diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb index 0bbbe371b01e359e381e43239412d77bf53fb1fb..aff4b8e1fb9d0fe59aa656e79a48f0e70b2bd5e5 100644 --- a/module3/exo2/exercice.ipynb +++ b/module3/exo2/exercice.ipynb @@ -1,5 +1,2340 @@ { - "cells": [], + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Incidence de la varicelle" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import isoweek" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "data_url = \"https://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "raw_data = pd.read_csv(data_url, skiprows=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
02021223103167102.013530.01611.021.0FRFrance
12021213110578221.013893.01713.021.0FRFrance
22021203102787540.013016.01612.020.0FRFrance
3202119395396860.012218.01410.018.0FRFrance
42021183121359165.015105.01814.022.0FRFrance
52021173120588891.015225.01813.023.0FRFrance
620211631650512735.020275.02519.031.0FRFrance
720211531930615398.023214.02923.035.0FRFrance
820211432107317099.025047.03226.038.0FRFrance
920211332641322094.030732.04033.047.0FRFrance
1020211233065825919.035397.04639.053.0FRFrance
1120211132498820718.029258.03832.044.0FRFrance
1220211031953915951.023127.03025.035.0FRFrance
1320210931757213926.021218.02721.033.0FRFrance
1420210832088216907.024857.03226.038.0FRFrance
1520210732239318303.026483.03428.040.0FRFrance
1620210632318319134.027232.03529.041.0FRFrance
1720210532242618445.026407.03428.040.0FRFrance
1820210432580421491.030117.03932.046.0FRFrance
1920210332181017894.025726.03327.039.0FRFrance
2020210231732013906.020734.02621.031.0FRFrance
2120210132179917778.025820.03327.039.0FRFrance
2220205332122016498.025942.03225.039.0FRFrance
2320205231642812285.020571.02519.031.0FRFrance
2420205132161917370.025868.03327.039.0FRFrance
2520205031684513220.020470.02620.032.0FRFrance
262020493129399923.015955.02015.025.0FRFrance
2720204831380410641.016967.02116.026.0FRFrance
2820204731908515285.022885.02923.035.0FRFrance
2920204632480120503.029099.03831.045.0FRFrance
.................................
188019852132609619621.032571.04735.059.0FRFrance
188119852032789620885.034907.05138.064.0FRFrance
188219851934315432821.053487.07859.097.0FRFrance
188319851834055529935.051175.07455.093.0FRFrance
188419851733405324366.043740.06244.080.0FRFrance
188519851635036236451.064273.09166.0116.0FRFrance
188619851536388145538.082224.011683.0149.0FRFrance
18871985143134545114400.0154690.0244207.0281.0FRFrance
18881985133197206176080.0218332.0357319.0395.0FRFrance
18891985123245240223304.0267176.0445405.0485.0FRFrance
18901985113276205252399.0300011.0501458.0544.0FRFrance
18911985103353231326279.0380183.0640591.0689.0FRFrance
18921985093369895341109.0398681.0670618.0722.0FRFrance
18931985083389886359529.0420243.0707652.0762.0FRFrance
18941985073471852432599.0511105.0855784.0926.0FRFrance
18951985063565825518011.0613639.01026939.01113.0FRFrance
18961985053637302592795.0681809.011551074.01236.0FRFrance
18971985043424937390794.0459080.0770708.0832.0FRFrance
18981985033213901174689.0253113.0388317.0459.0FRFrance
189919850239758680949.0114223.0177147.0207.0FRFrance
190019850138548965918.0105060.0155120.0190.0FRFrance
190119845238483060602.0109058.0154110.0198.0FRFrance
