diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index c7c907ae420ea873d082bfae8b37994f1fd44efd..b4b9ff9a27ed91ef6040628d13f1b95d667c8b4b 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -9,9 +9,7 @@ }, { "cell_type": "markdown", - "metadata": { - "hideCode": false - }, + "metadata": {}, "source": [ "## Asking the maths library\n", "My computer tells me that $\\pi$ is *approximatively*" @@ -20,11 +18,7 @@ { "cell_type": "code", "execution_count": 1, - "metadata": { - "hideCode": false, - "hidePrompt": false, - "scrolled": true - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -41,9 +35,7 @@ }, { "cell_type": "markdown", - "metadata": { - "hidePrompt": false - }, + "metadata": {}, "source": [ "## Buffon's needle\n", "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" @@ -52,11 +44,7 @@ { "cell_type": "code", "execution_count": 2, - "metadata": { - "hideCode": false, - "hidePrompt": false, - "scrolled": true - }, + "metadata": {}, "outputs": [ { "data": { @@ -65,10 +53,7 @@ ] }, "execution_count": 2, - "metadata": { - "hideCode": false, - "hidePrompt": false, - }, + "metadata": {}, "output_type": "execute_result" } ], @@ -83,9 +68,7 @@ }, { "cell_type": "markdown", - "metadata": { - "hideCode": false - }, + "metadata": {}, "source": [ "## Using a surface fraction argument\n", "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" @@ -94,7 +77,9 @@ { "cell_type": "code", "execution_count": 3, - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [ { "data": {