f1cU3ExDyiR4LX0dFsvITVR9YTbRiLuB6lfc3RUaTHiJJWD0pEqGqVUlwNsaaH9nkgQsfLy+DyJBNd44wbwyCPKeXSf6xt+owneCnI2Fy5wrysquO9ra8QZn49MACD9VFTwvLyEyZ3AKYfAijdWbRK4J6ATNlxLJMrSEhNNZmb4ICsrwPXrXOTRo3wgqwpr5wgEqC0cOULfgDxwdTXw5JNE1vff5/U3N4nI1dV8vatL5RecOZMqcRcXmXVo9VCHQiRuO294MEjGISowwDVWV6dumq7COUnwbJ1w+jXv3OG6m5udNSa5fm0ttaKREZ5JezvPp7WVTEoyBuNxMrfS0tS9y+gVzh18bAheP5uyMgrFtTV8GHuX8HV/P3EnFKKpOj1N2tjctMfdTOBIyHOpJvSdO8QRO206DYJBLu7ddynVKipUBpI4v+rq7AswZEHiCBQpurDAG4qT66mnlGo7PMx7BIM0JW7eJLJ2damQ4sQEvdIAvzMwwPBjfj6lnpVrOtli4TA92XV1vO7qKonjyJF0R6DTNQS8cluna1pDrdYD0a8vztWbN6kdPPccnbahECX+yZNM48zLY/Tg4EHuXSxGBvcAlcf+RoB+Np/6FFV2MbO6uohTQ0PUZiXTU7S5gQG+trFBnPaSxCVgZ2qurPDcdeGzsWFfUGXrYwqHuYDlZS7M7+cFKiu54KYmciartItEqFIWFiqJBCivttzw4kXFpSTPW5hCdzcldyCQGlJsaOBvidNPTJCz5ucrk8EL1xSCk8KfQIDE4ffzetmAG7fNBF5MBv36FRU0ZU6f5vWffTb9uU6fTmUidtmBu6zi74mwXC5AT4Y7cAD4vd+j5gUQ944epfnZ3k7839qiD6mqitqA5FB4TeISsCaE6X/rEaCGBhL79LSHpK9QiHZzZycvtLaGRKgB44FHcCuyjqHxfCzkaZJIz5Lr6iLB3rxJ5rC5SSdTe7u6oZ5jHo+T2CUMKFmEMzOpD3TmDH8PDiq7G6B0Ly4m1xwa4loybVp3N7937BgluzCjbENWO8mV95KFl+31M2UHbrdaLwv42Eh4q6RtagI+8xkSWEMD3//0p4mrhw9TSPl8xNv1deK4aLtjY0qrlnMC7DVFJ1Pz4sX0dGGJROnJdo7Q3ExCqqrCyq0JjC8GULi+hmJ/EnPFlbg4H8Zj4iS3qrbd3US2kRFKHbcc87IyckvTVGrowYOKM1lDjYOD5I7l5XytrIzfvXmTRCxcczubtp2U153kymcyGZyu39jI161quvW51tao6oumJNfxooFsE/YcweeyfsPnSzVzdR+PRMFmZynp29vVuWSbxGWHN06qvud6CSm6OHoUk3MBFM/eRAHWET/9LDa6P40Cf0jRkl3MurubC84U0ywtpTc9HCYRS+OGr3yFn5XkBTkMUVtFtU8kSPBWrpkpxp2J2LxArhhHNtdvbFTpzXZquv5cwSD3SoddLmHeE7n0Atk0KNluwxmn7+n37eujVtzdrZhAts1kctJs5d5iL74aQ1ljEGvNYWxW8Mspqfk77X7jZVPkATo6FMJLaG92lsyivV1Vw0mMOxDg69vtNJNLyEW7K73mQFKE/X4+o9Wuz2XHHQ3ccun3FMFb8XZhQaWm65qp133M5nzdOhht95xy1U4tIz3vBmK53VSPfdsxiOFhEoJpKk//R9l+KxIhcY6Nca1ei4Ds4Nw5+zyCqSngW9+6L70T93zxjICumYqQKCpKj5V7icZsN0QrkE0S1273w8xoqm5XtXVbuJ0HfGMjNcR06lTqPbKJcd8P0JFgcpIEPzjIvens9FY5Zd0jw+D/1jyCmhp3f8V9gj1F8LrdOzDAyI9Uy+mx8omJzPi0nRCtDl7PyYmx6JqvvP7KKyoTMxvG4Imes0WsTBzRSwMKKwfNJsadS3BiXHoS0rVrfK24mNlXm5t05Ei0wesezc/TN9HamjmP4COAPRWWk6jGxAT9RJEIU2J//Wvgv/wXFeXx0s5tp23rvHalsuLUr39N5/hPfpIalksm+frw8PZ7MuYUMlWO7STE5BSr3I1KMbf+aIIEEnYxDNWaqriYa99Odd3aGpHvyhU6K7u6GH5xu9Z2kGsbsKckvAiI73+fGpj0aiwsZKx8aooJTs3Nyic0Oqp8Qno0JlsveSaBJ0JkdJTMprycDumxMUptMekqKsjw+/rI9AUE5+bn+Vnx9fh89PW4adduawO2aU6MjTEzaWlJxd/Ly5WaJIdx6RLV+IGB9HCXk5rupJIAKpyVl0dmsLioEn2amzM/gHWjFhedVTlBgnic1x4aUpqHaTLXwI0J2VXXDQ2pmvy8PHJyCQl1dbk7QDc36eC8ehV4+23g+ecZAs0h7CmCB3jWW1usP5icpA0vJdWLi/xdUcHzu3SJ+9beztCa1E4APJveXppW4TCvYReilfN55x0yFl2AAeqacl5376oGmkVFpJuREdKK9N27eZNa43/4D8z66+zk5zc2yLRCIcUYent55m6Rnkw9/7Lu5xCNcuFSpXbzJjdAmk3okEyyqEdq4vv7lSPOjYPaOUWEa/n9PLyVFW56WRmvXVzMzzk9gBPnk443AsKITp3i+34/D62yUnXzSSTSfRBWsEqNsTFeR3quSZ/56WkVxrRbn8+nut4WF/P9Dz4A/uqvgN/9XW89+j3CniN4AdNksdjcHPdNpKeUG4+Oct/q6/mzuMi9HxlR8w+efJLEcuECccjOiy/nk5fHn/5+MpOFBZoWU1NkGqEQz6ykROHL3ByZwY9+xDOLxykMJydZQ3HnDpn5woLSUhoaVPddaVF3/jxpzcnf4JRBevkyaTFrP4VwMemVFwgo73pTkyp71TlNMEh7JZFQFXZ2xTs6WIsJamt5rf5+Et/8PFXipia1oW1tzg9gx/mk6ObUKfU5YUTCdPx+4LXXSJiSw7+8zINxKvEF0r2lMzOUHNJUVG9dFgopZLIeyOXL/GxxMZFoaIjSIpnk38lkzkKWe8qGF+js5L4kk0yTbW6mal9VxbOTysbpaTLb/HwS5uuvU3CMjyscPXWKdSKSGKaDjj/l5arD1BtvEBfv3lVmQyJBPJUmM0VFJPD6eq5ha0tpjOEw19rZSbyemGAiT34+mcH6utI41tb4PTd/g1OGp3zO6XuOEItx4eXlKp5eVsaNrq9XdrnYwMJhm5tV26tIhOqQW+jCqbW3qEdSwKBvqNsD2DlmwmESopO/QCr3Tp5UNeuVleSwc3PucwOs6bdSKKNnzulajpPjCKAqX1Sk1FbD4DrcWnVvA/akhO/uJtFeuqTSW7e2KIjW1/neoUNk1oWFxKOCAn5udZV7J1ookGpq6kLnxg0loKTpzOSkSj+XzkojI2QulZXEe6kyDQR43t3d/M7SEq9VWMj3RWrHYqpD061bxPHSUqb4bmwQP938DZl6/mXtDBcOYpq8iGEAiQTiawW4PVyC1Ttz2ILWkUcfpFBaShuqrY1I7GSDOrX2lj7uq6vk3lK+q2+o0wM4NcXQidIpJDk+TnNFJ0gpN9YbbwhYbfFTp5SJsLxsHx91chxJLrd0rC0oICJXV/OZcxiy3JMSPhSiSfTlL5OoEwlKyy9+EXj0UQqM6moKo9FRnrXY3SUlyjErIDhkFTqFhWQqCwuqUebKiipOe+QRJfhiMeLs/Dx/VlZ4jeVlErxoZGtrqjCnrIx4LA5cSTuXz6yuqs9andqTk6SPc+eId7W1NPvOnePvjo7Unn9ZOcPFiy6NGxIJTI8m8PPrTeh/dwWTq0HMzLAjz+LEsqrHz6YZoFNr75kZqm3z86rc17qhTg/g5P2XA/jc53KjGjt5/gFuvPUg9KYddus7eZIOumRSHXpjI23Ipqachiz3pIQHuIfPPktCtIZ0JdErHCauSFXlgQMqrCrFXjoTtgqdjg46vgYHiTN+PwVXOEyGu77Oz/n9/L7Pp5qjiEkRCKi1fOUrXMvt2zzLlRXifUsLGVQsRgYWjao5EydOkJl1dyuntjRiKSxMn1V47Bj/P3uWzxsMqlCw51Ry3bbt7UW8uBrnZ4/AKPCjJn8Zd6u6EBsG2ttDGCzoQffyBB+2poY/+lBEsYHtElSs0i6ZpC2fn0/NIBBI9dKLh9XpAey8/6WlKjmjoYFVfXZaR2cnm3wYhqoOjMUoQayQyUsqzs2VFSJPZaV98Yx+IKEQ23H39almpOFwatlyDmBPpdbagbW9N0BiuH2bzPHVV4kvoRAlvjDM6enMrcIBnnl/P6V5MEjCHBxUvpW8PDLkgwdJ8D09ZDJnz/Iz1dX8kfcAnqnMojh8mAxeukn196sRZdII9rnngH/xLxSeW7Na+/v5jBIKzGmaejSK/pciGLgQQ+lDQSw1hLFeFkIiQbpsaAA+dyqqwhR2m6JnGYmqK5NX6uv5sGIrnzypHBg7lcZDQ4zhSp+8hQUezgsvpBO99MqPRrme/Hze++mn09fghHRvvZXqJQW2lzK8w9TM35jUWjvIyyMBJZMqXOz383dPj7JvdVyzVskJeOmLCKiGs6ur6cIHILH7/ST01VUScHu7ci4/+2x6HYX4ya5f598+H++Tl6d8R2JKWr3yMqtQTGC9X0Umz3xG3AqFcKexB8ufAGIbKltUejV2dkJJrpdeIrHo46+Wl+3DDHrX1suXya30Pv1ui/YK589zEysr+b/8Pn8+neCFuL0QmpMtDtg75aS9kR2n95LHnUPY0wQvfRAXF1WlYV8fVWQhjmzSyL2WT8s17c5EBF11NQWAEMjsLJmHEwgOTU9zHUVFaqpTMMhuVuXlKoIlk6ak6+7SEmlIiF9vW+/WvNZLPUEwSDoeHub/RUWKKX1oTodCVJmOHUuVfCUlqe2v9NcTidS4ovV7eh8wa0aTF6k3MZHalx7g5ugOHB28EppXL6lUd0WjTA1NJjloA1Djwrq7iRz7La4yQySi+ilKJWJ5uTKZBLyeYy7Kp2MxJdltpeE9sEpWMRXW1+mkXVtTnvzlZUYCxEc0Pw/8+MfUGgyDzz4xwRwNa78KwNnn47WeQErv29uJm1NTJPbnn081z80bQQQKV3Cgo1QJar39lV24QDqLXr2aqhnofcDsMprcEnAEpBRXJDugesJ7BScVyC1TEEg1U8rLGX5JJomw0oJ7fJyOPelxlp/Pg7YzI3IEe5rgdcEgCCZ5DtuFbIpinJquOknD6mrig1RiNjSQqK9eVcMwDh1iCnZtrTKBh4ZUs1OAhC8mQl2dSuzq7weOHyde6f0qnHw+mVq+6c8oab4NDWRcdqXIga4wti71YqAP6DxZgor8FdX+SnLtxcsoqa1vv61a/chgTHlwn48XvnUrPaPJLQFH4Phx4Dvf4XVqa/n99XXgt3878wHLBripQHb3FkagmynXr5NZlZWRW5aVETHee0/NoistJTLcvk011Wrz5Qj2NME7mVIydckp73w7TTCcMvCseOAkDZ96SvmtlpZItK+/TmdgXR3v9cYblJr19cp3ZBjEG91ZHI/z9bo6aoQAGd3UFLVKiVJk0lLc6gnsntHOj6ZrCVsIYbO7BwWDEdztn0PFae3m4vi4dYuSLRzmBvn99Fa2tFD66qmo0gdM7BRAOSe8zImbnmYfs2vXqEWUlXHwg9f89J10vdWlUSDA5wS4iQCJW9opiSook2kGBj7eBO9EgLopJc1VRkeJC48+qvoY6IUkmWoUvNi1mfBAmHx+vpKGkYiaGfHuu2TsgrvV1XyuqSmu6+RJ+pVkPqM4rgUCAeJwXZ16bXVVhfZ2aorahSjlt1TAylmMjamxXACwWRGC2d2D0TmgU1+Dvqi6Ol7w9m0VN9SnfErWmnAkvaW2lwQc/ZBqa5WjYWKC6tPsrLc2SDvpeqtz06YmmiQjI2R8Eo8tKeH67iN4InjDMD4P4K8B+AD8rWmaf2l5vxnA3wMI3vvM/2Ga5k9zsUAvWpWELmtq6BMxTarU+tQlyUy01ihEIqxR+Jf/UsW6MzH1THhgR3BjYxQycsYSOpueVjkuMjg1Gk0N5U5OqjBySQlt/ImJ1PmSeXmqGadXcPNZOPW36O2ltiJnMTZGxuWpnz5Ajry8TDVHmv7LWF/rl4UjVVXRrpGklIYG99h0NMpiH2mmKY67oaHUXuOvvKJCg3bIZRj2ISC3kkq7tkjl5WyLvLnJNckUoYMHuaZEgvcYHeWePPooX98FZ15GgjcMwwfgRQDPABgHcNEwjLOmaV7XPvZ/Afivpmn+e8MwDgP4KYDWHa8OmQlQKstk6MmFC0pojI3xPZ0YZW6hTvjy9+Ym8UiXWEA6U7dThScneVbnztmfz+Iiz7q4mPglWqYMUI3HubatLZ63/rz19XyewkIKxclJZhVev857LiyoWhW7JDQ3E8VJG7ALd0Yi1CKktj8e53qvXCFOZ2wMG41SnReiSSaZv9zayoe0Ohx0jpRIKK+sWwKOSIjCQj7E+jq5q1Q/6V1z5+f5HVHvrCWQdiEgp2GDdpLJMPg9mT3+J3+Sbhsmk9yTSIQbePAgP/v976cOKchRv3ovEv5xAB+YpjkMAIZh/ADAlwHoBG8CKL/3dwWAuztalQZetCr9M6L9iboMpAqNq1fVxN7CQr6m1yhIFx23/HOZAyF29vo6Tc9PftLZDAgEiK+JhCrimphQMyDa23mdpSX7UK5EsADl42lvV0ltKys0+6y+CrtWbZlwxyncOT8PPP64qiCVEt7ZWY/ZfPcIafnqMCYmVrGyUYVyXytqb0+i5NAhHoj1y24xUDsQ20m4UjDIDYtEqDbpYTopVOjvV/PoJR0zEqF0lsxBPQQEpDuJ7CRTfb170o0U7rz0EtcmUQppoiA2necyx8zgheAbAeiBy3EA1rv+OYCXDcP4U2MpZaMAACAASURBVAClAGznrRqG8Q0A3wCA5uZmTwv00qjCai719xMBDYN+Hxlm2t5OKRiLkbCkRqG4mJLyyhWea1kZz8pNYukJitPTvEZJiXPLdWkjPzenEmI+/3nev6ZG4Vp/v/vzWoedWCswgVRhs7REhmJn4tj16NMrVbu7U3FdwovWdm0tLbxuRlyMxbBQXI8bKEG5OYYKLGClvB43jENo/czvcv2y+O2qsrrtdOwY/795kwu1VrLFYjx0yUFOJvmAjz6aHgKSisDXX+chWTmoF9XQCeJxJX3kf8mkyvZaGcALwRs2r1nzcb8G4O9M0/x/DMN4AsA/GIbRZZrmVsqXTPO7AL4LMLXWywKtjiWJ6AijDodTPyPdkGX2YXOzGmY6OEj78403KLV8PuV4koGe+fmprcjsJJYw/0OH+P+FC2QeYkLIWvXzEe99Wxvf8/t5nk8+mdrqurNTOXKzKbjSGaAubJaW3E0cIF0bvXqVOHf0qLqvpCsPDHgb+2YLwSDGL68gv7oCaKrACoC8xDKwWUgGFPbgMc0UQtFtJ4Bhi/l5Ltjno1o1O0viFftPSoCHh5XtLrkApaWpbbVlGuzVq6q5gt+fGl5zOhgrDA0xLXN4mFJmc5P38vn4u7zc+7U8gpdquXEAerrSAaSr7P8GwH8FANM0LwAoAlC949XdA5+PYc2XXyZDDofJTPUiJb0CsqaG/3/+86xYlDMtLSUT//rXgS99iXu8uKhi3KurDJs2NPC8nYqrrIVektEmue9A+vnopdNSAhuLkQlJVaRe2OU04citHZwQ7quvpo5mExNH1ufGIKTBal5eekWhpCtvbfHaBQXe2rV9COEwEjPLKDG5+LzEMozEMoxwmAwjUx89t/50+mHE41Tnr1xRzoaGBh5uJEKCl8mdoZCquxdba2srdaP10dFlZSTwyUna3tLKamKCrzmVNFrXGY2qHOzDh/n5W7dI9KurZFJVVTnv+edFwl8EEDYMow3AHQC/D+BfWT4zCuCzAP7OMIxOkOBndro4XfJ84hNqAIST6qyrlOfOqd4MopaWlfE7PT2q54HdQE+n5B3rPEZJ/W5q4trKy9Mr8HSQUGI0ypyQw4d5vbffTu+4kynM65TkJfjy7rsUQo8+Siks0Sy7RByrn6Spid+1qygEVNusrKc33Vv8ynAEZQtz2AwEsXawC3F/CMEym4UAqepIJg9uNErCu36dUkJsts1NHv7wMA9dvLs+X6o6tbxM9V+aE4ikkX59R44QmW7c4PUkUULsmspKxamtJY12fcn0HOzDh6kxjI9TLX3hBTKmHE/MyUjwpmkmDcP4NoBzYMjte6ZpXjMM4y8A9JmmeRbA/wbgPxqG8b+C6v4fmjkow9PPd2GBWYgyFv1Tn7JXTwWCQTJY8cRXVNC0m5zk+9IP0TrQE7DXnkT72txUjUkWF1WMXM470/lYcfbUKVVQ5fU87TzrQuzS9TaRUBNpH3+c6y0ttfeLWc0Et/FxQDrDaWz0XtzV3h1C72YPluwYRiSDvZJp9nZvLx86FCKxSf97w1AxRelvFwhQss/MkIiPHuV3TJP/SzVTVxdj6Jcv83sHDvA9OUTpAXDkiGpFFY3SEReNktNKuvDiopqee+OGKsMtLiYDOXyYPoTTp3kAOW5gCXiMw9+Lqf/U8tqfaX9fB/CJ3C5Nna+YUAUF/Flc5NmJuqqXXQuEw5Scfj/3dW6ONmhrq2odpfeHB5wllq59SZ58YSEFQH8/z+eZZ7wR7E5yOTJdV0KOUi03OUmcTyRoxnhtzeZWUQikMpztDvSw01D6FriQ4hrgQFhLzXVzYEg8VNSuZJKOkPfeo+oWizHBYWiICPP++5QWTU0qjBMM8j55eTzIiQk+WHU1TQKpBZDY7UMPqWaGohpK5dN/+29KpRS7UxohjoyoPIDCQq69sJD3sa1Iyj080Jl2cr5S8tncrNKSJyZURmZtrf3Mg6YmagPSi/CRRxQDEZwRD75bKqpV+you5t9SD26Vtm5+pWzbY1vBLYdfQo4ABUZjI3FOTFUn2EnR0E6yT/VnItMIIfBkD9YiEQxemENHTxAVPV2pDgyrB1c6fwjBTk2RiCoredgffECbvKaGD3b5Mp029fX07l67Rsna0KAk8ego76G37pJeaRsbvI5cQ9bxq1/xHteuKY9meTkRBeA6pUGI9EZbXCSBS9NFvSJpl+CBJng535kZEvXaGs9FSkPz8qiJSdm1FcmampS6fuGCc9loplTU0VEyifFx4pFkhlor4IDMEm8nE4wz5fC//bZiBOJBLyujlHdKCBLYbgl2LjQWaz4+TvUgsQzcKAR69LVaOdP0NIm9oUG1IGpuJqFKllJRkWpT7PPReTI9TSKrqWGJYWFhehMEIDWH3+8nsh05olpcyzpu3SJTKC8n8RcUKH+A2FETE9woCS9VVNAe7O9Pr0jaRXige9rJ+YZCPKOCAv7f0sJ9F2IH7Fuo6Y5WKRuVlmuAN8kqyWGlpTzzpSUKjTt37LWvTI5m3Vtv54V3A7drh0IUDgsLdNjduMG/pfIu19NshPncuEGHpWjHQPYRpKymAMkGfu5zVGHq6/m6tLIuKSEhV1WR+KqrVfVdIkEvZmOjCsHYNf6T+mqtp9+HiGNtcf25z6l0X8nXNgylDhYUEHml/FHPA5DuKrnqtecBHmgJD3APvvKV1K41fj+RQSrFAHsk0wVCWVn6mHO3wRP64JJwmOab+Gump4lLf/qn9iG7TBLPSaXN5PTKVprOzPDzbglB2wFZ7+Ym6ejiRQoqKePW99VLdeK2zRz9i9JldHCQhHf6NCXD7Czt+q0tqoSXL6c6fezsmWeeIbL85CfkZg0NdPZ56S9XX0+JICAhksceU+qcnWq32xNH78Ge6Wmnp4revUsNqaUldWpMR4d7vUE2Za9yJj/7GQWCMIjSUpV4cvhw+rUyjm62eS6vk5wzTWj++79XaeqrqzQbpWmqnkDz4dz4bYKYWRIBSSaJ40tLqYNS9GeTakaZUdHdbZ8ZmNU060xflNBKPM6Dkpp4vQGh3Q2sIRnJhxeNwPqdl1+mM7CyUnmIr17lQz/5pELSiQne984dfk/aXMmmZr0B9uDW0+6BVul1EPu3tJRamdQvvP22SpiRWfF26uvQECMir77K/a6uTt9LXWWWXgz9/byHFF2J/yYWs79XtnMSM5kAOrhdWxyL0hBW1nn5Mtf2zjv8ef111SJru2CNCAQCPBPRnqxlxJLW7vOpOgb9bDybOdaBi4DzF6NRIkQ4TMJbXaVqJl5Mp03WQzIy2CA/nw9oN60EIPdqbeUB3LlDwk4m6S/o6EjN/BobU6r9lSvk0q+95h0Jdgh7huCBVOIIBuk3OXOGezc767xn0rx0eZlEu7zM/4eGUq+vD1Lp71cDLZaWaKsmk6q5hjAfO1s6Gxs9G/vV7dp6ay2Aa47HKXnv3iVO/epXJLaxMeKZ9fm9QjCoBqUI6PX41mfTnd2iEVjxWTeJXYndrhe83RcFWRoaaM/V1lKtl0EDTptsxzmLi5XqaAehECVQezuZS1sbnXCBQOoI49lZShJpS1xXR8by8stqwo6ApxFB2cMDb8PrkMmGdXrv2jVvzUslWefdd3kukqbb2Unzb2iIqrEU1zitIxuPd7b2q9O1ra21hodVdENSiKemyBzb27mXZ8+6x+d10M2hvDzVtl2PCFjr8eXZdGe3REmyzj3INv6nJ3FIyEvm1fX3cxNqauy/56UpoRWsddr9/aoyS3KU33uPRN/aymiCYZDgJVGnuzu1p59b66Ztwp4i+EzE4fReX5+35qXV1dQWZ2dJKLOzlJBnzvD/hQXiydaW+zqy8b/sJExnvY7eWksSuXp6iKtSKbe8TDySDjtuDjy9Yax0pZICsYYGaq5ra9w3iXrppos8mzi7702s+jBPJataEC8eS2vJ38YG329u5gNIJZFh8HNPPpl+H51zLi8rL21BgYqpe1ljRQXw5psqT//WLTUPzTBUIpDY+uPjdBbFYmqDTJOHmNXoX3fYUyq9mw1r997EBIl0dpY+FZntBtg3L52dpTO1upqCoLGRn5md5c/YGLWC8nJe262Axa2+Q4dMJoDVbM10nZoarvngQTqWJWdA5s0L2KngOujPIR15hofVuPVwmPf7rd9SZeNWXJQ1SZru5ibDqeLsziqhTLi9DlYuq298bS0l6sAAD3NpiUxAiK6pyZ5wBJEWFnjYV6/ykHt6VMvpTGuUUloZuTUzw5/Tp7l5kt9//jzX095OD/TMDL8rgwrF15BDu35PSfhMGWH6e3l5amrQU09xZPP77zOrcXOTOGBtXirdl6SstKGB53D5MnHl+HH6bmTKqzhv9XU4TQTOJvNMYLtpq4CKQCUSxP1r17gvjzyiwspuLbG8lNjqTTnczkwKlUT4bm6S6C9ezEJTzaQKWVX+hgZ+56WXePG6Oj58Xh45nZ06L2AYfOjmZt6rvFzZ224HKWscGVETYGWTKyv54E89RckvGkhLC9fU0aGy7hoayAichlrsAPYUwQPuxKG3E7txQxFkUxOTUi5c4Ajzxx8nseuNKy9doge/rIyOusJCMgBpmPLEE6kagV0zE7tWak71515U/u2krQqcPKk61ySTTFKSfATBKbe07Wy6CLmdhf58UldijUB50lQduH0UIUR6gbxXYyhqrEJzs5bbsrZGlSIYVAUGsZizOj80BHzve7R1VlZUi6lEgpxOsuzks+fPp8+sE01AkODgQX53bY1qVlcX8IUvAD/8IT8jufRSWru6ymtJmMjaq3+HNfF7Ig6fTfxc+v/fvKkq2RIJ7nN5eXoMWr47MsLP3b5NDa6zk4SSTHK/W1vTR4np1xK/y2uvqQ4xLS3Apz9NwSDMIZuYs9usu8ZGNeZKKv+s37cbduG1L6Ie89f7P2SaV5fp+bLNU3AD/V41w71Yi69h2SxFV9c9on/tNT60pNvqNdJf/WrqxSSUc+sWOaF40p99loe/sKCKXqqr3WfWWR9yYUHVT3d3c1MuXSIzuX2bTCMQ4HfEaSgpwHbDCzOoQ3t6tly2baP