1902198451310172680242.0123210.0185146.0224.0FRFrance
19031984503123680101401.0145959.0225184.0266.0FRFrance
1904198449310107381684.0120462.0184149.0219.0FRFrance
190519844837862060634.096606.0143110.0176.0FRFrance
190619844737202954274.089784.013199.0163.0FRFrance
190719844638733067686.0106974.0159123.0195.0FRFrance
19081984453135223101414.0169032.0246184.0308.0FRFrance
190919844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1910 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202122 3 10316 7102.0 13530.0 16 11.0 \n", + "1 202121 3 11057 8221.0 13893.0 17 13.0 \n", + "2 202120 3 10278 7540.0 13016.0 16 12.0 \n", + "3 202119 3 9539 6860.0 12218.0 14 10.0 \n", + "4 202118 3 12135 9165.0 15105.0 18 14.0 \n", + "5 202117 3 12058 8891.0 15225.0 18 13.0 \n", + "6 202116 3 16505 12735.0 20275.0 25 19.0 \n", + "7 202115 3 19306 15398.0 23214.0 29 23.0 \n", + "8 202114 3 21073 17099.0 25047.0 32 26.0 \n", + "9 202113 3 26413 22094.0 30732.0 40 33.0 \n", + "10 202112 3 30658 25919.0 35397.0 46 39.0 \n", + "11 202111 3 24988 20718.0 29258.0 38 32.0 \n", + "12 202110 3 19539 15951.0 23127.0 30 25.0 \n", + "13 202109 3 17572 13926.0 21218.0 27 21.0 \n", + "14 202108 3 20882 16907.0 24857.0 32 26.0 \n", + "15 202107 3 22393 18303.0 26483.0 34 28.0 \n", + "16 202106 3 23183 19134.0 27232.0 35 29.0 \n", + "17 202105 3 22426 18445.0 26407.0 34 28.0 \n", + "18 202104 3 25804 21491.0 30117.0 39 32.0 \n", + "19 202103 3 21810 17894.0 25726.0 33 27.0 \n", + "20 202102 3 17320 13906.0 20734.0 26 21.0 \n", + "21 202101 3 21799 17778.0 25820.0 33 27.0 \n", + "22 202053 3 21220 16498.0 25942.0 32 25.0 \n", + "23 202052 3 16428 12285.0 20571.0 25 19.0 \n", + "24 202051 3 21619 17370.0 25868.0 33 27.0 \n", + "25 202050 3 16845 13220.0 20470.0 26 20.0 \n", + "26 202049 3 12939 9923.0 15955.0 20 15.0 \n", + "27 202048 3 13804 10641.0 16967.0 21 16.0 \n", + "28 202047 3 19085 15285.0 22885.0 29 23.0 \n", + "29 202046 3 24801 20503.0 29099.0 38 31.0 \n", + "... ... ... ... ... ... ... ... \n", + "1880 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1881 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1882 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1883 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1884 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1885 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1886 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1887 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1888 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1889 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1890 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1891 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1892 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1893 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1894 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1895 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1896 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1897 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1898 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1899 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1900 