diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..97c42856a24c7f81e56c873dad1c440a35dfb896 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -1,5 +1,347 @@ { - "cells": [], + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1 à propos du calcul de $\\pi$" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1.1 En demandant à la lib maths\n", + "Mon ordinateur m'indique que $\\pi$ vaut _approximativement_" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "3.141592653589793\n" + ] + } + ], + "source": [ + "from math import *\n", + "print(pi)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1.2 En utilisant le méthode des aiguilles de Buffon\n", + "Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon/), on obtiendrait comme **approximation**:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3.128911138923655" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + " import numpy as np\n", + "np.random.seed(seed=42)\n", + "N = 10000\n", + "x = np.random.uniform(size=N, low=0, high=1)\n", + "theta = np.random.uniform(size=N, low=0, high=pi/2)\n", + "2/(sum((x+np.sin(theta))>1)/N)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Avec un argument \"fréquentiel\" de surface\n", + "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X \\sim U\\left(0, 1\\right)$ et $Y \\sim U\\left(0, 1\\right)$ alors $P\\left[X^2 + Y^2 \\leq 1\\right] = \\pi/4$ (voir méthode de Monte Carlo sur Wikipedia). Le code suivant illustre ce fait :" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAP8AAAD8CAYAAAC4nHJkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvVlwXNeZJvhdZGJNJDKR2ImNAJiQSIIUJYICJduivEmW7ZJdbneX3YqemqqIdjjKVc/91vMwLzUdEzFd0+WZake3u1weRzm6NhVdXijJtijbkkCC2ggSJJIAsZEAsSSQWDKxJHDn4ePvc/Li3ps3gQRFWPgjEAByuffcc/59NUzTxAEcwAF89KDgw17AARzAAXw4cED8B3AAH1E4IP4DOICPKBwQ/wEcwEcUDoj/AA7gIwoHxH8AB/ARhQPiP4AD+IjCAfEfwAF8ROGA+A/gAD6i4P+wblxdXW0ePnz4w7r9ARzA7yxcuXJl1jTNmmyf+9CI//Dhw+jr6/uwbn8AB/A7C4ZhjHr53IHafwAH8BGFA+I/gAP4iMIB8R/AAXxE4YD4D+AAPqJwQPwHcAAfUTgg/gM4gI8oHBD/ARzARxSyEr9hGN81DGPaMIx+h/cNwzD+b8MwbhmG8YFhGE/kf5kHcAAHkG/wkuTz1wD+EsDfOLz/AoDo/Z8eAP/v/d8H8DBAPA7EYsDCAhAOA9EoEIl82Ks6AIEP8XyyEr9pmm8YhnHY5SNfAvA3JjuBvm0YRtgwjAbTNCfztEbP4HkfvXzwd4Fo4nGgtxcIBICqKiCZ5P89PQ/+Wez2E/jw93ivztl63epqYHZ2+/N/iOeTj/TeRgDj2v8T9197oMSfDc/lLFbG4zg03ouGaACheocNzwfRPAhkz4a4sRifIRDg//I7FuOzPCiw28/XXgNME2hoAPx+4Ne/Br77XaC1FThzBjh9Ovve7JZw88kc9bUYBjA/z2erqgKmpoALF4AnngDq69V9fD51PokEMD4OzMwAk5PAl7+85wwgH8Rv2Lxm2w/cMIxvAPgGALS0tOTh1gquXAFGR4F0GggGgeZm7mksRpyQM25YjmHVH0D/cAAtm8DCQgDJGSAwGcOhL/dwv3dLNHZI9eqrwPIysLHBn8JCYGQE+Oxnd3bITojb2akkzI0bQFdX5vfKyoC5udzvtxuw2894nH/X1ACXLwN37/LgpqeBf/5n4Je/BJ59Fujutt+ffBBuvpijrGVzk3t/5QqwtcWzDQS435WV/N3QoO7z7rvAxz5Gwu/vB0pLgdpa7sED0ADy4e2fANCs/d8E4K7dB03T/I5pmt2maXbX1GQtOsoA2d8LF/hbcEd/r6AACIWA9XXu5cYGaUA/Y9/yAorDZdjaAt64CGysA8HaMpjxBXXdhQUSiQ5lZXzdywJffpmIEAhQCgQCwMQE8M475PbhMH+PjhJRdgL6Q8k9NjeB8+eBtTUSRHExr59IqO8lk7z/gwS7/RQmOD7O9VVUUAOYmCARmCYwPLz9sAXsnl+4/W7Wle2c7SAW494PD/OZSkr4DL/6FZ9taYmIubSUeR+A5zE+zs+XlvLsampyf5YdQD6I/zyA/+W+1/8sgES+7X2hK8HptTWFE/E4ae3ePQrSlRW1j7EY8Vw/481gGAWrSSwskDmXlgK+tSRWS8IYHQW+/32g/04Yialk5iLciMa6wHgcGBpSRJdIAH19wJ07/FlZIbLE48A//IMzgruBHeLOzmYync5Ovj44SGJaWeGPmCAPCsJh7p8OhYX8WVqiulZUxEMMBvmTTvPHiQicGMrbb9tLCK/r2glzXFjg3gvilZeT8W5ukrCDQeJAMJh5n6YmMudf/YpMb3YWSKWotu6ECeUIWdV+wzD+FsCzAKoNw5gA8L8BKAQA0zT/CsBPAHwewC0ASQB/lO9FOmlnfX2Kho4epZY7MAA8+igF69gY0N7O19NpMuSi5SjapnsxGweqW8pQkEoiNbuCd9CFgipqD4u1UQy+04vOJ4BQfRkPamVluwrttMCaGmBxkQcPUA1ZXyf3T6f5P8AFBQKKm7mpebpNWVAA3LzJa9bUEFlCISJPdbX6TihE27m/nypnOMxn2KkquVMbW+wugEidTPJ7pkmkHxujrXvvHtViIZTWVmczRQhX9jyRICFVVDibQdY1263L7ZydIBwGrl4F6upo2q2s8HxCIdrvXV3U8tra+MzJJF83DK4hHqeqv7QEPPMMv7eysucamhdv/9ezvG8C+FbeVmQDCws8Tx3KymgyPf448X99HTh2jHs8NEQcKisjfbW0AD/6EYXLyZMRDJs9mB2K4XD9HLaKwhio6EJBERGiogJYLYvgZqAHQz+P4bHDczh0LIxQjwvRWBfY3ExkmJnhYRsGESOd5vvLy/w7EgEeeSS7rTk0RHV+c5MPNDfH6xYVkclcvQp0dJDj6cQPULqePbt7B59uY/v93PxXXuF1OzqcCQzg3z09fD5hQqdPA++9B1y6xNf9fq7/3j0ifnk5iWFqigdsBSvhDg7y785OZQYsLnLfTp+29wvYrWsnzDEaBd58k1rd7Czv39ysTJcnngBeeonvyX0qKxXz/+QnyaANg3sYieyMCeUI+yLDz0k7A3juzc3Ulnw+agD19RSOp04pHDh5kvs9PAwUN0TQ9gc9eK/2ecy09WB2KwLT5DXC4fv+gmAEM+09mHn8ebyZ7kEcLghhXWAoRIKIRIgQwSDw3HNUQzY3idQbG+RQR4+qB7FT8+JxIrDfTwZy545CoIoK/mxsUHK8+CI3YWVl52q+k3NFtJt0Grh2jfepqyPj+cEPyOisNpkOQmjPP8/1XLlCwjdN7ktxMffJ76fq3NBABiAeWytEIiT0W7e41ps3+blQSH3GagbZ+QX0dQmDdHIuOUEkwr2fmlLayJEjZOyf/CS1m1u3+NkzZ3gf01RmSyhEQg8Geb7FxQ8k3PehdfLJBZy0s2PH+Lfs3fg4aSAS4T7W1/M7S0vEy6oqaoddXdz7wkLu89YWf+QapaX8XkWFRwew3QJ9PoZrYjESRCDAC46PK8dET49CVidbU5xJ1dVE4M1NPtzCAl+ThxGPss9HqQxwg3INTzp50BcWSJgXL5KbVlbSMz05SfXc6sl227C+Pjpo1taovRQVkXm0tQGHDnGPlpb4nOXlzt7+wUES2cmTvGYsxv2UPbWaQXI+TtGO3UQQZD8mJpSzqbWVz1lYyDVOTVFDaG7mHooAALjm9nYKgwcUht0Xkl+Yc3Exz00Y4+nTSrhVVBB3jh8nzbW0KGEcDAKrq/wR34v43wDgi1/kOfn9PBPRAprvxzCy+l6cFhiJkDFYF/mxj3Hxfn92CS1EvrrK/4W4FhaUAymZJGPo7aUq+bGP0R4SM8MruHnQCwoorYXwNzboTEml7D3Zbhs2MKBU38JC3isYJCPx+3l4x4/zme/csZfA1rXaOTftzCA3h95OIwjCNIqLec9Dh8jc796lHVpayn0bHubzLS+TUbzzDp/5Q3LG7gvJDyj6soKTyaYLY3GqAny9r484UF1NR6vPRz/L3BzPJ52mxibgyQHstEA7u/Kzn+V7loXHEUGs12I6h8MktOFhfqe2Fnj/fS5yaooPs74OHD4MnDiRW8za6sAbGyNz0kEkpWGo/9fX+b+orhKqy2nDQLNhZkZ5yhMJ/l1Tw9fLysgk7RyiVj+LnXPzxRfJDFZWvDn0rNdMJLgnIiWcHJzCNEpKuC/Fxdyb8XGeF6BUypISXvfECfoCpqfJAHfrjN0B7BvidwIvNJdKURCaJoWOz8fzSacpsKanaTKeOQN8+tP0r5lmph9tN76XOCKIoQcLAMJgEUQkgoyFO2mcZzujqIzHqRLOzhJxIhE+1OAgkau2lkgvxChqr5OKG4+TG/b2kgNGoyQwibGLKgooQl5YIHENDKgklvJyZrL5fGQaklQxO8tni8ftkfnYMZomlZWU8IODtImPHOF7y8s8oJIS3i8Y5KbojMzq7QfsnZuVld4devo1JfHGMIDGRveIjDAN06TaPj3NZ/D7eW6mqWL9c3Pcl7fe4v4Fg/Q3fAiw74nfDewYg2lS01pYIK6XlNA38P77xMevfIVMeWCAODMyArzwws7X4NWMdApnDs5G0CNcrLCQyLW4SA7l89EHcPs2Fzo8TGJ84QUimp0ElgWNjpJpGAYdeF1dZAKxmHIixmKUwD09VPsLC0mcS0tcQzJJBO7sJHG8+y6l9lNP8bNOxHL6NNcxP6/UrLNnVbbj3/0dVeaiIh7Q6iqfN5VSB5qvMJ0O+jXHxpR209LirEnF49QMrl7lnkQilBipFLUx8e+UlPBzIyOMRYdCRML5eWcmucfwO038VpBzeustCq5QiAJmbY344/OR6AEy/VCItFNSsvNsS68ZpE7hzLk5bOdiFy6QOE2Tav/oKB9ofp7hs0iEHMxOZdG99qGQUufHx5WdLVKuuhp4+mki8nvvkcA2N8ktq6v5elcXJdytW8C5c5mSeHGRGViNjZkhwEiEhO6UM7C0RGYjntfSUq5L9yt4CdPl6sDTr3nnDtfd0uKsScn1a2u5trIyIlBbG9fc0cF7VlbyOaemyBCqqvg8pqkY7oOstbgPHxni18+pvJzCcm2NuF9QoPxC/f3Eo0iEpu30NOlkc9Mej7OBG1HrJvedO5nOX8DFdA6HKVlv3CDhi6PJ5yMTGBqiPW1XHCILEi+obocmk8rL+cwzSv0dHlac8OZN/nR18ScUUurUyZP8biJBIrh6letsbd2uNjvZawA1j6UlMheR/FtbmX4FwP0awM5y9/VrSpRGwHog+vXLyshA19a49iNHqAXpiGIYNAckiamjg880MqLO5gFWN35kiF8/p2efJRNeXiZudXURz4aGeBaSbSoa38AAX9vYIH5LUVplJXHS7bzsTNNkkgxHF0obG3T+6oVfjlpsNKqymba2eLHVVS6gqUnZqVYpGIuRYRQXk8uM3p/tYJqU3nLDy5cVx7I6qrq7KdGDwcwwZUMDf0sG4+QkuWxhoTIrAgGVheeG6M3NKplJCKWhwT7Zxw1c1aks4MWs0K8vIcbjx3l9Ozu+uXk7Q5mcVI7BB1zWuy9CffkAPRW8qQn4gz+gLwYgDp44QdwS/8zWFpl3VRW1hIICvm8YxO+REdKeW14LkBnp0yM6ppkZVWpoUM5fa7RwG0QiwGc+owh9bQ2pSAMmSjsQmyzF3bENJAo0CaXXHnR1kXhv3iRn29xkVl17u7qhnrS0tKSkr5RLbm2p7EV5oHPn+HtwkJ9Ppfj91lYyj/FxcjinIg3rpokT8exZ/vb5cg+D7SZ33y18u9Pr2yGDJDHtpkBph/CRkfxWCdzcDHzqUyS2hga+/8lPEm+PHaPw8vmIw+vrxHfRiMfH+XmJeLlpk06m6eXL2+tS6uspKD05fyMReid/8xsk78YxsRhE0SYQXJ9DsrIZ1+ejeEL8SFb1t7ubRDo6SuKySl9d6pWXk3OaJtVUyV4ULqXb2pWVvG5BAaV7JMLvmyYleCxG+yqbGp7PtNvdOAWzmRVO129s5OtW7cbuuZqaVDaawAMqu953xJ/P2hJJwrPr4XH8uIpaHTlCwSha7tISzQK9SMvtvOxwyMkcyKmW477X/F58AiWJuyhKryNd14SV576GokhE0ZRdTLy7mwvOFicNBOhIjEZJ0JI88+Uv87OxGDmZHMbZs5Toov6nUsqsmJmhAxFQzSsWF8lZneoBdgP5YiK5XL+xkQzQyclo91y7RoSdgcG6nAcP3d3dZq6DOnXi1BmtnXq800Y6Tt/T79vXR5zt7lYMYWVFaYb5fpZsF3r7+zFEChawWRHGWnMUm6HIbzN+n38eStXWESyXBXvZFHmAzk6F/BIulLi/aVK1EsYgdftbWzQPPoz2YtmeM9f1yF6n0ypNWeL9zz1nf8+8IIICwzCumKbZnfVz+4n4rTicSBDP1tYytVev+5nLWTt1adrNeeWrfVxW2t4DBHO9qYSvrA+m5xgUFHAj9XBhLtwzXyCHMD7On2g00+Oa6x5duMBnuXZNOUpTKfpVvvUt5zqFPLZ380r8+0rt17VXScAqKSEe6ZEkLxGenYaABeS8vGiTTmcracjynvh+8m7a7kb9dVq8nSd9Y4OJPvLZM2fsVXndLyB+BFFVHiToSDA1ReIfHOTeHD2qHG9uDMm6P4bB/6WxB8DXamqcr5UPE2cHsK+IX7eTBwYYJZGqPj0WPzmZPT9jt+3bvJ6XG5MBMt/Ti76am70zAk+0vRMEc1u812YaVm4aiSi/wIO0c+2YmLVMORIhwU5MEJmOH1dRC6drWvdnfp7ZgYcPk6GtrvIax4/veWeeXGFfEb9IuMVF+piWl2lOhsM8r8ZGEntjI02t/n6Vh2LFrZ2EgHeinVnxS0xAn4/rEgYkuTRS9OWluc+egxuH9NJMQz5rZTp7kZrrBk5MbHmZYcRr15TULiri69IH7vHHna9rtz/Smam/n9dqa1NmTXm5+xofcBvzfUX8Irx+8ANKybU1EnpxMWPx9+4xrb2lRdVkSCsvK27l6m332hpcumyZJn9u3OB6JFcmFKIg6O1lircU0cn74guTuhCfj34iN9zIZW2e8SoeZz88Uc+lVZhwSDmMK1eo6g8MeO8U7KSqACpEJpu4uKiSilpasi/eTcJbmZiojktLvPbQkNJITJPRCbfcArsqwKEhlfBTUMADldBSV5e781S6/169ShXwxRdpFu0R7CviB3juW1sknKkp2vxSEr64yN+hEM/yyhXuYXs7w3V6U5hEgvstGZiFhfbCR87q7bfJZOwEm94a3O9X5cOnT/M7r73Gz4gJODNDQfnOO7ze008T/3w+MgspzBMm0dHhHj3yIqBz6k+h16enUkwIevttbk5ra2amXTpN6Sg1/W7qlvUgrU4U6yYmk1yDtPQqLeXnnBafTcLrUFamQpd+Pwm1slJFIVKp7T4LK1glyPg4r9PaSmYpffinp1Vo1G59UqA1PMx7BwKslfhP/wn46le9zTDYAew74hcwTZ7n3Bz3UKSq5JOMjXEP6+v5s7jIcxgdVbMinn6aBPLWW8Qnu2iAnFVBAX/6+8lYEgkKjnv3SAuRCAl5YoI4BPDvzk6aKFNTPO+xMc6nED9XIsE29Z2dxBFJZ796VfWiuHiRzMvJP+FmwuzItyFfamgAfvpTSl3pgTY3x350+ucCARLCBx/wAaQSMFsttLW4obaW1+rv5/3m55lJJX3a5uZ46E6LzybhrWqeOFb8fs4JmJ5mTYRk3yUS7hV3VvNlZoZSRLQk3ZEZiShksq7v3Xf52dJSMoGhIRUSHRri7z2w//Zleu/Ro9yjdJoJUi0tVP+rqniOUo05PU0mXFhIIn39dQqUiQmFr2fOsIZFEtJ00HGpooLX3NoC3niDeHn3rjItUinirGgjJSWqhPvxx4lrohUeOaImOJ06RTwfHVV9Of1+pYmsrfE7bu3l3bJMd9SaXr60sEAVq7ycnnzDYA7y7Gzm54TbtrSo1l6xGDmaWwjEqd25pBRLQQWgNtRt8U4PKxLerrehVBiePs17ADyQI0d4IG5zFawpwFLOq/cR1LUfp/UB3NOSEoVAhsF1uLUv3yXsS+Lv7iYOJpPc8+VlEmUwSEFx6xb/rqvjuQwNcS8Ng87XWCxzjoWOT3r/yrffVrgnwmdqSqXDS/eoykoymtJS4pTeMgyg47etjUVB0qdydZUaSXk58NhjZGLd3XxvY4O+omPHMjt16aDjlFP9QDS6w/R2+ZI0P+zoADo7sXT4BK7O1uPyaxxwkigIZw6dqK7mg3ziEyQmYRJ2YG2ZVVND1Ur63K+uKi4IqA11W7zTwzY3Z8/Tn5jgAXV3k/Crq3m969ft7yWIcvky/z9zhqq9WwNVp/UdO8bvLSyo766t8fPB4J718N+XxB+JcJ+/9CUSeCpFbeCLX6Qkrari2dXXUyAVFys7vaxMVV8KCD5ZhZE+8EaahCaTxMmNDSUUW1pU+ntZGbWC+XnSgWTDvviiak6ztkb8EudvIqGa1cq5b22pStYjR7YT99QUTZkLF0hHtbWqke2tW0roujEGR5Av+f3c3FQK02Mp/Ox6M/ovJTG1GsbMDHB5PorFyRWqu+If8Dp0wioF9YKhpiZuoHDK+XlufFWV++LdHlaktHTp3Y0K7TRFBsjsKKwfhNv6Tp8mgqTT6tAbG8kMm5v3LAy6b23+SIRe8FBoe8hYHLzRKPFGiKypSYVtpShNjzJZTcbOTqbyDg5SIPj9lODRKAXI+jo/5/fz+zIB6NgxlYQE8P/KSgrQ6mpGKzY2+PlEgmt8+mmaE3V1xC2ZyfH442Rs3d3KOS4NZoqLST9TU6ocWEqOr1yhib61xfVJuNlTfo8Qit8P9PZiqbQaF2ePwyjyo6ZwBXerurAwDLS3RzBY1IPulUmqPjU1/BFHl4Qa7EIOhrHdDk+nafsXFnKzgsFMb7+1Pt5p3XoUIRBQyR8NDaw+tPOgHz3KhiWGoaoYFxYoTazg5FuQKTLSUTiZJPJUVjoX9shhRCLAH/4hryGNWMUfsUdh0H2V3msHFy6Q+UpDGoCEMTJCpvnaa6q7Un29YqTT09sbc9hda2GBRPzoo8pOHxxUfpmCAhKY9Prr6SExy4yN6mr+yHuRCL938WImPs7Okl76+9XIN2lc88ILwO//vsJ5a2Ztfz+fsaKCOCLdiSsqyDR2lc0bj6P/5RgG3lpA4FAYyw1RrJdHkEqRRhsagOfPxFWoym5T9Hx/ievLxJr6ej6sHiIRh8duJfTQEDltZaXyrs7P02FpZQDxOJElHleDVKV02roGJ6T7zW/IrXdaQ6GvZRcx/9/J9F47KCggouvTef1+ZebpoS6naj6BXHtCrq5uF0qAmrEhHbeHhxluFCd1R8d23Lt1i3Rw