7+3kO0sYsGORZjI6SEUtiiiC7HiuurqYgGB3l+be2kgncuUNC0UefWZntL3/JsFcwSGawvs4wa0EBz9hJ83ST2lYn5cIC8URyN2QQS3Gx/SAWO23Ia8WlXRch0RDsSmwFMj1fLqsF9XutNYdR0t8LGMDoaAmOtq+o6R/SCwxQ3MUK58/zsDY2qHo3N5P4X3+dHUOLi5UJ8dJL7mEfq/nh9xOZKit5zXhchYSkuYAU/3R0qIEZR4+qpoXSq/833UufbdvoeJznvLRE9bqjg2d+/TqJ4ktfUo40HQFFbS0ro3S/e5fEJmWwFy9Sw3r6aTWmXPekv/WWisyUlfH7U1M0E06fVp/LBuGteCNlvIWF/Ml2EIsTOGkCk5OMUhgGCV7v3+8EmZ5P8HxuTvWNrKpyN6md1pxqPoWArh4UjkawdGcO6AyqfmY3bqSO8bULgUxMkMjq6khcPh9VtKEhfl9PIcw0s87O/JBMsd5e3kOq7H70Ix7eI4/wmtev84EWF52bFu4AHngvvZfEFKsD98YN7mVlJc/ujTdovh07przM4vCU70rthfxEo3x9fZ3E1d3N3z//ORmDVZomEhQQAltbVLurqvg98bBncjbrYPXgr62pTMyiIuV47u2lBipVndmA1bk9M0NtVTzy9fUkxtrazE5qIPPzVVfTeS7jrRcX+X+miJfdmoXxSSfqKEKYae/B1tOfI7eUyZzCwSIRlWtshYYGPnxFBYsmfD4uvKODXke94YHMrNPBGvaxyySyplU2NLA/vXh9KyrIAaU3md0G7hAeeIL3QiB6SA5Qba2qq0nIorLfvUtE6e9XPeXku34/fTKbmypBRYSCpI+eOMHPV1Sk48yRI0TEtTUlzVZXKRl1BpNt6q2ON52dvMbt21Tt+/v53dpaMri33gL+6Z+yq4iz4uDcHBnlwAAZa2WlktBeokKZnk9Cn0Ls5eX8f3bW23r1NXd0qMzCoiIypA/vpWfaHT1KZ8rJk843OnNGxe2LihQCPPtsujQ/c4Z24vw8Obv8feZM+nX1uOo776Rn1IXDZDSyYTIttKCAKuVrr/Gws+GILvDAE7wXAtEloYxuamlRDUUbG7nvd+9SWq2vcw8NI/W7ySSJ+lvfAj77WeWZFnCLXf/2byvmNDen+h1+8pN8X9dK/H6GzN56K11bcIq7673iGxv5LKOjvF9+PpmAzHLIpgzWqkFJVpyeOptMEveuXCHOul03U16B3jnqiSf4u74+uyxSWbMUyMm03bU17V5Z1dyCtso3v6mmuhYVkYDF4WP97AsvqNz40lLlsNPBqj4lk8D/+B+08yTlNj8/vQPrF75ADj47S4QLh72pVx7ggbfhvXZj0R1Ub76ppviYJv0kCwv0xMtQxpUVevJNM91jHY2q0d537/K9tTUVptvaSm+pdfAg8Md/TL/NygqR8YknUmvvJVOytJRNOcWDLeDmoLTORZABpKbJtdl18+nr4z2vX+f/nZ2qSs2pIadolJJdurjIVGPJAq2pyRxG00NwkUhqvH2nHX+A9KpYySAUX1xvr8voarcbnTypnCGZQhlees5ZmzJKws38PFUnfZKNfo+XX1ZFB4ahHH/3aRDFRw7Z5KZL5xcZxf3uu5Ra4TAlwdAQz7SwUDFenbAARXTPPQf84heUxIGA0hrm54EXX0wv86yspGpfXk6i9PtTu776/e4OSDcHpd1o7LU14hCQ3s1nY4PaYGWlwvH33+d1Tp5Uk2y7uqjt9PXx9aoqMsbOTmoN775Lx1hLi/JpbG5mxj0n5pWph6BTeNt6xnY5OI2N6p6Oo6vtHHa7VYuuezDFxgwG+ZDr62qSjV2Mua5OHWp/PxErkdjxkvYEwTuB0zk9/zwLQ0ZGiCyNjUTSw4fpixkbo6QqL09vDAEooistBX7nd6her6xQqkqMPRBQPQ2tjKK1ldI3EuEZNTcTz2T6sQ66B9vNw22VjE1NdEbKHELTpC3/+OPqWba2iE/6lJholAR16JC6Vnc3iVAackqH5Fu3VJVoRQV/+3x8T59mawdW4SbRpYkJErFdB2YJhVdWqh6T3/8+1yPTpuWspfeBRLnKy/lcMgvCdXS1FYmySWfMBvRDE1tpdVVN+LDrhx6JqL53Uq0nr584sbP1YA8TvNs5HTzIKjDpOS/xap/Pvr0Y4F51Jwk409PEARnjLeqzlVEAamionlCSSZ2V95NJlScic+fspNrqKhFcai9WV5WfY3ZW9WMQkESzuTlGLAQqKkj0c3NqrQcPqoavGxt85qUl3ufuXeKstF63E4rWjsPFxVzr9DSZi53f4gc/4FnV1vK3hLd/8hNVjiydq95+m/cVx2t9PUPm8biy7x1HV+uwk3TGTCCHJqWK168r3wBgb2LIA127xv/FbpudvW+DKB4IsEpzITancwqFUnvOi5Rxai9mV3U3NkYpevs2pbuo50VFZB7WMk+dUUj9hDQ3sY7EslNnZUiljE0vKODzCvHfuMFzl1l0n/ykigSJz0GkdE+PmrAsQmJ1VaXVerGjrYVj4+P83+fjebz/Ps0APa9BiNhaaixJaTU1qRELfdT3woLqEHXoEPe8ooLELRN1Fxa4Hinmqa1Vc/NqangvfeRXRv/AbvUNB7gZHR1UN/PziTi1tTxgn88+JyAY5IZ2dfFBFhb4sDnqeffAe+kB5wq0TD0DdA9/eTlt9yNHgD/6IzV0xKnqbmKCxL65SQIpKqLtnkiQkK09DfXwoUi1eJzmhNNILKsHOxQiYZSXq/h/RwfP/bXXVG2+38/1CSEDSko/8ojqxCTl3ysr/Jmf5z3OnPEWGgyHuU81NfTQ37hBhtnQwOeS8N2tWxRIMnsBUPH2mRnujTQRCQZ5TqOjKn9ATIWFBTKCO3foV5AW4zKoE1DNNIJBZRJIyXlTE80YmZhj91zWKMhCXhaJEdsBkcwtLXzQlRVVcmtHxNY48bFj/K4kYOwQ9gTB27WBqqlRqrQQmLV9k1OISGoc7AhPvjM9rSTT0aOqG/LduyRka5mn0yiy5mb7jjhOnV1krJmMSHvvPeKH30+kl9i4OM500PFUqtROnFDJRNIazO35dRABNTnJ+588yc9NTioz59o1NUdRiCkaVfH2mhquv6yMzCgWU00xJD+iuFhNg5qcJPHH49Qg7tyhJiM0GY+rgS0SSZC5eTIxJxRyLzXWBcfF+TAWJ7JIjPAKcrMf/Yie3/FxHsLioqrwcit53E5bYw+wJ1R6O60rHGb128QEVde8PGpN1qEUTh5+N89/KEQJ9slPKvsVUFKzqYmIWlZmX54rE45kInZ/P89ZiNnt7PLyKN1EnZcZb7q/pqiI65B8DafGGUL0zzxj/4zSC08KyOzWNjurMkqlgcvUlGJqImETiVR1PRbj63V1XOfaGp9JuvCUl3PdgYDqSrS+zvskk/xbtJZPf1ppSNJu3DTJUEZHU+fmuU3MsTXX60MYXO1Bd2FEzYTLunb3Hojdef06VaJQSNXgj47Smyvc6MqV9Niufjg79R84wJ4geDtnl+QrjI2RKPUqQruhFNlCXh7P5YMPeP/mZiJiebm3EUxra/y8OKwKC3nuOjOyizKIn0D63q+vqzHmra0koNVVfr69XQmCbKbFAN6d08Jsm5r4LAD/vnSJf588SWKfneXeXLnC5zxwgIy4spJa6egov/Poo4oxSr7ChQs0N8rK+MxlZcxT2NxkrkR5OT87OEg13zR5nfp6FZ62K+qx7u/oKM06HUpKgLmEx9pdt/Cd3iH3+nU1S07mbIdCqtIpP58P5YSku9iyek8QvJOzq6eHyHXsWGoJabY+F7vikfl5IlxHByVaXx+R5Wtfy7z31j4IAIlUxosNDqqx5fX1qQS3vKyy+UZGVA+66WlmuT35JBlca2tqDoDTs+y01l6YrWS1iR/p+HG+L05MgBLcNHkmAwNkeJWVJMb2dv798MNKu+jtpQr/8MNkGvPzVPvLy5mJ2NbG+77/Pq8v5c4ykk0S0558Mp0eDYPXa2hQ+zs+TnrTU95TzHW3TZEF23FIQHW63doi4oiEys/nQ0gK7kMPkRtKiMEO+SRJQlIyX3nFuUV2lrAnCN4t226nmVt2ku7sWZ5vdzcRPD+fBNbe7q28VNar90GoqaGEKSpSDTEXF9WAEln/xASZg1TdSUtsKbseHWVCkBOxew0pZ3JOO/Wza2ujSq7nHoyMqGutrvJslpb4rAUFqhbk5EkyAese+f3sQByPcz/E3DXN1PDc+LhKxbVrPqI/u4wW1z33U1NkmocP0w+WVjzntiluzABQwwfHxrjgREJtQlkZD+PIEdp6iQQf4OZNhjFqalQ6pyCfOEgknjk0pKbT7oDoPRG8YRifB/DX4LjovzVN8y9tPvM/AfhzcFz0FdM0rTPkdwROZs1Om0DanePmJlVUfZSV08x4t/XqYUFR7QEyACmJ1kNIYtNKW7P6en4/L4/E4vcTeQcG+KOnyjo9i7xu3TvDUCOipK2XaBM68bS1cd2RiJqPqJu4kjmnN3iRupPZWTWdGVAjv5z2SEKnd+5QCnd1qdA1oArU7DQ467Mnk1zfwADPc2uLmlFpaaoGkDK70U16iOdUwi+BACW1ZL+JB1EQSEoujxwhA7hyRTmaysrUguvquJhr1/jAgnx6i2xr0scObNWMXnrDMHwAXgTwHIDDAL5mGMZhy2fCAP5PAJ8wTfMIgP9l2yvKEnbq1LSrsRBkBYiA//zPwHe+wzBdNr3cdc+9mHMSzpMU2HhcfX5lhWr/88/zOaamVPHP6qqK6wsevP8+4/YSlfBaLyKFOFNTlJriM5ic5OuXLhHvbt2iRJybU0MmNje5NvFyDw6S8Rw/rio8ZQ+dQp9Oe6SHTnt6VG7/6mpq2rBTvor+7PJZmfMo7bVbWpSETyuec6vUMgxujHgT9QosUcUTCb6n579Le+w/+zOGZhoa+LnHHlNNDeRH0m9nZ1U4Akjt7b3DXvVeJPzjAD4wTXMYAAzD+AGALwO4rn3mjwG8aJrmPACYpjm9o1VlCTtxatoxdbHhBwcZ6isqUum0kuqZjWofifD8xsf52sAAtb3BQd6rs1ONyxJT5U//VE07kpjzygpxTxBbUmWF6Xs1b6QQZ3aWuCQhMWk3/atfKb+VZIMODXF9n/xkugYhnW2BVC2rqYkmKEAicwv96fnzTz1FDWd5mUJUdxDazQSMRsmw9BZwTU3UYCSfYX6ee1xXp3rzpWkKbraj7iTSwTDSe4QvLFDFOH2aD251pJw7R2YwPc17iaNjcpKIFo2qBg076u2dDl4IvhGA3sF9HICVvDr47MZboNr/56Zp/tx6IcMwvgHgGwDQLDGrjxjsTAIZ0/297/HvUIiIIgMprQMs3EAcVCMjdNbm5zMBZWOD/ptgkF7qnp5UgpD0YPHnLCzwvfl55gKUlHBNyaRi+l7NGzFVZT6e5AwIEczMkLmJCVJcrMalBQLpDTqle621Y3BtLX0f1qpAHWQi1KFDdL6urJAOJFde8gcMwz4UKuZHbS2ZqvR+PHiQ9y4u5vWkh0FZGa8ZCDjQj5P02NoixxkfT3dK6IwiP58Haxj8jh2IthAKqXrqS5cUpwqHyWFnZ9WoZC+DLD2AF4K3Y23Wzpd+AGEAnwJwAMCbhmF0maaZon+YpvldAN8F2MQy69VuE9w813JWv/wlq+ISCe5vRweR+eGHicACdgMsMkEkQnu8upoagzii6uspBKS0063k1zAo8aUZx/o6NYWWltRkGy+lxKIJiLosBB2Ncn2JhNIoZTbirVvKiSgdZrq6VI9Afa3SjcaLL8HJ7zA7601r078vY630FnCyns1N0pD0rGhoyJJ+JOW1qUnlOr//vqoiEsSan1fhuY0NbtDbb6f2BxNtVTbhGQAAIABJREFUobSUr73zjmpLLY4jseMqKlTmUjZxVwfwQvDjAPSWHwcA3LX5zDumaW4AuGUYxk2QAVzc