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1901 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1902 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1903 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1904 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1905 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1906 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1907 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1908 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1909 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 21.0 FR France \n", + "1 21.0 FR France \n", + "2 20.0 FR France \n", + "3 18.0 FR France \n", + "4 22.0 FR France \n", + "5 23.0 FR France \n", + "6 31.0 FR France \n", + "7 35.0 FR France \n", + "8 38.0 FR France \n", + "9 47.0 FR France \n", + "10 53.0 FR France \n", + "11 44.0 FR France \n", + "12 35.0 FR France \n", + "13 33.0 FR France \n", + "14 38.0 FR France \n", + "15 40.0 FR France \n", + "16 41.0 FR France \n", + "17 40.0 FR France \n", + "18 46.0 FR France \n", + "19 39.0 FR France \n", + "20 31.0 FR France \n", + "21 39.0 FR France \n", + "22 39.0 FR France \n", + "23 31.0 FR France \n", + "24 39.0 FR France \n", + "25 32.0 FR France \n", + "26 25.0 FR France \n", + "27 26.0 FR France \n", + "28 35.0 FR France \n", + "29 45.0 FR France \n", + "... ... ... ... \n", + "1880 59.0 FR France \n", + "1881 64.0 FR France \n", + "1882 97.0 FR France \n", + "1883 93.0 FR France \n", + "1884 80.0 FR France \n", + "1885 116.0 FR France \n", + "1886 149.0 FR France \n", + "1887 281.0 FR France \n", + "1888 395.0 FR France \n", + "1889 485.0 FR France \n", + "1890 544.0 FR France \n", + "1891 689.0 FR France \n", + "1892 722.0 FR France \n", + "1893 762.0 FR France \n", + "1894 926.0 FR France \n", + "1895 1113.0 FR France \n", + "1896 1236.0 FR France \n", + "1897 832.0 FR France \n", + "1898 459.0 FR France \n", + "1899 207.0 FR France \n", + "1900 190.0 FR France \n", + "1901 198.0 FR France \n", + "1902 224.0 FR France \n", + "1903 266.0 FR France \n", + "1904 219.0 FR France \n", + "1905 176.0 FR France \n", + "1906 163.0 FR France \n", + "1907 195.0 FR France \n", + "1908 308.0 FR France \n", + "1909 213.0 FR France \n", + "\n", + "[1910 rows x 10 columns]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
167319891930NaNNaN0NaNNaNFRFrance
\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", + "1673 198919 3 0 NaN NaN 0 NaN NaN \n", + "\n", + " geo_insee geo_name \n", + "1673 FR France " + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data[raw_data.isnull().any(axis=1)]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
02021223103167102.013530.01611.021.0FRFrance
12021213110578221.013893.01713.021.0FRFrance
22021203102787540.013016.01612.020.0FRFrance
3202119395396860.012218.01410.018.0FRFrance
42021183121359165.015105.01814.022.0FRFrance
52021173120588891.015225.01813.023.0FRFrance
620211631650512735.020275.02519.031.0FRFrance
720211531930615398.023214.02923.035.0FRFrance
820211432107317099.025047.03226.038.0FRFrance
920211332641322094.030732.04033.047.0FRFrance
1020211233065825919.035397.04639.053.0FRFrance
1120211132498820718.029258.03832.044.0FRFrance
1220211031953915951.023127.03025.035.0FRFrance