/TrP3OfjfQoKlN9Jmv5avfviWFxc5P+5lBxnxbNIBHcae7DyMWBhQ4UrS0ro9zh6FEqivfwyCUcfIbayYh+uaGggBysupre7ooJMQneW7ba91cWL3EQJv8jvixe3H4AQuheic0oSAewdetK2qa9P9Yk7dsw5hPeA0n33NfFLD8jFRZ7H2hr3t7VVEUouae1eE8/kmnbnIwJQZmwIsczOKt+VHQg+TU9zHeIb8Pv53qVLqgHOnTt89vV11X14eVm1APNacuy1vsHaPbykRDGo35rfkQhVqZMnMyViWVlmiy/9dWnIKdzM+j2919nYGB9MEo68SMPJSdWEQSAUynT46OCV6LJNkbFWnsXjdAym0+zpD5DhxeNUzdxGne0h7Gvij8VUL0mpnqyoUCaWgNczzUf5tz5jw1ZK3gerxBVzYn2dhLu2xmuIs290VPmX5ueBf/kXahOGwWefnGQ+iIQKFxaIVwJ2PiOvOQAyS1K6h9+7p5yYujlv3ggjWJxEU2dACXC9xZddOqXe/VbXGPReZ5ubjKsWFKgwoFuyj4AM/RSJDyjvqldwUo3cMhSBTFOmooIpqOm0CvEYhhrjJX3cCgt50Hamxh7AviZ+XWAIsu22OCyXgh07nHCTktXVxA2pHm1oIIFLQs8zz5DY33+f3nsxmYeGMud5rq0pM6KuTiWUSfPR9nYyCBkI5KTBZKtv0J9RUo1lvKBd+XSwK4qtK70Y6AOOni5DqDCpWnxJ7r94KGMxLvbNN1ULI+vQUZ+PF759m9+TzLtsyT4Cjz0G/Nf/yuvU1vL76+vA5z+f/YBlA9xUI7t7C1PQTZnr18m4ysvJOcvLiRjvvMP1SHLT6iqdVX199rX/eYZ9TfxOppdMrnLKg99JQw+nzD8rTjhJyWeeUT4vKdx5/XU6EuvqeK833qA0ra9XfifDIA7pTuelJTX4V6S7afJe4uvwUnLsVt9g94x2Pjhde9hCBJvdPSgajOFu/xxCZ7Ubi6Pk9m1KvGiUGyQdflpbKZX1dFjpdSZODUA1EvVShTU9zV5t165RuygvB/7dv/OeL7+b7r+6ZJIBpAA3ESChS5sovUW5TJZ5WIjfMIzPAfgLAD4A/800zT+3vB8C8P8BaLl/zf/TNM3/ka9FOhGjbnpJ05ixMeLFqVOqJ4O1hNatfsKLHZwNJ6wzNiT0KPM1Ll0iwxc8lnySe/e4rtOn6ZOS2ZfiABcIBonPdXXqtdVVXkdC6140GDcfh9MzWpvvjo8ziUlgMxSB2d2DsTngqH5/fUF1dbzgyAgvsrqaOUFVsuWEO+ltxr0k++iHVFurHBOTk1SrpBQ0W3un3XT/1Tlrc7Oa21dZydclz0HGeX0IkJX4DcPwAfg2gM8CmABw2TCM86Zp6qlP3wJw3TTN3zMMowbATcMwfmCa5vpuF+hF85LQaE0N/SkyFl2fXCXZkdb6iViM9RP/6l+pWHo2Zp8NJ+wIb3ycwkfOWxqRrK3x/fl54vT162Raeqh4akqFBcvK6BOYnFSzO8NhapXSiNQruPk4nHp19PZSi5GzGB/nc3iaNwCQO6+sUP2RoQgyPtn6ZeFOVVW0fSQBpqHBPfZtV5EI8Bp6//VXX1XhRjvkMgz7UJJb6addu6eKCraH3tzkmmR+XEeHmkSUTnNvpqcpuYaG9twR6EXyPwnglmmawwBgGMYPAXwJgE78JoCgYRgGgHIAcQA5joi1h2zEGImQwGVYzFtvKWEyPp5ZhQqomZA6E5C/NzeJU7okA7Yzezt1eWqK53bhgv1ZLS6qITT19fTzJBL8TjhMnAoEKJhqajKft76ez1NcTGE5NcVsxuvX+f1EQtXR2CW/uZkxThqCXQg1FqN2ofcm2NrimisqPJTmx+NU+YWA0mmWMR4+zIeUjDf5ss6dUinl0XVL9tErEgsKqGL196vKLOm/HgiQOAGl9lnLIe1CSYcP0yHndF9dSt1vq45Uivf9kz/Zbj+m02qsd1kZ11JTw/wEfYjDHjR38EL8jQD02MgEACu6/CWA8wDuAggC+APTNLfysUAvmpf+GdEQRaUGMoXJ1avUOoeHiR9AZv2EUwGYzuz1piKzs9Tm7txh628nUyEYVENoAgGaAxcuqCw9ielXVvKauiTVo2KA8g+1t6tkumSSZqLVt2HXmi4bHjmFUOfngSefVFWvUnY8O+sxg/CUEBQyAAAgAElEQVQ+Ua1cHcbk5CqSG1Wo8B1G7cgUyo4c4WZYv+wWV7UDsa+EQ4XD3LBYjOqUHvrb2CCz6e/n4QSDKg00FlODQqyhJGC7U8lOStXXuyf4SFHRyy+rCT9SClxZqew+T6WYuYMX4jdsXrOmBT4P4D0AnwLQAeBVwzB+ZZrmYsaFDOMbAL4BAC0tLZ4W6KXphtW86u8nMhoGfUbSPLa9XdVPLC9TfV5fJyJPT1OCLS3RL1Rf7yzJpHxXsvjSaV57ZoaMRTc15KxaWngfGULT1MSU3sJCnrlI17Gx7fUw1sIw65AY3UwGMoWQNAWxM4PsehLq1bXd3Zl4LyFLa3u61lZeNyteLiwgUVqPGyhDhTmOEBJIVtTjhnEEhz/1Va5fFr9TdVe3r06e5P83b3Kh1oq7hQUeelOT0kTu3aPabQ0lSeXi668Twazc1IvK6ARLS0oSyf961lYu18oBvBD/BAA9U6IJlPA6/BGAPzeZK3zLMIzbAB4FcEn/kGma3wHwHYDpvV4WaHVKSZRIGHg0mvmZigoSosyVbGlRQ2MHB2mvvvEGpZnPp5xWjz7K/S8szGy95iTJxDEnpkYo5GxqyDrjcUaohKnE43xdl/LV1ZSwTiPlvTBDXQgtL7ubQcB2jfXqVeLfiRPqvpIyPTCgSt5zbk8XDmPi3SQKq0NAcwhJAAWpFWCzmMwo6sHbmi0Uo9tXABNv5ue5YJ+Pqt3sLAlZbMRAQMVnxdaXXINAIHNcd0EBuenVq6o5hN+fGbJzOhgrDA1RggwPU+JsbvJePh9/67MJ96C4x0tV32UAUcMw2gzDKALwNVDF12EMwKcBwDCMOgCPABjOxwJFyt66BfzTPzH9ur6eTFYvptIrNmtq+P/nPsdKSznfQIDM/Q//EPi93+N+Ly6qGPrqKu/V0MCzdysA04vSdFND8vGtZ6WXft++zecJh4nHk5OqyEuvALSrPs1WpSe+rvffV4VF2dbmVl0roFfGSkFSURGZQ2GhR7yMRpGaWUGZycUXpFZgpFZgRKNkHtaFyN/irXWqptPHfYl9de0aN0GcEw0NPNxYjMQvU1EjEdU3IBAg95UhIrK5+rju8nIS+9QUbXVp1zU5ydecSi+t64zHVR74sWP8/O3bZACrq2RYVVU5lGLmDlklv2maacMw/hTABTDU913TNK8ZhvHN++//FYD/HcBfG4ZxFTQT/oNpmi7F3N4hHqfEPnJEJXg5qde62nnhguozIapreTnPt6dH9W/4/vd53aKi7F2knabq6qZGMLjdbyUg4cl4nOvXNZnVVV5HtAynULSbhz4epwP77l1eLxAgMykr47M7rc3qV2lupmCzq3wEiJ96rYTnorP7i08Ox1CemMNmMIy1ji4s+SMIl9ssBMhUU7J5f+NxEuH163xwses2N7kBw8OZ6prU3st9VlZoIkgZbmcnY65vvMFNOX2aCHXjRmaDE7F9KisV17aWXtr1XtPzwI8doyYxMUF19aWXyKT2YtLQffAU5zdN8ycAfmJ57a+0v+8C2JOsBL37rWhekm129qyzKRQOk7DEox8KkWCnpvi+9IL02kVaNDQ5r9LSzKm6knFXXm7vt7I+j9xPIkG5FH45eeivXCH+NDQQhzY2lG9DHJp2a7OaEm7j+IDsvTfdTPX27gh6N3uwbMc8Yllsmmzzznt7+dCRCAnvzh3WGxiGilM+9RS/FwxyU2ZmKB1OnFBdV+fneeAidZJJSuULF2i3SU+2QED1MDh+XLXbAoBXXuF1ZmaUQ0ef837jhiodLi0l4hw7Rp/D2bP21V95hoc+w09SS69dIxJL7Udfn7I79bJxgWiUCTx+v5r2PDJCc0HaY/X2qmpTwFmS6Rqa5O0vLvIe09PKaff009mZ827yRrLB9eukk7Iy5ZxbX+f6nYbFAN7mGOpgZT65DEBx01zmq6O4d74XiU2grLoMLdVJhHxZHB4SY5XR4+k0QynvvEOVbmGByR9DQyTC997jjPbmZhUOCod56AUFVAkrK1UlYjpNtVG45/y88hrX1CiVUaqyLlwgkr7+OpFNnEG9vUTYoiLV0mlqir+rqx2qpfYWHnriD4eZJl1aqrorp1I8q+Fhalu1tduRLRLh+S4vqz6Mjz6q8kkEfyQS4JYKa9XQxJckrcOtU3XdfFK5tgy3gtdS7/Jy/jQ0cL/cmNJuC5pyzYK101zicaB3MIJQtAeVszGkZ+dwbT6Moy92oVJ3eFi9v6J+CfHeu0eCqqzkYd+6RRu+pkYh0yOPKHXt2jVKXLHfxO6TSsRr13jwlZWK0Rw9SoJ+6im1jl//mvdYWaHaNTdHxJSahKUlIoxUPXZ2UoL4fKrJpF4t9QDgoSf+aJR2rDhSZfqxxMVPnFBl41Zka25WKr3ukZdSV2sLeicYGyPDkM68kp1qrdQDskvB3cyryHZtu2Y0d++qRiVuzGI3JeT50GaEgRQHIkg2cCHpFWBwFugR7dfKpaanSfgNDaq1kgxJkIyokhLVrtnnY7GPrq599av8rJUbSyWihN0Mg8jX1kYV//ZtZd/fvk0Cl3jorVtEzps3ed2SEqVuSpgqFKIPob9/e7XUA4KHnvjlvKWxa2Wl6nhbXOw8jgvIJDTrmHnAm8SVpDQx75aXiQ/V1WompQ5eMhJ3KmWzXVvi8oODFCoyz6C7O4ee/R7ByfkpkGtkyjMD0bmUdNQBlNe1rIxEXVjIsMfJk6pKMJUi8qTTSl0Tjio3FG4slYjSx1CGioqK39Ki1nHjBh9eVMLKSt4/maSan0iQAejz4wD7TjEPEB564gfIIMXkkmw3L/XqOqGVl28fM+82pEPUarHth4eZC7KwQMExNQX82Z9tJyIvSOxkM2dT5bNde35eZSiWlSnfV1lZ9o4+uYCsVwqkJiaoWX3608o/Jnvr1UzZkTmkf0k6rA4OkgjPnqVNODtL5NnaojR+991MJ5Fbbb7fz8+NjlJNP3XKW089acmUTivHlMw+cErgOBjXZQ/6+YyMULubn+c569N2xCSw67vgpczVTq3+xS94XfEzBAJMcTVN4pXE6/V6/lyQOBdnWbYS3PPnSQOtrcS3d94ho5PkHiA/zkXxgUgkpa2NAu7ttylgW1oyIwCBAGnm3XfpBBctxeqgzdkcsn7J7+fDy+ZVV3NTlpaIFFLTb3USWbmxHto5dEh5+ONx9XD64q32ls+negfMzqpGjisrlBx37vB7x47xd64jo/ME+6Z1t9jLgQAZsNRWvPmmSs4ZHHTO/xgaYpTltde499XV2/dVV6ulr0R/P+8hxWGlpVT3Fxbs75Vrq+xseS06uF1bCFIa48o6332Xa3v7bf68/rpqA7ZTWFhQBVKlpcoclgEqeihbwrTXrpEmpK7CmvOiJ0E5tdYHkDlYQQaD2H1JEkSiUapAq6skvMOHVb683SbroZ26On5XZvbpD6dDdzevu7nJzb11i8wiGqVP4sQJdc/xcZVQ8v77wPe+x2lBXpEgj7BviB/IJJRwmNl7585xH2dnnfdPmriurJCAV1b4/9BQ5vX1ATT9/VRnjxyhnX/jBpFYGoUII7LeyzMSW+6pg1PLe7dr6+3DAOWbuHWLTr9f/pIO6eFh4t/3vrf9+b1COKwGzAhY+wnozyYzPeTHaQiNPJ9jZqVdhp8QuPVLgiwyEKG2lqq/DGJw2mQ7Llpaqspr7SASoTRqbyezaGujNhAMEpEkpDg7S6ki7Znr6shkXnlFTYcR2KNBHTrsC7VfIJvN6/TetWvemrhKYtClSzwjSRU+epTm4tAQNT4p/HFaRy6e81zNBKdrW9uHDQ9TYNXWqjTme/fIKNvbuZfnzzPV2YtmaZ1CLG3tpW4gldreT0CeTW/EI+bvjsyPXGKKgiyJhAqjyfy//n5ugj5wVP+elyaMVrDWlvf3q6oxyZN+5x0ygMOHqUVIxlo8TrW0uzuzh6FbS6o8wL4i/myE4vReX5+3Jq7V1dQmZ2dJNGLTnzvH/xMJ4szWlvs6cvHd5GtUvbV9mCSQ9fQQb6Wib2WFOCWdg9ycf3rjXOm8JYVsDQ10Lq6tcd8kkqabN/JsTg7znOtUcmk6KCGIuTkS2sSEqnIyDH7u6ae330PnoisrysNbVMQH9bq+UAj41a9U3cDt22qmnGGopKOrV/n+xARtp4UFtUGmyUPcIz/AvlL73Wxeu/cmJ0mws7P0xywvq2vZNXGdnaWJJpV1jY38zOwsf8bHqS1UVPDaduvwUnuiQzYzQTdxvVynpoZr7uhgDorkJCwtqTZygL2aroP+HDK5a3iYGkQgwGft6eFYPil7t+KlrElShTc3GSIXh3nOiWzC/XWwNh2Uja+tpaQdGOBhLi+TIQgBNjfbE5EgUiLBw756lYfc06PacGdbn5T/ytiymRn+nD3LzZN6g4sXuZ72djoqZ2ZUh5fKSuUn2CM/wL6S/Nli5Pp7BQXK+frMM8CPfkQGcPIk931+fnsTV+kwJaWwDQ08k3ffJd489hidjYWFNA+kSYu+DqcpzF56PlohVyewfh2JaqVSpINr17gvjz6q0tHd2n55KQvWG4y4nZkUUYlQ3twkA7h8OUdtNpemgw0N/PzLL/PidXV8+IICcj07lV/AMPjQLS1qyq/Y524HKesbHVWTdmWTKyv54M88Q41ANJPWVq6ps1Nl+zU0kCk4DQDJE+wr4gfcCUVvn3bjhiLO5mZmTb71FkfIP/kkCV+394eGOG1pbY3EUlVFZiCNYJ56KlNTsGvSYtc6zql+3otZsJPmsQKnT6uOPOk0Hc6S7yD45ZZGnkt3JDuwe0YJt1onKHnWZm24/3xjFwZjERS8toCSxqrMPJq1Naoa4TBtb8mfd1L5h4aA736X9lAyqaq2UilyvePH1UHazVzr6FAagiBBRwe/u7ZG9aurC/jCF1ifXlCgcvulHHh1ldeScJN1lkEea/r3xay+XFppy6yEmzdV19tUinteUcGzs8vF/973eD6zs6oaU7L4mpvpo7GOZtOvJT6bX/5Sdb5pbWVrL79fMQo75HcaS+c2O7CxUY0KkwpF6/ftBoN47QmpzwPUe1kEg9RS3UbpuT1jLLa9inIn4+ys96kZ7sXa0hpWzAC6uu4zgF/+kg8tKb96Xfe//teZF5OQ0O3b5IrikX/uOR5+IqEKcmTaqtMMQOswRbvhiVeukLGMjJCBBIP8jjgcJQ3ZbhhkFi75OzOrL9dW2v39PBNp2xYO81zGxsigpXekjvgS3ZHBnffu8Tuzs/zMnTv8Wx8lZ2XCv/gFQ2nhMBnD+jrDuEVFPG9x4OUiza0OzkSCOOPzcU3S36C01H6AjZ2W5LVK1K47kpeS5WzPmM+qRv0+ay1RlPX3AgYwNlaGE+1JNSlF+p0BitNY4eJFHtbGBpGhpYWM4PXX2S21tFSZGC+/7B4+sks+OnxY9eWT0dsDA7TzCwpUYVJnp0oQOnFCNWmUWQYfJW9/rq20l5Z45svLVME7O3n+16+TQH7v95QTzi5GLtVwS0tk1qIeX75MLewzn1Fj4nWP/G9+o6I95eWMrd+7x6Sis2fV53JBfisOSelxcTF/ch1g4wROGsLUFKMdhkHi1+cbuIHbM0o4dW5O9cysqnI3wZ3WnGliRYCuHhSPxbB8Zw44GlY9227cyByXbBdKmZwkwdXVkdB8PqpuQ0P8/le/qgZrZpsBaOeckhFcIs1qa8kMXn6ZiHfiBEOJ16/zgRYXnZs05gkeem+/lyQYqxP4xg0iWGUlz/GNN2junTypvNW641QQXhxhpqneW18noXV38/fPfsazskrZVIqCQ2Bri5pEVRW/J556N4e1FayRgLU14h/A5xEHdm8vtdSxsdz2FtjuJJ+ZoUYrnv36ehJmbW12Z7eA2zNWV9MJLyPFFxf5f7Yomt2ahQlKd+44Iphp78HWZ55XzRaiUcXNJCPQjogaGvjwoRBTFX0+Lrqzkx7Lz35WfU9mAOpgDR85ZSxZM9W6u+lLKC/nvYNBXkufsroH/fuAfSD5vSTB6BISUK272ttJJDIT4e5dJT2lQ7N83zpia2VF4Ynkejz+uEqUseLP8eOq9Fuk+Ooqr6lrK7nG9XXVXcLTIyN8nnRapapPTW3vUrSTSsG5OTLNgQGVzpyrdpHNKf/EE7yeMIC2Nu57rlO0OjtVG/GSEp5ta6t0BdIeTIhyZcX5RufO0SMsElZ68507t13KnztHDglk2vx2MwCtapV1xJG1Z1pVFaMF1dV8fXZW1fnnGR56ye8lV16XkDL+qrVVNVZtbOQZ3L1LKba+TttZHGnWGPknPsEJPj5f9hRWgc9/XjGquTnV6/HjH+f7urYiRS6/+Y29FmEX29d76Tc28lnGxni/wkIyBJl7kS23QAerZiXZeHr6bjpNPHz/fara2a6bLQ25vp4E+tRT/F1fn1smq6xZCvlkqvHamraXueRNA2QI3/ymmp5bUkIiFweR9bMvvaRy9QMB5ezTwU6t+vWvgR//WKX9Ss+0SESllH7hC+TkUhQUjXpXu3KAh17ye61/1yXkr36lJiGZJv02iQQZqgy8TCYZETDNzFAUwD3u6+N+373L99bWVOhva2t727CODuDf/3v6fJJJnulTTymhoWdrBgLAxz6mJKIOTg5Ovz9zhoQMejVNrs2uS5FM2LGLSIlAku5X4swUrVNvV3bpkspEranxFpqTQiwReqL17LaTEbC9klcyF4uLlVl9904YK1eTKKsJoOV+pCzrjU6fVupNtpCIlx57uvaRSNCWqq+n+midSKw78155RRVBGIZyGn4IQzs+dMglV15698ko9EuXKM2iUUqIoSGeb3GxYsh6BAFQxPfCC8DPf04JHQwqbWJ+Hvj2t7eXplZWUv2XMlrriGwZyeXmvHRycL77LhmGPo58bY1aDGDfpejqVTX8RVrW/eAHFCzT07x2Vxe1oL4+4r5onUePUpu4dInab2srn0OS07LhoRMTy9Yz0Sl8bj1jJ7NC7huqjaJ6qRfJRaD/ahm6Oiz9AK2L3Ytaet3zKdVNlZVq9LKdF18eQNpTr65SSzh+XNmpeYJ9QfxO4HRmL77IopXRUSJOYyMR9tgxMtnxcUqwiortTS4ARXyBAPCVr1D9TiZVFKCigkQm8/2sTOPwYUrlWIznJSXgMnFaB7fRY/pngEyJ2dxMR6b4M0yTtv+TT6rP3rpFBmiNSP3jP9IPJdfq7iZB9vczMiFdo2/fVpWtoRB/+3x8T58abAdWJpZO8zwGB3kOdkNRJNRuZVYvvaQmfMtZd3aqNcqZxGLKoVsciCBZ1oPi8Rh8M3MYnw4j9GUblXEva+l1FUXsqdVVZffYefFjMTVPUG8YGYvR6ZRH2LfE73ZmHR2sVpOe/BIP9/ko8Scn+R3dj+NWHSjOtelp5QA0TaViW5kGYN+S24vK6xQKO3o0s8V8Mkk8qq1VdSGrq5l+EV1LEAiFKOl1JhQKkQHMzam1dnSoxrcbG3zm5WXe5+5dRqYkGcpOWOpMTJKESkpUUpueJCRn+cMf8v3aWjW3EKCJLCXUVVXcnzff5H0XFrZPzpLu3JuhCJKhnt/SWJcdLe8mjTIb6EMd791jGE98CYC9GSIPdO0a/xfbbnb2wQ/teJjAbp6c05lFIpk9+SUCMD3N71nHttlVB46PU7qOjFDqiwovzVqspak605DaDmnaYh0r5uTpl8pCPXlsYIDEPzFBHJDZfh//uHJkJxKZ0rurSxU2CRHJ5xobvdnd1gI3mQXg8/Es3nuPpoI1b0K+K0zs6lWaXBLalvteucI9lfHqiYSaYHzkiIp+vfkmfTW66SyFRrW1mXMIq6uJA2fOuD/bb2Eve6lHImqoY2EhEae2lgjl89nnHITD3NCuLiJgIsGH3YOuPg+9t1/A6jiNx1VTTwGrM1ePFEhI6fhx4I//WA1rcaoOnJwk4W9uksBKSmjrp1IkaqkZEMTSY9si6ZaWSGhOY8XsGn1IZaHEwAvun9Dly6q3gN/P9YlGCCjp/eij6prnznHN8/N0UsrfX/mKt25D0Sj3qb2dhC+NQCRLUkKCt29TUL38snJI6/F8w6Cv4MYNRYQyQ2N4WJkTiQQJ984dMgZpu15aqjQVMZ3DYeUA1kvmo1Ga0m7jzPRISqIgh8SLnYBI7NZWPmgyqcqE7QhaENDvJ7KePMnvSoJHHmHfEL+13ZU+T06IzdqiyinkJPUXdkQo35meJuJWVlLFlQ7Rd++SqK2lqU6j3Vpa7Dv9OHWrkVBYczOl++3bvOfGBglAxnmL000HK846RaROn/bWbUjWWlTE/ZB8F7+fzCCRINHLjEohrHg8k4nJrIpHH1XMWSIRkqsgE7WmpsgIlpaoWdy5Qw1H6HNpSbUll4iEPoewsND52ezKrS/PR7E4mUPfNa8gN/vRj+g1npigxFhcVNVnbqWZXltB7QL2jdrvNE9uZER1lykszN6bUcAtghCJUGJ//OPK3gVINOKMSqeJrHYlxTIlSqaQ9/fzzGX+o9s5irosYeCRERXuXV5WIb7KSiXh3JKFnCJSTqE4OwYQCrEITvpSVlZyLVev0icgiUA1NYrJLSyofaupIfMwTe7DygrX/vTTar6FMJFIhHu7vq60mU9+0r4F+xNPkNFaZyQ60YqteV8fweBqD7qLY2rG3o7qjaHs0uvXmRQhhSFbW1zo4cMqnv/++9vjxfqmP4B23vuG+K3OMsmNeOstEqhe+Wg3wCNXKCjgGUl33pYWImVFhbcxVmtrar6gNNPc2spkTHbRChlSMjGhaubjcV7r+nV681dX+fn2diUgcp2yk4uT2+qDqq3lPaem+PlUigyqooI4vbXFDMqhITKKQ4e4zliMTFGEWWEhz+utt2iOlJeTwZSXc8KytMD7xS+o/Swvq3F6p05RQ5Lwt1PBkb7HN25sZ45lZcBcKuKt3tgtJCgdf5eWeFChEDmdzDaPRFQVVmGhCk9kq0/fwzbe+4b4nebJPf749nLbXP01doUt8/NURTs76ajt66PP4Otfz34O1p4OAAm2pSUz3DU/TwS2El9BAb83Okoc8vv52Xff5Ro2NvjM1vbXds+Sj14BVh/U2hrNUL9fOUABqvamSeIfGCDDEmdjIMDvnDqVSWdTU5yelUrxGR99VA0alTOWCsZAQHW40sexy4xEu3McHFQMrriYvoTubofqTLdNkUO145aA6vi7tUXEEUklHE6cLocOkTNKqCLboiW0Ia2R88gI9g3xO2X6xWK7n31nPdPz57nHMgGnsJDE1t7uLf9c1qr3dKipoeYn4a6hIQoGmf+n41kgQAFx9CgRNpmk8JiY4DVeeMGZ8HOR5l7b4RUUKEZ1/LgyMb78ZT7j6Ki61uoqz2V5mc8qA2uCQTV8xbpHfj+98/okpMuXqcnJNaw1BnaNVJzOUVqHT07ydyzGhKltRX5um+LGGAA1zFGyqmS8U0kJ1ZJkkpsnQyCKi5lieukSkUPSSGXR1tCGnredJx+AJ+I3DONzAP4CgA/AfzNN889tPvMsgP8MoBDArGma53a9OgvYmUK7bYBpd6YyiUbmAAIqHyOXteqhRlH/ATKDpSVV52EdqHHsGDsO1dfzvj4f8ePUKa5tYECF/3QmkIs0NwxqM4mEal0mnX3tCEkGz4gjNBhUPQ6sjWsk5DY7q2LuAO9TXu68R3o41u8nsxgYUJqFdBKy0+ycznFkhEJ3a4v3r6+nJjE2RoaWMRfTLRFDxkVLGCcYzKwOE++j3FjstePHyQzef185psrL1YLr6ngY164RaQX5GhpUaEMePJ85CPBA/IZh+AB8G8BnAUwAuGwYxnnTNK9rnwkD+H8AfM40zTHDMGp3vTKP4DX33wnsmL0gLqDi7Ddu8OwLClRZdzbQGdPiIpn96ur2zk4CgmfyvXicji+/nwQ1N0cEfuwxfv6997h+KRX3GrKWIqF79/icMoQklSKeXrlCHJTsOUk0Aoh/Mnw2mSThHz1K/NRpRkynbA5Ja9OQtjZe/+RJ0om0ECstVY49p9wYu3N85x0y8Tt3uMaSEpWqva2a0E2S9PVxYyQBY3WV/586xf8lISIU4qbJvDRJCPmP/5EqiCSpPPEEOZNMPQGIFDry6VmB1umyeQAvkv9JALdM0xwGAMMwfgjgSwCua5/5twD+0TTNMQAwTXM6L6vzCLtxjtoxe0HcyUlK4LExqp4tLbS74/HM8u5s64rFKHkkTHX5Ms93cpJa4NGjauSYMK6vf11NjJIy4du3iZ8S8zYMpZ739HgvmonFVFfi1VUVZpMW3L/+tfJ5Ce4NDXF9H//4ds1COvwCmTTT3Mz9AqjNOIUTOzu35/NXVpIOq6p479VV7mFDw3YmEo+Tnqwt76qruTaJ4BUVkZm2tyv6zKAjN0miO5V0MIztNeGJBAn97Fk+uNVOv3CBHH16mveqrFRxzooKXmtycufTZT2CF+JvBKB3uJ8AYCW1TgCFhmG8DiAI4C9M0/wb64UMw/gGgG8AQIvEwT5kcHIkvviiQshIhIRfXq4cU141L8Enafsm05/SaZ5/eTm93T09mcQhKcpidycSfG9+np7vsjJqjCJMnJ7FTtqKlDRN4qbkJIhKPTNDQSNmSmmpytQLBrc3J5UuvtbOybW19JXYVS8KyFStI0co7UWbkP2IxVR1YTCozGNrHUxtLQnaWiz33HOqVF5oyOdT+7ONjpwkydYWVT5JcNCdGDrTKCykU88w+B07MAxqDZGIqgG/coWb2tysYrDhMK+fbbrsDsEL8duxPGvXTz+A0wA+DaAUwFuGYbxtmuZgxpdM8zsAvgOwgWfuy905OHnB5dx+8QtW76VSNNM6OymVV1bUnAdANYDNdZKSJL1cuqS84G1t6reUo+pgbeRx/jwJMRikBBsYoPoqCOzVBBINQVep5+a4R6+/zj0QLaWkRGkdEk6TzjldXSrbT1+rdNnx4nvI5qeQHyfQvy+jwX1UIrAAACAASURBVPRiOVmPhB43NqgN2GkQriAhj+Zm1Qz0vfdUhZMg1fy8CvltbHCD3nwzsweaIJOEL95+W7XqFkeTxESFEezEps0CXoh/AoDeyqQJwF2bz8yaprkCYMUwjDcAPAZgEA8BZPOCz88zNNvervLpf/ADSsXCwszJTaurfC1XzUsy92preZ5WaZvNjDMMag/xuGoXtr7O9dg1NnED0RBEpRbibmvjs0WjxN31deJ7PM73dGaxrXOO5Vm9psvvNrXeOiTHruWdFw0iK0gCxuioKnq4do0qod/PjXrtNRW+kLxm0yQR67PRdC1ibU1NPNna2u793cOEHy/EfxlA1DCMNgB3AHwNtPF1+GcAf2kYhh9AEWgW/F/5XOhuIJt0uXjRvhnr5CRV65ERniFAZGttzT370yptNzeJRyIc2tvdv7+1xQ5DN26QUAESXV1d7oJA1xBSKQowmU4klY59fVSPu7upDRQW0jchPfdmZsgA7HwfuTTs2G1zDy/fl+f1SkP2WmJEzfqTGfEnT/LGExOqmcC9e4rAZVrqwgKZhO6ckcQJgEghPc12sgk7hKzEb5pm2jCMPwVwAQz1fdc0zWuGYXzz/vt/ZZrmgGEYPwPwAYAtMBzYn69F7jbhKZt0cWvG+tJLJISBAb7++OP23v54nGbb9ftuUGsYTpe2uhNRRr/LAFcx+ewIam2NPqSzZ1UV3927ampwLnuiE0RFxfb5AKdPU7UX4VN7P34jU6iamojfg4OkCf3euYRfdxuqzdesQwFXLdE0eaiGQUeNSGmpLtvY4KHKAI7iYuXAk/7xPT3bFy0dVNraMru/5Mm2d4KHfmhHLkMunMA6QwHIHBTx3e/yf730dX6en//jP85+/Xg8UyMEyHAOH1ZhOPlcLMY6D3HgSYOQQMB9IIbdYJJkUoWXxUnptQlmLvsj9x4dVc48GYSiDySx7olXhr1b5p6PbFi5xttvZ7Y18yXi2BqMoXRtAUeD9+vIGxrUFF6ABC/dWlZWKC2k0cHKCrnkiRP8riCU20QVaeSxtbWjB/qdGdqRj14L2aRDLs1YddAR5u5d4oRTGA5Q0lbyRSYm6JmWDNDlZefn00Nily4R38JhImoolPvI7Vz2xy5jUZJ5nJKfcjFV3T7rhbB3axbrjFWav/T3A6da4qgf68VWSQDzBVVA7QZtnieeoOpz5QovcPo0N0xMg+lpqo2zszyo48fpKNHVertFS3PFHc8zyw0eeuK3qux2TTJyibfbOU2l9PXiRZ5ZQ8P2WX5WsCLM6qpq+iqVdxIVsCLw8rIqejEMfv/GDeVHcErMkZDYygqfXzrtZBu5nY2A9P0ZGVFOMb3Sz5qNJ7CXpqloVPPz1HakS7GXHAuv17dK+4oKCvTSUmDxnRjqmgNIIoDyChAxnniCxN3YSBvQNFWJ52c+wwtLymQ6zd9SwOFlMsledhaywENP/LpDR58ZpzfJ8MIUs0kHvfRVkEIq+uwYjH5GFRUk2HSa5t6RIyoqoHfsFRtSL3oJBFQpudjcTok5+v1kvPu9e8Q7p7biVhtWb4FlmipmLxWF8XhmBp++v/m2r7PBlSs0NWSfVlf5/5UrZAC7ASdp39KiajDSMwtYaapCalUTBPX1PFjrwEcdvvxle1tV9xI7ceS97CxkgYee+HWEu36dhy81EsJYd8IUrVN9xcQyDEqahoZMYtHzL6xn1NxMtf/uXUoNadYi1YZWRi7xcylYWVykr0fyz90Sc+R+H3yguve6jdy26x69tsbvS6ZbSQn3I1t34d2mUns9D6GF69dVpx5A9RH8yU92bA7b7otI+60tavWBADWrQoQR3UqioyugWr4lk+QUvb3eVCm7jXLzKuajt7lHeOiJX/axr4+2bmMjJavUWOyko7GUXm9uEvFnZ8lcZYb84iI1tMVFVVS1vJypaVh7x/f0MJVVGracOkXHsF3HXr3opatLee7X1pyHYFrv94lPUCWWWhGnkdt23aPjcUp9KT6TSjlpD66DVejkO+wcj3OY7iuvkBk+8giZZjxOJqi3KlteZphTBttkM4fdzB0rM+3tJfOWxqErK8BESRSPzfUCSQAV9yX45CQ5enGx+yLcNspL6TCw5+rVQ0/8APfR2k1GINeOxvG4Kr2urqYKvrxM5JiYoDYh1XaAc1GV3SDWY8eAP/qjTBxwqx2Qohe/n7kDbuaL9X6RCOdQVlbad9C1G8ohdSJCDEBmpRzwwITOb9f46qscshIMcp2Dg1yndAf+4AOVRbiwoIbXWsug7fwcTnMDZme3DyuRNvprazz7I0eAsrII3l/qwWoshq7UHCpawtxwvYopm01ux4HcVPu9VK8ssC+IH8hfR+NYTBXLGIbKB+/rozknY9Sk2s6pqErO6MoVVbxy9Oj2+7nVDszOej9fO5xwcnzpiK8P5ZAGpwUFiqD1Sjm79uB7adPHYmSCfr+aoWAYPI+REVXfv7bGzw0Ps6JR32cnc9hOuC4ukvGfPr19WEkqpRqUiDlmmkBiPYL0yR4MSDjzwoXswxcEnDiQDAF14rJ7mNWnw74gfqnaisdJ9Ovran5dKOTcf84O9HHcm5tEKoB/FxUR4dbWyAjEY+9WVDU/TwkiFZ16iS3gzshzjcl7xQkr4stQjnicSP3kk3QUzs9T6ykqorTr6VGScY+FDgDu1cYG7yPTkOUMbt5UNRaSSi+9CwFVVu/32++jXZSot5dMRXI4xFHa368SmUZGMrsvWduz52STO6n3MzOUYiKFrF1FDtp4EfSqrakp2mXinGpqIsLm4vXXe9FPTvK6o6Pce2nMubmphlbMzzsXVfX1EVl0b/TICF9/7jl1zwfEyH8LVsTXh3KcOUO88vn4/IuLqr1WYaGqqLP6pvYiWSccVnUSErqVNmDr6/y+5OsDlPivvcb9DYfJKOSMrL0w7aJEd+6oPhvSCkwGuX7qU2omYiqlEpmkbdhvaTsXm9xOvd/YoK156hS57OxsZleRvZwgZIGHnviFeabTatpLKqWm72Sz/aygl16PjhIZZBrzq6/ymh0dKoVXEFpKVX0+1di1r49MW/dGmybPVif+Bw1uwklP67XL7APUPuaChzvB2WiUzHJ0lPkKo6N0xkoJ9Xvv8TyCQTJmcWxKXX4wSKZmN8NSp1FppZ5KcW0VFXzuyUni1cgIr9/ZyfOVISJ6e/bf0nYuNrndQUjP8oYG+9HhB3F+BcI8r13j76Ym1QdOWqZJXbmXUKh+dtKRV+rl6+qIFAsLZARiUzs1dh0dzRwo8bCAVThNTfF5m5rU+15Cyrng4U5wNhLhHl+5QoaaSgHPPkvG/P77PPMTJ3gmfX30xxw6tL1hq12WoX7O0kq9s1O1wkun6fRrbeU119aU1tPdrTQYa3v2jItnAzstQXqW66Bv+kGcX4EwT/FUA5QApqk81UBuXmlJWFlcBP7+73nt+nrlcDpyZHvDDjvk7uykpCovJzKNjTH5q6ODzGNhQQ2RdCrYcYLdmH3WjL3xcX6/tJTOyVdf5fuG4W6+PojSXGEAIo0DAarojY1cRzyuOl1XVvJ3Msn9Fl+Ak92v0+jamsrhmJxUmbkbG1yjRBX8fq4nL0LWTkuQnuU66Jt+EOdXIMxTt8XE876wkDmswatXWpfiEt8eHSXRd3TwdWvDDjvkPnWKZ7q4yPMtK6MUWV9nYpD0oNMTabyYbvkw+3TEr63NnCFQW5uZXlxfb2++PsjSXH1/hdGXlPDcn3qK7wtTePddajPl5Vy3NEJxmoGhV1TeuaNCm4cO8f/6eqr7krvjtUejJ7BqCXK4gP2mH8T5Fcje+f3ck+pqeqtTKRKcdViDF4mpS/GGBtVyrbRUteqyNuywQ+7CQqqpExNkHDU1yns+PKx69euJNBKZcFtjPs0+3WwqLc2cMNzQoBKL7MxXNzx0ajdv91kd5Hvj46qGoKWFhCf7Kz0PAP6dSFBSi/S/d4/XKShQoctgMDPt17o+iWIA96v1fDwr0Yju3SNjkUGfss95d7xn8xkcxPkzQVRDycBbWFDDGgC+dvmyUusCAR701avbOygB27O7JicpAfTUXGvDDidC6OkhMZ08qcq8S0qUXwLITKQZGSFCuUl1NxXarm9AR4eqBrUiqJ3ZpIewpP+e077b5TLMz5PQpcv01askpmee4XM74awIvc1NNYhDhthIe/CGhu0Fc8JUJOxXXq4YbGUlmdf4OJ9F5llaNSex52VvFxeBv/s7nk1hodIajh9XGt+ONLB8lCEexPm3g5MGJYfT10d1sLiYHLyuzr7U1Zoq++STmam5dg073Biyfj2RWn5tZ/VEmsVF99Hi1vUJSEq5tW/Am2+y/+DHP545o95ajJM1hOUC6TT3RJje+fN8noEBEnI4TCJ64w33kmLRaG7f5rWsgzhWV1U059QprjWdpnZy+jTP6vp1En5/P5lFKESmPTxMRh6LqX2122PZW4BM5NYt3qepSfUnkNkCXjQwndZrl4bQefM8AsX34/cbG95tvQ8B9hXxW5mqpNzKoQiirK+rzjx2pa5eU3Ot4MSQ9euJ1BKJIuOxpWGkSFwdrI4xJy3D5+P1KitVeHF9XTmtGhqci3GyhrAcwClTrrdXdfBdX1ez+txME5G6uhaia0VOWoh0MQK4fxsb/Kyc1cYGryPzBwBnzenMGcVAxcsvA0Il+1L2xMtUIxE+tf44gr88j5FNP1oeq0ZwY5Ucqb19T8J0+YB9M6Lbbrxyby8PXkCkq/6aXamrEEQuU5Dl/jLXPR63v146Tan19NNq6lJjo+rR2NKiJI+AnQT2+aiN/OY3fFYxLwTRBTY2lPosIGm8+vqeew741rcowdNp75OfFxa2M6t0mvZyMKhqXAyDa3HramztYwi4D+IQ0MefNzWpMWfl5WQcppk5wFSX7gJ6noNEDQoLaUqcOKHGkOt74nYdIJMxlkzEUOzfREFVGFPThnKwiD32EMK+kfx2Eqimhq+fOcPXmptZ+Sfz3cfGuO9HjpAAge3aw5kz2QlArwJ00ubstAL9XgLZnLm6NPnYxzJ73ktGnN5NuLCQzEEiIAC/I30ErKankwAaGto+OKOjw9nRKVEMaSNumtm7Glu7BrsN4tBBN7nEJFhYYLZnOKzyNaTFPeC+x3orPgFrx18vZ6VrBr6lBaTD1ShJr2Jp5f7hlJRQ7bQr+ngIYN8Qv50KFo3SwaZXx50+TcTq6yNz6Owksc7PUx1/4w17IgbsvdDV1ZlVgKsetTk3Z5GbMzdbtadkxEnrxaIiEpAM4Ugm6feQPAgvjqqhIbYxq6wkA5XW5S+9lEkAGxtcx8QEE2303HwZsOlWZKUTca5ttHXGdeaMchxKhqwUS8k13PbYjqFNTVHyX7iwnVl6uc5mMAwjzbzxsnIA5v3CELs664cEHvoGngJOTSbX1qjC6RKur48Emk6r1NBkknnhIs1WVylFZMa95PQPDVGN3tpS2ZZLS3RIiaSQUGBDg3NDl95eJnPNzWXOuxP13wkuXNjeSVdGvDc3U5uZmlJNP8XbPzSkOgwXFHC9kj0qe2XXaBPI3sBUIgwSaq2r475IA9G5OX7+scfsp1PtBpz6XFqZdK4JVHq25tSUas0nTlOJ5ADOznv9OuZcHMs/70ViYRNd9bNoD86ivGIXXVV3Ab8zDTwF3EJt1kO3U+vGxlTdvmEotVlGqz3+uL0XenOT0k1Xtb1oc2NjaqyWPu/OLbQGOEul8XFGCdraSHyTk6qWf2iIxCce+ddf52tyb9kzp2w7t9blAPe3ooKhPFlXKKQqBSsqqHEJ4bz6qnOfgVzAam7Nz5M5PvFE5hiwnbYtF4k+Pc1rCrOUZ7xyRXWL8vszsyMlGiSh0N5rETS29eB4cQzGaiE+8B3F0RejqOx4+Lz8AvvG4efFSSec+MYNNX5aQKYei6MJUF18VlaoKfT2UqWVsepSTy6FWH19DA3duZNdm1taogSWIaylpdsdc3agO7dkwKSo/IGACn+NjnLNVVX8PTrK1w2D2kVBgSJewN2hJolOOkgSkIDV8SeVgoEACaGhwX5t4pjVHaReYGgI+C//hc++vMz7S9fiubnM9mgS3ssFBJ+ef57+oPr6zPfLyhhWlKKya9d45pIdKc+kM8aTz0bge6oH6598HunTPRicfXgJH9hHkh9wd1g5NbA4fZoqus/HENf0/fnBUqsvU1yXlniwKysk8KYmSi9Bto4OSu3paTKDb37TXdoYBglAes1JKq3evdntGXU7s6kpEznHx1UNvBCcdB8KhSjFr15VAyqzZYh6aV0uGok1p355OZMpWNcmUrSvL7OLULbS4PPnVV+FjQ0y3GRSzREU0JOfdpqJ55RXIde3y44UpqMnDumwR7U4eYV9RfxOMDREu3V6WnVXlgYW/f20Q5ubKb3LyigVEwkiV0EBkev2beU029hQuf6xGGu919eJdO3t/JyewWeFeJwIUVdHTWNhgUTS3b1dvbYDOyanI+fSEpmSePiDQT6L3n2oo4P74SVD1Evr8miUPpORkcxaetOkWSJDMnt71ZxJgY0Nvn7unDcHpHRbCgZ5v81NMu90mgxNH22mRzb0jEO7zE4ncDIpjx7dnh0pjOb998nYo9EHWouTV9j3xC+e6vl5NVX3Zz8DPvc5Etvt20Sa2lpK31iMCHL0KJFlbIzfi8f5dzDIQ93aovqcSmU6+wDnQRUCoqaL6iuNQaam3Ds+O4FdUtLCAp8PIEPp66NWIZLe52MHaa/ST29dbgcSHx8fV+m2hw/z3m+9RWYq+fLJJNeSSJBo3nuPr3/wgXLAbm4CL7+sqveszTVFM0ul+MymSd8EkBnZWFnhfmxucr9LS50zO92ezc6rD2RmRyaTNCkffZRm59aW6gvopa7hYYN9T/w//rEqnU2lqCYGg/TeRiJ8va5OceUzZ5Rqf+QIv7O2Rts+EFDz83TPeK5cXSbyijRMJFT57OXL1DZkXrybiqqrsj4f13nvnpoTOTjI7xYWkhArK/e2FiSRICE88giJUzoXDQ2RiAsKVJ8Aw1D97197jR750lIy4rv3ZzwXFrImwqoJSEafjCNfXOTzhsNskVZTk/mcly+ToYtqDthndrqBk0mpZ0cuL/PZA4HMcWWzsw+sFievsK+JPx6nxGtq4s/ICCV9ayulxMqKGqihQ1kZ3z95klKov5+fnZ9XvQJffJGfzbXCUvoNXr1KJNWn3lZVEVn0ohWnFmR2eQLSNfrUKfov3nsP+J//k8975kyeS1FtYHFROTEB/p6ZodSVXHxA9QC8dYsE095OgkinuTfimHzsMftOTDIN+/BhMhwxAZ55hve0Emk4zP2uq1Ov2WV27sQvINmR3d3A97/P5y8q2j6u7EG3assH7Dvi1w/wzh3Vk6+igsgiXWuOHlXc2E5yNzTwdyhEqfTGG2rwRTSaOX3WK1fX+w1KV+CrV5V/QKrSJJ4uk52B7RLKLtlHmo12dJAoCgv5fWl7vUet3n4LktWXSinJn0ySyemhUPGJSIl1IEDtQAhFzKFnnuFzSMxebGjZ86EhPmNbG5moDAW1QjRKG1+IWnI49CEmu+2REImocWXpNP1Ht2/z/85Ob5miDxt4In7DMD4H4C/AEd3/zTTNP3f43BkAbwP4A9M0/z5vq7wP1gO8ejUzHl1eztc3N5mcole1AZmS+9w5EvjiIiWxIG93t0o3tRbHWNdhlSA6wYrKPzNDJvXFL6qqNOtkZzvPsFPvRwEZwGGdKSB173vR+FVU97k53jMYVOFOGZxSoiW2BYPKodrQQFNMuiQfOqSSkiQ7UGxoiaNLjD2bxhWJUFM7f56qvrTI08Ox+eiREI0C//RP9HHMzKhmIjJ/oLvbubT6YYSsxG8Yhg/AtwF8FsAEgMuGYZw3TfO6zef+DwAX9mKhQGYzz2vXKOW3tijxt7Z48MEg8KUvKedVNsl9/jyvc+gQJfLoKK9hmkzqsB6kmwTRCVa6zpomi3Okc5O1UQVg70NwyqkXEA+0PlNAvOrPPKOSUl55RfWl2yki6g04JBpgmmrIRUMDtZ3ZWZ6BPpdgZoaSfnaW5yQVdM3NjEZI+bU0PhkdJVM+eza3NuIdHXTueZnQI7CTcNzkJM+ltJRMTKYkT0zQl3H69A67Lz2gdt06eJH8TwK4ZZrmMAAYhvFDAF8CcN3yuT8D8A8AzuR1hRrIaGuJu3Z0UJrEYiyCOXmSBPzJT2Z+z0lyv/02r/PYYzxEyewbGFD+AutBukkQp5DPsWOqOMdusrOdRLPTWCRXYGWFUsc6U0AawwpzFM/38DAl7k5MAp3ZHT5MBvOLX9DB19rK+62skBAaGmhuCd5WVmZ2Sk6nyRief54MS5y1RUU0HcRBWFCQ2VDTumanIiQ3u9sw6HfRU75lEpDdM9vRYSzG9TU2qopGGSiyvJxZUp2TZvEA23Xr4CXDrxGAliuGifuv/RYMw2gE8PsA/ip/S9sO4TA3U7y6Mt46GKSE4Vrcr6GXBst01qUlSphUikzg5k1+trNzeyaZXYmrlNDaZeetrJDI9ZLfxx+ng8yttNYuo/Gzn6W3u7hYNQ1tb1czBWZmuAYxCeRHH2iaK+jMzjDUuKzDh/lbOlCHQiRqu0rHmhpK9aNHaf40NfHz0SgZr8wrlDOtqHDO3pPQ7soKCXhlhf8PDbmf+fw8TbyiItUNeGpqe5amU+m45G5UV5NprK/z85LvsL7O93Swllbb3ujCBcY8NzdVs4Tbt8m9X34599TIHMCL5LcjJ2s10H8G8B9M09w0XKjPMIxvAPgGALS0tHhd428hGqUaW1dH4hobIyGcOsW9kzCeG7fVkVmms1ZX87fUdPt8qnOMgKiIXnriO5kY+fAGyz2knbjcyzC4XmluKdqA7dSZHMCqLou5sbioXnO7tqxX7ygkMXpdk1lc5FmuauOw7a578SK/J05T+X3xonOeQixGBlVSQq1rdpZ7ItqC9bNumt3GhhoeI8lV6TSvbyV+x5CwnfNqaUm1gJYuq9PTe6oBeCH+CQB6XloTgLuWz3QD+OF9wq8G8HnDMNKmab6sf8g0ze8A+A7Aqr5cFyuINDxMSbG+Tmni9ytpnA3Jrf37+vuJFFtb9CrX1tJ8EPtavNEzM7z/kSPuCR35Cvno+OFkv8u95LPt7ZSAW1s0Xdrbqdnk0rLLClZmJw019TRlL9e2Y4zSbDMWU4lVXV2K6VqvG48zvz8Y5DXq66kB6U5fOxBzcXRUtVAX887a8dfNN3DmDD/f1cX7ymTl556jABocVOXlriFhK4eRkdDiHBL7qKkpM484z+CF+C8DiBqG0QbgDoCvAfi3+gdM02yTvw3D+GsA/2Il/J2CxPLFM9zUxMOSg5c6bInxStmsE1j793V18dC2tlQXYIDEtLioSnwLC8kYBgcfzDw7q3PTzX63Rhn8fvpCJieJmF5bdtmB1fdQVUUiamvzVjegg84YrXb1F7/IvdU1A7smJ6EQnz+dVolaEk1wgnCYzFNPAjKM7Z165bNeNLvCQjID3S8nGaRZ8cLKYZqb6YD64ANVjCKxYulZtgeQlfhN00wbhvGnoBffB+C7pmleMwzjm/ff3zM7Px7PzCcHSIxVVfxfylk7OlRl2ugo89SdQHLU43Hua2EhD0gfrgnwkF9+mZ+RZJ1QSE1W2uuEDr3l9tYWw4XiS2hqykRaa5Th7Fk6pS5eJE6JUwzwPndPwCqxa2q4v7thfnb+rWxMVRjc008DP/0pibeoiK/L+HanZ7Oai5IHoHfqFciW1OWm2emamHSUtt1nK4cJhSh5amuVPXTsGKV/LJbbDPocwFOc3zTNnwD4ieU1W6I3TfN/3f2yCLEYN1JvWCm94iSUJqmei4tURdva1Ngz5+dx/x/gYTU2qpbcAvmu1nLyLAt+TE3R5CgpIbILw1tdde72m0iQmB55hCZCMkntSQZ05OpQtkP43fSncLKr3ZiqMLhAAHjhBdrusi9f+AK1P6uzXJjJwgJxZWlJzfjr6Mjs1Gt91p2m6npy3NtxmFQK+MpXMhM4Uinlxd0DeKgz/KRNlGlSxZP4ammp4tj19Zkqn7Xoxkpci4v8/JEj6jNOTsK9rtZyQxTBD93Zu75OpN3YyHS4WXFJ73Mv0Qo9OxDYWZJLvmAnMXf9LCSdW7oTSTTD2mH4/HkVd29vpyn0yCOZ3XqsA0i81l04gadkIjsOI6EdcWBIIcUehvseauKXuvBYjFK9vJzce26OZbuhkHN/+95elZQSjaoDlxg1oOK9FRX2iLfXk5OyIUpPD23VsTGaJ+3tqsBHb9hpxSW9zz1APJI059JSZcLsVotxy0txe28nTNXuLKamqBVeusQzbWlRzzw7q6JngCr1np5WjUZ1/444Vr3UXbiBU2bm9oQxizplbVt0+DAPW0o39wAe6k4+0SjVW+kOu7amKvAMwz6uPjlJKbe2xsQLv59OssVFSojFRf4v/eb7+4lEdojnpXuQG7i1+wbccwbk/p/+NJ1hjz6qUmM7Oojodmt9/nna/Hq0QgZcCDPt7+fru9Fi3OLhbu8B289NBmdKPwC70Lb1LFZX+d3iYhL+0pJ6LoDEbw291dfzs3o+gs6AJyZU3P6nP2W4fXPTe35EPE6t63vfA/72b+lvmZjgsxUXu3Q2ki9Go6pJYSxG1W0Pk3weaskfifD5QyE6/QCqbY8+qgpHrNpTZSXNpUBA9exbXVWhoCNH6FQdGCBH3twkQ/iTP3Few07UYi+2ny4BrSFFCUFFo/y7rS1T+3AzA+1m0+sRkJIS4lpr6861GDetRf530mj0c7t9mwSia2dO0lY/i95edc4tLSR8KSMWDclL3H1sjPu5vEyckLi9zFyU+oVsOCD5/TpR37xJid/UpHpK2poB+maKDSue5T1s/vlQEz/Ag62r46RWAUlvBbYT54ULSppKHr0+yhtQ7ZgAcmRJvc0neLH9hEjtwzYCQgAAIABJREFUQoo6AXR2ZqazPvaYexq4Tlwym/74cb6nV9Dtxpy0qreJBAlJzIu6Oq7VycTQz02KhUZGVJfjbL4Ia4Sjq4v3v3OHdRotLWoEm/Q8sJps8TjflzTfuTnuj4STCwoYPdLNEyeIxahxHjrEZ793j/8nEswBsEsYc9xM2w/lHx564s/V7talqSTxSJbb6io7sXR2KqmQSinVLp+OLy/nKQTgFFKUjkCDg9RYTp6kifLjH2e2mbaTlDpx6S3P5doy1nqnYNVa+vuV09owSITCdKXphZ2Jka8ux6EQJX5jIyW3DHKNxViFJz4U/Zn1jkurq/xeQYGaHQiQaSwv269B92vcuME1Nzby+cvLKWB8vsymsYCNBvIh9QF76Ik/19CLziykH5+ouI88opp7ZIv37ha8qPTyfG4hRasGMTenOvbYzeZz2498OS3jcTWvTwqJDIPOtJYWMtNf/Yp97goLgZ//nOO0vva17dfSuxwD/L266q3LsdM8Q32/JOXbjtnpHZeuX+eeysyGlRU+m2RJ2u2Bni9y965q9Z5Oq/Zi4TDX5Jr5t9eeZQd4qB1+ArozS7f53Obmra6ywUMgAPybf8MptmVl9OJubZEgi4q4v9nGTO0ExKk1OcnU7cVFpdK/+iqTTmT90uJLB2H8Vqeg5Na7zebTYbdOSyuIL6O4WJlily7xGerq+Prt2ySIpSXu9fQ0JeN//+98bv28Kir4mVSKDDmV4v9euxxbn8s03Z2oOgiDBnjPxx6jtnbokIq6bWzYz2fo66OZ4vPxOpJkdvGi6mwcjxMHnnkmy/7n+5A8wkMv+a3gxZEWifDgzp3bbq9JHYBTk4h8lVU7qfQApcz8vErAmZ9XCTjWNVk7Ee0kt94trXa3cWyZkwhw/Tdvcu1bW6p6T8aHmeb29OTmZpoHeoOQhgb3FG275xLIRYOWUWzDw1TTa2rUvmxskHGfPm0fbRsY4OdEY6mupgYn1X5S/djaSk0gq0mZr6KQHGBfSH4drCWmTqWfTmE0cXRZmSxAqfTtb9NR5PfvfOCEgKj0zz6rClakr72oyuLgray0Z/zV1QwV/fKX1CCKisgspIOthMy8JIFlC8F5Abt9jUZp0lRV8VpLS9S8JH+irk7NF7CWF0ejlJ5tbQxRtrXtbrydU1m1XemuRNeKisggZG6jVHuur+fWF9E06Zv5+tf5c/YsGeJDOqR3/0l+LzPT///2viy2ruNM8yvey03cN5G0REokTdmkJduy6DhOlMROvCaA0+nkIY6R7gm6ESRIBvPSQAbz0DPAYIDMW3ejkw6CIAimgU6A9HSnM0AyhjVJJ2nEi8jIi0QtFElxkUiREvd9q3n4+Lvqnlvn3LrkJX3Zuj8giLw895w6VfXXv39/Tw/huzc2GBbs6DAJQXaBhpAwxdCQ2ajnz1MKLS9TAqQDg21TUBKNj5vMRTvJyOXgsjeo3ZDy7FmqnO+8Y/L2fcaWCSirsOYdHR2mbn9x0WD7i4YyPc13Li5OrFXZbTptkHzvZ8/Fww+T0QXV+cEHqbVsbSViOdrU2UkhoZTBM9zcTM6/SNtvt4+IPgeO+SsryUCuBpgSax0a4iIMDlJazs5ygWMxtw/FrqATb/itW/yso2N3ZdXBLrcjI3zOI4+YhJvWVrea6wr/jo2R6c+cMbDXYRs0SJmIKAmO3YULnE9JQ6+q4t8EeffKFR5WCwumIUpNDcfY08Pwl1CmNV6f+7lKu2/fNmCrKysmSuE6HM+cMSAhMzP055w+zf3oVdbron1G9DlwzB+PA//yL5zsujpuLqnkk1irFAIVFzOUNDZG9StMeku998QET/7FRS7i5iZV47q6nZdV25LowgWqtWtrfJ5IjL4+hqVc4woyazBtNR3p7RuBSEXj45TqsZiRfPb8PPss7/XWWybkV1Ji4uaSbSloPnvs10ogEaxXrtC8kiQy8a8UFLihuYNUXc33DAppYBdaTCZUszToQDH/1BQhttvaTBus+XmGkaR6a33dzFlpKSX3zAxt77BFyMujNKquNg642Vl6fZeX+bzd5FzIASDMPDdHxrt1i4fX1paJOdtjdDmvXGmrvmPzTSqKor4+Ms3p04kty+/cMSnFwhjPPgv89Kf8zvw83/XmTTKV4PTtA1Td+5Sqn2NrK+fILhSLUtvDNIwd8+k+J/scKIdfXx+l3pEjdKx0dZG55SCQ3PXeXqbwXr/OeUsVypNsv5ISw+gLCwYX3/YX7IaEmaWZpqA1tbe7nW8u55Vv2iqQXFsAGCSk69cphWMxE/3wyWEXHDtXt2PXGCSOL5DeJSX8WQ61nWIL7oRswVpZyf1TXk6Vv7CQiMMSk0/XmZoRkg0iWVOvv87TyZVokAE6UMyfauPV1lKNnZ42HWTffZdqXNQCas3Tv6DAhKE+9jE6/wQcMxObwGZmybnXmv4JFyO4wr++GzTMsy9azalTBrX44kVqTD5eaZnn5WUTmxecftf8KEWbf2GB10rXHtEaIkEuM0xhbcYffJDz3Nb2gYTbDbW300bt7uaCFRSYXmV7AOSZ9Wq/jRl/4QKZc32dkrOmJnHj9fXREz40xA0HMHuvqSl6AaU3nO2YGRvz73LrS66ce7sM1aXhuVTLMLioYDejw4eTzcff/IY+DKX4T+LUvoAxUmjU2pqI0//xj7ud1FrTz7GywufF4zSnRNuK0qh24vjebSlxlLMwE474yHtUV3Nxp6cN6khXV7jXcZeU1cwv0mtzkx7tmRkytbTaamigZH7pJc6bpGs2NjLGCqTuqAu4syvT7XLrS7K5xO7u7U2NIx92D5vCAGElZ17ebWyMc3PpEj8rKuIc3bnjp9nYB1h+Ps2u2lquj8tJXV7OcdTUUJO6coV/v3OHuQvS4CNIO3F8p/rObrJoM+GId4GyvvYa7/F+PoHWpgRQyGcT74CyWu0XG21oyAA3SDnv2hp//9M/NVWPdrqmUCrJ8uabjOnH45RO+6HuheHIj43t3LQIJj/V1dFUtFFtpUeh+DIKCmgCpFvhF0y3vnMnPPGqvJzrdfUqD7vKSj5PfBdSuBTUan2TudL5zm6yaH3Gkwq/IQjKGotRO+vvt65PdxPvgrJa8ovzc3DQNKMsKCCjSntte+HSOdldJ/ni4s6ZPh2VsK+PGkptrUmUKS/3i9WHkQsQ9r336AOx0XClR2FJCU0i6f6rNTdtMGSVCtpqaoqgFXl5fAe7hPfGDWpt4qSdmCCUVn09QUok3dkFoybvIyHJ+XlGb0pKUuP82RRVSryb+ZV7C87E8HBqXAIblFVC0VqbXot9fcAT+1jkk9XM7zoE19bC66vTyRbbaUjVxeRAeiqhbAJptAHsXrNzlbi2tbn9FrbPIC/PxOplr732mqk1iIK2kvcuLOR9JGlJkmPm5nhIFxayym9zk88oLSWzlJeHw4lJMtfAAJmkooLzJr6v4Ly6WqNnKkrjml+A4xsZofSWKr6BgURTy95Pcg8pzgIcTVUynfIYQVnN/HIINjZS9Rc4L+m77nJQiW0nDOqKnwM7C6mG2X3BMtKNjcSGkz7x+91u0lR+izDNRJjXPgRtsM+LF8Nbisv1jY10JG5tmfTdzk6zqQcHDQyZJGUdOsQD48kn3e8ubbftZCitzdq60rODrdHb2sKzOjMxv7K3XKhRrkPN7lokuAeSR5IwB/tU5JPVNr/MwalTlBZ5eWT8oiJWS505k/wd3+KVnZhWYXbf5csmhCQhWukD6Bu/jwrXhdmQrrmy7dkTJzjmn/6UuHJSfBPsPxcs1FlfN+3A5+c530VFpoxYwnOSVCXp1DKngsHf3Gwk3cYGbVtRd0VLGBtzv7tU/EkVo5RfuwplZF0aG7lXyss5rokJPzPOZ55d83v0KMcDJKJGyTyFRRJaWxkl2dyk6SVNVd6fg3QWfheU1ZIf4IQ99xwdoD42dU+P6QgrXnRXam7wJB8f5zVih/pqC+vrtPukbHd+3oTPpOEkkPh8H81uJ97lYOmufD9MJe3udqvKdivwVC3F7U44Ev/f3DTRA5F0Q0O8vqiIh7YkX01MhEdVmpoSUYgAUzSUal0KC1MDggTnKdU8uwRyGGpUWPdl134uLbXW3w5x3bnDxfn97xkSyTCeX9Yzv5CPJmSrfwIJdfEiT9dgxyObAX1BJIMVbWLzNTRwI8/N0ZnzwANUN6MaToaF61LF6X3DvbaW4gIy7e2lHV5fz3GXlJjuPnl5/F/alJ87x++ePk1JbavSUZ1w5B1jMe5fyWuIxzlfn/qUAWJ1ka/vy16Xixd5EBUW0gyx19Fl+uwmnd4eX3k5JXpfH5lZWr/5HNRJC7e5aZwd9fUc8M9/ztBWBm3/A8P8Pt70nh7TbruqivNWXByewGIvQH19+AawE42uXjVdWWdmTE/F48dNddf4OMNgroaTYe/hG6f3dQra0tBWSW/dohp99arpTxiL8bARZ+pTT3HMk5PUDuJxXie5Fi+/bOZe0oUFiCPYCUckHcDrNjb4HmEdc1zrk8r3JUw4NMR3BJKr8uSaoIRfWDB4fUK+81xdnQyuumsBPTPDDWw3FqyspJ2Q4USfA8H8PpqQXNPQwI28sEDmOXKEP0fFz6MaLdiNP44f5wYbGOAmW19nimw8znucPEk78Nw5Mor0AqyqYpFLlIoZlEDSuPXyZdOsJB7331hhQKYLCybZ5/hxSiw5LO+7j2q2SP233+bnra3G6XbzJgFEH3iAz2hrM1WGUdK5qyv8uqgD0cfUk0Pi2jUTcgxW5YVJ+LGxnTtfBW9BwFWjyqu9Q8GVldzg0nkW4MSLlzuDlNUOPyFbE1pf57zE49SExBfS3U0GEVy1vDzTSz2V0yfo/JudNY0Wgo0/CgvJ8A0NdC6JN1rsy+Xl5FCkJGsFkzzefZeHSU9PsuOtqYnP/sMfEtO8h4cT8f/CfEG2U1FU0o0NSnuByhLBIgg7NgmopUBVKcU1EEYSx6E491IlzoQl2ABuB60kvviiDlVXM7LyyCPuNt9hyE527cbMDBO+fvtbznXYs+QQ//u/N/6lqEQk2wktmX3f/W4yzv/7CxeLcTACari8TObPcKLPgZD8qTQhUelE6m9tcd6OHycDpep4FNXrThhA7OWyMi7i/DzDWUEnT18fgSrsslD5XPwEly7xns3NprXYhz6UHKcvKOCaS5r3iRNGoxD8P5dvQqSMAIiWlfFZAmW9usq/Xb3KTRuLmUYVoiFJay+bbt8m0wKJDShcDTbDJF3wOtGEghgD//ZvDAOmY4tH+QiCWIjyjk1N/F53N79bV8fn5ueHz62MWSI6ktsQlrMQPPSlmrO/3+D7JeT3v/QSJdvt29wAjY27wzYLoQMh+SsrucHEngMSNaG+Pi5aaSlVsNJSTqqP1AeSpZLd6y4YwmlqMuAftkQtKeH3m5p4CNlVmQMDPERGRvhzdTXXsr+fG1Daj9lov7/+tckTePJJbq7Z2WT8v7AU09VVHn4yH8J8ohEcO2acm4BB4+noMJLw7Fm+q1TvSb2JbSO7qvLSwQoUiSzztbZGxpiY4PzYzVZSVQBGpe9GhVdlf9TVcW5HR5OxBoVs86G83BRHiSPVZTLIO0oDXvkX9gy0tdG597GPGTTTPcg395L8SqkXAPw1gBiAH2itvx34+ysAvrX96wKAr2ut38nUICXhQ6SIeJUbG41K195uTtXWVv59YsK/z6EtlaTKD0gO4cTjZBzBzpfmEPa6uDLT+vvJyNeu8XPJ6R8eZovpjQ1KdrtXo1LcGNKOfH7etJASCuIX/uxn/N8O3QFGYtpOtPZ2HgyCD1BaSgZvajI2++amyQcQPPuFBc5JWDFSOh50MblsxpC1ldoEl+NU3tdHu7DXN6wa8s03aU6mihLZ7b2UonkgAC1jY7z/0aO8VsYj7zg+zvtJAtbRoxHOxX1I9EnJ/EqpGIDvAHgWwCiA80qpn2ute63LBgF8Qms9rZR6EcD3AWRs5FGaUG0tmX5qitJrbc3YVjs9LMNCOCLdBaYq7LuuzLSqKuOBHh3l5ikp4WbPzyfj3blDjUOYZXaW6ui1a6ayc2Ym8UAThpANPDVFybm6atTRYBdi2Ve2BzzYB1De75lnjMki8FtVVaYY6fhxXmNTOtmTMobJSY5bTNzHHqM9HaxNsCHWd5MHYZNojqJ9SautmzcZjhQKtveSMuX5ec6HHKjBcHF7O53Aw8MmDCmZiOPjETDlewzm6SP5PwTgutZ6AACUUj8B8FkA7zO/1vr31vVvADiasRFuk2hC9lxIKamkdWpNSSVpna4MQB+STdLdTecMwE3nA+NcXW16x9vhr+FhMvdjj3GMUtQh0vTkSTqbbKapqOAzL14k47S1GaCSIEPI4VRXx40o9vrICNV0l6/IR0LbDHP4cCJqb1gxUjrpy3J/wU+oqzOeesFVdIX5Mgl3J5rj+fMMhUpashwCUksgzC3tvQSbcGOD/QuCadL2eCRqcv06tbeODn4vDL9xP8A8fZj/CACrMBSjiJbqfwbgl64/KKW+CuCrANAcxDj2oODJbTuLxKaanIzOGkuHNjeZH7C+zkV64w0+v6sr+t7NzcmZabW1hnEfeoj3m5xMvF+QaWZnjT3oAojMy+Mhd/486+RPnjRmCsDNODFh7Hm7ak/wD3wldDrFSOkWplVXc71sLUQgy6JAV2Xs4iiUBqTpCkgx88rK+Pz1da7T6dPUMIWB7fZeIyPmcC8t5XPFdxGsQmxvp8+noIBrL5ET+a5zrPsA5unD/MrxmXZeqNTTIPOfdf1da/190CRAV1eX8x5h5NKAgp1a7bjubhnf5aGtr+epPzNDZtracmtjYUU2L71E6b+8zI0VTPCxcwqKi8Or6STxyGaWwkJe39VFJhsZIeMXFiZX7b35Jv0L6VTBpZLmwfU5cYLv6luYlm4xm29Wnw/Jei0vUyKvrvLnzs7Ew1ApaoOSOt7ZaRKgALevZ3SUe1IqH6WYRxKQ5LtJtA9gnj7MPwqgyfr9KIBbwYuUUg8D+AGAF7XWGYUdCdOA4vG9a24aVnt965aJAYeF22Qj9/QYs6GjgwdGMEnHfrfjx8mkb79NxszPZzKNq697UDCcOJHoH2hpoZoeixn1FOD/c3PAj3/Md7p+nSr3zZuJvQ2CzCwm1txcYgORl15yr8+1a6lRd3yddS7yyerzvVeU6SG1BDYAi2gKQZ+Hy9dTXMzvnjhhDqnNTWphZWXmIJe1lfl4MK8SFXu1ubfJJ9R3HkC7UqpFKVUA4IsAfm5foJRqBvBPAL6stb6WsdFtU1g1nR2yyTTaql17bW8u2QypEjsAXnP6NPDRj/IeUegu8m6HDhnAkq4u/nzxItVJO9QlFXUSThSNYXU1dePKGzdYz1BebkA8+/sptcISb8S30tdn4MMFhae7270+Yag7mWgbJgy7umqSoOxYe6pkOBey8R/9EdXylpZk4Na+PpoAXV2cr7W1RJ9HWBViQQHXSXoDrK0xv2JpiSHcwkI6A197LXE+zk+3Y25sjzb3NqWU/FrrDaXUNwG8Cob6fqi1vqSU+tr2378H4C8B1AD4rmI624bW2jPIlprCNCBpceWrKtrSJgqdBkiuvV5aotNOmO6o5dKMSuxIZbIF3016+U1MRDvulKJmUVVlwlOSYCS59IBbXb96lYws9+7spAQTZCTbl2KPXToFBavsLlzgAWdTlIbqmpu5OYYpy8v5syQmRdnvktUX9K9EQZlL5EIOy6BnPmw/+fg8pApRnKK9vVT7Dx/m3ysqaOM/9BDf0zaZAOZkvD/fDdW4tvIEugo9N/cOyCvOr7X+BYBfBD77nvXznwP484yNKkBR9mYqVdG14FH2dFB1j8eZcDM3R1VQGmWWl/OED7OTfU224LtJLL+lxcSYxXF3+LBxmimXJ8bxucv/IIk0YRQ29rExmgbBz4H0zK/g/WdnqXmIypuXZ0qjb9zgAWcf0kDiIT48bDAI7FoKm2zTxE7ZlvFHga8AfhEMaVU2NMTPCwr4DpOTpmvU5CTH2GQZ0oKdEJzXu8t7G+s/EOm9O4E1m5pKTNnc2DALHouFo9PYc11dbTaRpGKKY0ygqFpb3WMJOofCEmKC7xaM5YvjTg4j2ZRbWzy4RkeN1/nMmeQcfZcj7bnn+D7Ly8Y+tZGRwja6oCYHP+/s5Bz4rk/w/iMjZGKB+ZJEn6Eh3sduZ37uHA+CxkYeIILDUFdHZpO5D1JYifPly3xuUVF0FyGfPVhdnYy8/fGP89qJCTJ9dbUpORey8RPsed0DzM4EOhDMH9zAgv9+/rxbZXd13X3nHUqteJxq7yOP8FpJHxWp7HJEbW0loinPzpLxb96kI88FxJHKORT2bq2tJiR46JBx3LmwBVZXeahIaKmvj98Pmz+h9nYeEnaTSRsZSZJSpqaMNK2uNuCfMl826ClgsBEkByAMQi3ISCINS0qMf6WoiOt04gQZSXwJQRX57l1WbpaXG0YMAoIGQUaVMnH6q1fpVAXCwVdc6xSmhc/N8b4LC+YzwXt4/nmzN+1mntXVxqzfY8zOBDoQzA+YyQ+GuFzedjtMV1HBxa6sJJN0dPAaFzqNUn5RhYoKMllHR3jGmIxPmKWxMRydN8iccgClqmE/d45qsaiYUQCXwee5mkza39GBQKxkKUYxgDT0qK8PXxv7feU+Ig3v3uW6FBcndmWy05lFRZZ4umh2S0uGWYIpz0GQ0bk5/q201Ph9VlaiwVfscYfR1BTHZGcAurowS2UfwD0kAsHXd5UpOjDML+TjSLOdM729VOsASpjGRkpgAak8c8Y4UuNx973Fyw/4ncwjI9QKDh2ihrGywu/YRSpR5BPyEhVzampnzV2iniGebZGuQKI0jfqeb16KFNv09ZEZ+/oMPt/KCrUtAUyx05nz8zkWCZsdPsy1nJ93+2BkTHaorabG4ArW1PBZrjLgdMmVAWh3YbYF10c/avaRzMc+YHYm0IFjfh88d4F9npvjBJeWUkWOxfg9AaKQ3nGCoXb+vLvmO92owtgYTQ45TOrrKXVE4mSKguYIkJnmLjvNL3E58oaHOW+XLiV68AHDCC0tBnFJ1qWsjD8H05mrqzmOggIyl6z18eM86ONxU2IsBUkiCCT5aW6O1335y2YcrpTpMArLUQjLAJRDMFXR1X7TgWN+WewoPHcpriktJWS0VGJ1dNDuD3qC7Xu7HFp5ebTZL1/mZ52d4eObmiLzr68blNreXm4KQXrdDQVx/tbXzWYLQ/tJtz7ENzc/eN+8PPM9KdFdWuJ1Ei5tbzcefLuO/+5damhaJ6b0Bk2gZ57hcxYW+L2qKuCFF+j4fOstSli7Hj8WM2OSLFBJ5hGfUTrZiFEp9zJv8pzZWZp9t25xfPPzPKSiiq72k7Ke+V2ZZqnw3KW45vZterUBxlalmCKMXB5dgZYeHuaiSfba8DDwuc8lb5K+Pkq3lRUu/uKiqQb0KWewQ5PBeDeQuPHW1wl6UVxMFdll9++kPsTHs+267/S08cRLF+KRkUQv/p07/L2/n1EHOSREhZ+YSByfSx12ofqOj5PxH3888VoBLpF3GR8nOtJjj/lnI9oUZdrY87a+bsLJ5eWmM49Un46NcY7uvz/joLzelNVgHq5MsGvXeAikwnOvqOBGy8/nJrx5k2i1YfFxwA0GIaGbqSnD/LdvA7/8JfCrXyXfQyrE8vKIiXfqFNVakXo+7zs5yfEuLlJqTE7y856exEw6wXmQ2H1hIc2AhgaTXReWHRmWfRc2D0HmcN23oYHzVVjI8Yujrq6OnxUWkvErK/lOwTr+1VVem2p8tbWci1//mrUJY2PuRqOHDpk+hPIuExNk/MZG//mw1+eNNxg5kqxLeY6NVixtz8vLjb+ispKH1rVr1CAFGer8eQNbtt+U1ZI/7JTVmqdlMNPMVkvn53my1tRQ/V9YINOeOhX9zKCkefVVMmA8zg1bUMB73r1LLL1PftIdghP7cnbWH1tA3ndwMDHeffcuDxBXJl1BAbWcJ580n9l2/07t91QOqFRZl4BRb4XsVmt1dVyzYB1/W1v0+AQ0s73d1BhMT1OrC8bLXYlgr766s/lwRQ3s1mSy9+RZtq9B0KDkd6UYYtSa8zA1BfzkJ8DXv773Hn6bslryh4Eu2k0RwtKeR0dNp5/FRf5/6hQ/T4cqK7nQU1NktIIC4yQsLEyWGAIXJaW7Dz/MGLoPopC8r11PIPBhdiadTfn5ZiO+/jr/Hx83mzEITir32G0CSar7yjw0NhrgipUVzsu77/KaWIzzOTGRmJsfNT45IKU7z9NPM2Lj2hNjYzx8bbBT17jHx6mpRIGi2lEDCUMWFfEgkr1n1wvcvMn7ApT4y8tcX1nXeJy+I0mzHhigX2k/Kaslf5jjSWzgVN73kpLE+OrSUjIsUyqS/O+BAYOQs7REle6BB6hdAInOtGBk4MgRP4ebvK9ICol3S7bg4iLVXTsnPT/faCTiZBoaAl55xYw/3exIoShHYar72unR4swrKKAWJZB0+fkmCUu85GGdboR86zwWFvhzURHNhPV1U11nJyq5fABBn0gwSai5mfMs+AF2MZTtj5H7NjQYNKiaGlZt3n9/Yp3G4cM0B6QuY49BfABkueT37Wnnos7ORPBJOXk7O9PvgffFL/L0npujlG1ooBpeU0NNIlidBnBDPP64KZ+9cIGMEFXBJu9rO9AmJ/lvbs5AQkkmnQCGnj1rCmLKy7nh7twx4xc79MYNlvAKY0S9d6rKOx+/gCQT/cVfAH/8x2TCU6eY8lpZaSS4+AmioL+FwjQOwTuUfP/Ll3kY1teTEQcGTN+HdHwAtrov1XzDw5z3Rx5hLYCg/AT9MY89ZpCI6uqIRPW1rxkYNCn+GRxMFHCZqHr0IaWDqVz7RF1dXbrbQ8+xT0CxlwQkwZaAkmZqn9avvUYGsgs+urpMf/pgimrUydrfnwiuWVtrPLxBmO7CwsQe3Fk1AAAT7ElEQVR68zAQB5dNHfT2j49zXCdOmLiwPOOJJ4wN64r1P/984n1deH1h7y2bL+hXCRu3D/mONYpc7zE+bqIMhw5RSzp/nmstTsflZe6BxsbEZ8mY5uYS80ZKS4EvfMHMgw0aIvBrx46Z+Uvn3X70I+Af/9HkKRQXc24/8xng85/nvpVaErsuxHfulVI9PlW1Wa32A+60Xp9e6GEprEGEHomNx+Ph8X/AYAj29PC0np3lhgpi24vzyJViDHCDPfRQuINJ3jfooLI3le2g8o3Jd3eHNzCVeQlDSXI9dycULHaqqCDjrq76q7auHHvRHGQONjaoRg8Pc64BMtrt2ya9WyiYNxKLMYKwsGBySFpakpOERN2X8aaDW3jkCA8mOVTicc51eXl6/SZ3S1nP/EJhVVlhvdABt8d6eJiboKeHCyjFHENDBqAzyt4SgA6RMAKd5eoQU1OTaL8XFfHQ8HG4yRiuXDHttl3pp+nE5EtL+fzr1+l0O3uW7zM1lZwHsLhIdTRVVaIvBYudpqbY4665mfD0YdV0LnJFZGzHcFkZmefaNVO5ODPj7nthoy1vbNBcUIrJYVL5KHkUkryzuMg1FUEAMOKyuWl8F1G+la0tvrMk/pSV8fsC6Cmw7dITAODnrn6Tu6EDw/xhjScl1urLUKOj3PxLSyYpBuCC9PTwALAdN+Pj3BxHj3Kh7M65QeisIJru0lIioKbWphd7lMPNNjGKikyq8pkzJrc96FiLcn729XFDCnpPdTXf5dw5Oi0ffTQZWOPqVT4rVVVi1FwHbXAJ9a2v0xsuSVv2uu0k1TUodZuaeMDffz/f4fZtAzkWPFgkIUzqBUpLeSBJ5qFoReXliWbG/LyZb1mzmhr+vrwcnSloh4MBkwkovSKam00TkKIi7pvJyYw37Dk4zG8vsG8v9CCJivu735EJFxa40ScnKQV7e40mIIs/MGAYdmSEKqGk6jY1JUJr2wtuY+KHofW6aGqKjB+PkzFWVkwn3YsX6WAKbiqXhmMz35UryYARBQW8Rhp32rUSt2+TaZ58MjVMt2v8No5CQwM39tWr5vBaXubfGhsT6x18zYowfEG5h6jRi4s8ZBobWY4clkknaMui6ot/pqyM45c1sM2MqSn+L5JZKQPXlerwCssEPHOG79XXR8EyO5tenki6dGCYfze90GWznDtHe0tCPLEY77W+TjVYVEc5RCT7zG5tvbXFjbG2xvEI3l7QPLAlssSxH3wwEcTBRX19iR17iov5szirfKRiMPW2sJDvJ624BMnm9Gky329+Q22ospKMYLdGk7lIVTBkM/3kJKX93bu898mT1JhGRw3wx9WrNLVqa6MRkcKeUVdnMAulWajk5+flkXHb2420DuueCyRDtgnzt7UZ7S1oZqyvJ9r3Ylr4NNK198aFC9yDYtaJNjk+nqhN+naeSocODPMH1VtXmywX2Yxw5AilmNhxhw/zVL99mxumuTkRAnt+3jhdFhf599FRLnB9PTewNAK9cIGb+ZlnEsc0O0uVt66On6eybWdmjMQXqRLmrAojF7LvxYs8wE6fNu3OpDpSQk2inivF94tqleWa46EhHsbd3Ryz9DG8cIHf7e01lXeFhTzQDh2iNiWNVsK0NxdAy6VLvL6kJLFZqITmfEqLAbO3YjFzsDz0kNH4jhzh53YBU35+4hqtrBgzyYdcmYBAcqOWvaztz+o4f5BkwqR4Q/Kio+KfNiM0N1OClZebXnm3bpm867o6MgpASVFaanIFRIoePcrvS8VaTQ03RyzGOLpEL2WzDgxws8Zipq3Y0BDbO7vGLmqspLtqbWrc5+b8chOCmZEVFWw7Ja2o8vPJmOPjjFU3NfFd19f5/7FjBnvOJ7/CjmzMzhq/wTvv8HAcHKRNfOwYnzE6ync7e5bazPo6taMo1dZ+ht3scmQkGa03LDM0VZPP554DvvENHpAbGwaH4R/+ITFPY3qaczg9zb9LToaYez4k++PKFe4ZG+shP5/m3fPP7426L3SgmB9IPwHC3ggCnywNEltbGcY5edLkDMjJu7pquv22tpKBxXn11FPceM3NLN4R9byy0pT9ujbr1hb9DdLa2TV2ac/e2mqcVbOzZJLCQr93diXC1NQwbm03fj161PgvjhxhKnJHB8fd1mZq58MSb2Qtzp3jIQcwpXZjw/xbXeW8LS2R+cvL+X9zswHReOopPj9qk8s6irMXMKnPQa1kNynNtoDZ3OQBaB/eGxvG33P6tDmkH300WesLI3sPnzzJg7K7m++4BwjdoXRg1H6hdNBigGRPsDhkqqvJ5AMDps+fIKrKySv5BX19XODpaS5KebnxzNpoNza5Qn3T09xQSoXjxdnmTX4+D5erV/ndwcFEEIieHt4nGJIMC/+5GDgsIhHVKgtwm1MLC6aS8vBhU9IsHv2tLR6oZWW8//y8GUMqxpR19Ime7CalWShVnsbyMjWFqNyQVPeW9ZfEszCH7l5R1jN/MOOtv5+L29xsmCDKS1xbm5yZZ7fOkrbUwtRSEBLsbWcfBHfvmkKOlRWqzzMz3ChPP83nujbrzIyp1GtrSwQCBQzzBhObVlf5jleuMMf8oYfIcJcuMVXWlZPugzyUbkQiCCQiYc/mZhMmk1bi0u5qbY2mVVUVNYuFBRMbB2i6yTOjsAftsTY1cR7EKXbiRDRG4E7s5t3maQTnK4j4E2zI2tXFse4nok9WM79s/s1NbjZBipG4d6oqsKkpk8wj0Fr19cDLL5P52tqSmVpScYO97WymAqgW/vM/0xaMxUy/POln72KslRUyysmTZJBXX6VaX1jI5924kdj+WyREcTEZX2L0t27x95aWcA3IFwdQmCTYP9CeQzl87UYX771nqg3FnBoepi/lwx82CLZ37phIweQk7ymq7d27PBA+8hGDvBNm48pYu7t50LS0UPLm57s9+bvFxEtH03CRD+KPTzbgXlJWM7+rvv3YMW6ylhaDmz8+7u5C291tIKME6urKFeA732EM2+4Ik66nuLqaG2N9PTkLzga6tBnr2We5UZeWCAZy6xbfqaGBB9PCgklLBoyE0NqondI0ZHk5ucnjTtJvw5gkqu/BoUP8TPLhJfOttZVmyuamQetpbuYzNjZYzQaQ4QsLDXKuqxdh2FgrKhizt1uFS3q2xMkzUQnnOrwlouDTqt0X8UfCzn19xuzciwo+F2U188vml5AbYBxeZWXUBu67z3RBDUrq7m5+d2SEm7migsx644bxaE9NGWkTLN0U+zqMqbSOBtB0MVZVFYEcpeAHMHH3/n5qKOXl3AC24+rBB+kRl25B99+fCG8N7F56iJQfHqZHfmsrse9BWxvfTQ7f+XmuhQ18Ke/7s59xriVsVlFBFR+g1vT666lTtF1q88wM50oaqFZU8CD81a84Nw0NmWln76MVRVFUbYR978HB5CK13Yw7Hcpq5g+rb5eSWol7B7vQAlT3h4b43dVVMtrgoEFTlYVoaUk8jQWpZXqaG76+nhusri4x1mszZzrqW3U1mbe4OLFWQWCv6uqMN19qz+NxAwtWVUWVc2mJ415cJJPZkikVbr+LXIVTvb2U0mVlnJe33uJ7K2UaUJaVue1qiR7YB6OdZZgqRTtMbY7F+K4SQQH4jK0tfkey+Hw0ibB58NEeUl0neyOooUhTFVsw1Nf7O7AzSVkd6nPVt0tsXcIhYTHd3l4yz/q6sU3X1niP++5LRMiZmUlEarl7lwdFXh7/Nj5uHFN2qK22dmd4A3NzJr69vs7vKMX/W1vNoSDM3NpK38Dmpkk+EaflygprDwDT9XUntd+uwqmqKgNWUljI97ahuIqLWRvgike7wm35+QZqy0a3EbQle+7CsAeVMvkHgtOwvMyxBlOYfbr12uQbRva5rr2d+6a723QRnpszeJBCO8lJyBRlNfPL6VhXR0lSUkKpOTFhmkgo5Y7pAoy9NjRwk0hIb2HBZPaVlSVW4YnzSoo4JF9bni+twoLM6QtEIVRWZlpMbW2ZBiL19UabsUEhg8kn8hzpIf+JT1CVFoAMX0BKm+xNKFK5qYkb+NIlhhuLijjvxcXczGfOJHf2EXIBsYhTbnHRpGjPztL3IUk0QDRQppTSbm0lArhWVoZj+PmSL9ipfd3cHAXFpUsGlx/ge1ZV8T2np6naa82fJZcf2DuYNR/yUvuVUi8A+GuwRfcPtNbfDvxdbf/90wCWAPwHrfUfMjFAu759asr0kBPv/d27nNRjx7jhpOpNAB07Oqh2LS9zIaRssrmZammwCq+khPfr7CQDFBQYn4OrCGUnXuXmZmOvDg5SMlRVcaxh6bRhz0m37j5MXbVNmMpK5uRPT5PBiovJDLW1TAx6/HFT2lpa6n6OK9wmjkz5rKAgUQPq76emIfUaYUCZ7e3UgmxAj6oqoz3tNLbvO5d245go2PGtLY710iX+XlTEffjmm8ZpmImchJ1SSsmvlIoB+A6AFwF0AnhZKRVsW/EigPbtf18F8HcZHicA472PxbgRhocNKCNAJ9LqqolTLy5Scj36KOPvx47x54oKg5wqC2VLKjutt6nJwITbPeN2czpLFt+pU4QI+9KXKPWPH08friwdyRGlrsr7j41xjgVRV5BmPv95qvjSndhnjHIA2GaB/ZlSZKxYjM+JxYh7NzoaDZTpghB79llm2KWrhe1kLuW6VLDjlZWJ/gmp0RcUKHuOdjPunZKP5P8QgOta6wEAUEr9BMBnAVipGvgsgP+liQn2hlKqUinVqLUey+RgL182m7G/n8xYWkob8JlnDMyUTNwTT3DT5OWZJBNh/GBChS2pSkoSE39qaqhltLT4t3SKIleR0iuv+HeNsSkdyZEqO/KJJ4yXXjDt7ruPTLi5aWL5Yd2J06XeXrOeAP+Px2kGPPVUNHJOmCa0GyeZ71zKdalgx9vbCe9eX2+agS4v029j2/S7zUnYKfkw/xEAI9bvowCCQ3VdcwRARpnfJpHQkmYLJKto1dVMOAli0YVJxqCJkQnmDCPXgu+kc0s62Wyp1Nrq6mQvve2RT9WdOBMkCL5AInKOfajvFfnOpVwnbb/q6oz/xe4fIdcNDBjNsa2NB1yYubSf5MP8rh43QTePzzVQSn0VNAvQ7NO7KkCdnXQMKWXw7dfWjOrpYuqd2lSZYs79IF/J4ROazARoii91dDDxRzIqBTRDwo37bQMD/nNZXc3aBxtM1DU/XV3J/on9fJ8o8vH2jwJosn4/CuDWDq6B1vr7WusurXVXnQ2o70lnztBuF3grCfEISIXLBv0gbapsIx8odPsa8cjbTUoyOXddXfRzbG5SK9nc5AH/8ssHY7189lY277+U0N1KqTiAawA+BeAmgPMAvqS1vmRd8xkA3wS9/U8A+But9Yei7usL3R2kIDacxHv3qrHBvzfySWLZj4YRH8Sz7hXyhe72wu1XSn0awF+Bob4faq3/h1LqawCgtf7edqjvbwG8AIb6vqK1juTsnTJ/jnKUo2jKKG6/1voXAH4R+Ox71s8awDfSHWSOcpSjD46yOsMvRznK0d5RjvlzlKN7lHLMn6Mc3aOUY/4c5egepRzz5yhH9yjlmD9HObpHKcf8OcrRPUpeST578mClJgEMeV5eC+DOHg5np5St4wKyd2zZOi7g38/YjmmtU+bPf2DMnw4ppbp9Mpb2m7J1XED2ji1bxwXce2PLqf05ytE9Sjnmz1GO7lE6KMz//Q96ACGUreMCsnds2Tou4B4b24Gw+XOUoxxlng6K5M9RjnKUYcoa5ldKvaCUuqqUuq6U+s+Ovyul1N9s//1dpdRjWTS2V7bH9K5S6vdKqUeyZWzWdY8rpTaVUl/IlnEppZ5SSr2tlLqklPrNfozLZ2xKqQql1P9RSr2zPbav7NO4fqiUmlBKXQz5e2Z5QGv9gf8DQUL6AbQCKADwDoDOwDWfBvBLEC/wwwDezKKxfQRA1fbPL2bT2KzrfgViMnwhG8YFoBJEgG7e/v1wtswZgP8C4H9u/1wHYApAwT6M7eMAHgNwMeTvGeWBbJH878ODa63XAAg8uE3vw4Nrrd8AUKmUasyGsWmtf6+13u67gzdADMP9IJ95A4D/COB/A5jIonF9CcA/aa2HAUBrnU1j0wDKthGqSkHm39jrgWmtf7v9rDDKKA9kC/OHQX+ne81eULrP/TPwdN4PSjk2pdQRAJ8D8D3sH/nM2QkAVUqpf1VK9Sil/iSLxva3ADpAENr3APwnrfXW/gwvkjLKA9nSpTdj8OB7QN7PVUo9DTL/2T0dkfVIx2fBsf0VgG9prTeVcl2+J+QzrjiAMyAwbDGA15VSb2itr2XB2J4H8DaATwJoA/CaUup3Wuu5pG/uL2WUB7KF+TMGD74H5PVcpdTDAH4A4EWtdUinvA9kbF0AfrLN+LUAPq2U2tBa/+wDHtcogDta60UAi0qp3wJ4BESK3kvyGdtXAHxb09C+rpQaBPAggLf2eGypKLM8sB9OFg9HRxzAAIAWGCfMQ4FrPoNEZ8dbWTS2ZgDXAXwk2+YtcP2PsD8OP5856wDw/7avPQTgIoCTWTK2vwPw37Z/rgch62v3aU2PI9zhl1EeyArJr7XeUEp9E8CrMPDgl2x4cNBT/WmQyZbA0zlbxvaXAGoAfHdbwm7ofSgQ8RzbvpPPuLTWl5VS/xfAuwC2wO7PzhDXfo8NwH8H8COl1Hsgo31La73n1X5KqR8DeApArVJqFMB/BZBvjSujPJDL8MtRju5RyhZvf45ylKN9phzz5yhH9yjlmD9HObpHKcf8OcrRPUo55s9Rju5RyjF/jnJ0j1KO+XOUo3uUcsyfoxzdo/T/AUC7Rv8D5vBgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "np.random.seed(seed=42)\n", + "N = 1000\n", + "x = np.random.uniform(size=N, low=0, high=1)\n", + "y = np.random.uniform(size=N, low=0, high=1)\n", + "accept = (x*x+y*y) <= 1\n", + "reject = np.logical_not(accept)\n", + "fig, ax = plt.subplots(1)\n", + "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", + "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", + "ax.set_aspect('equal')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Il est alors aisé d’obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$\n", + "est inférieur à 1 :\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3.112" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "4*np.mean(accept)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calculer la (1) moyenne et (2) l'écart-type, (3) le min, (4) la médiane et le (5) max des données suivantes :\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + " import numpy as np\n", + "A=[14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "14.113000000000001" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# 1 Obtien la moyenne\n", + "np.average(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4.334094455301447" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# 2 Calcul l'écart-type\n", + "np.std(A,ddof=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2.8" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# 3 Calcul le minimum de A\n", + "np.min(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "14.5" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# 4 Calcul le médiane\n", + "np.median(A)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "23.4" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# 5 Calcul le max\n", + "np.max(A)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXucXWV97p93LsncJzcyuWcCgQAhEA1CMAioSBFU1FM9eLSHWk/Bqke02nppPVK1VaunWv2IpT14pEdFaatCBQWU7GDCJSQBkkCYJDATkkkmmcmQZC6Z+3v++M2P9e6133XZl7Uva/2+n8989t5rX+Z999rrWc963pvSWkMQBEGofKpKXQBBEAShMIigC4IgxAQRdEEQhJgggi4IghATRNAFQRBiggi6IAhCTBBBFwRBiAki6IIgCDFBBF0QBCEm1BTzn82bN0+3t7fn9N6hoSE0NjYWtkAVQBLrncQ6A8msdxLrDGRf7+3bt/dprc8Iel1RBb29vR3btm3L6b2pVApXXXVVYQtUASSx3kmsM5DMeiexzkD29VZKHQjzOolcBEEQYoIIuiAIQkwQQRcEQYgJIuiCIAgxQQRdEAQhJoigC4IgxAQRdEEQhJgggi4IQqLZvBnYubPUpSgMRR1YJAiCUG786Z8C554L/OIXpS5J/ohDFwQh0Rw6BAwPl7oUhUEEXRCExDIwAAwOAqOjpS5JYRBBFwQhsXR30+3ISGnLUShE0AVBSCyHD9OtOHRBEIQKhx26CLogCEKFIw5dEAQhJkiGLgiCEBPEoQuCIFQAk5PAtdcCv/ud92skQxcEQagATp4EHnyQhvZ7IQ5dEAShAhgYSL91MzUFHDlC98fH6XGlI4IuCEIsGRyk21On7M/39ZGQL15Mj+Pg0kXQBUGIJUEOneOWFSvoVgRdEAShTGGH7iXo3CB65pl0K4IuCEKs6O0tdQkKR1iHzoIeh77oIuiCIAAANm0C2tqAl14qdUkKQ1CG3t0NKAUsX06PxaELghAbtm4FtAZ6ekpdksIQFLkcPgzMnw80NdFjEXRBECqCwUFg717/13R00G0cogcgOHLp7gYWLQLq6uhxHOotgi4ICeDb3wYuuYQcuBdxE/QwDn3xYmDmTHosDl0QhIqgp4dGTvqJVtwEnYX89GlgYiLzeXboIuiCIFQUQ0N06+VW+/udHi5xEXR26EBmvcfGqL7i0AVBqDiC4gd250B8BN2sq7ve3PBbjAy9uxv4278FXnwxms83EUEXhASQjaDHwakC/g6dBxUVw6F3dQF//dci6IIgFIigyCWODt0UdHdfdB5UVIwMfWyMbmfMiObzTUTQBSEBhHHo7e10Py6CPjAAzJrl3DcxHTpHLlEJOn8unziiRARdEBJAGEFfs4bux0XQBwfJgQOZ9T58mBzz3LmO0EZVbxF0QSgxd98N/OpXpS5F4fAT9MlJYP9+4Nxzya3GRdAHBoCFC537JtxlUanoIxcRdEEoMV/5CvCd75S6FIXDL0Pv6qKcd9Wq4gr6f/wH8LOfLc37c0ZGgA9/GDh2LH17kEPn54ol6GWRoSulliqlNiql9iilnlNK3Tq9fY5S6mGl1L7p29nRF1cQikNPT3x6e2jt79C5QbSYgt7VBdx0E/Dv/74k7896+mngjjvS1w7lOrNDdzeKskMHgJoaoLo6+kbRcnHoEwA+pbU+D8B6AB9VSp0P4LMAfqe1PhvA76YfC0LFMzZGA23iEj2MjDjLqwUJ+syZ0ddba3LUQ0PA0FB13p/X359+CwDDw/R/5s4lZ+yu97FjNLMkE2W9yypy0Vof0VrvmL4/AGAPgMUAbgBw1/TL7gLwzqgKKQjFhC/d4+LQOW4BvAV99mxg3rziOPSf/IQWb16+HDh9ugaTk/l9Hgv5K68427ieTU1Ac3N6vScm6LVnnOFsmzkzgRm6UqodwGsAPAmgTWt9BCDRBzC/0IUThFJw9CjdxsWh+/XHBkjQV62iBsK6umhPZL29wK23AuvXAx/9aGb5coGF3HTo/JnNzUBLS7qg8+vmzXO2xUXQa8K+UCnVBOA/AHxCa31KKRX2fTcDuBkA2trakEqlcigmMDg4mPN7K5kk1jvKOmsNfOYzF+Ld7z6E9ev7ra95/PE5AC7EiRMjSKWeiKQcNqKqd2dnI4DXAQC6uvqQSu1Oe37Xrsvwutf1I5XqwNjYa3H48ARSqZ0FLwcA/OM/no2TJxfi5pu34fnnWwGswoMPPo7583NX0x072gG04/nne5BKvQAA2L+/CcDF6OraDaXa8dJLI6/Wu6urAcAlOHr0OaRSvETTpThw4OSr7y8kHR3LAazAY4+lUD2dMEX2G9daB/4BqAXwIIA/N7Z1AFg4fX8hgI6gz1m3bp3OlY0bN+b83komifWOss6nTmkNaP25z3m/5s476TVtbZEVw0pU9X78caoPoPVVV6U/d/Ikbf/qV+nxlVfSX1RcfbXW69fT/Z/9jP73rl35feb//J/0OW9/u7Pt0Udp28MPa71hg9ZvepPz3KZN9Nxvf+tsW7VK6/e+N79yePH5z2tdXZ2+Ldt9DWCbDqHVYXq5KAB3Atijtf4H46n7ANw0ff8mAPcW6BwjCJHBl95ey5IBTuQStwy9qSkzQ+dFL1atotuoM/TRUSd6aG2lW799EQZboyhHLrYMva+PbosZuRQjbgHCZegbAPwRgDcppZ6Z/rsOwNcAvEUptQ/AW6YfC0JZE7SKDeDMxBe3DH3Bgsx679tHt+ecQ7fFFPSWFrqNQtC5ns3NyRL0wAxda70ZgFdg/ubCFkcQoiWMoJuNolpTY2Elw4K+cCGNCDXhunJ/7UoWdLOXi+nQW1rS/wcL+ty5zrYoG4PHxoozqAiQkaJCwsjGoQPA+Hi05SkGHLksXJhZ7/5+OmHxJFaVKOhmLxdeYs+v22JfH23nSbmA6Puhl1PkIgixIRuHDsQjdjEd+uCgM8gIIBGcPRuomlaCqAcWRenQx8ZoQBGQ3m2xuZkes9j39aXHLUB8IhcRdCFRhGkU7emh4eBA8QT9wAHkPcAGoPodP56+zczQgfSBRv39wJw5zuOo+6Gb4tbURLf5CPrUFNWBR32yuA8OArW1FHU0N5OYc71F0AUhJgQ59NFR4MQJYOn0nFHFEPQDB4CVK4HNm+cFvziAW28F3vGO9G2DgyTUtrnBbYJeLIdeXQ00NEzg5MncP29ggET9rLPoMQv6wAAJOZB5JWAT9ChPZCLoghARQYLOccvy5XRbjK6LW7bQcPS+vvyP+pdeoomvTIaGgMZGR+DMuh8/ntk4yI3BUeAWt4aGybwcOgv4ypXpjwcHnSsAd729HHpUJzJpFBWEiDAF3SZabkEvhkN/8km6PX26MBNV9bsGwLK42QTd5tABZ4bAQuMW9MbGiYIKOjeQmg49rKCLQxdiz9QU8OtfR+fYig0f1FNTTgOaSSkEfetWuh0eDj0Thyc8S6RZ7lwEPYp6T01Rr6FsHPrwcPq0uG5YwMM69NFRuhVBFxLJgw8C110HbN9e6pIUBlPMbLELd1kslqCPjdF83gAwPFy4qWTNPtlDQ3ZBn5yk9oJiCbptXvAgh37nncDVV1M7gw2vyMXm0E+dchqMJUMXEgkPDc+n4aqcCBL0Ymfozz7r/I98Bf30afoDMofB2zJ0Fv1iCbpt1sEgh/7C9FxZu3bZn+d6Ll5MObXNoXOj6MCAfZQol2l0NJorUcnQhbKhs5Nu49AfGwjn0FtbnXlGoq43xy1z5uQfuZgi7h41aXPo/Hp3oyhQTEH3d+gvvki3zz1nf57rMGcO/ZkO3Ra5+Ak6EK7t4MABWj4vLOLQhbIhjoLOg2hsQnL0KPXXjlLYTJ58kv7fuefm79BNQXc7dD9BNx06C0+xBL2pyb/bIk9VsHu3/fn+fqC+nvbXnDnOiWxw0N4oGiToYa7Ivvtd4D3vCf8diaALZQN3geNL+UpnYMAZhOLl0Nvaiivol1xCopNvLxcvh87dFhsb6bGfoHO9o4iavCIX7kvuZnzcyc79HDqX33ToZuTS0EAn8VOnHEE3VysCsqv3wYMUzRw6FPxa/kwR9DLkl78E7r+/1KUoHlrH06EvXuzcd8MOPeqV4AES3b17gUsvJUGP2qFXVaVPoesn6MVy6I2NE6+W0c3LL1P//LlzgT177CNpX3klU9AnJqj87MyVcuZzYUE362yWKUy9u7vp1quh1o0Ieply223AN79Z6lIUj/5+5+CvNEEfHwc++UlnfVBmYMBZ7d1L0Ivl0J96im4dQc8vQzeH/LNDn5pyerkA6RNV8etLm6GTStviL45b3vY2Kg+bCxPToc+eTY/NmRYZU9Bnz3amdmCyOYGzM3/55eDXAtIoWrYcOVJ5wubH9u3AX/2V9/PmAVRpkcvOncC3v0196E1MQXeLyMgI9eYpVob+5JPkHi++uLCRy8yZzv3Tp+lKyyboPNMiNwADpWkUBeyCzg2iN9xAt7bYxRa5mHOhM6agu/Nzs0xBgj41BRw+TPfDCLrW4tDLkvFxcntxWcUGAP7t34C/+zvvOpmCXmknMnafpmvlS3GepMrt0LnLYltbcSKXrVupMbS11RH0fLrN9ffThFRLljgOnSek4vzcLeizZuHVdS6BUkQu/g69vh548/SqC16CPns23Z8zh9w5193t0DlDtwl62Ay9r8+ZUjlM5MKvFUEvM+K2ig3g9C336mVQyQ7dbxWblpbMObIBZx8vWEDCqFR0+1trcuiXXkqPm5uBqSllHb0alv5+ik/cjYOAt0N3Z8mlytC9BP2ss2h/LVtm7+niduiA45xzcehB9TYbQsM4dFudo0QEPSRHjtBtnBw6C7lXP+CuLnI/zc2VdyKzOXS/ZcmAdIeuVLQzD778MtDbSz1cgPTBL7nC4jZ7dnr3PcA7Qzfzc6B0Dt1mKl580RkBunp1pkM/fZrK6SXopkNvaSlM5MINou3t4QSd+7VLhl5mcG5WacLmR5Cgd3YCK1ZEP6VqFNgEnevpJeimQweirbd7RKptnpVsOX7cGWATNnLJp7dHtmSToU9NpQv6BRfQqNGJCec17l46HL1wFOLVKFoIQX/960nQbd0tTcShlyks6HFy6HwQ+UUuK1ZQjhnHyMUtIiyy8+fTbZQTNrFg8oFeCEE3HXrlRC72DL27m17P85yvXk1ulxtKgcypC4Iil6NH6Xfsl6GHiVyqq+nKanSUrrL8EEEvUzhyqTSn6oefQ5+aosglTg7djFz4Etzk6FESBb48jrLefKCzkBRK0OfOdSIXrbMX9Cgbg23iVl9vd+gs3GbkAqTHLm6H7he5mLFhvg59wQI6Lsz/5YUIepkS58jF5tB7eujH2N5emYLOB3s2GTqPEmWKIehROPQ5c2gQzsCAXdBHRpyVmdwZek0N/RXLoVdXUxzkFnTug86Cft55dGs2jAYJuunQuY0CyF/QFy92orKgni4i6GUKO/TJyfQcr5Lxc+jcw6VSIxcWclvk4tcoWixBL3TkMjJCc4dz5AKQS7dl6ABFB1pnOnQgunp7iVtLi92h19Y6SwE2NtJv0ebQub6trdSYzeaL6wyki3s+gn7oEHULXbaMHgc5dGkULRGjo/4NHPwj4ddWOlNTzkFkE3Sew6UYkcvkZPrCxYWABX1oyNlfbkF319vt0KNe9AAoXOTinnWQt9kcOuDs33IQ9NZWu0NfsSK9j7y7p4vboVdVkbhPTZGYVxnqFiToYTN0duizZtF3KpFLGaI1XdrdcYf3a+Im6IODztzPtsiFHXoxIpePfYwOkGuuAW6/Hejvr837M/v7HVfE4h7k0I8cARYudB5XUuRiToVrOnQW9IaG9P/DUUG+gn7ypH2OFRt+Dt39G9y/34lbmNWrae4bHqzT30+Cb4o1193Mz4HCOPSBATrxLF5MVwLLl0vkUpaMjdGl1L599ufHx6k1mw/2SsuTbZgHkFfksmABxS1RRy4HD9IB19UFfPSjwCc/uTavz5ucJDGzrQRfU0MHV0sL7Xe+JB4cJDdfLEF3Ry4sQIV26ENDtP/Y6boF3Z2hA+HrPT5O3/Htt4cr4+goff/VrhkO3JGL1hS58P5j1qyh/8mLXfDEXEo5r+G6ewl6VRWZBzdhBJ27LC5ZQrfLlolDL0v4ct824xvg9E8+80y6jZugezl0bsmP2qGPjlKjV0cH8Gd/BvT15ffrP3GCROHss+mx6dCbm53Z93gb4LSRFNuh86V+VRVQVzdZEEF3O3R3bw+gMA790CH6bnfuDFdGrzlN3ILe20v7xe3Q3/IW2nf33UePbb10+LHpyPl/AHQCq7KoXm2tU0YvWNB5ts7lyyVDL0uCBJ0Pdha4OEQuYRw61zdqh86z0SlFfcCHh2tCX8bbYHHzEnQgfZ1JwC7oxcjQ3YNsCinonKHbBN0vQ585M5ygcywXdtbBsILu7uHCzJ8PvOENwM9/To/9BN3LodviFiDcyGC3oC9bRgOV/Np/xKGXAN4hXgcT5+cscHFy6PX1mYI+MUExSHs7PY7aoZvTi/LMf/mOmASAc86hW7+Fg0vl0PlzTefGiz3kgjkVbkMDfW4Yh26LH8IumMyCfvBguDKGFXR3H3STd7+bIpf9+9Mn5mK8HHqQoAPBJ3Cex8UUdMC//iLoJSDIobsFPU4OfenSzMjl0CHKoYsZufAPngU9n0Wps3HopYxcZsxIv/yvr/cX9GeeceI/NzzTYmMjuU0eXMSrFTFmt0X3TItM2Hqbgh5mlkgvQedeLvwZHR1ULjYUJu96F93+4hd2hx7UKJqPoHd30+dzAzP3Rfe7QhFBLwFhIpeqKqdPbJwc+rJlmQ7d7IMOFC9yAQoj6CzgS5bQgWQTdPdkWEeOUBlMxxc2esgFm7j5OfRTp4DLLwc+/nH78yxu3EDIMy56OXReCchGtoI+OEjtFkH4OXStneNw1y66urLlzsuW0fzxP/95dhl6oQSd3TmXBfDv6cIZugh6EQnj0BcscJxOnAR96dJMQedLSHYgdXUkAFENqIpK0OfOpb8wkUtPD+1js8dE2OgBoIa8hx4KX8aREZuge2foP/4x/U5/8xun256JW9zYobsFva7OceW2/JxfE+Y3zjk8EC528RN0wNnnu3YBF17o/TnvfjfwxBP0uw2boVdXU8O73+cG1ZsHFTGLFtHnhnHo0ihaRMJk6AsXRruAbpTs2QM8+mj6tpMn6ce4YAHdNy+ZecIhnqQq6npHEbkoRZHC3LnhG0XNuAVwDvAwccJ3vgO89a3hB0jZxM0rctGaxkjU1VEdNm/OfA3P48KwQ3dHLmYPn3wFvbMTOP98ul8IQT91iurX2Rks6ExYhw4Azz9PYx68yNah19TQY4lcygxeVMAvclm0KNqpRaPkttuAP/7j9G2nTpF4trZSXm5GKr29lMfyQVFfT7dRxS5ROPTZsykmmzMnfIZuE3St7Y7YzYEDNEIxm4WD+UTJeEUuTz0FPPss8KUv0ff0wAOZr+Gpcxkvhw4URtBPn6bv7Ior6HHYxR6CBJ3nalmzxvtzVq1yTiRhHXoY/AR9fJymhjAFHaDYxW+fi0MvAWbkYnNjle7Qjx2jg8+s28mTjqDzY6avDzjjDCd+iHp9zSgEnd0qRy5aZy/ouSwcHFbQ7ZGLXdDvuIMa4m65BbjySuD++zNfY4tcbBk64NQ9nwyd63nZZeRUC+XQuU+7n0MHHJdeSEH3i9j4+DEjFyC4L/roKJkjW9/3KBBBhyPok5OZO5RHiRbboQ8OAv/rfwFHj+Z/rXb8OJXZFAsWdPNgYnp70xuPWNCjdOjZRC5HjgBf+Yr3kHP3smRc/8lJR8xqa50IY2yMXmNz6EC4/c2CZubKftgbRScwPJxer5MngZ/+FHjf+2hfXXcdRWjm8oBApqDPmUP7dHg4PXIBgh16mMZg/v9nnUWuNR9B531+6hTl57zknB833QSsXZsp/MuX0+IT69cHl8eNX73dfdCZZcucXmE2TLNSDETQkZ57eq1is2hRcVaCB+hS+S1vAb78ZWDLFp9m+ZBw5HDsmLPN7dBNQWeHznDkEnUXPoC+49raKV9Bv+MO4AtfoG58NmwO3Wsl+FOnnH2cq6Brnb1Dt0Uu9fWkCmb09+Mfkyjfcgs9vv56ujVjl9FR+g2bjtvsrRNF5GL2hFq6tLAOfc2a9MZpGytXAk8/nSmwDQ3Ali3UEyZb/CIXL0FfuJBMHy+24carzlEhgo50QXfn6NwHvViRS08PcNVVwPbt9Hh42NJROAu0dgSdV+QBMh26KaBeDj0KQeeMOn2AzYTnsngAkErRrZegmw2Ec+eSS2LRti0c7F56jglb7/5+5zVhHbpX5AKkm4p/+RdyoixQZ59NYmYKunvWQff9XAQ9aJrori4q/4IFJOiFyNBPniRBD4pbosIt6L/6FfCRj1DExaNX3ZFL0BWlCHoJ8BN0HnBSjMjl9GlqZNq/n35EM2YAQ0M1eX3m8LDzI3ULekuLPXJxO/QoIxducDQFvbFx0vMAGRmhLmsAOTQbZgMh37LQ2gTdNqgIyG6ObCYbhx4k6KdP00nr3e9Od6zXXw888ojTmG8T9DAO3S9D5zJ60dlJ8UZVlRM7hFlf0yZuXJ7nnqPfpV+DaJS4M/Tbbwe+/33gbW8DPvc5Krv7JFhxgq6U+oFS6phSarex7TalVLdS6pnpv+uiLWa0hHXoPFNcVA59716a8fG736XIpaUlf4durthjc+juHyRfPpoOPcrIxb7O5ITnAbJ1q9PQZHPoY2MkiKZDB+yCzsvQeQl6WIfOccPq1dll6JmRC1liFnT+XB7gxVx3HZWJr1SCHHq2GXqYeptz/SxdSr8bM9Kz4SVuNTUUlXB3zFI6dLPOPT00pfNvfgN8+MPAX/5lZhQUJOhm+1AxCOPQfwjgWsv2b2mt107/WTpSVQ5+Gfrhw+RCzIWDo56BjxdZaG6miarywSboWjvdFt0OncWhWJGLbTa6piZvQd+0iQ6q97yHuvK5XSFnmW5BZ+dsy9CPHHEmBjPJZuFggEZy9vSE+57CRC5cZncD4ZVXkgDeey89NudCZ/LN0LmMXrgFHQg3layXuLW0AC+8QPcvuMD/c6LCHbn09NB3/wd/QE79S1/KfE8Yh15WjaJa60cB9Ae9rpIZGnK+dFvksmCBM7ouyvk93OJWaIfODmpoiDJSm6DzoCJbo2gUkYtN0P0c+qZNdEn+pjfRvnrppfTnub7ZRi7z55NTNAkbsfFK8NyzItc82S3o/DluQZ85E7jxRuCuu+g12UYuvM9zFfRTp+h/ugU9qGE0SNABinFYJIuNKeiTk3S8uNtV3FRc5OLDx5RSO6cjmdnBLy9fhoYcV2yLXNwTNhVrStVCCnptrePQ+cfX2upc7vK2vj66LZZDt0cu9gx9bAx47DFyqGun18Bw5+jmsH/zNkjQ3XELEL4R/NAhej/Plx8mdvEaWASkO/SqqsyeFQDwxS/SldZtt2WexIB0QXdHLjfeCPz93wdn6Ly/T52ik9WTT9Jj91w/YWYdBPzFjYWxVHELkH5s9/WRqFeaoOd6Pf99AF8GoKdv/zeAP7G9UCl1M4CbAaCtrQ0pDv6yZHBwMOf3MsPD1fjEJ9bi05/uwDnnOMrd07MODQ0aQAt27NiLZcuc9eb27bsY8+ePIJWiJgStL8WBAyeRSr2QV1lsbNs2B8CF2L17B6amTmF8fA0GBqrzqvdjjy0CcA4WLx7C3r0TSKWeRldXA4BL0N39PFKpY6iruwwvvHAcqdRepFJnAFiNrq6nkEpRFnX8+AwAr8ezz+5FKnXY579lz8GD9QAuxf79VBYAmDFjOY4fn0AqlT7GfffuFpw+/VrMm7cbx4/3o7r6ctx770GccYbTKXvz5rkA1qCzcxtSqUGMjysAV2L//nEAtXj22c146SXKqk+cOAsnTizC3r3DmDVrDKnUrrT/99JLjQBeh23bdqOxsc+zDjt3XoTW1iocOfI8gMvw0EMdmDHjiG+9Bwc3oK/vKFKp/a9um5qiy5Xt2/di6dLD2Lr1XMydOwtbtjxh/Yx3vOMs3HXXElx22XFUV8/Btm2PuuaieQNGRqqxe/cTeOWV9LPx615HVzs29u2j73Dz5m3o7R3Enj3NePLJdfjYx/rxjW/sfPU7Pn58O1KpAWgNzJz5BmzZchhr175o/czJSYWpqStx+HAnUimn5ZiP68nJiwDMRkvLAaRSndbPiJqennaMjCzHxo2b8OKLtO/7+nYjlfLe9xMT9Pt65pn0ejHHjr0GtbVTSKWeTdteCD2zorUO/APQDmB3ts+5/9atW6dzZePGjTm/l3nmGa0Brb///fTt556r9fXX03Nf+1r6c4sXa/3BDzqPzztP6/e8J++iWPnFL6gMO3bQ4xtv1Hrx4qG8PvNv/oY+87/8F61XrqRtjz1G2x54gB6vWqX1e99L92+/nZ47fNj5jFdeoW3f+lZeRbGyaxd99r/9m7Ptj/6oUyul9eRk+mv/7u/otb299HjNGq2vuy79NXfeSa/p7HS2NTXRNkDr8XFn+xe/SNsWLEjfx8zevfT8j37kX4dzzqHfxPi41tXVWn/+80G11rqhQetPfSp9269/vSntN/jGN2q9YYP3Z/T2at3SQmVsa8t8fulSeq6nJ7g8Jg8+SO/bvJke33ef8/098wz9Dsz9oDV9B3/4h96fOThI7/n619O383H9rnfR8z/9aXZlLSRf/jKVYWxM69/8Jv078MO2L5nXvU7ra6/N3J6tngHYpkNobE6Ri1LKvEB9F4DdXq8tJ3iKT/fl0dAQRQxKZUYuvG4hU/wMPf9G0ZYWumy3RS78f9wZeikjl6amCWiduS82baKeJFy2tWsze7rYGgj5fl1dek7O8UtPjz1yCZOh86CiJUvos5cuDdd10Ra5zJw5haqq9MjFb8TkvHnAX/wF3bfl4V5zgwfh3t/c9lJdDXzzmxS5NDWlf8fLluW30ANn6KXqsgikd1P1Gptgo7W1fCKXMN0W7wbwOIBVSqlDSqkPAfh7pdQupdROAG8E8MmIy1kQuAeETdCbmujPFJHRUerrW8w5svl/AIXL0OfOpTaCgQFq2PQT9L4+2s5rLJrbCzKWAAAgAElEQVTlCdMoqjVNnnTHHeHKZ28UpSzZ3E/j4zQC8MornW1r11Ibh9ld7vhxKrspYiw8XnNkA7ln6CdO0G+EGwbb24Mz9IkJymfdBzrPhDgwQL13Dh4MHgL/iU/QvnX30AEckedG7bC4683f7//4HzQNwebNlJ+b8U7QaNEgQZ87l8rJq0yVArPesRV0rfX7tNYLtda1WuslWus7tdZ/pLVeo7W+UGv9Dq21f2BYJvg59MZGOphMQecTgNuhR9Uo6ha35mZgdLQ6r3nITUEH6OBk8WZBN3+Qvb3pPVyAcOstMkePUn/6LVvClc+rlwuQvp927KB94xZ0IN2l86Ai20rwuQq6X71ZxHgE4fLlwQ7dT9zM0avj486c9F40NdE87N/9buZzs2fT7zrbiaFsDr2piQbXaE37wr2a0NKl1LjM+9NNkKB/6lNUD3dPo2JiXpH19NC+cDco22hpqSBBjxM2h84TcjU2Zjp0vnwvpUMH8l9f0xT0o0eDHbptVZdsV7FxTx7lhW1Fl4aGTEF//HG65elaAbugu+cFB/J36EGLHgCOoLe307wfXsIGOPvZHblwmQYGvLss2rjwQntUsWhR5sk5DDZBb2ujk8uNN9I292CnZctI7A97tJkHCfqiRdSPv5S4I5cw7hzwd+jlOLAoNrBDN4e586AiFnRTPPkEYAp6MR26bVh+tngJulJOLBHk0AGqd5jIheOGbEZMAu6BRRS5mPV++WUqr3mQzZlDQuJ26GEFnb9fwC7oHDuFWTjYdOjmZF02WCj9HHo2gu7FbbcBv/519u9zC/rRo06k8+lP0+2556a/J6gverEXesgFU9B5/EkYeE1UG2U3sChO2CIXng/Dz6EXq1HU/aN3r6qTCyxwfEAeO+bM48KxBA+Bn5ryduj19dk59O7ucCe+sJFLdze5ODfuhlH3Qg9AuMjFdvCGiZoOHaJIg08IHEX4ndDCRC4c2wRFLn7Mm5cpvGGwOXT+/axdSyN0P/jB9PcEjRatBEF3Z+iFcOgSuVjYtQt44gmPYW1ZYItcTIfulaEXK3Lxcui5Ri4TE1RXm0M3R+PxIr2Dg/4OPRtB1zrciMmwgn74sLegd3SkT1SVbeTS2urdcBhU74MHnXl+AEeAwwh6UORijuQtJn6CDlDE4y57nBw6Z+gi6BHxT/8EfPWr5+X9OTaH7o5cwjj0KEeKVlU54pBv5GJ24auro8+zCTrf5+zXK0MPE7l0djrlD5Oje03OBWQ6dNuIyUsvpSuL22+nx9lELvzYFrcw2S4cvGQJ7UO/htGwkUs+7jwfTGGbmqKTvK0XjUlTE/2Ocs3QywEu28mT9JeNoA8NZU43PDVFDdsi6C6am4HTp/PrvgcEO3SvDN0Uv6gduulU841c3MPg29q8HToAvDg9yM/m0MNGLl1dJLJAOEG3OfS6uilUVzv7iRvbbA79rW+l6WU/8xngP/+Tyhg2cuF6+wl60MLBhw457pTrsWhRYSKXfPLzfOB9MTJCpmBqKljQASe6s1FJgs4n42wEHcg8Tm1TQ0dNxQj6+HiVb8+BMJiNory+Jgt6Q0OmQ3/lFVo5vto4l0Tt0M0ffL6RCws6O24vQef7PNFVrg59cpKc5YYN1KAYpmHUJuhKpV/G9vfTd2Nz6EoBP/whZcXcAyOsQ6+ro32bq0PXmiIG96IH7e3hFg72ilxOnaLvsVSCzm0Ho6POYDSO7PxobEyfudSkEgSd90eugu6OXUpR54oQdO6N4R45mC0s6JOTzg/PlqGz2Pf3p+fngHOA2xaTzhe3Q883cnE79PnznUbRKBx6dze5krPOorgg18gFSBd0voy3OXSA9tu99zrfXVhBV4ryYL/lyvwE/eRJ+v3YFg72O5kFRS48J32pIhfAqTcPKgrj0Ctd0LlsvO/8TvQmIuhZ4l6hPVdeecUZKMBfvjtymZpyDjj3sH+Adg4vm1Zo3A6dT2S5CjrPnJht5JJrP3RzFr729twjFyBd0L3WczRZuRK4+27aX+e5mlsWL6YyXXRR5vt27AA+6TPO2S9i466JZuQCUN0PHfJewi0ocmFK5dCB3ATdfYVrUkmCLg49Ygoh6OPjJN7crcxL0M3/4+XQgWhiF7dDr6kB6uom845cTEE/fpyuVGyRi59DDxO5sIC3t5OAFkrQgxw6c+21dBJzC3pDA8VJ11wTXB43fhGbuw86s2gRXQXyvDhugiIXptIEPU4OXanwg7Js6/IC9kFzUZMYQee4hS9j/QSdXYaXQweim6gqc9ED/wWT/Th+nISSr0o4B+XFLRj+QXZ2UvbtjiaAcJELHwjLlpGg9/YGx2Sjo3Ticg9PN4dTs0MPcwkctFp8tvhdmbiH/TP8/XmJW1DkwpRL5FJV5b0YhkmlCzqfYA8fJjEPOw1BkEOXRlEXhRR0P4fO/4dFqNQOHaBFD2yCPjkJ/P73wOc/D2zcaP887sLHImc2bJmCzvUeHaUfsk0Uw0YuixfTQctDw4PmNbHVmctnOvR580ojBn71PnSIviv3iYZPoLmIG++Lmprwl/xRYAr6GWekdwzwIi6Ri9bZffflFLmUcCqc8BSiUdTPodfUkKiY/0drcuhegl48h54ZuXzhCzSbIV/SP/CAfcFkd59s87LZFPSqKqe7nC0/B8JHLizkfNvZSVPeehFG0L1GiRYDrwxda+CXv6Q5VMyZKYHg32uYyGXp0nAiGhUs6Oaw/yAq3aGbZatUQU+MQ+c+5Szo7Hp5pkUgPUMfHKRGrWJGLjZxa2xMj1ympoCvfpWWO/vZz4C//Vsaiv3cc5mf5xZ006G7RyDyY6/ckCMXv949pqDzlVBQju4n6Ny99PBh/wbRKPHK0B9+GNi5k6avdRPk0P0iF94PpczPAedE5h4l6kcYh+4++ZUT5u8wG0GfOZP+JEMPSdSRi1vQBwftw/6BaCMXm0Ovr0+PXHitww98AHjve4EPfYic3I9/nPl5foLuXoiXH/s5dK39p0ft7nYEff58aowMEnSvodGtrVTP4eHSOnSvyOUb36Co5b/9t8znChG5lFrQzcglG4c+Pm7vAcb7udBtHIWkqsoR9WzjLtsEXZKhexBG0F98Efiv/zVzFXiGBZqHZtsE3czQbXOhA6Vx6Ga93RPvt7UBV18N/OQn5N5N3ILe1OTMWeIW9CCHHhQ1HTxIgs8nTKXCdV30c+hch6NHS+vQ3XXesQP47W/JndtEOWzk4ifopWwQBZwrk2wFHbCfyIo9p0mucBnD9kFnbPO5SOTiwcyZQHX1lK+g3303cM89NKfybsuCeOzQZ89O70Hh5dBtc6EDxXfo7kZR20oq738/NT4+9pizTetMQVfKOTizdeh8IvASdPdK8Hw/aLRokKDv3Ut1KWWG7t7X3/wmCe8tt9jfEyZymTHD7lZnzwY++1ngfe/LvcyFoK6OTM3AQLhRooD/iazSBD0Xhy6CHhKlKHrwaxTdvp3OqkrRqjZbt6Y/f+IEHUT19cGCPjDg7dCjbBS1TYYfRtDf+U6qlxm7DAxQG4B71CQfnLk6dK+GUZugh3HofpELADz/PN2WOnLhtoMDB8g43Hxz5nfIhHHoXge5UtRGcv75+ZU7X+rqnO6iSXToIugRY+vtYbJtG3DVVdSVb9Ys4M1vTp/5jedlcc8TYgp6XR3FMX4OPep+6JndFicwPu78OGyC3txMon7PPU7G7R5UxLCge01UlY9Dr61Nj0ZWrKDvmU+ONoIc+p49dFvKyGVqyhn1+b3v0W/o1lu939PQQLd+Gbqth0s5UVdHbRhA9oJeyQ6d90shBF0aRX2or/cW9GPHqE/wxRdT749//Vf6UW3b5rzmxAkSdCD9yx8edn6IvEivX4YedT90987nBZPZpff0OAtam7z//XQSevBBeuwl6AsWUP3dXeJYQHPN0Lu6qCHP/Fyz66IXQYJeaofuPoE//TTw2tdmDvc3qa6m78svcil3cTNPONn0cgGS6dBt64pKo6gPfg59+3a6XbeObleupFtzUIvZp9zLoQNO16v+fuqf7l4kttgOvb6erKEp6LYf2zXXkLv+wQ/osZegf+pTNDuhmyCHHiZyca8zGUbQgyKXPXtIIMOKSqFxn8APHMhcINlGUBe+che3XAQ9LpHLzJnecZoXErlkSUPDRKCgv+Y1dDt/Pv0gzQY5L4duE3TO0N2rxwPZOfSf/IRmHgw77a+fQ+e6ewl6bS3w0Y/SYJdt2zIn5mJWraJ4xo0534uNMJGLW+hY0P0aRr0cOp9genupbSTblesLhXllMjUVXtCDBtmUe+Ri/g6zdeiVHLnMnEnHV7bdK1tb6RjlmAoQQffFL3LZto2EikVAKer2ZTp0P0HnzBNId+ju/BzIrlH0nnuoG2U2CybbMnTAceh+i9f++Z+Tw/7sZ70duhcf+ABw333eB6+XQx8fB77+dYq9+MqImTWLvutcBL2pyTmoSpWfA+n7++hRKm+YLoVNTfGIXBobM69SvYiDQ29pyZybJwzs6E2NKkWGXhFD/wESdK+V1LdvB664In1be3u6kNgiF60zHTpn6GNj9gmJwkYuU1PUQAsA+/cD55zj/3oetGPr5QKkO/Srr7Z/RksL8Nd/Tf2jR0ZIEG0nJRuzZgFvf7v387YT2eOPU2+P3buBd72L7ts+12u9RcB7VfSqKieXLFV+DqTvb55qIaxDj0Pkkk3UFSTo2cYYpeA738kczxEGc/g/G8dSjI6tGIfulaFzgyjn54y5aozWmQ59YoJEXmvvDN0mhnwgBkUuu3c7PWX27w+snudyVWaj6MgI1cOvwebDHyYHuWUL1TfsjHFBuCOXY8eAN76RyvPLXwI//7n9+/JzqoD9JMbwQVIODn101Pk9hXHolR655CLocYhcVq3KnH45DLb5XNisFHN0bMULurtBlFm+nHLkoSHqyTI+nu7QAadbo1eGbhOoqio64wY59E2b6Lamxpln3A+vvM2MXHg5MD9BnzkT+NKX6H7YuCUM7shl3z4q87/8C3DDDd7v8xM2wDtyAZz9VEqHbl6Z8BVf2MjFy6FXUuSSjaDX15N4VXLkkitegl7sOleQoE9gbCyzgXHbNvoRcYMow5fFBw44o0RNhw5QHg3YHbptLnQmzLqimzbRgX/BBeEcutdCD2bkYuuDbuP976el1Qo5H4g7cuFBJ0F5Y9wEfe7czC6jNoIcermLWy6CrpR31FQJdc6HchH0isnQ6+ocYTOd5/btlE+7Zw9kF8X9o4FMQbc59OZm2inDw975c9Dc4FoDjz5KK9IPDQG7dgXXz8uh19VNQily6CzoQfNMVFcDjzyS3uKeL+7IhdszguKQxkZH/G34/ejLIXIxM/SwPVwA/6ipkiKXsMP+Ga8TWRIF3S9OjIoKcujpjYPM9u2ZcQtgd+hhI5fhYbrv5dD91pkEqO90by9NQbByJXXpCxJXL4fOc5Wbgh5m0MPcuYXtu+2OXLq7qXcQnyS9iItDHx0lcxB20iy/RtG4Ri6ACLo5TYdXg3+UVJygmwfJ0aPOCFE3CxbQl9nV5R25eAk64+fQ/SIXzs9Z0MfHneXKvAiagY8jl2zWOiwkvEycGbksXhzc4FMIQS+HRtHTp7Nz6Fxv2/zxlSBuuQq6V9tBJdQ5H2zrikqG7oPNoXs1iAIkPsuW0UHontucv/wgQc/VoW/aRCJ05pk0sAgIztG9HDqX99QpyvznzSvNIgE0QVp65BJGaP0EfXKS/rx+9OedR9+hO04rJly2gwdJ1MM69KYmqpvtxF8Jkcvy5fRbvOCC7N6XVIdeX0+mRwQ9JDwE3hR0nufjwgvt7+G+6Nk4dHPSqlwcutZAKkXuXClnsE1QTxc/h86C7jVKtFiYy9B1d4cbgOEn6H4nMQD42MeoN00pF0Vg4e3ooNtsHDpgr3slRC5nnkn7es2a7N5ni5q8xljECfekf4Bk6L7U12c69KNH6czoNWBh+XISdHbo/DoW7Vwdul+j6N69VK4rr6THvGhyPg7djFxKKejs0Kemwi8Lx6vY2KY/CBJ0pUo35J/JVdDjMFFVLt+9rTG4FCMmS4Fb0CVD98EWuRw9Sq3wXg6uvZ1ec+QI/dA4qqiuJpH06rbIeDl0v8jFzM8BOijOPDNY0CvJoff10UEaVtABb2EDyvtAZ0F/4QW6zaZRFMh0qxMTdEIs98glV2xXZJWwnwuBTdDFoXvg1Sjq12jDB9/OnZm9MVpbndGZhWwU/e1vqVuhOdR/5crgyCVMhl4Ogj4yEr4POuAv6EEOvRzgsvF8+mGHr3vV22+B6DhgaxQVQS8eFSfoNofuBV8e79yZKc58YHJjH8NxTEOD987wcujj4zQf+XXXpV81nHUWOXRbjwcmqJfLkSP0mmzXOiwkHLmE7YMO+EcPlSDoSjn7JJt1Pr2Gwcdd3MShO49F0H2orZ1CTU12gs4H4OCg3aEDJNym+PKB6DeplZdD37KFnPT116dvX7mSogqOeGwEOXReMafUDv30acehFypyKWdBB5x4JGx+DnjXm+sc58hleDh9gqukCro0ivrAqwmxoE9N0eAdP0FftMiZnMpP0E1Y0L0aRAHvRtEHHqCc3j0bYpieLkEZOlNqQefIpbo6XFnCRC7lfqCz+Obi0JMYuWidPs1yUgVdGkUD4ImzAJrJcHLSP0OvqXGWCvOKXNxzPYdx6F6Ry/330zS+7vU6w/RFD+rlwpRDL5dDh6gc7mXsbFR6hg44QpSLQ09i5AKk7++415lpbaUrdL46KcvIRSn1A6XUMaXUbmPbHKXUw0qpfdO3IWfdzg/TofPMg0FzTbCr8nLotiXmamqCHbo7cunqon7x7riFy1BdHQ+HzpFL2EUA4hS5ZOPQgyKXuIqb7UQW9zozLS10dcJ1L0tBB/BDANe6tn0WwO+01mcD+N3048jhxSeA8ILOriqsQ1eKXHq2Dv2BB+j2uusyX19bS+XI1aGzoM+YETx3SpSYkUvY4fhxilyycehBkUtcM3RbvZMi6KwpPJCxLDN0rfWjAPpdm28AcNf0/bsAWFapLDymQz92jG4L7dABWlLtwx/2/sy6OtpZZq+VBx6gaMVrZSLu6eJFUC8XILe1DgtJfT059LDD/oF4RC65OPQZM+iqTCKX+NeZWbWKbp99lm4rKUNv01ofAYDp26KsyZ5L5MKuKhtBv/lm4JJLvD/TvVD06dM0Xa27u6LJypX+XRfDOPRSxi0A1fuVVygnLETkUimCPnMmOU+/GM4Nzw2etMjF1l0z7nVmLr2U6rhpE+XoExMxnA9dKXUzgJsBoK2tDalUKqfPGRwcxOBgD3p7ZyGVegJbt65AdfVSPPPMo75DlE+cmAVgLbq7dyGVOv7q9u7uNgDnYWjoGFKp57Mqy8