0epyAF481/PzdA61tytv+Pe/z7NaWFBeYsB+gEUm0Etba2uVHevmhLKCjByPRlUrrfV14oRdMxA3EE2gqopEIATd1kb8DYeJr+vrxPFolO/pDEI6zLS0OGsQOjg9405T2a3DXuxawAkTlPr+QEA5xj3TTzjM8NjIiCoyuHaNThe/nxv16qsq7LC4qFSnwsLUuV66trC2pqZ4bG2lenC9NP7PErwQ/EUAYcMw2gDcAfD7AKwe+JcAfA3A3xmGUQ2q+MO5XOh2wYvn+vx5+yaky8tkBkBqN2LrAItMoNvWQjTLyySkCxdURZwbbG1xysuNGyROgIRWV5c909c1gUSCgkqm7EgFYV8fzZnubkr9/Hz6GqQH3cwMiV5v9Wb3vAJO5udOw6pevi/P65V27DXCkCpOWF/n72PHeGOJF0aj9ITK8MmtLW6ilADqzhYpkAGIFNLvazubkAVkJHjTNJOGYXwbwDnQPv+eaZrXDMP4CwB9pmmevffes4ZhXAewCeB/N00zB+VGhJ0kHnmRIE5NSBcX6aA7f55aXEND6gAL6/pGR1VttphiepIJQCfUm2/ys0ePUlrfvasGi+rf00Fw5PRp/ugdeWSabTaErxNBeXl6//uTJ6m2i6SsreXrMkHpwAHi8+Bgeg+HbEKlOw2r5mo2n4CrRmia5ICGQU4t0lhUNWlxffMmv1xUROZw8yY1ASdni3QdaWtL7ZiyQ3vdDh74QRTZDG6wAy+DD773Pb6mq+7z8/zOH/2Rt/WJjeg0N0BnWoODyntsGKqQxG3Ig92wjZUVFf4VR6NXZ2I2e6QP6xCHnAz30IdsWPfFK5PeaSZpLjJR5RrvvJPa8su3EMXWYATFazF0Bu6Q8zU0qOmwALm2dDi5fp1SvrCQCCtNBnt6GOKQjXLqDT42lnnCSAbY04ModtqfwIsEOHOGNjuQneou02aiUZ6RaH12veJ123pxkWtYWiJuSMag3o/O+nx6+Ordd4ljwSDxSvw62Yx/zmaP7DIHJcHGKSEpm1Cp02e9EvJOa010ZioNU/r7gUebo6gf7cVWUSnm86qA2g3aM489Zh8vDIV4kaNH6VGdneVBHT+uYqpui66s5GJqa7Ocw+UdHniCt6rkdo0l3PbCi+dampBmUt110EtBa2tVAktRkcoaKylhKE6eQxj5+Ljybn/wgSr9FA3Dzmmlh6+Wl/n80pEm0/jnTIQje9TXlxo3t+6jnhUnsEumZormNDvLUJvV2Z2Le1iluvQiKC4GFt+LoK6pFCsoRVk5iBiPPcYQQGMjSxhNU8ULn36ahzg0RPvemsKYiWh3s/vOPXjgCV53yugzzvTGEpkYoBcJoDchFUSQSjk7piJnU1PDdVRWUmJPTnJtgQD/HhsjQ9Dz9Ovr6fSSqrf5eX5O2k45JcsILpSXq/HiU1PENacW2labVG8PZZrK31BdTeI6ccJZuOTaXnaDSITrGR5WZbY70WKs4CTVm5tVzUNyJoblA1VIrGpMpr6eHkx9QKEOEpu32qDdFg3bjgvvZvede/DAE7yOZNev046UOgTZ1+0wQGtlleRJWKushED0nIhQKL1sVJx8U1NqtLcUWVnz9PUORsXFZGQVFSQ+u0wyIBUXmpo4BVe61rqNf7Y2kxwe5vd+/WsKHYm3v/12+lrl+7K3XuP82wG7UtblZZV1CvD14WGaUY2NO6sctTLQ+XkKbimhjceB8qIgCrdWcLDL0uo6L49I6ZbY4bZJTp5Bv3/nPbwzwANP8Lq6+e67POhDh1Qdw3a690rp8uYmkX12loxUZpjrVVbSP21pKVWjsCsbXVzk9Rob+f1EggJBB/HNSH5FVxejBNPT3pJlREP8rd9iWFjqMZzGP1s7JcvgSdNM9TeI6qznGNgJl1z3ZhgaAn76U56vJCIVF9PsicdT69fn5vg8paUqK89Nw3MzZfR9kWzHsjLlRB0aAuqPheFL9AIrAMrvSeuJCX5ICgrsFpFpk5xUd4nXArumQj3wBA9w/yoqWPfs86X2csu2e280qkqXq6tVXnswSCSTKivJppMkE6tDzTpdVS8b1ZHPKU9f71Tj1qVFwKpOh0LMOa+sdB6mYR00IW2ghAAA9Wx6wZC+9t2wzwWkLXUsRia5scE0889/ns/y4x/zPZ+PTC0Wo8otXZzdTFy3vvizs6n7EouxDn96mnuxuUkVfiMQQrS6B9FIBF2JOZQ3B1UrYK92djaquzVHOZcq1D3YEwQP5K57r9iGUocu+dciYVpb+TmpYrMOeBCpZ1f0ceZM5ni0hM/s+rK7gZ2maJf0AqQiuz5oQoqt8vIUIcuzyUgzt5ZZuQZJeJKycWHk773HvSwuplbl96vkta0t5/biOtgJ0cVFMvuTJ1P3ZWuL+1hfT8ZTUKAYYeHREJbLezAgocdz59yHC+jgxHVkUKWd6p5rFcoCe4LgpRoqGlW5DNEofyoqnPux2UEspmLXMvUH4N8FBST0tTUevvRxN03ltJFzEa+59FCfnSUy6V5kN3NuO55mr7hgRXYZNBGNkogef5y+hvl5EltBATWazk4+eyKxK8IlDSThKRpVeQllZSra8PDDqmtvPE7ClHFSUpbu99vvpS5Epc7+178m0UtnntJS4sHEhHpeqb+3Y/IAsksNdFLdZ2YouUTyWDtxfJxbXOnVUJOTzCyLRnnQBw6QALx664HUXusTE7zuyAj3W5pTikoXi5EopBZcd6h59SLvMsO2BavGqA+aOHWKa/f5+PyLi8yHf/RRVaJr7fS6Wwk0MnW5rk71GRBCk+YZkh8PkCG9+iqlst63f34+vR+kPtRDmo9I2+ubN1W772SS/gDpj6c3ybQyeQDZhSrsVPeNDdqRjz7Kh5ydTe3EsZuTcLAH2lQLkywpoSQtLKQEWllRmWrCRK1tm+1Aeq23t6s5aeIhf+UVeqtXV6n2ffWrJN6aGjWf3edjQtU77zDGLl5kiYXbtY++36D3yBewaoxf/Sp/P/ccmUAwmL6PTvMA7IaYZvNZAZm6vLFBH0g0SuLMzyfxvf8+nWn6oFWZ6CMaQXc3idW659LLYnBQ9ZFYXFQdc6emeFajo5T8fj/PvayMTKC9PZXJf2g2ZtNxxe4gIhHVeMBujLVdT3avyO0BHngJL0zy2jX+PnBA9UWTFmJSl+0lXKmr2dKJVurN6+qIqLEYiV9sZLuGpoWFJHw9vOo2Tvp+glUITU7yeQ8cUO/roUUd9H3MJg9kOzkjesLT0BAl9h/+IRnsm2+SWI8e5ZnIoNWHHuJvPe/fLtvPLjuwo0M1s5FyYIDXLCzke5/5jFq3o4/Fq9pmpw3MzND7rIPXAYM5gAee4IVJiocZIKc3TeVYAbbnUX7oIdbAr6/TeSTx+EOHKHl0ZLUidEcHs7/EfzA6yrNqaFCOQLtCGq+wEzNOZ2q3b5MphsPURPQmqIbhbo7ejzJXSXjS8/n7+1WcPRpVXZ1lKo/d/D07O94uO3B8nExgdJQMX6YHiZT3+8noc2KG2TlxenrSJ3HaDRjcpVj8A6/S65N3JMFEuq5IX4BshoXoqmdbG89kclKpjAcPEnE3NlIltbVnWkUFMynn5ih9TJNIevs2kSoSUSmwMzOZ1VunNXpVj60guNbURI2xpIRaks+nmqDOz/PZnfrOuZkGVsjms3ag768kA1VVca1PPME1Xb9OIj93juG8995L7cVntz/WnnlDQ2R8R44Qjy5dUvUIkk+TzT5nBDkIGTXU3e0+58utr14O4IGX8LJffj8Po7qaXuZEwn4AQSbJaJXULS38bGGhkhKJBIlfR1Y7xltVRWIqKFDTZY8do30Yj1OC2BXSZLvGnaRU6yaRtQlqQwOZidMwCzf/lFM7dbvP6iDfsxaF5eWl9wwAVBffS5eUlJ+a4nXy8lSYUYhXpuzo6xP7fHSUhF5UxJ4CMzPU5jY2lHZXXZ26zzl3mGfKxNvNdEbsAYIH+KzPPKMy4WIxNVhxdlaNShKkcyu4sKqeTU30/H/wgcrqisXICHSm6oT8uk0pJdJS2AOkN0z04oR1U4+jUSL29XstRDs7+WyyD1aktDOJ9Caobk1VBPcuXVJFNZ2dqsGnvs8+HxOBksnMGaWbm9wjGeNdXMw1miaZkLUQTRiJhOjKyshkh4fJAAoL+XoioWYuWvd4eZkamJxVZyfwT/+kRlSJ9njkiNLstuUw98IhMvkAdjG0sycIXkDfB6cBElKY4hQqs0rqigo6hkpLVYruiRPpQz6cGG8kki6Z/NquCnGJeutFejuZcXl5qV2WADK0X/6Spdb19elIKYxKTKLtNEFNJlOLas6e5TNJz/dgkIztjTfcC1vk2W/d4rVkJp1oQKurKgqjN65cW+N5VFSQ0RUU0M43TdUxeniYzFuc2XZ7PDGRuq9lZcy4Ky5WrbokNKev1+2sdPqujQ+h4+ZZlBbei69vbPADOSxv3SnsKYLXN/fOvV4E1sKU69epIuoFF3rZqFP227/+196z3XSwdrO5dInIn59v3zDx4sXMzi0nbcLn4zUrK9Xzra8Tr+bmeB8rUsqafT41hz2bJqhOGWu9vapz7fq6mi3nZnaI5qJrG7oG5KRtSLcfgIxmY4OflfPa2OB1ZEoPYL/HIs0XF2nLV1Xx77Y2NR1Kz3/xMp1HhE6tP4rAa2dxe9OP5uPVCGyskgu1t+e0vHWn8MA77QSsjqxolIcmXnqATHVyUsVdgfRQWTZhVLv7y1xxu5HUySQl05NPqsozKaSRe3h1bvl8VKPfeks1TDFNhdwCGxtKNRawzisIhYBnnwW+9S1K6mTS+3PbDbdIJpnEEgioOhLDSHd0WsHaLRdI14DsQPdjHTigRnSVlfH8TZN+HSk3dtrj5mY+8/Q019rQwDyEhgb+bx3ZnumsdGZYNB5BoX8TeVVBTE5rU2PE1npAYM9IeKuk0WeG6dNOSkuVo0ZCZYcOkfCA7Tlh9Oo6O03NS8cWCd9lStTSpcYnPpHa0z0YpOYgnWMB/r+2ptJAAX7HMOwrOJ0EzdBQel3AwYP25kV+vppfLy2zTTPd0WkFa7fc1VVvLaN1c0rU/ViMvpdgUOVTJJPK7+K0x6EQcUEfQNrUlN7pVl+v01npGoAvHkMyWI2i5Criy/cOp6iI6mVnp/Om3GfYMwRv52yT2enS98/nA/7gD4Cf/Yx2Yk0NHT0bG2qE0htv2BMuYO89rq5Ora5b9aipuTl83JywbnZjOMyw38gInxmgPbu1pQZLrKxQy5E8BS/OJqlaq6zkvkqb7hdeSEX6jQ2uY3yczq9YjK+Jl76w0D16pBNuti2jdWZ16lRqN5zZWVWUJNdw22M7JjY5SQl/7lw6g/Rync1AEEaSOdslZQDMIlXql6OQWi5gzxC8nbPt4EH7OvK5OSJgMkmEkuSKf/gHfsdKuJcuqRx6q/f47bdVXbbM9wOIZNb8CR0k1/7WLSUJq6oUk8hk5+qgt8rKy1OaYmkpzYeDB0m0b72lPtPW5j2s59Sm+/x5NvEUT72ERZ97jtcqLOT/c3MkmOPHMxcyCRFtt2W0lPGKLR4IUIA6te2yA7tMRGlVZzcJ2gn06yyVh7F0MYqFWDu6CmaxNDyFsnILF3oAYM8QvJOzza6OXO8mLDA6qurerYS7sEDb1s57vLlJKaar0V40tdFRNRJKn8+WabaAk/SRVlltbYw+TEyoWnhJohFP+uuv8zW5t+yZU9abU5tu6QkQCtEh99RTqQxXKvDKy+lFlyjBK6841+lnA1ZTan6eEvixx1JHWG23RbdI7ulpXlOaf8gziiAoLXUe1f4hM7wWQmNbD44URmCs5uPXvk50Ph9G5cEHh9iBPeS08+JsEzX6xg01CllAurmIswhQ3W6Wlynte3uprkp9tswrlwKnvj7G6+/cyaypxeNKGguDsTrX7MAu0UpvlSWhqpERrrmqir9HRvi6YVBFzstLHYnl5hSTqjUdrBN27DINu