1320210931757213926.021218.02721.033.0FRFrance
1420210832088216907.024857.03226.038.0FRFrance
1520210732239318303.026483.03428.040.0FRFrance
1620210632318319134.027232.03529.041.0FRFrance
1720210532242618445.026407.03428.040.0FRFrance
1820210432580421491.030117.03932.046.0FRFrance
1920210332181017894.025726.03327.039.0FRFrance
2020210231732013906.020734.02621.031.0FRFrance
2120210132179917778.025820.03327.039.0FRFrance
2220205332122016498.025942.03225.039.0FRFrance
2320205231642812285.020571.02519.031.0FRFrance
2420205132161917370.025868.03327.039.0FRFrance
2520205031684513220.020470.02620.032.0FRFrance
262020493129399923.015955.02015.025.0FRFrance
2720204831380410641.016967.02116.026.0FRFrance
2820204731908515285.022885.02923.035.0FRFrance
2920204632480120503.029099.03831.045.0FRFrance
.................................
188019852132609619621.032571.04735.059.0FRFrance
188119852032789620885.034907.05138.064.0FRFrance
188219851934315432821.053487.07859.097.0FRFrance
188319851834055529935.051175.07455.093.0FRFrance
188419851733405324366.043740.06244.080.0FRFrance
188519851635036236451.064273.09166.0116.0FRFrance
188619851536388145538.082224.011683.0149.0FRFrance
18871985143134545114400.0154690.0244207.0281.0FRFrance
18881985133197206176080.0218332.0357319.0395.0FRFrance
18891985123245240223304.0267176.0445405.0485.0FRFrance
18901985113276205252399.0300011.0501458.0544.0FRFrance
18911985103353231326279.0380183.0640591.0689.0FRFrance
18921985093369895341109.0398681.0670618.0722.0FRFrance
18931985083389886359529.0420243.0707652.0762.0FRFrance
18941985073471852432599.0511105.0855784.0926.0FRFrance
18951985063565825518011.0613639.01026939.01113.0FRFrance
18961985053637302592795.0681809.011551074.01236.0FRFrance
18971985043424937390794.0459080.0770708.0832.0FRFrance
18981985033213901174689.0253113.0388317.0459.0FRFrance
189919850239758680949.0114223.0177147.0207.0FRFrance
190019850138548965918.0105060.0155120.0190.0FRFrance
190119845238483060602.0109058.0154110.0198.0FRFrance
1902198451310172680242.0123210.0185146.0224.0FRFrance
19031984503123680101401.0145959.0225184.0266.0FRFrance
1904198449310107381684.0120462.0184149.0219.0FRFrance
190519844837862060634.096606.0143110.0176.0FRFrance
190619844737202954274.089784.013199.0163.0FRFrance
190719844638733067686.0106974.0159123.0195.0FRFrance
19081984453135223101414.0169032.0246184.0308.0FRFrance
190919844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1909 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202122 3 10316 7102.0 13530.0 16 11.0 \n", + "1 202121 3 11057 8221.0 13893.0 17 13.0 \n", + "2 202120 3 10278 7540.0 13016.0 16 12.0 \n", + "3 202119 3 9539 6860.0 12218.0 14 10.0 \n", + "4 202118 3 12135 9165.0 15105.0 18 14.0 \n", + "5 202117 3 12058 8891.0 15225.0 18 13.0 \n", + "6 202116 3 16505 12735.0 20275.0 25 19.0 \n", + "7 202115 3 19306 15398.0 23214.0 29 23.0 \n", + "8 202114 3 21073 17099.0 25047.0 32 26.0 \n", + "9 202113 3 26413 22094.0 30732.0 40 33.0 \n", + "10 202112 3 30658 25919.0 35397.0 46 39.0 \n", + "11 202111 3 24988 20718.0 29258.0 38 32.0 \n", + "12 202110 3 19539 15951.0 23127.0 30 25.0 \n", + "13 202109 3 17572 13926.0 21218.0 27 21.0 \n", + "14 202108 3 20882 16907.0 