GDSwCsxG9/+3s0NU3iiSfm4PTpC7FkybNIpV6xvkfrJTh5ciXuu28zWlsnMp7v6GgH0I4tW1JpJ4XBwUF0dz8J4FLU1vYhldqd8d5i0du7AuPjZFNPnnweqdSxwPfQtMFX4bnnOpFKHUh7bseOMwCsxrPPbsWpU8Ovbh8cHMz5dxIFIyMX4owzZmDTpm1ZvW/GjMuwb18/UqmOV7c99dRcAGuwe/c2jI+n2/dyq3cu7N3bBOBiPPHELtTU0PHG+3nnzqcwOJh+hotDnU1WrVqLX/2qCm95yzMArkB390tIpV7OeF1k9dZaB/4BaAew23jcAWDh9P2FADrCfM66det0rmzcuFF/5CNaz5lDj//kT7RetCj4fRMTWn/ve1qPjKRvv/derQH6nGy5/XZ6b08PPf74x7Wur9f69Gnv9/zrv9J79u2zP/+Zz2g9Y0bm9o0bN+qeHnrvLbdkX9ZCctttVA5A640bw7+vrk7rT386c/uPfkSftXdv+vaN2Xx4EXjySa03bcr+fWefrfWNN6Zvu+ceqvOuXZmvL7d658ILL1D9fvQjZxvv546OzNfHoc4mX/iC1lVVWh84QHX+h3+wvy7begPYpkNobK6Ry30Abpq+fxOAe/M4p4TGHbmEWU2luhr4yEcyL338IpcgzFVsAJrnY/Vq/4YuvwV0geCVe6qqSjsvOJBev7CRC+A942KlRC6XXELdUbPFNlFV3OOHJDeKAjSH09QUsHEjPS67yEUpdTeAqwDMU0odAvBFAF8DcI9S6kMAXgbwnigLyTQ3OzP3HTuW/fJYJvkIujtD7+wE1q71f49Xv2TGb6GHujrg17+2z/teTMwpErI5uXgtx1Yp3RZzxTaVbNx7uSS5URQALruMerU99BA9LvZvO1DQtdbv83jqzQUuSyDc22NggBz6eefl/lmFEHSeSvbAAeCdAf18/OY0AYL7rF5zTfblLDRc79mz08U9iCCHHtcDvbHRmbqZibu4JbkfOkAjzy+5BHj4YXpcdt0WywkWRRb0fBz63Ll0Js1lOTfeSaOjND/L2BiwYoX/e4IiFz+HXi6woGcTtwCVH7nkShJnHqytpf2ZVIcOUOzS20v3RdB9YIfe3U0/knwEvaUFeOop4Kabgl/rxnTonZ10P19Br4RFD9iVZ5vl+y1LBsRX0G31jnvkAmTWO4mCzoig+8CCzgN08hF0ALjootwOLLNRNKyg55Ohlwv8XRVK0Nmhl2KN1GLg1yha7vs6H9xXJqOjNJ1GmLl/4sDrX+/UtVIGFpUEFnSeEyVfQc8Vs1GUBT1oFGG+GXo5EEXkMmNGaUe/RomtUZRHD8a1zoDdoZf7b7uQNDUBF19M98Wh++AWdL+ZFqPEjFy6umjRiSCnX19PB3ElO/QoIpdyr3M+NDbSb4QGVxEjI/GOW4DME1nSBB1wYhcRdB/Y5RYqcskVs1G0szM4bgGoH3lDQ2Vn6EuX0qXzRRdl9z4/h17udc4Hrz7Zca4zkBk1JaHObt7+djpWij12JPKh/4XEzNCVAubNK0053I2il18e7n1e/bEBErdculAWk+XLqYdRtg4zKHKJK2afbJ6PJwni1tjozLUEJKPObi6/nOY8yqZ7byGoKIfOgt7fT2JeU6LTEf84BweBgwfDOXTA3o2NqZQffS5xQWMjiTcvys3EXdBtDj0JkYutUbQSftuFpthiDlSYoPPiE0Dp8nPAOSD37aOBRYUQ9DiLm99iD3GtM+A9yCbu4pb0RtFSUlGCzuuKAqXLzwFH0F94gW7DLnxg6/XAxPlH7yXocc/QvYbBx7nOgDSKlpKKEnTAuYwtpaBzv2kW9Gwcul+GHle36tVlM851BpIduSTtJFYuVJygl4NDV4oOyu5uGkDAC1EHEYcMPRckcnG2xXk/M42NziR6QDLqXC6IoOcIuyzuyhcGv8glzm41qZFLUrstmvtba+oJVurVtpJCRXVbBBxBL2WjKOAclGHjFsA/conzge4n6Cx6ccTm0JMSuQC0v0+dAg4fpuHwQvSIQ8+RXFeCF4fukJTIJckOfcsWui+CXhwqTtDLoVEUyN2hu4eCA7SY7NRUfA/0pEYuDQ10mzRBN2cW3bKFHq9ZU9oyJYWKE/Ryc+jZCLqfUwXi61b9BD2udQaowby+PnmRi7m/H3sMWL8+OTMtlpqKE3QeQp3LwhSFJBdB95oTPQkr9wDJi1yAZHbh4/195AiwcyewYUNpy5MkKq5R9IMfBM48s/QuJ9fIBfBexSau4pbUyAVI5iAb/p0/8ghFiZKfF4+KE/RzzqG/UlNXRwdmNt2xkurQq6upbrZ6x/UkxpjD4LVOVuTy0EM0y+j69aUtT5KouMilXGhqIndelcU3GJShx1XQAfuMi0kQdDNymZggUY/zfgYc49LVRY2hHJMK0VNxDr1c+PKXaSrZbAhy6HEWN6/l2OJcZyA9cknCiRtInwZa4pbiIoKeI6tXZ/+eoAw9zge626FrnYwMvamJpnsGkrFANOCszqW1NIgWG4lciohf4yAQb7fqFvSJCbqNc52B9Hon4cQNkJjzb10cenERh15ExKE7j+Pes4dJYuQCUL2bm7MbSS3kjwh6EUlyhu5elizuPXsYs+0gKZELQL2/Vq8mty4UDxH0IlJXR71ipJdLMk5igOPQtU7Gfmbuv7/818iNIyLoRYSzxaQ69CRGLk1NNLhmdDRZgl7s1e4FQhpFi4xtxsUkHOheDj3OdQbSG8J7e+l+EiIXoTSIQy8yNkFPokNPQp0BR9Df8AZgzx66Siv1xHJCfBGHXmRsIyaT4tBHR53uikmJXM45h6Y+mDUL+PrXgY4O4PzzS10qIa6IQy8ySXboAJ3MWluTUWcAuPxyOnnJ9LFCMRCHXmSSnKEDztVJUjJ0QMRcKB4i6EXGNqdJEtyqe8HkJNRZEIqNCHqRsXVbTEKe7HboSaizIBQbEfQi45Wh19RkNxVvpZHkyEUQikWMJaQ88crQ4y5sXoIuDl0QCocIepFpaiIxGx93tiVhoQeJXAQhekTQi4xtCt0kO/S411sQikle/dCVUl0ABgBMApjQWl9ciELFGXPGxVmz6H4SHbpELoJQeAoxsOiNWuu+AnxOInB33wOS6dAlchGEwiORS5FhYTMbRsWhC4JQCPIVdA3gIaXUdqXUzYUoUNyxLXKRBIdeU0PiLRm6IERHvpHLBq31YaXUfAAPK6Ve0Fo/ar5gWuhvBoC2tjakUqmc/tHg4GDO7y0nOjqaAazD44/vhNa0evDRoxdiZKQaqdTTGa+PS70BYObMDejoOIZUah/27l2Bqqpl+P3vN2W8Lk51zoYk1juJdQYirLfWuiB/AG4D8Gm/16xbt07nysaNG3N+bznx3HNaA1r/7GfOtiuu0PrKK+2vj0u9tdZ66VKt//iP6f5f/IXWdXX218WpztmQxHonsc5aZ19vANt0CB3OOXJRSjUqpZr5PoBrAOwuwDkm1iQ1Qwdo0WBe5GFsTOIWQSg0+WTobQA2K6WeBbAVwP1a698UpljxJakZOgBcfTXw0EMk6kk5iQlCMck5Q9davxL3U6wAAAXDSURBVATgogKWJRHYui0mRdxuvhn4zneAH/6QTmJJqLMgFBPptlhkZsyg+bGT6NBXrwY2bAD++Z+TU2dBKCYi6EVGqcwJupLi0AHglluA/fuBRx5JTp0FoViIoJcA9yIXSXKrf/iHwOzZwJEjIuiCUGhE0EtAkh16fT3w3/873U/KSUwQioUIeglwr1qUJIcOUOMokJyTmCAUi0JMziVkSZIdOgCcfz5w7bXAnDmlLokgxAsR9BLQ1AQcO0b3p6aAiYlkOXQAuO8+6u0jCELhkMilBJgOPanTyNbWxnsNVUEoBXJIlQAzQ5dZBwVBKBQi6CXA7LaYVIcuCELhEUEvAWbkIg5dEIRCIYJeAhobgfFxEnNx6IIgFAoR9BJgTtAlDl0QhEIhgl4CzCl0xaELglAopB96CWBB//a3aQZCQBy6IAj5I4JeAjZsAK64AvjWtwBavU8cuiAI+SOCXgKWLAE2baLRov/5n8DTTwPr15e6VIIgVDoi6CVk/nzgQx8qdSkEQYgL0igqCIIQE0TQBUEQYoIIuiAIQkwQQRcEQYgJIuiCIAgxQQRdEAQhJoigC4IgxAQRdEEQhJigNI89L8Y/U6oXwIEc3z4PQF8Bi1MpJLHeSawzkMx6J7HOQPb1Xq61PiPoRUUV9HxQSm3TWl9c6nIUmyTWO4l1BpJZ7yTWGYiu3hK5CIIgxAQRdEEQhJhQSYL+z6UuQIlIYr2TWGcgmfVOYp2BiOpdMRm6IAiC4E8lOXRBEATBh4oQdKXUtUqpDqXUfqXUZ0tdnihQSi1VSm1USu1RSj2nlLp1evscpdTDSql907ezS13WQqOUqlZKPa2U+tX04yTUeZZS6t+VUi9M7/PL4l5vpdQnp3/bu5VSdyul6uJYZ6XUD5RSx5RSu41tnvVUSn1uWts6lFJ/kM//LntBV0pVA/gegLcCOB/A+5RS55e2VJEwAeBTWuvzAKwH8NHpen4WwO+01mcD+N3047hxK4A9xuMk1PkfAfxGa30ugItA9Y9tvZVSiwF8HMDFWusLAFQDuBHxrPMPAVzr2mat5/QxfiOA1dPvuX1a83Ki7AUdwCUA9mutX9JajwH4KYAbSlymgqO1PqK13jF9fwB0gC8G1fWu6ZfdBeCdpSlhNCillgC4HsD/MTbHvc4tAK4AcCcAaK3HtNYnEPN6g1ZIq1dK1QBoAHAYMayz1vpRAP2uzV71vAHAT7XWo1rrTgD7QZqXE5Ug6IsBHDQeH5reFluUUu0AXgPgSQBtWusjAIk+gPmlK1kkfBvAXwKYMrbFvc5nAugF8H+no6b/o5RqRIzrrbXuBvBNAC8DOALgpNb6IcS4zi686llQfasEQVeWbbHtmqOUagLwHwA+obU+VeryRIlS6m0Ajmmtt5e6LEWmBsBrAXxfa/0aAEOIR9TgyXRmfAOAFQAWAWhUSn2gtKUqCwqqb5Ug6IcALDUeLwFdqsUOpVQtSMx/rLX++fTmo0qphdPPLwRwrFTli4ANAN6hlOoCRWlvUkr9CPGuM0C/6UNa6yenH/87SODjXO+rAXRqrXu11uMAfg7g9Yh3nU286llQfasEQX8KwNlKqRVKqRmgBoT7SlymgqOUUqBMdY/W+h+Mp+4DcNP0/ZsA3FvsskWF1vpzWuslWut20H59RGv9AcS4zgCgte4BcFAptWp605sBPI941/tlAOuVUg3Tv/U3g9qJ4lxnE6963gfgRqXUTKXUCgBnA9ia83/RWpf9H4DrAOwF8CKAvyp1eSKq4+WgS62dAJ6Z/rsOwFxQq/i+6ds5pS5rRPW/CsCvpu/Hvs4A1gLYNr2/fwlgdtzrDeBvALwAYDeA/wdgZhzrDOBuUDvBOMiBf8ivngD+alrbOgC8NZ//LSNFBUEQYkIlRC6CIAhCCETQBUEQYoIIuiAIQkwQQRcEQYgJIuiCIAgxQQRdEAQhJoigC4IgxAQRdEEQhJjw/wE2S1n5GYspEAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(A,c='b', alpha=1,)\n", + "plt.grid(True)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([ 4., 3., 5., 9., 16., 20., 22., 9., 8., 4.]),\n", + " array([ 2.8 , 4.86, 6.92, 8.98, 11.04, 13.1 , 15.16, 17.22, 19.28,\n", + " 21.34, 23.4 ]),\n", + " )" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADExJREFUeJzt3V2IXPUZx/Hfr8aGkA34kmZMre22IRhFaKxDECxlFl+w3qgXQr0ogQjrhRYLggRTUCgBL1q9KgWLi7moLkK1ikg1CW5toRh3RTSSSIykNrpJ8I1mJVg0Ty/mBNZN1jk7c3bO7JPvB8LOnD075/Hv7Nfx7JyNI0IAgKXvW3UPAACoBkEHgCQIOgAkQdABIAmCDgBJEHQASIKgA0ASBB0AkiDoAJDEsn4ebPXq1TE8PNzPQ1bq888/18qVK+seY+CxTp2xRuWwTm1TU1MfRcR3Ou3X16APDw9rcnKyn4es1MTEhFqtVt1jDDzWqTPWqBzWqc32v8vsxykXAEiCoANAEgQdAJIg6ACQBEEHgCQIOgAkQdABIAmCDgBJEHQASKKvV4oCON2m7btqOe6ebdfVclwsHl6hA0ASBB0AkiDoAJAEQQeAJAg6ACRB0AEgCYIOAEkQdABIgqADQBIEHQCSIOgAkARBB4AkCDoAJEHQASCJjkG3fYntl23vs/227XuK7RfY3mn7QPHx/MUfFwAwnzKv0L+UdG9EXCbpakl32b5c0lZJuyNivaTdxX0AQE06Bj0ipiPi9eL2cUn7JF0s6WZJO4rddki6ZbGGBAB0tqBz6LaHJV0p6VVJjYiYltrRl7Sm6uEAAOU5IsrtaA9J+ruk7RHxtO3PIuK8WZ//NCJOO49ue1TSqCQ1Go2rxsfHq5m8BjMzMxoaGqp7jIG3FNdp/5HjfT3ehctP6uMv6n1PwoaLVtV6/DKW4nNpMYyMjExFRLPTfqWCbvtcSc9LejEiHi62vSOpFRHTttdKmoiIS7/pcZrNZkxOTpb6BxhEExMTarVadY8x8JbiOvX77/Xcsu6Exg6u6Osx51oKf6foUnwuLQbbpYJe5l0ulvSYpH2nYl54TtLm4vZmSc92MygAoBrLSuxzjaRfSnrL9hvFtvslPSTpKdt3SHpf0m2LMyIAoIyOQY+If0ryPJ++ttpxAADd4kpRAEiCoANAEgQdAJIg6ACQBEEHgCQIOgAkQdABIAmCDgBJEHQASIKgA0ASBB0AkiDoAJAEQQeAJAg6ACRB0AEgCYIOAEkQdABIgqADQBIEHQCSIOgAkARBB4AkCDoAJEHQASAJgg4ASRB0AEiCoANAEgQdAJIg6ACQBEEHgCQIOgAkQdABIAmCDgBJLKt7AGC2Tdt31T0CsGTxCh0AkiDoAJAEQQeAJAg6ACRB0AEgiY5Btz1m+5jtvbO2PWj7A9tvFH9uWtwxAQCdlHmF/rikG8+w/ZGI2Fj8eaHasQAAC9Ux6BHxiqRP+jALAKAHvZxDv9v2m8UpmfMrmwgA0BVHROed7GFJz0fEFcX9hqSPJIWk30paGxFb5vnaUUmjktRoNK4aHx+vZPA6zMzMaGhoqO4xBl4v67T/yPGKpxlMFy4/qY+/qPc9CRsuWlXr8cvge65tZGRkKiKanfbrKuhlPzdXs9mMycnJjscbVBMTE2q1WnWPMfB6Waez5dL/LetOaOzgilpn2LPtulqPXwbfc222SwW9q5cIttfOunurpL3z7QsA6I+Ov5zL9pOSWpJW2z4s6QFJLdsb1T7lckjSnYs4IwCghI5Bj4jbz7D5sUWYBQDQA64UBYAkCDoAJEHQASAJgg4ASRB0AEiCoANAEgQdAJIg6ACQBEEHgCQIOgAkQdABIAmCDgBJEHQASIKgA0ASBB0AkiDoAJAEQQeAJAg6ACRB0AEgCYIOAEkQdABIgqADQBIEHQCSIOgAkARBB4AkCDoAJEHQASAJgg4ASRB0AEiCoANAEgQdAJIg6ACQBEEHgCQIOgAkQdABIAmCDgBJEHQASIKgA0ASHYNue8z2Mdt7Z227wPZO2weKj+cv7pgAgE7KvEJ/XNKNc7ZtlbQ7ItZL2l3cBwDUqGPQI+IVSZ/M2XyzpB3F7R2Sbql4LgDAAnV7Dr0REdOSVHxcU91IAIBuOCI672QPS3o+Iq4o7n8WEefN+vynEXHG8+i2RyWNSlKj0bhqfHy8grHrMTMzo6GhobrHGHi9rNP+I8crnmYwXbj8pD7+ot73JGy4aFWtxy+D77m2kZGRqYhodtpvWZePf9T22oiYtr1W0rH5doyIRyU9KknNZjNarVaXh6zfxMSElvL8/dLLOt23fVe1wwyoLetOaOzgilpn2POLVq3HL4PvuYXp9iXCc5I2F7c3S3q2mnEAAN0q87bFJyX9S9Kltg/bvkPSQ5Kut31A0vXFfQBAjTqecomI2+f51LUVzwIA6AFXigJAEgQdAJIg6ACQBEEHgCS6fR86EtvU43vBt6w7cda8n3wp6/Xfcy/2bLuutmNnxit0AEiCoANAEgQdAJIg6ACQBEEHgCQIOgAkQdABIAmCDgBJcGERgL4re1FT1RepZb+giVfoAJAEQQeAJAg6ACRB0AEgCYIOAEkQdABIgqADQBIEHQCSIOgAkARBB4AkCDoAJEHQASAJgg4ASRB0AEiCoANAEgQdAJIg6ACQBEEHgCQIOgAkQdABIAmCDgBJEHQASIKgA0ASBB0AkljWyxfbPiTpuKSvJH0ZEc0qhgIALFxPQS+MRMRHFTwOAKAHnHIBgCR6DXpIesn2lO3RKgYCAHTHEdH9F9vfjYgPba+RtFPSryLilTn7jEoalaRGo3HV+Ph4L/PWamZmRkNDQ3073v4jx/t2rCpduPykPv6C//n7JqxROVWv04aLVlX2WP00MjIyVeZnlD0F/WsPZD8oaSYifjffPs1mMyYnJys5Xh0mJibUarX6drxN23f17VhV2rLuhMYOrqh7jIHGGpVT9Trt2XZdZY/VT7ZLBb3r//TZXml71anbkm6QtLfbxwMA9KaXd7k0JD1j+9TjPBERf6tkKgDAgnUd9Ih4T9KPK5wFANADfioDAEkQdABIgqADQBIEHQCSqOJ3ufRFne/JXqrvXQXwddk7wit0AEiCoANAEgQdAJIg6ACQBEEHgCQIOgAkQdABIAmCDgBJEHQASGLJXClap1NXl21Zd0L3LdG/RQhAfrxCB4AkCDoAJEHQASAJgg4ASRB0AEiCoANAEgQdAJIg6ACQBEEHgCQIOgAkQdABIAmCDgBJEHQASIKgA0ASBB0AkiDoAJAEQQeAJAg6ACRB0AEgCYIOAEkQdABIgqADQBIEHQCS6Cnotm+0/Y7td21vrWooAMDCdR102+dI+oOkn0u6XNLtti+vajAAwML08gp9k6R3I+K9iPifpHFJN1czFgBgoXoJ+sWS/jPr/uFiGwCgBst6+FqfYVuctpM9Kmm0uDtj+50ejlmr16TVkj6qe45Bxzp1xhqVk2md/JuevvwHZXbqJeiHJV0y6/73JH04d6eIeFTSoz0cZ2DYnoyIZt1zDDrWqTPWqBzWaWF6OeXymqT1tn9o+9uSfiHpuWrGAgAsVNev0CPiS9t3S3pR0jmSxiLi7comAwAsSC+nXBQRL0h6oaJZloIUp476gHXqjDUqh3VaAEec9nNMAMASxKX/AJAEQS/B9iHbb9l+w/Zk3fMMCttjto/Z3jtr2wW2d9o+UHw8v84ZB8E86/Sg7Q+K59Qbtm+qc8ZBYPsS2y/b3mf7bdv3FNt5TpVE0MsbiYiNvIXqax6XdOOcbVsl7Y6I9ZJ2F/fPdo/r9HWSpEeK59TG4udRZ7svJd0bEZdJulrSXcWvE+E5VRJBR9ci4hVJn8zZfLOkHcXtHZJu6etQA2iedcIcETEdEa8Xt49L2qf21ec8p0oi6OWEpJdsTxVXvmJ+jYiYltrfoJLW1DzPILvb9pvFKRlOI8xie1jSlZJeFc+p0gh6OddExE/U/s2Sd9n+Wd0DYcn7o6R1kjZKmpb0+3rHGRy2hyT9RdKvI+K/dc+zlBD0EiLiw+LjMUnPqP2bJnFmR22vlaTi47Ga5xlIEXE0Ir6KiJOS/iSeU5Ik2+eqHfM/R8TTxWaeUyUR9A5sr7S96tRtSTdI2vvNX3VWe07S5uL2ZknP1jjLwDoVqMKt4jkl25b0mKR9EfHwrE/xnCqJC4s6sP0jtV+VS+0ra5+IiO01jjQwbD8pqaX2b8Q7KukBSX+V9JSk70t6X9JtEXFW/0BwnnVqqX26JSQdknTnqfPEZyvbP5X0D0lvSTpZbL5f7fPoPKdKIOgAkASnXAAgCYIOAEkQdABIgqADQBIEHQCSIOgAkARBB4AkCDoAJPF/k+YBtDsuLwoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.grid(True)\n", + "plt.hist(A,alpha=0.9)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +358,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } -