diff --git a/module2/exo1/toy_document_en.Rmd b/module2/exo1/toy_document_en.Rmd index c33e052056383c3089e0c2edd3c9bab4cd028add..69eb6b4716c14207c1150a0c0f68c8863f1bbfc3 100644 --- a/module2/exo1/toy_document_en.Rmd +++ b/module2/exo1/toy_document_en.Rmd @@ -11,14 +11,14 @@ knitr::opts_chunk$set(echo = TRUE) ``` ## Asking the maths library -My computer tells me that $\pi$ is approximatively +My computer tells me that $\pi$ is *approximatively* ```{r} pi ``` -## Buffon’s needle -Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the approximation +## Buffon's needle +Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the **approximation** ```{r} set.seed(42) @@ -30,7 +30,7 @@ theta = pi/2*runif(N) ## Using a surface fraction argument -A method that is easier to understand and does not make use of the $\sin$ function is based on the fact that if $X\sim U(0,1)$ and $Y\sim U(0,1)$, then $P[X^2+Y^2\leq 1]=\pi /4$ (see [“Monte Carlo method” on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach: +A method that is easier to understand and does not make use of the $\sin$ function is based on the fact that if $X\sim U(0,1)$ and $Y\sim U(0,1)$, then $P[X^2+Y^2\leq 1]=\pi /4$ (see ["Monte Carlo method" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach: ```{r} set.seed(42)