From a1e590d37925d71deb54c71dac59bc2854eb2dd7 Mon Sep 17 00:00:00 2001 From: 883de085ea0321dbfb3587daf1c84f15 <883de085ea0321dbfb3587daf1c84f15@app-learninglab.inria.fr> Date: Wed, 7 Oct 2020 16:59:34 +0000 Subject: [PATCH] Fix typo --- module2/exo1/toy_notebook_fr.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index a60afeb..61df3b3 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -71,7 +71,7 @@ "source": [ "## Avec un argument \"fréquentiel\" de surface\n", "\n", - "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X \\sim U(0,1)$ et $Y \\sim U(0,1)$ alors $P[X^2 + Y^2 \\le 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait: " + "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X \\sim U(0,1)$ et $Y \\sim U(0,1)$ alors $P[X^2 + Y^2 \\le 1] = \\pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: " ] }, { -- 2.18.1