diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index b4b9ff9a27ed91ef6040628d13f1b95d667c8b4b..f757e35936e059513108858c5dff3c6917f85276 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": {"hideCode": false}, "source": [ "## Asking the maths library\n", "My computer tells me that $\\pi$ is *approximatively*" @@ -18,7 +18,9 @@ { "cell_type": "code", "execution_count": 1, - "metadata": {}, + "metadata": {"hideCode": false, + "hidePrompt": false, + "scrolled": true}, "outputs": [ { "name": "stdout", @@ -35,7 +37,7 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": {"hidePrompt": false}, "source": [ "## Buffon's needle\n", "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" @@ -44,12 +46,13 @@ { "cell_type": "code", "execution_count": 2, - "metadata": {}, + "metadata": {"hideCode": false, + "hidePrompt": false}, "outputs": [ { "data": { "text/plain": [ - "3.128911138923655" + "3.1289111389236548" ] }, "execution_count": 2, @@ -68,7 +71,7 @@ }, { "cell_type": "markdown", - "metadata": {}, + "metadata": { "hideCode": false}, "source": [ "## Using a surface fraction argument\n", "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" @@ -77,9 +80,7 @@ { "cell_type": "code", "execution_count": 3, - "metadata": { - "scrolled": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -127,7 +128,7 @@ { "data": { "text/plain": [ - "3.112" + "3.1120000000000001" ] }, "execution_count": 4,