7u5ppMn+Vm7tW0nSxAgsf/N3/DZl5Z4f+nWOze387oSPQGusTG9M1FJCSM+paVqVLuepSjPpDPDY58KwfdED9Y//TkkT/ZgcPbBInZgD0l4wF1Nc2r6cPIkVW+fj+Go6XtzbaXWfW2NhBWP8zCXl0nUBw5QSgmCHTxI6Swe3m9+012qGAaRfmuLhCa5+vpwEbdn1O3GAwdSEXJsjK+vrysiky49FRX2/g03p5iXNt16uamew760lMoIrGsTadnXl9ptJ1OZ7dmzqi/BxgaZ7MqKmnsnoCckbTcjzinvQa5vl6Wo91K8D70ncwZ7iuCdYGiIwySmp1UnYWn60N/PlstNTZTSUma7sECEyssjQt26pRxfGxuUUocO8VA/8xkicDxOm7+qSlXs2UE0SiSoq6NGEYuRMLq701VnO7BjbDpCxuNkROKZDwT4LHqXHif/hh14adMdDrMW/fbt1Fp006TJIYMce3vVLESBjQ2+fuaMNyei+D8CAd5vc5MMO5kkE9PHcukRie22tHbyxnd2pmcpCnO5coXMPBze9XqXnMKeJ3jxMM/PE8mWl4Gf/5x90bq7ScjJJKV3ZSWRaXaWhyn10I2NPMTRUSLZ1hZ/pBGlOOwEnIYvCIgKLmqtNNOYnHTubuwGVoT0+3k9Kc2VWejl5akRi0x98nTQ23TbQSjE/RsbU6mura187cc/JlHX1JARzM9zLWImvPwy9/HWLcXwRkZ4ndOn06VxLKY0sESCz2ya9DUAqREJKazaSUtrJ288kJqluLJCc/GRR2hSbm2pPnle6ggeBNjzBP+Tn/Bw43HVJTYQoNc1FOLrdXWK+546pdT2Q4f4nbU1FcMvKCCB6+OTsuXesRjXIVJvYUGVol68SK3CNN2dWlYVtaODCH35Mte/tcXrlZcTIYX4dqn3IQA+h9/P1lMyRvrqVa7jwAH+FsIvK6MNPDvL3y0tJJYPPuBehkLcB7tuRZJZJ6OxFxfJRIJBVihKQxJ5zosXeR9rS2unwRx24GQu6lmKS0t8dknDllRcGW29i70ncwZ7muCjUUq2Awf4c/s2pUhLC6WBlETa9RycmGDyhfSVl0mx0jvv+ef52Ww6Gtl1iu3qIqH09VEy+f2phSF2CG8Xw+/rI9MQT/zkJDvC5OXxc4cPp+f/5xoWF5UjEuBzFRWREA4fVnn66+tc0+uv8/fBg8rhePMmNaqqKp6NXchQJjO3tqousoEAHWPFxemEGQyS8dTVqdfsmpFsx86XLMXuboZ18/IoFKyjtj6KVmbbgT3jpRfQU1xfekn1qCspIYIUF/NQpWW0xOB1WFmhnSp95WXaiPgAwmEVcvKaiqun/nZ1qU64MjwSIAMYH1cx7/Fxe0+zXZcjqfeW10pKiHihEDPyCgt3oZbbAmLuJBJE9Pl5NTJLoh/STbi9nc94/DhVYGmOKdV+AwPKQTg8TP+A7vnu6eFZVleTyX3xiyo12QrStkx8ClL5Vl2tPr/THgPSTOP4ceUP+sd/BP7+7xWu7AXYUxLeKvmuXk2NF5eV8fXNTSaM6NViQKqEPnOGB7W4SASUOHt3t0r1tBagyBrspIRTp9j+fv6vV3tZpwxbPbpOvQ91sPOGLy7mZiqLE0hR0twc1y7aU1mZqjQ0TVWYU1PD18rKuKfvvcezyc/ntQYG1PvW0WFOE5vsNKtQiBrZ2bNU46VlnB46zUWPgXAY+OEPWQY9M8N1l5QQJ374Qz6TRGVyvfe5Ak8EbxjG5wH8NTgf/m9N0/xLh8/9LoB/AnDKNM2+nK3yHsihSVx0cpIb3NrK31NTlEJf/rK3VtEAkWRyknXtlZV0JgUCRNzLl1MJG3BOl3XrFGut9tKbOwDpPgGn/HUdrJ76hQU6MDc2aKo4jcjaDuhNK8SLb5qqgOkzn6FGJQ5RIVifj2aHYZAZPfQQn8nn4++pKaX+Sz687syToRFeIw1f/7q3STMC2wmdSYltcTH3v7BQJeVsbPDMt9VodhdbU+uQkeANw/ABeBHAMwDGAVw0DOOsaZrXLZ8LAPifAfTmfJX3QIpiJC5aX8+Njcep8j3+uJrJroPVvhJN4Z13eJ3jx3lwkmE3MKDsf+v8ACcp4RaasSuhBdSUYavkstNKJI4vgyKsnvqxMdqXmUZkZYtDulbV2kqk/uUvKZGlScjkJBnSiROpeNrdzTVGozSXZIhqZydfl2Qeefb+fpoE4swbHLRfs1Ohj5sdbRg0sfR0azFH7J7ZSYuTUWJSKbi2xr2WbreZJuJk3ORdaE2tgxcb/nEAH5imOWya5jqAHwD4ss3n/m8AfwVg1ea9nIA0kCgupmo4NUVHTW0tnUGRCKWC2x7ptpxMDY3HKUkSCRL+zZv8bEdHakaXxPF1kFJUt1Zk1hLaEydY8eVUpmrnN3jmGXqo5bX2dhKc38/7zcyoqSwyQy4YJMHvJCPN6k9YX2fDkNZW/u7oIONqarJ/jqef5vM+8gi/8/jjZHpdXWS04bAyyyQrUZx5dmuWMOzyMu+5vMz/pa+905nPz6shFNIFd3IyPVvSzdaXISZ+P/cBUIlZElGw4oXronRn1Oamsstu3aJUe+mlnDsHvKj0jQC0JE2MA0jhW4ZhnADQZJrmjw3D+LdOFzIM4xsAvgEAzc3NWS82HGZMt66OhwWQ4x45wv06doyE6xZP1hFY+ptXV/N3QQElkc+nbG4BIfRME4IytSrzCuJ/sJbXWjUVuV9BAaXv9euMVhw86DI9JQuwqsKShLK4qF5zu7Y8t955R2LoutayuEhmtqqNZra7rluhj9O5RyLUBIqKqF3NznJfRCuwftZNi9vYUANRJOHJ5+O19aQq19CtnTMqHqcEGB0l96itJTLmWNJ7IXjD5jXzwzcNIw/A/wvgDzNdyDTN7wL4LgB0d3ebGT6eBoI8w8Pci5oa5ZwpKfGG1Naxy6JGbm2pgZDHjimbWcYUzcwQIScnVYzd6kjKZWhGxwmxEV9+WTU+1evwRfqMjJDw8/OZCdbSkppLsJ3ML6upIk0l9RRhL9e2Y4jScDISUclOXV2K0VqvG40ynz4Q4DXq66lK645bOxBTcGRE+TPEdLNOrHGz9U+d4ue7unjfwUES/Je+RBrVmZlr4o1Tc4e33uLhJZNE6gMHUnN4cwBeCH4cgJ4QegDAXe3/AIAuAK8bTEerB3DWMIznc+G4k1i7eHQPHOABHTvGQxsZ4SF1dZEYxTPsBDoCy7jmwUE1t0zPsJJWSDKSua2NB7m6uvvz16wOSskgGx6mNqMzfZFgNTXKey9OPbeZ817A6k+oquKet7V5RG4N3KIdX/wiz8GJaIQBVlTw+ZNJlTwl3WucIBgkw9QTc+w61MpnvWhx+flkAGKy6dpWRrywa+7wzjtsji/FHzLcQPp55QgM03QXtIZh+AEMAvgsgDsALgL4V6ZpXnP4/OsA/m0mYu/u7jb7+tz5QTSamr8NqL3Ky6PzqKaGhy6DIV94wV2ll2tGo9zL/Hxla1or78SEqqlR/duWl1Oz8HYLzp1T7aXn5/nc4h/41KdU2yz9s3r679gY1VwJUZ05o1KLs3UEO9Wkb9ehbJ3iI8QtXnm764pdPT/PBieBgOr2U1EBfOELaoqQ9bvRKPDii2SYxcWKYR85wu/o6c5Oa/OqVXtytutTNwRef50hjaoqHlRdHaX85iadIFkgnGEYl0zT7LZ7L6OEN00zaRjGtwGcA8Ny3zNN85phGH8BoM80zbOeV5IlRCLcQL1po/ROKygAfu/3yFFlwktbW2Ybns/k/j9g3woJyH0VlBOCiKSZnKQ5UVSkpp5KeyinLrcLC5SWDz+swkSSqVdfn70j2M5U2c70WwEnO1lCenYgjL60lA04Ll1S+/KFL9DE053cr75KvJG4uLQ0X1hQ9rveodb6rNtJk/XsbLcLwyQSwO/8jvJeFhXxtZmZnHbM8RSHN03zpwB+anntzxw++6mdL4sgLZRMk+qbxD/FS3/sWKoqZ1fUYiWoxUV+59Ah9Rk9yUaH3a6CckMQwQndSbu+TkTd2Eh1mlnxR8/s0zP1AEWo20k8yRVsJyaun4WkUou2JQk68kzJJLXCaFQxvM1NEp2d/0XHES91Dk7gObnHjqtIWEYcElK4kOPQ3AOdaSeZZJEIJXhZGaX53ByR2YkYrYki4TAPenIS+NGPqAk0NCg13QnZssmj3w5kQpCeHtqeo6NUX9vbqeVZm1Za8Ufv4y5OxytX+AwdHd664HgBN/XV7b3tMFK3AZl376aeiV0WotOUHSDVOZqpzsENnDIkrQlcoRDS1SZre5/WVh52t61mvm14oAlearClK+ramqpsk1JYIJUYGxvVAS4t8RDF0TUyolobV1XRQy8VT3bIthP1Dshsz2WSdKEQ8NnPUqsT06WkRDno7NYKqMy+hQU1G10IQJ65omJn2oqbdgK4q7ZOxCthLbdhLZFI6oDM+nruzaVLpI2KivQsRLmPXXsxWWdpKfdGQrM/+xnzDPQ+hJnAMFRCEMCITyJBc9xVxY9GqZaFw/Yz43MIDzTBh0JKIkkTx4cfZhJHMkkvqd0kGDlA6WG3ukqEaGqiKv/uuyr+e+cOG2ZIiMhuDdtReb3Yc05dZKyNJ6JRaiU6Y3Mz64SgRkZUD3sJoxkGNYb29p1pK27aifzvpLnoxHvrFouIhHjdfAv6WehDSDo66KMYHCTRW7MQAWfmNjrKfVhaYiRobU313RemYc1/sINolGd47RrXWVDAnPuSEiYYuWbg6ZspNurysjeHVJbwQBM8wBzrujpOEBVYXqaktiNGXWpK3rr0rguHVVaUafJQpGNKrsGLPSdloDI6SrrISGWcILwMpQBYhtrR4a45yL7os9HlnqOjZHKdnTsLKVq1k4UFXjsS4Z7W1bmbTfrZSUHO7dvqUSfTAAAgAElEQVTp3X293Luigip4f7/qWDw3x2Kd6mr+6BNlBKJRMhvR8ObmSLQS+s3L49nopocTRCKqjmFhQfkXamr4v2gvtmbUfeyR9cATfLZ2tG4fSmLN6ir3MxbjgXZ0EAkSCRJZfX3unVdezlC6yMzPU90OBJSEksw661CKyUlKs4YGdzVRyjmt0R/JZd/ps+r7LKaDOJsNg0xFxki5mU3b6e7rVFwk3XN6eylVM2nHemei1VVK9rw8NetOrru0ZL8O3WS7cYNrbmwkbgF8pvn51B58tprGfeyR9cATfLZ2tBz44qI67Pl5akbJJJEqFFI10wcP7g4ztRKEZOtJkoas366ltkQb7LQE8dpLlMHN274bTkdB8tFRpYrPznL909PUyDY3gTffpKMwPx/4xS+YQ//7v59+Pb27L6Di5G7dfd2eKxvtWO9MdP069zwvj6G85WUSbns7X7PbBz2f4+5d1dY8meT319dVCy7XJKXd9g5r8MATPOBc7Wan0ordLw7PlhZVqtnRQaeKpOVK15Ll5dwzU53x6Nl6JSVsmiBlq9L6yo65e6mLB5wZ1k6djlbQ/RJtbarZyNwcGVBdHdXYa9e4znic95yepgT8T/+JSUOSGgzQ3JD2ZEVFavyUW3dft+fKRjsWpgzwnsePk5GVlKgI2fo6C52s0NdHE6SykvshPfXOn6daX1DAsy8tVSaG4/7n+qBcYE8QvA5enGGzsyRynYiEy3/lK6mZVNa001yVJcsZvvSS6vMWDNIm1MtW5+dVQoydtMpUFw+4a3/ZMMtMYNU4GhpImB98QEkoLayk596BAyQaGX1lmumpwU1Nqj+eJMXYRSEyPZdANtqxjBGT8taaGrUvGxv0tp88aR8ZGxjg50QzkciRVNFJVWFLS2pWZNYPlGPYcwTvxRnmxuWdmCnA4hQZqRwO76yOHEjP1pMQmdi2bvFhCV9Z04ALCvg9qYvPRvvbadm1075Kvr5M9Y3HKakfeojPVFen+udLkoyc13aiEG7gVTvWI2Hj4/zcwgIJVFKYKyrSU67dwDSp6Xzta6mvPUj96fccwXuZ2T04yJ/CQiJSZ2eq08hJ6o2MKOS8eJHSJpEgp8+m5bMOusSZnOT1YjHVxrm83N1BZU37LS0lUl25ktoAwsvadtrmyc0vceIENajmZmUiSUeYxUUygLw85pNYcw1yqc16vZ6+F8eOUdMaHiZjPX6cZ+Q2e+DwYUZODEOZIpubfH4dsva97XLnmz1H8MEgCUcSUSSMU1PDvXrlldR01Js3iZSdnc6xdr0yTWz6u3f5WmfnzsqSdVteWnJJwU5/P1VhJ/VVquD0NOCJCU7APXmSiLqyQuZWWZl5bTuN/siz3LlDhri6+v+39+2xcV1nfr9DDl/ie/iWSEqkPLRFSV7LomLZcZxkI9tBgrU33XTjJlnsommDJN5igf2rRYBFkP6Rdou2aFEH26ANkhibxyZ/bIQgWa3dtRNvbCkiLev9oJ4kJVKk+BqSIikOefrHj5/PmTvn3rlDDukRNB8giDO8vPfcc853vvfvI0O3thp0Ggk1XrhAyTk9zXmV7rIyD/Y7Z1ubDXM/b5n0yZMGU2BhgQet4BG47rV/vwHWmJoyiD+VlWvTvgBsCvLNfYdaG4kAP/8552FsjAwg8db+fi7A1q2shKqspFSZnw9mCMnZHx1lgk5fn2lusLjIzblWxBjZfKOjPKykzFmq2yQ05DcuL8LOnTsGHCXT/mq2k0pCaW++aaC5w7xLVxfnfmGByS/bt/Pdlpc5hmiUB+tTT/Fdq6poxpSU8N/QENObBwY2HmXXRa7+g9XV1OzEm15cTCZtbvZHrZH33LePc7JvH/CZzySjEvkhHPuSC654rRvPh+4rCT8xQekmaC7SgOJDHzJllUtLZr4qKriAAl/sRwUFZPJolAwxOcmNsHVrdkJ3ti0fjyc3p5ifp7R0aW8uB9SdOybOKxR2bH6Rg8bG8ILkzh0eWGL6AHwHu322MMPKCpnod7/jM2dneTiUlPCa9fpIMqWg/oPV1XwfSc8F0kdv/DSJNWsrm5CAc19JeOk5tm0b1dyeHqrcwvySL37uHLEELl/mXBUVBS+cHAbl5Ya5Z2f5d9nIOwcM8wroRnc3P0ej/jjpLpy8wsJUhvcbmw2bJo4sQQy6fJk+C0ELCitIBNfN1YXXOwYbg1BaR0lPeT9M/o0kW4DW1HD/VFUZ08rGCLQxCTeNZJOI+vXOOzyRXIkAa6T7iuHTbbb6eqr50iBhdpaMX1wcvHBa85QvLjYho498hFLMRoxZz+J7mddVwurd/CJBbBXxhRfIpC6wTJv8wBhFe9m716D1njlDzSgQdHGVZJ4lcUk0KFf77FjMtI6+d4/PkH+CSZgW7DGL5Nfy+pFH2F3m2WfXoY5ng2Ix2qi9vVwwCeZLrnUWKOdVehvi6vp1LkAkwk0nUkM2W38/8PTT3GTXrvHvd++mUyZo4aS6zHauDA+H774ahoJKWIVc2ptLbRTkGleZp1337/LI//rX9EkoZfrWA7zfvn3p30PCaJ2dPGhv3+b8P/OM27nc0sL1WFqiT6WqigJLKh2DNKe1OKzXU5Yb5OzLlvM88D7pcq2z4NnMaYa3Ia6KiihN3nqLknfPHm60wkKTJy2pki0tzKsGwsVBXbHbTLuvhiF7QxUUcA3D4KQH3Qfwd+7aBUfybsPDnJuzqwBl0hpKiovCPltw3Xbt4uF76ZLbubx1K++/ZQvf9cIF471+4w2zfl5ai8M63d+sNYM1W85zFzDpa6+Zxh3RKIJzrbNAOa3SC8RVcTE9yRUVXBxJY3z0UXYbkRxp2wstlE6CHDtGp1kkQlNhM9Q5P5z04eG1mQ0u565ELWySnnrimygupnq/spLZ+wrTP/88/79zx9+5XFVFRr94kY7Cmho+T3wRdh+/dO+Uzt5P9zcuEynMe4cdi9dn4vdOAkxaWEiH6ZUr1vWZbuIMKaclvHjdJycpiUpKuEkLCynlpRBGKNNOr95TOxOwQtf9wqp8/f3UROrrTR18VVW4WLqLXM7dWIytprwxYempV15Oc+fuXR40WnOjukAq/UAr5Z1ff52O1Pb2ZDSd69d5OM/M8JC5e5cbfedOHha2N9yrsco7SYLPzAwP/PLy8GWzMg6/stz1zK/c11VM5FfXL/cRFGIp05asy/5+4IkNLqTJaQlfU8ONMjVFRgdo2ogN73X2ZHKCr0WC+J3gmXYmFeeReOyffJJaXBoAYV9yCYWiIvdc7NyZ/P3ioskWq6uj0/Nv/5b/uz7Lu4lUWlwks8/M0PknDTLv3jV+hJISPkNAOG08PsDtuJMEqzNnuOaCZDM0lDqvrti6UDaEo5/QVcrMgVTFXb2a7D+x95PcZ2bGAJNIs5D352CtakhIymmGF0mSSJj0zHic0tBuBbwWciW1BHmMg5jae3hIU8RXX3Uzfra1Nr82Vz093CsHDvC648eTw3PPP8+5bG42Yx8fp6YxPu7+LO/561+bn2tr6SS9cIF2+fAwn19ZafIGurt52NTWUmK/+Wby4eB9d3HC2qmrdvaba128bbqzFVrzm197PgRdqazMNMXw7ie5TyRiohzz86al+ftz4LWZsmhb5jTDR6PMXPr4x3kqzswwjLV3rzsMlImkzZTpgjQC+/CQEKr0rQsbXw8KrfnZhPY8uYQCQKfQt79NB1Ekkjoe78EnraSkHt37GTDOvy1b+L43blCdb2gw+HRdXfzuzh0y7OwstQLpwTY2xg5Lcjh4310q6aTTjV/2W1BsPaxwTDfPfvO7smLmzkZXkrny7ie5T2cnoxvLyzSrpL32+3MQduHXQDltwwOcpM9+li2J09nIkphz7Vpynn0YcIh0QIp+dpw86/RpbviZGRPqkqaIMjYZQ5gCj0w9w0EFQY2NPKTOnuVz5KCKxegMlbHbDCb16H6tpVpa+L/AqJeV8b6dnaY/gPgRpqaMHV1ayjEsLpp0Zr9oSFtbKmKPN/vNtS5SbhuGws6zy/b3Q1eSfHqX6R2NMubf02P2szijo1FrQMvLnMTTpzmJL7yQFXy7nGd4oTDOlkzgkmymCwOk6KoUu3GD63PwoOkMdPYsgTYLC4ObIrrex3b83byZDNSYaWWbtyBIojyC2fbP/8yahNlZY3MePcprx8d5wEpe+enTtNO1Nvhw4vwbGzPorN405GiU+/TwYc7vtm1U6QsK6LeoqjLXuSiM/8oFtaUUn+VN3XU5VtdTQWiPr6qKh11/PxlY2pb5vZvvfhapdfWq6S82NcVJ/NM/Xbd6f18wfFgP+MiIAZgoL+dcSTtoF9mT3tTkv+gTE9xMx45x4927x0WVuP/oKMs+pWpqZCTZC22rdn7v4tdQVA4vILO0apF8ompKeuutW1Qnb9+mSlpaSga+eZPv1d1NZh8Z4d/dukXpNTXFIqXGRtZ7iz0uCUp+CEI7d3KfStuu2trktl1hctWDNCGb6QYGyOxa05yw19HGB7Ql+eyswa8TCjvPUkxk96pftyCemqJktxvh1dRwwbKQfJPzDB+mi6pcNzxMiVZWxs17/rxJxAmioAYCdjOLp57is+/cYVZaUxMTSySXf88envT/8A9uxNQg9dEraaSh6PnzpgGHF8I6iETyiaoJkBEmJvjsRILXSGpybS3fZXGRm3jbNrY6Kyri73bsIBNcvgz85CfEy4/F0iMIAVyjoOuCDsF0B719KNy86Q4P+uEDAtwza8WPFOyFhx5KX6ocOmxbU8PTvqnJfLew4A5LrYFy2mkHuJMVpIuq7c/o7TXlrLdvk1m2bKFKavftdpHXgTc9zUqqkpLkZhZK8V5PPEHJ2dyc7KiZnjYOK4ldy+doNPVdTp2iRtLXl+o8a2vjs999NzmtemCAh046f47tEd69m3Nz+7aBdBbhARgkGpsE2FE8z4LhL/axqMtAuChSkGPR5Wi1w37pHLBy70OHqFbb6co2PqArKmPXSkxNMZLxm99wrv3mVg7uV1/l+iUS4RJyFheN0Pr2t1OxG95fuMJCU+IpttJ6w1KrlPMMLwtlO4fKypKhkmRCm5vJiLW13FCNjVzwdGGZoMIWb7hFupnMzJApBcFG+oUDlP579zK6sH8/GR/g3586Bfz0pwxhFRbS5Dh2zIBZClVXk8nr66mtlJRwPOPjPHz8mMDOHpS2VIkEx/Tyy5TM0vp6Zoa/Lyzke8/OUpIDpo+f0O3bpqbdu7ldUSSXo9l1nS1543H6U86eBb773czr/oOiH35RGTnAFxboGwPoXygpcR8wNvNKJMbOP3CFdkNl2AmJ4yOR4KTbPcayULqX8wwfJlmhv58qcEUF1auKCs7XyEi4sIxX+tiFLd5wi9izkYhx1Mjh4+3pduYMkVSOHuXiDg6SWaNRrt+VK3y3+nrTCWd4mBrdG2/wADl4kBtwzx7es6bGX6J4w5KlpaZDj51PPjfHUlBxUAK8traWufHCKE8/zXedn+dhoDXnQGxev7yFTMKjcqDLfN27R2YYHeX82Ek06SrrgnJW0oVCh4aMMAk6YOwDqqrKFCBJ7N1lDoQRWkkkjo+PfMQgemYpHh/KhldKfRLA/wDbRf8frfV/8vz+LwH8GwAJAGMA/rXW+sa6RwfjbJFkBQGN2LkzWV2LxUzKYmcnrxkdDd+Lz3bgSfUckBpuiUTILJKM0tBA2z4aNZvc7ulWUkLn2OHDXLtLl/i95NAPDJje5ja8thwC/f08QIJ6pomDqbfXqJhSkPN+yqYjJBiL8XCU+vqKCqYxt7UZG3x5mYy6smK0zNlZvp9Ai3kpE8+3HOg2M8zPc64KCvi9y/kJ+NvFLr+WnwMQMIdRYyPXRPrvSRTBJrs1lVLUSurq+P/wMO/f2sprXa2/5+dNcVZra4CDMNu4X6uUluGVUoUAXgHwLIAhAMeVUoe11uesy04A6NFa31VKfRXAXwP4XDYGKO8diXBh6utNssLICBnvwgUyVns7mW29nXb9wi2SJvrss+77unq6LSxw87z7rvl5aIgbprycG7yoiMzmhdeeng7fM02kqtQYLCxw4+7ezU3mmlPbc+1FjJX3O3SI715SQpV3504yoyTcfOELqfOQCXCLjMEb3nv8cd5/bMzdxGEtFWwuHpJ7NDSQ2ZeXua8GBqgtdnaaa72tqRYWyPRiGskh6g3tCvrwwIARAhLG9eL7JdEGAFqGUek/BOCy1vqq1voegB8DeNG+QGv9htZaLKSjAFrXNSoPCWTS175GWzSRMKmWEu+Mx8kYra30mEoDirU+T+y63/6WquWePbR/w2wo6XIr2WHV1caJt2sXGSYWo1dcwlOxmBugQdoWj4+T2XbscKOyiFlj17lLo4i1ZA9636m7G3jxRY5d0psff9z4J2zKJItR7h+NUiOTOWtr4/tGo25nYLbg32TO29r4nHOrYmxpKRV7Qhhaa2PmlZdTEzlwgGvV0uL2cdTWmgaeWnMfVFQEYBpmWqARksKo9NsADFqfhwAE6RpfAvAr1y+UUl8G8GUAaPfi+YYg+4Q+dsxMOECpd+kSpdrBg9lp3LG8zANmaYkLc/RoajjQNUZXT7f6eoPEs3s37zc2lnw/L0CDeP0Bc8ADRi0tKKBqePw4tZzt2ylFgOQ69/p6d/OJTCSxjTUg5FemnWnBl1/YLgiTwB67JELF4zQ9MhGENvRYZSWfL5+92BN2ayrBJaysJOOurHCfnDljsjxbW6mtTEzwICku5torxb0lf+sc63oyggIoDMO7eqs667qUUl8E0APgo67fa62/A+A7ANDT05NRbZhXuxkYSE6YkAUaH8+O6eP1rErS0+nT/NzaShPCtbn8ADVeeIEMOD/Pg8SbdGPH/MvKGK4DjJQXFVGSgWwGKSnhgffww5wjMWt27XKDU3R1pabVBmH3pUOL8a5PVxffNSxiUJgkG9d4EolUf0km4BT2Wq2scE+J6VVdbQ61iQn3fEmX2Hic61Vba0yqvj5qKceO8ZqCAuODkgabJSU+A9sgQMswDD8EwI5ktwK45b1IKXUIwNcBfFRrvbiuUXnIZa+JV9WWONlsuOmqXZ6ZYeJJdzcX2g91VTZvX59p87xrFzeDN3HGfrcdOyiZ33uPm6uoiAzs6i3uFQDSI314mAefSNXCwmRNSMJfP/oR3+nyZf7NzZs0hewkIZuBBdVGmnTeuWMOMdf6CE59EDpNWIebi4L8JZkgQtkHzcoK/wmzA3wXCZ02Nhrb+/RprqXMV2+v+/43b7I3XVeXOZiWlxmurKw0h7esrczHIwU1qN6AjrJhbPjjAGJKqQ6lVDGAlwActi9QSu0D8L8BvKC1Hl3XiBzkstfEbk1XcbZWcoUDBwf5fU2NcboF2Y0S//7wh3mPIBQUeTdJFopEyLjFxSbOa4elJMT3zjsmk86298XmFXgpm65fZ7y7qsoAWV65wvv5JcNcusQN399vzARBq+ntzcyezoZ5GuQvCQOMaecJiB39J3/iRq7Vmu/T0sL8iqoqU/gjh5oNhCrVffv3J6dH79nDsOPFi9xbEu9//XUm4djzcXwyhvhwiJLKDCmthNdaJ5RSfw7gCBiW+67W+qxS6psAerXWhwH8FwAVAH6qWKUxoLV+YV0js8il3UiWm6snmx/Z6CSCMtPWFqyWSzjw7l3aydu20R6T0IuflhXWBPO+mxwqo6NceEl+GRykuike+cHBZG+xQC0fPJh8f5cqfvEimVfu3d1N7WJ+3oQXXWM/edLdpPPECR5qNgVpn665iceZb19VxZ8rK/1NJiE/f0kQbHd/f7Lp5PWou8yK48fNoSkhUlH17eIqqckXn8KJEyYc19LCv6uooB1fVZVsDgGeFuDNUVxaeAI9JSFtnJAUKg6vtf4lgF96vvsr6+dD6xpFGvKzHyVLKoi8i9zSwgQmKaopLeU1fmp5JMIkmHicGzASMWguYie7NldYE8z7bhJr7+gw4bSSEh4AjY2mq2wsRoks3uKFBX7/1FPJ93f5EyS5xY/8xj48TLXf+z2QWT669/7T09QwRJ2VtSkrMy2ZtU51XE5NUdM6f55z4K1dsMk2O+x0aRn/jRsm0SlMQxDv+/k1+ZCQ7OOP83AZG+P3drq3bwvw+ezH4nM+0w4IDxhh08QEc85feYUn7ciI6YKiNTeRMKCf+inhwI9/nAvX0mIcO3V13CB+wBU3bxLVxQv75EJ2sd9NYu27dhmgydHR5PCVeIttIErxCofJYX/uOW4ywZWX9ODubv6NX1hNauC934tPI+z6eO8/OEgGWV7mmsja3LhhcO1F1bXV30iEzJVImCIgu3bBJlursNOlz5/PDmCJzPPoKOe2qorqf1cXmV0gz6NRU1UoVFSU2gY8m/4om3K+Wg5I9eAqxcX2a9Fkgz9IS6STJymdJGNMcO3FNra7z3qdSSsrBjnYGwLyagby7CAHT9C7dXaa8N2WLTxcGhvdtfmyaaSL68qKyVl3PUMoFiOT2I0Q7bwFSRSZmDBtqqNRUwMPJIfb5N6CLSDmkmgi6aIYIvXKy42/pLSUpkdXFzUS8Q3Y6u+ZMzwcamt58D35JMdz506yc3RigiHVggKTDiua0cWLdIwC6wMskesEd39mxqTbNjfz/Z5/3uwPG1xUfABrbkKZAd0XDA+YSfeGo1wZVi7wh5oaYx+LQ0fSZb3Zat4Qlqjx5eXGhpNwjEuSLC9zYywsmIq1IGQXF1pNmBrwtfaIE80lKInLC6gpWlHQxpcmFU1N/mtjv6/cJxrl2GXOysqSuwvZqcSi/k5P8yCVg6CsjGPxmk2yphIWu3fPgGhK70FJpMkUsMRLQb4VO5tOKuYAanKHVg3isCHJ9dB9w/BCYZxhYiMqRQfb8jK/HxszYa7JSUrElhZzmvrdWxgXSH8CDw5Snd+yxdTK373Lkz/sAqbbXPL7v/97MoA3LhwmJBX0jP7+1DbV9n2D/i5srogUtPT3kwH7+w1e3cKCWRtvKnFREcdy5gx/li42fj4VGZMdFqurowROJPizKxS3FnU6nW/FFigf/rDZRzIfG5A6n0L3HcOHwSsXiON4nJNaUWHKQBMJqvZakwkbGtJnnglEVpgTOB43NvHcnMm/90Izr5eiUdOR1m5Sko1mo2vN+XA5486dI6MdPUpbXzqs2Ju/oyM5DVhrSvWaGmPeSD69pNoWF9OJeuECf9fRQalZUJBcvGIf/nv2GHMsEmEYDjBanCtn30V+OQR+mXhy8Anqj31AA1kBsglN9x3DCzML5Fd1NSdacp5Fcrz9Nhn9kUdMhdOuXWSQZ5/1v7fLG1tQYPrbAca55SKlTIy7ooIOolu3kgFM1kNe3LulJbPB/FBxMq3BCOOVdt23oCAZX85OjBkeJhbAsWOEyLK71UxPk4mXl8l0tunjNW8OHeJzZmf5LxYzBSzXrgF/8AfJobbCwlRzTGC5xAeUSVZgUNGO7VuREulLl7j+Q0Mc444d6SvyNpJynuFdGV9vv82N7cIrF3uxtZXhtytXeJ/du8nwXmQXm1whLIFRHhjgQkkW2cAA8JnPpG4MkTbSnKCighsjbJMJO4zojUcDyZttaYlglJJxWFycevitpaosTC68676Tk3zPlhbOz507/JxIcL2am/l3hw9zfTo6kkuJpQ7eHp9L1XWh2R4/ziQnybyU38k6yLuMjJgwWdisQJuCzBZ73paWTGp0VZXpMDMxYQ5AqcjLAhhtaMrpsJwrI+vSJTJ+Orzy6mpuuKIiSoCbN9mI0lZ/veQKYUkzz4kJw/C3bwO/+hXwT/+Ueo+qKm7erVsZltm6lZ9tmOd07zs2xvHOzVE6jI3x+76+5Iw2wUaQ2HpJCe3d5mYTZlxLVVkQkISQ677NzQZt6OZNsw41NQYtp7DQtJ/y1sEvLvJ90o2vvp5z8cYbBtve1QxzyxYTSZF3GR0ls7uq2sKsz9GjjPi4UG7seTtzhmsu/oeaGh5Uly5RU1xY4LtLcxARTBtNOS3h/U5TrXkqejO+bJVzZoYnaF2dUa1v3yYTBpFXohw5QqaLRMh4xcW85/g44/y///vJjNDWZnDfxIYTxgz7vteucRMJGMT4uLFRvRltxcWUlnanWLuKba32eDonUjp/B8DxXrjA+Qd4KBUVkWErKrhmQTDXLhLgyFjM5PRPTlJ784tl2+9y5Mja5sPl7Re13HYUyrNs34GgJslnpRgO1Jr7YmIC+PGPga9+dWM88zblNMP7bSoB+pfPLpVzaIjMHY8b1XrrVn6fCdXUcHElA6642MBUl5SkOlwkNNXRkQoqEfZ9pdsLkJwrAKTa1rbX2m6+IQdMWHs8U0p331jMoO/E4wYQVGzW6WkyqSQW+cFce8kWAqK+z82lRlL8Gou4xj0ywjFIM02/Jideb39pKQ+f7dtTC47Ev9LSkoyaVFpKDScS4XOqq6nZXL1KP9Fzz61vXdJRTqv0fhlf7e3hkFLLy7mJHn00VSMIS5JvLYktYhMWFzPENzCQDNYIpOLjSc16ugIReV+RCIBBVent5XP7+ky317k5MvzYmAGliMcNRLaMP9MsRaGgjkfp7huNJrcJi8d54IpKv2cPN39TE9ezoyMZQdZvfH7os1qbeb92jWr3ygrn6sQJk0jkHffwsMHbDwIGFVV+cJDjFYiyxUV3wVFjI+87PJyMfVhXR43xoYe43iLxGxuNUzjd3K+Hcprh17NZu7sNAKM3fTSTyYxGgZde4ikdj1O6Nzeb9NqhodSqL4CbQLLBTp3iwostng5a2naCjY0Zhha4JMloKynhuJ5+2jC7F4nGtiuvX2c57OysQfv1o3QVbWHs/GgU+KM/Ar71LeCLXySDNzfTrq2pMVJa7P4wzVL9hIDg/01Nca4lvbWmhofM9es8NL3jTmfT26p8SQnXf2CA8/57v8fc+2g01afR0pKcUtvQQFzKr3yF77u4yMPj3DmupS2MNgjsBgCg9Fp7FC3wLDcAABR3SURBVK+Tenp6dK9fEbFFtpokp+HUVGprKEnxtMM5r71GppH00Npag4xjZ+p5/9ZFV64kA0zW1xvPrF2TLxl4sRjw/e8nZ13Nz5usKz/72OulHxnhuLq6kvupC2OITWo7I8WGf/755Pu68Ov83ls2nNdPYuPJZ0phxxpErvcYGTHRgS1bgB/8gNd2dxv/wd27nP+/+Av3mOLx5LyOigr2NJR5sIE2tKb2sH27mb9M3u173wN+9jMegDbu/6c/zQPytddMjYCAkQpYRpi5V0r1aa2d8K05bcMD7pRaSVeVaidXAoNf+qgXyUZi15GIf3weMMjBfX08laenuYFs7HYgudOJjT4r10nkIN37ep1Mfsk1YW10P0Tbvj5KwvXAX4UhF2IMwMN3cTE8RqMrr100BJmD4mL+PzKSnC3oIm9eR2Ehxzg7a3I8OjpSE3e8dRSZ+Eq2baPgkYMkEuFcV1Ul12KkAyNdC+U8wwu5qp0ktCGgB2HynwcG6K3v6+OiScHEjRvJWWB+iSoCarFlC5mor4+L503LlAIdyQ0HeKLfvk1nVRD5OX+EvM6xsDHzigoeVJcv08x47DG+9zPPpMboxW/glTJrcfa5CopEcm7ZkgrhFZbphY4cSbbrOzoYHVhaMnnyU1NcNy9JklYkwnc9f57v/sgjphGp5DnYdRQCYSWgl62tPOAl0y4oY29lhZDzkowjlY6JBNddhIQtKPr73ePPlO4bhrcljt0cIqj01EsCM3z5Mq+XRBWAi9DXx81nJ5SMjHBDtLZyceyOrgIrJTDS9iL393PDXb3Ka0tL+ax0DUS8psi9e7z/008nmy+ykcJUcvX3m9bWktM/M8PusU8+mRr27O3l8+NxA+zQ28ssMSn0SEf2oXXpkskTiKzuuOFhbuZnnkkuFV1LmqlXuu7aRb+H+G281YA2SZKWRDoqKkwjyulpoxVWVSWbEDMzZr4BHg51dfw8Px+csWeDZQAmI096IbS3m0o7ASMdG8sOmtN9w/D2oobtxe0lsbnfeosbT1olj42Roc6dMxJfFvzqVV47N8dFOH2ajNfczHHs38+xeJlNwnOdnVTjb982GHBBEqyvj1K3tpZjWFgwaaNFRe6N5NJkbIYTaWdTcTHvKyCKdtnv1auE5O7pMXZtVZW7SaKXJiZ4OBw7RtW9uZkYfVu20KYWBKGtW026q1BYk8EPb0/ucfcun1NdzYN8506jvbmovZ3MJmq8AE3a/QNtZKXaWo6httZIYKU4x9XV6Q8sv4y8/fv5XlLTn40eC166bxh+Pb24ZYO8/jrtJ4nTFhYafLJTp4xaKAeHZIFJm+XpaW6g+XlKwJMnucBtbcQldzFhby//rqiIG762Nvg97QaOgMnam59fm2Orro7zc+qUaSMliC979/Lad96hP6OmhhpMIkGJtXevmQs/SGr7mcLoY2NMThkfZyvl6mrO4egow3DDw9SyOjs5N2Gr1LyHSSxmsi8lH/7aNWpxjz2WrBEFUbruRl5kpSNHuGdse100uDANXm2t7MQJ7kFxyorWODKSrDWG7aCUju4bhveqrnaLpyCyN/+2bZRWYpc1NvL0Fsir9nYyh9jlkgAjSR3t7dxMIyNkGkl9BeiR9/YGn5wkI4nzLhM7dT3kQrQ9c4Zj3bfPRAzKyogANDXFg2hpiRlgnZ3p2zy55vjGDR7Avb1kAIk937plMPJLSjgXRUV8fm8vJZskEPlpaS5Qk7NneX15Oe8tTNnUFK5EV0j2VmGhOUyku9HcHPeNjesv+AO2f2ZhwWhgYciVkQeY5iMurTEblNNxeC/JJB04wM9hklnszd/ebspiJXHi1i2T59zQQOYAKDUqKkwsX6RlayvtUanWqq7mxo5EGLaTsUiRSCTCDSj2/NQUyyT9cgB27XLnD8imC5M74Opg84lPcPPaDUlnZ/l9QQHHJ9WF5eXUZKTNU7r8BzvyMT1tQClPnuQzbt7k4QcYyV9WRilcVcXNnS7+bj/Dbsg4OJiMUuuXmJNO8kajzHJ7+eXk7kZ37wI//CElcSTCPTM5yTmcnOTvJWdCTLkwJAfYhQtGCxQqKmJ83+6ymy26rxgeyDwpwd4AAhUsTfw6O+nR3bPHxPTt9k7Shbazk0w7NcUN+/DD/Lx1K/8Jos7ycnLRyvKyyaYqKyMTHT/OsfqNvaeHzrHlZT5PtIPl5fDv7EpOqatjXNluSNrayrCVYK/t3Gkq+4LaPHnX4vXXjXNyeNj0m08kONapKR4obW18t6YmMvr0NN/3kUfSb2xZRzsLUTr62tqHX2JOppL3wAHO+dgYx1tYSI0ikTD+m337TA3AY4/RoRmGOe09LG3SensNhkI24da9dN+o9EKZduDxenDFqRKNkrGvXuWm0drEhuWElfh/f7+x26VoQ8wEqXNfWCBj2pLGG5abnORn6QHnh58mDRwl2ejiRY5jYSEZOMEvhu4XqnMxldiogm0vQJpBbZ4At6k0O2vyDBobydBzc5wHqZiT8uFEIpVZg0jW0TVW2xTItM2VH7lg0gBqFBITf+654NyNdPeW9d+INml+lPMM7808u3KFi9rebjZ+kHe3vj41Q85u+yQtkmMxk8s9PEyb1i6msJlfvLb19dx0Z8+S6R56iJsf4N95w3Kjo/xfDpbpaeYFSCmpMKw32WhykuMfHKSa/MwzlHTHjrlj6GFBF+3usX797lxrIfkBEqJsbzchLWlrPT9PJ+W9ezSbamspESWDTNTjvr7UAhcXyViXl6llnTrFez/3XPJBFvbd05HY1qJRiPN2ejr8IRWEjGMnNWW7TVoQ5TTDy4ZfXuYGE0QVga8SHDK/BZB02Hicm0xsLXGu7dyZzMjSoFEpLq4LiFGy4PbtY0ljb6+x/ZeWTO28KywnqnF1NZ1/R46Y70tLme9tt6IWs2B6muOSSrq33qIpUV/vr+mEwUizmcPb785eA1fzhtOnU7uqDAzQN3LwIN9HJL54+Ofnee177/G9mpqIhLtjR3pgDkkvlsN7/35zePu913oorEbhR2GQcbJdwRiGcjqXXuyca9d4mpeVcQNJI8nKSjKU9IlfWUluVmDnso+Pc8MWFXGTPPaYu7NJJjnk//iPlOB+Oc9+8eLlZeAXv6DkKyujViCVVE89ZdTEI0eobYhELSnh+G/f5vWf+1zyJsk0Lz2IvCGwRMIgvNopplVVZvNLBtryMv8Jou7sLP/+8mVe9+ijRr2X+9lIwH7Maq+N5A2MjXH9/vAPeU0mUF7p3l8YVroHSyQgKKbvGquQXWdh1wPYpbx+nZAyofs2l95VHy5Oq8pKMsHWraZPvC2RIxH+3coKmWxigswlJ6kwm911xotfLvayn8mgtcGrt7+Ta12SpraWXvobN/gcwMTFr1wx5ZSxGMd5+jQloaTlTk5yDkpLs9u8wD6cCgqMpmLj+u/cyXeTA3dmhmthgz/K+9qIurt3cx6PH+fvDhxg7D9derT3wBwcpDbggsV67TWOs7k5PJRXEIXRfoIoqBbBvrfkDbjaXm2EHZ/TDO+tDxe8cilPlZx0b3dUgFhvgni6uMhNPDRk6thl8js6kvHIBNFEEmuamrgZGxqSY7HCkJmqZtGogcGyawNu3uR7NjQYL3xXF7UReebWrTwwOjs5Tkko8UogVzOKIPKqn729lN5amyhESQlj9gIaWVzM51ZWum1lF6Kune2XLj3apRIPDho0IQnLzc9zziTsJ3kQYeLvfnMRRktId53sjUQiGWC0s5O/t4VBpnkD66GcDsu56sPv3uVnCV34xV0lnAIYW3N+nswkElO+n5pKRjQZH+fJW1DA342MUDqNjSWHxerr11avH48zNLa0xH9zc2SMuTluCDkI7tyhvyGRSI6fFxZSrXziCTLN22/zvtKNNNPaaW8tdyLBDSsqOsD7Li7StJJNWVbGw9MVL3aFx+yWSm1tJsdA4K7suXNh5kle+9gYxyMhsbY2M5fefRAm800obMg3zHWxGPdNb6/pbhuPG81JaK15A2ulnGZ4OQUbGigxysspHUdHTWMEpdxx14YGYx8XFvLa2Vnj5PF2nZGJr642hRKSHy3PlzZXNkOGQd7xUmUl71dVRZNDpFNTk9FaZNGlLNeOn9uIrtXVdHwdOGBAJcKCMgp5N510epF3PHuWocHSUs57WZlph+znAnKBl0gu/tycSY+enqZ5JYktgD9YZHOz6Z83OprcIjob/dnCAn7a18XjFA5nzxrceYBjrK3le05OUrvUmj9L7jyw/ryBTCmnVXog2TM+MWGgioaHaQePj3Mit2/nJpMUzZ4eSqPr1w1wYkcHF+i99+iwe/TR5Oo2Uc+1ZkhpYcEUmVRXJzeT8NpjmVB7u8HUv3aNEqC2lszuSmUNekamdesuVdRrmtTUmIaNwkRKcQ5bW3m4iJNNACa85AqPiTNSvisuTtZ0rlyhf0DqI1xgkeJotZ1ecpiIlrTW+HvYubSboQRBbK+scKxnz/JzaSk1kmPHjOMvW3kDYSmUhFdKfVIpdVEpdVkp9e8dvy9RSv1k9ffHlFI7sj1QgOrR9euU0pEIN8fEhGGMd94xGGM9Pea6J5+k97u6mows/b1taWlLJDultq3NQGLbPc7WcwrHYhzb3r2Ez/r85yndd+zIHMorEwnhp4rapsnUFKV5fb05fMrKiMTy8MOcG2nskW6MwvS2ym9/pxSZqbDQQFG9+y6lYVdXckad3anXBa/17LNMWMpU21rLXMp16SC2a2r4s1wjNe6ClmTP0XrGnQmllfBKqUIArwB4FsAQgONKqcNa63PWZV8CMKm1fkgp9RKA/wzgc9ke7PnzppLsyhUyYEUFbbpDh1IbPD7xBDdKQQElwKOPGmb3JjnYEqm8PDkZp66O2kRHR/h2REHkKgT6whfCdz+xKRMJ4ZelKKaJXb3V08PKPSkeEuBJSRSSdtbr2ZiuysBIhCr+xz4WjDDjp/Wsx9EVdi7lunQQ27EYQ7dNTQaIY36eUQvbRs9G3kBYCqPSfwjAZa31VQBQSv0YwIsAbIZ/EcA3Vn/+GYD/pZRSegOD/CKJBTQASFW/olEmgXjjoX4S0Gs+ZIMh/ci1yGvpQJJJZlmYUJELT1086VIotGvXxm1QUdGB9J16s01h51Kuk5ZVfhDbct3Vq0ZD3LmTh5qfKbTRFIbhtwEYtD4PAfAu9/vXaK0TSqlpAHUA7tgXKaW+DODLANDe3p7xYLu7KYGU4saYmaGNJ2qli5HXaiNliyE3g8JKiDBhxGwAjYSlXbvoT5HMRklZFtzCzbBpvRR2LiXZx+tL8I61p4fakRc8dLPex0thbHhXcyav5A5zDbTW39Fa92itexrCtGLx0P79dM4tLxsHiDi7/GzKzbaRcpnCwH7b19h46uJIy+bcuSoDu7vZbPJ+WK8weyvX9l/a1Fql1JMAvqG1fn71838AAK31t6xrjqxe845SKgJgBEBDkEofFqbaS96MMEnPXG8q5YNCYRJLMu02u9HjyVNmFJRaG4bhIwAuAfgEgJsAjgP4vNb6rHXNywD2aq2/suq0+xda6z8Ouu9aGT5PecpTMK0rl37VJv9zAEcAFAL4rtb6rFLqmwB6tdaHAfxfAK8qpS4DmADwUvaGn6c85SlbFCrxRmv9SwC/9Hz3V9bPCwD+ZXaHlqc85SnblNOptXnKU56yS3mGz1OeHiDKM3ye8vQAUZ7h85SnB4jyDJ+nPD1AlGf4POXpAaIPDMRSKTUG4EbIy+vhycvPEcrVcQG5O7ZcHReQu2PLdFzbtdbO3PUPjOEzIaVUr1/m0AdJuTouIHfHlqvjAnJ3bNkcV16lz1OeHiDKM3ye8vQA0f3C8N/5oAfgQ7k6LiB3x5ar4wJyd2xZG9d9YcPnKU95yg7dLxI+T3nKUxYoz/B5ytMDRDnD8LkChb3Gsf2lUuqcUuqUUur/KaW258rYrOs+q5TSSqlNCTuFGZdS6o9X5+2sUuqHmzGuMGNTSrUrpd5QSp1YXdNPbdK4vquUGlVKnfH5vVJK/c/VcZ9SSj2e8UO01h/4PxBY4wqATgDFAE4C6PZc8zUAf7P680sAfpJDY/s4gC2rP381l8a2el0lgN8AOAqgJxfGBSAG4ASA2tXPjbkyZ6CT7KurP3cDuL5JY3sGwOMAzvj8/lMAfgViSB4EcCzTZ+SKhH8fCltrfQ+AQGHb9CKA76/+/DMAn1BKucAzN31sWus3tNbSwuAogNZNGFeosa3SfwTw1wAWcmhc/xbAK1rrSQDQWo/m0Ng0gKrVn6sB3NqMgWmtfwMiRvnRiwB+oElHAdQopVoyeUauMLwLCnub3zVa6wQAgcLOhbHZ9CXwFN4MSjs2pdQ+AG1a619s0phCjQtAF4AupdRvlVJHlVKfzKGxfQPAF5VSQyDS07/bnKGlpUz3YgrlSm+5rEFhbwCFfq5S6osAegB8dENHZD3S8d37Y1NKFQD47wD+bJPG8/6jHd955ywCqvUfAzWit5RSe7TWG9Q3NaOx/SsA39Na/9dV1OZXV8e2ssFjS0fr5oFckfBDANqsz61IVaPev2YVSbcawerPZo4NSqlDAL4O4AWt9aL39x/Q2CoB7AHwplLqOmj3Hd4Ex13Y9fy51npJa30NwEXwANhoCjO2LwH4OwDQWr8DoBQsYPmgKdReDKTNcEaEcFZEAFwF0AHjSNntueZlJDvt/i6HxrYPdATFcm3ePNe/ic1x2oWZs08C+P7qz/WgqlqXI2P7FYA/W/151ypTqU1a0x3wd9p9GslOu99lfP/NeImQL/opEP/+CoCvr373TVBiAjxlfwrgMoDfAejMobG9DuA2gPdW/x3OlbF5rt0Uhg85ZwrAfwN7FJ4G8FKuzBnomf/t6mHwHoDnNmlcPwIwDGAJlOZfAvAVAF+x5uyV1XGfXsta5lNr85SnB4hyxYbPU57ytAmUZ/g85ekBojzD5ylPDxDlGT5PeXqAKM/wecrTA0R5hs9Tnh4gyjN8nvL0ANH/B42zVs3aX877AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -132,12 +155,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ +<<<<<<< HEAD <<<<<<< HEAD "It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:" ======= "Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois,\n", "en moyenne, $X^2 + Y^2$ est inférieur à 1 :" >>>>>>> ff5bf62e6a54b420ff906287a58051154df436c2 +======= + "It is then straightforward to obtain a (not really good) approximation to $\\pi$ by counting how many times, on average, $X^2 + Y^2$ is smaller than 1:" +>>>>>>> 351bb4e8988e8cf7c7d01feb35d88025edc0636c ] }, { @@ -148,7 +175,7 @@ { "data": { "text/plain": [ - "3.112" + "3.1120000000000001" ] }, "execution_count": 4, @@ -162,6 +189,7 @@ } ], "metadata": { + "celltoolbar": "Hide code", "kernelspec": { "display_name": "Python 3", "language": "python", @@ -177,9 +205,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.4" + "version": "3.6.2" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 }