24857.0 32 26.0 \n", + "15 202107 3 22393 18303.0 26483.0 34 28.0 \n", + "16 202106 3 23183 19134.0 27232.0 35 29.0 \n", + "17 202105 3 22426 18445.0 26407.0 34 28.0 \n", + "18 202104 3 25804 21491.0 30117.0 39 32.0 \n", + "19 202103 3 21810 17894.0 25726.0 33 27.0 \n", + "20 202102 3 17320 13906.0 20734.0 26 21.0 \n", + "21 202101 3 21799 17778.0 25820.0 33 27.0 \n", + "22 202053 3 21220 16498.0 25942.0 32 25.0 \n", + "23 202052 3 16428 12285.0 20571.0 25 19.0 \n", + "24 202051 3 21619 17370.0 25868.0 33 27.0 \n", + "25 202050 3 16845 13220.0 20470.0 26 20.0 \n", + "26 202049 3 12939 9923.0 15955.0 20 15.0 \n", + "27 202048 3 13804 10641.0 16967.0 21 16.0 \n", + "28 202047 3 19085 15285.0 22885.0 29 23.0 \n", + "29 202046 3 24801 20503.0 29099.0 38 31.0 \n", + "... ... ... ... ... ... ... ... \n", + "1880 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1881 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1882 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1883 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1884 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1885 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1886 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1887 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1888 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1889 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1890 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1891 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1892 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1893 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1894 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1895 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1896 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1897 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1898 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1899 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1900 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1901 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1902 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1903 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1904 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1905 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1906 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1907 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1908 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1909 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 21.0 FR France \n", + "1 21.0 FR France \n", + "2 20.0 FR France \n", + "3 18.0 FR France \n", + "4 22.0 FR France \n", + "5 23.0 FR France \n", + "6 31.0 FR France \n", + "7 35.0 FR France \n", + "8 38.0 FR France \n", + "9 47.0 FR France \n", + "10 53.0 FR France \n", + "11 44.0 FR France \n", + "12 35.0 FR France \n", + "13 33.0 FR France \n", + "14 38.0 FR France \n", + "15 40.0 FR France \n", + "16 41.0 FR France \n", + "17 40.0 FR France \n", + "18 46.0 FR France \n", + "19 39.0 FR France \n", + "20 31.0 FR France \n", + "21 39.0 FR France \n", + "22 39.0 FR France \n", + "23 31.0 FR France \n", + "24 39.0 FR France \n", + "25 32.0 FR France \n", + "26 25.0 FR France \n", + "27 26.0 FR France \n", + "28 35.0 FR France \n", + "29 45.0 FR France \n", + "... ... ... ... \n", + "1880 59.0 FR France \n", + "1881 64.0 FR France \n", + "1882 97.0 FR France \n", + "1883 93.0 FR France \n", + "1884 80.0 FR France \n", + "1885 116.0 FR France \n", + "1886 149.0 FR France \n", + "1887 281.0 FR France \n", + "1888 395.0 FR France \n", + "1889 485.0 FR France \n", + "1890 544.0 FR France \n", + "1891 689.0 FR France \n", + "1892 722.0 FR France \n", + "1893 762.0 FR France \n", + "1894 926.0 FR France \n", + "1895 1113.0 FR France \n", + "1896 1236.0 FR France \n", + "1897 832.0 FR France \n", + "1898 459.0 FR France \n", + "1899 207.0 FR France \n", + "1900 190.0 FR France \n", + "1901 198.0 FR France \n", + "1902 224.0 FR France \n", + "1903 266.0 FR France \n", + "1904 219.0 FR France \n", + "1905 176.0 FR France \n", + "1906 163.0 FR France \n", + "1907 195.0 FR France \n", + "1908 308.0 FR France \n", + "1909 213.0 FR France \n", + "\n", + "[1909 rows x 10 columns]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data=raw_data.dropna().copy()\n", + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "def convert_week(year_and_week_int):\n", + " year_and_week_str = str(year_and_week_int)\n", + " year = int(year_and_week_str[:4])\n", + " week = int(year_and_week_str[4:])\n", + " w = isoweek.Week(year, week)\n", + " return pd.Period(w.day(0), 'W')\n", + "\n", + "data['period'] = [convert_week(yw) for yw in data['week']]" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "sorted_data=data.set_index('period').sort_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" + ] + } + ], + "source": [ + "periods = sorted_data.index\n", + "for p1, p2 in zip(periods[:-1], periods[1:]):\n", + " delta = p2.to_timestamp() - p1.end_time\n", + " if delta > pd.Timedelta('1s'):\n", + " print(p1, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXm4HFWZ/79vr3fPerOQBMISgbCbyKKICAiICi6gOI7EGWZQf7iNM6Og4zDCMOq4oMiAMmMUV0BcQPbIvkPClgWykITsyU1ukntz9+4+vz/qnOqq6nOqqqurb3ffvJ/nyXM7VadOvVV16rznXc4pEkKAYRiGYSolUWsBGIZhmLEBKxSGYRgmFlihMAzDMLHACoVhGIaJBVYoDMMwTCywQmEYhmFigRUKwzAMEwusUBiGYZhYYIXCMAzDxEKq1gKMJpMnTxazZ8+utRgMwzANxZIlS3YKITqDyu1XCmX27NlYvHhxrcVgGIZpKIjozTDl2OXFMAzDxAIrFIZhGCYWWKEwDMMwscAKhWEYhokFVigMwzBMLAQqFCJaSEQ7iGiZY9tEIlpERKvl3wmOfVcS0RoiWklE5zi2zyOipXLf9UREcnuWiG6T258jotmOYxbIc6wmogWO7QfLsqvlsZnKbwXDMAxTCWEslF8AONez7QoADwkh5gB4SP4fRDQXwMUAjpLH3EhESXnMTQAuAzBH/lN1XgpgtxDiMADXAfiOrGsigKsAnATgRABXORTXdwBcJ8+/W9bBMAzD1JBAhSKEeBxAt2fzBQBukb9vAfBBx/ZbhRBDQoh1ANYAOJGIpgPoEEI8I6xvDv/Sc4yq6w4AZ0rr5RwAi4QQ3UKI3QAWAThX7jtDlvWef0yzp38Yd7+6pdZiMAzDaIk6sXGqEGIrAAghthLRFLl9BoBnHeU2yW0j8rd3uzpmo6wrR0R7AUxybvccMwnAHiFETlPXmOYzv16CZ9d2Y/5BEzFtXFOtxWEYhnERd1CeNNuEz/Yox/jVVSoQ0WVEtJiIFnd1dZmKNQRv7uoHAOSF8XIZhmFqRlSFsl26sSD/7pDbNwGY5Sg3E8AWuX2mZrvrGCJKARgHy8VmqmsngPGyrLeuEoQQNwsh5gsh5nd2Bi5FU9fkCpYiSSV0OpVhGKa2RFUodwFQWVcLANzp2H6xzNw6GFbw/XnpHuslopNlDOQSzzGqrgsBPCzjLA8AOJuIJshg/NkAHpD7HpFlvecf0xSkQiHWJwzD1CGBMRQi+h2A0wFMJqJNsDKvvg3gdiK6FMAGABcBgBBiORHdDmAFgByAy4UQeVnVZ2FljDUDuE/+A4CfAfgVEa2BZZlcLOvqJqJrALwgy10thFDJAV8FcCsR/SeAl2QdY56RfMH6wR4vhmHqkECFIoT4uGHXmYby1wK4VrN9MYCjNdsHIRWSZt9CAAs129fCSiXer8hLC4X1CcMw9QjPlG8gVAylwEF5hmHqEFYoDYRSJKxPGIapR1ihNBAkM6bZQmEYph5hhdJIyOwu1icMw9QjrFAaCJUtzAqFYZh6hBVKA6Hmn7DLi2GYeoQVSgOhYiisThiGqUdYoTQQCbZQGIapY1ihNBDym2QQrFAYhqlDWKE0IKxPGIapR1ihNBAqy6vACoVhmDqEFUojoeahcFieYZg6hBVKA5GQMZRCocaCMAzDaGCF0kDwPBSGYeoZVigNRKN8V2v2Fffg+w+urLUYDMOMMqxQGgiVNtwIFsqPH15TaxEYhhllWKE0EJzlxTBMPcMKpYEge7Vh1igMw9QfrFAaCuXyqrEYDMMwGlihNBBsoTAMU8+wQmEYhmFigRVKA8L2CcMw9QgrlAaCv9jIMEw9wwqlgWA9wjBMPcMKpQGp56B8PcvGMEx1YYXCxArrE4bZf2GF0oBwn80wTD3CCqWBaISgfB2LxjBMlWGF0kBwZ80wTD3DCqUB8fti46nfeRi/evbNUZTGDQflGWb/pSKFQkT/RETLiWgZEf2OiJqIaCIRLSKi1fLvBEf5K4loDRGtJKJzHNvnEdFSue96kuu0E1GWiG6T258jotmOYxbIc6wmogWVXMdYYtPuAXzjz8tqdn5WJwyz/xJZoRDRDABfADBfCHE0gCSAiwFcAeAhIcQcAA/J/4OI5sr9RwE4F8CNRJSU1d0E4DIAc+S/c+X2SwHsFkIcBuA6AN+RdU0EcBWAkwCcCOAqp+Ia83CvzTBMHVKpyysFoJmIUgBaAGwBcAGAW+T+WwB8UP6+AMCtQoghIcQ6AGsAnEhE0wF0CCGeEZa/5JeeY1RddwA4U1ov5wBYJIToFkLsBrAIRSU0ZrGD8jWVwh/2eDHM/ktkhSKE2AzgewA2ANgKYK8Q4kEAU4UQW2WZrQCmyENmANjoqGKT3DZD/vZudx0jhMgB2Atgkk9dTI3xi+8wDDO2qcTlNQGWBXEwgAMAtBLR3/odotkmfLZHPcYr52VEtJiIFnd1dfmI1ziwFcAwTD1SicvrLADrhBBdQogRAH8E8HYA26UbC/LvDll+E4BZjuNnwnKRbZK/vdtdx0i32jgA3T51lSCEuFkIMV8IMb+zszPipdYX9WwFsLJjmP2XShTKBgAnE1GLjGucCeA1AHcBUFlXCwDcKX/fBeBimbl1MKzg+/PSLdZLRCfLei7xHKPquhDAwzLO8gCAs4logrSUzpbb9ms4ZZdhmFqSinqgEOI5IroDwIsAcgBeAnAzgDYAtxPRpbCUzkWy/HIiuh3ACln+ciFEXlb3WQC/ANAM4D75DwB+BuBXRLQGlmVysayrm4iuAfCCLHe1EKI76rU0Gia9wfqEYZhaElmhAIAQ4ipY6btOhmBZK7ry1wK4VrN9MYCjNdsHIRWSZt9CAAvLFHlMUw/6hJUaw+y/8Ez5BsTUZ7PLi2GYWsIKpQGpZ8VRzwkDDMNUF1YoY4h66MrrWNcxDFNlWKE0IGaX16iKwTAM44IVSiNiyvKqAxslDgly+QL+/hcv4OWNe2KojWGY0YIVyhhirFgo63f14+HXd+DLt71ca1EYhikDVigNSD1YIiZiTRjQLbDDMEzdwgplDFEPFkodiMAwTI1ghdKAGGfKc3fOMEwNYYXSQJB0AdXz0ivxyFAHF8IwTNmwQmkg6kFhBNIIMjIMUxVYoTQgxnkooypF9VCKk2PyDNNYsEJpIIouL73qqIclWeKM4xCxSmGYRoIVyhii9uqEYZj9GVYoDUg9L70Shwx1cBkMw0SAFUoDEdhZ10FPHKcI7PBimMaCFUoDwvNQGIapR1ihNBDFGLUpKD9qohiph8QAhmFqAyuUMUQ9dOVxyMA6iWEaE1YoDchY73CV646zhhmmsWCFMoaoB3dTvIsNs0ZhmEaCFUoDMtZnyjMM05iwQmlA6npxSFZrDLPfwgplDFEXnXkdiMAwTG1ghdKAGBXHGOnM68HSYhimfFihNCDmiY21J9aZ8j4x+b0DI+gdHInxbAzDVAorlDJYtnkvFq3YXmsxjNTDyD6WtbxC1HHcNx/E8VcvqvxkDMPERqrWAjQS7//xkwCA9d9+X03lMGd51YFGGUXyhf3rehmm3mELhYmV/U2pMQxThBVKA2L+wNYoC1IlWCkxTGPCCmUMUQ/dcJwxFP5iI8M0FhUpFCIaT0R3ENHrRPQaEZ1CRBOJaBERrZZ/JzjKX0lEa4hoJRGd49g+j4iWyn3Xk+xJiChLRLfJ7c8R0WzHMQvkOVYT0YJKrmOsUBdLr9RaAIZhakalFsqPANwvhDgCwHEAXgNwBYCHhBBzADwk/w8imgvgYgBHATgXwI1ElJT13ATgMgBz5L9z5fZLAewWQhwG4DoA35F1TQRwFYCTAJwI4Cqn4hrr1PNM+TgYK9fBMPsbkRUKEXUAOA3AzwBACDEshNgD4AIAt8hitwD4oPx9AYBbhRBDQoh1ANYAOJGIpgPoEEI8I6wh9i89x6i67gBwprRezgGwSAjRLYTYDWARikpozKIWS6znGEMcVpK92nDFNTEMM5pUYqEcAqALwM+J6CUi+j8iagUwVQixFQDk3ymy/AwAGx3Hb5LbZsjf3u2uY4QQOQB7AUzyqWu/ph5G9nHIULBjKJXXxTDM6FGJQkkBeCuAm4QQJwDog3RvGdB1D8Jne9Rj3CcluoyIFhPR4q6uLh/xGoex/gngeogFMQxTPpUolE0ANgkhnpP/vwOWgtku3ViQf3c4ys9yHD8TwBa5faZmu+sYIkoBGAeg26euEoQQNwsh5gsh5nd2dka4zPphrCiMIPaPq2SYsUdkhSKE2AZgIxEdLjedCWAFgLsAqKyrBQDulL/vAnCxzNw6GFbw/XnpFuslopNlfOQSzzGqrgsBPCzjLA8AOJuIJshg/Nly234BB+UZhqlHKl165fMAfkNEGQBrAfwdLCV1OxFdCmADgIsAQAixnIhuh6V0cgAuF0LkZT2fBfALAM0A7pP/ACvg/ysiWgPLMrlY1tVNRNcAeEGWu1oI0V3htYRGCFGTORLFoLyeeuiH41EG9XAlDMOUS0UKRQjxMoD5ml1nGspfC+BazfbFAI7WbB+EVEiafQsBLCxH3rjIFwRSyfqLGNdD7CEOt5zgoDzDNCQ8Uz4C+Rp33MalV0ZZjmoxVq5jtMjlC5h9xT24+fE3ai0Ks5/DCiUChUJtzhs0+q8DAyWetOGCmofCJkoYBnNWg/zhX1fXWBJmf4cVSgRqbqFE2DNaxCFB7a+ifnhxw25s3TvgW4bVLlMvsEKJQK2+w2GP2DnLa7/hwzc+jdO/+2iosnzfmFrDCiUC9fphp3qQKtalV3joDQAYytXIx1omD722HSP5xpCVqQ6sUCJQa4Uy5ic41snlrdzWi6/9aakd06lXClKJ17JdPLJyBy69ZTFueHhNzWRgag8rlAgUah1DqWOX11iKoXz6V4vx2+c2YP2uvlqL4ks93K+tewYBANt7BmssCVNLWKFEoNYWiol6sFzi/MBWrcmmrK8rDI7Uxo0T1n0oCqp8FYUJYDhnzVHOpBq/S5l9xT246s5ltRajIWn8p18Daq1QjDPl66QjrpTRXL5+T/8w9g6MaPc1pa3XYyiX1+6vNmHbWT0MJIZl7CSTHBtdyi3PvFlrERqSSpde2S+ptcvLRH2IVbkQdj86ClH5469eBABY/+33leyrtYWSC6lQVLFaPv5hmTgwFiwUJjr89CNQcwuljpevj8flVfvrAICstFCGa5S5FDZjqh7ulxI1meDUvP0ZVigRqLWFYlIcddCvxEK9XIbqHPM1Whoh7MDFLlYvN47Zb2GFEgFOtTczlhYbTkmFkstHF2hwJI/HV0X7sFvYAUI9WKY8Z4gBWKFEom5dXrXvV2KhXr4pn0pYr0fYWIaOq+9egUsWPo8VW3rKPjbsWeN47rv7hnH/sm0V1zNW2iATDVYoEaiVy4v8V16pC8ZS2nBSfqKgEoWyrsuaw7Knf7jsY0OnDcdwvz796yX4zK+XoKt3KNLxtVb+cVEP8ahGhhVKBPw6mJ8+9gbWdu2rynmD2no9uD7i/B5KrUnFEEOx4zARLiqsHotjpvzG7n4AlScg1LoNXnP3Clz+mxcjH18vba9RYYUSAZPLq28oh2/d9zo++tNnqyuA6XsoY+RlUB1ktf3yQaNR2+VVQQxFXUMUN2nYzjmOx56QgkYdoddLDOVnT67DPUu3Rj6+1gk3jQ4rlAgENbp9Q/qJctWmHl6FWFxelVcRiqDRuJqjV0nMTFkokTqqsBaKlK+W7kayFVLlMtSSOl0Eo2FghRIBUwej3BrVfqnMM+Vr/zbE2alVe9DbP+Q/A159LqCSS1Ij/yiepNo/zfIxyby2ax8Ghmuz4kA51Npl1+iwQomAafXZOEeKOuygvHFi41jB/0riUpwjAbERdb8rcYMohRKljrCHFGMo0anUZeXXNgdH8jjj+4/hX+54pbKTlEEuYiyoDsZkDQ0rlAiYAqzKcqmVH7YeXobRCMrHdZ1B9RQVSvRzKLdZFCUYOoYSw/0IGqyERSfztr3WCsQvb9hTWeVlsC3iqsccQ6kMVihlkAgIsKrt1W6S5s5pbLwMQVcR11WG7TwqsYiKs+3LP7ZsC6UCOYvuvYhBeR8HpfpAmFrKZjSIeitYn1QGK5QyCHJfKMul2qMccwylqqcNRawxFIMfJi6XV+i03ApMFNVmchFSj0MrvLJr9qmr0so0x9vXMYrtM+o7yBZKZbBCKYOgAGu+yjGU/QU7bdi4P6bzBFZUeVDepBTDEHrplRhjKFHr8LvMGuiTyG2EX93KYIVSBkFzCkZrSZaxHpQPdnmN7pXWeyppLDEUu67KKtMdHYdLrlyiWhqC1+mrCFYoZRDo8qrTNb4aTYagjieu6wzqdIqB6vpOsrC/h1KBmGS37YjH++yrxe2L+szY5VUZrFDKQAXlTUuvjFZjrOt5KA1kJwV1nqqTrFnWXuiZ8pXLF5uFojk+jrTmcmGXV21ghVIGtoVidHmpctWVw/TSj5WXIahPi6uDD1tPJYZnJU0htIUSo5sm6rUmfGbKq02jqZc5KF8bWKGUQcJOAdU3OpXJU0kgthLq4V2IZ+kVGZQ33Mb45qGEc3nF0clUceWVeKzCCtYcA/yD+nEsXlkuUZUsK5TKYIVSBvY8FEOjU424VuvkNZK7yY/gVZXjIWzfWVlsIvqxo7l8fTXde3YWWgNYKGPkFaoZFSsUIkoS0UtEdLf8/0QiWkREq+XfCY6yVxLRGiJaSUTnOLbPI6Klct/1JIf4RJQlotvk9ueIaLbjmAXyHKuJaEGl1xGGQJdXrUc3dfAyxCGCur2myXLxzUMJsFDg/7zDUImoo6HwFHEt7qh1ecWQNFAu0V1eMQuynxGHhfJFAK85/n8FgIeEEHMAPCT/DyKaC+BiAEcBOBfAjUSUlMfcBOAyAHPkv3Pl9ksB7BZCHAbgOgDfkXVNBHAVgJMAnAjgKqfiqhbqpQtaeiVRZZdXPacNx9HZB2Z5VXwGiyC3SBxLr1RG2BhPfEH5algotbh/Uc/JLq/KqEihENFMAO8D8H+OzRcAuEX+vgXABx3bbxVCDAkh1gFYA+BEIpoOoEMI8YywepJfeo5Rdd0B4ExpvZwDYJEQolsIsRvAIhSVUNVQLi9zUN4eWleVseLaMmFfnSmGElMQOnxQPvr9rszlFbJc9FOUEPVabQtHI00tOunI81BilmN/o1IL5YcAvgLA+YpPFUJsBQD5d4rcPgPARke5TXLbDPnbu911jBAiB2AvgEk+dVWVZEBQXm2vWQzFIdZfV2yvjQyjUElcCjXsIpSxWF0RZA57RCwWSowJCF5qMbEx8jwU9nlVRGSFQkTvB7BDCLEk7CGabcJne9Rj3CcluoyIFhPR4q6urlCCmrCXXjG0OfXi1M7lVdzxD79cXFUZTMSZ5VXNcwDBnaeSI4604ShZR+GXXim/bi92vChiXcV5LJqdwvVnVGh0vbDkzd2465UttRajbCqxUN4B4HwiWg/gVgBnENGvAWyXbizIvztk+U0AZjmOnwlgi9w+U7PddQwRpQCMA9DtU1cJQoibhRDzhRDzOzs7o12phAJcXmrCY9U/XWva3uAvkWL0srz8a1KPOY5Re6TvoYRevj5GC6UKPXEcM/nLPmfE66iXGMpHbnoaX/jdS7UWo2wiKxQhxJVCiJlCiNmwgu0PCyH+FsBdAFTW1QIAd8rfdwG4WGZuHQwr+P68dIv1EtHJMj5yiecYVdeF8hwCwAMAziaiCTIYf7bcVlUSAUH5Qq1dXjU6r5s43EP+xPXSB9UibIUSw7ki1FGbGEplx/vPlB+9Fho9KB+vHPsb1ZiH8m0A7yGi1QDeI/8PIcRyALcDWAHgfgCXCyHUN0E/CyuwvwbAGwDuk9t/BmASEa0B8GXIjDEhRDeAawC8IP9dLbdVlbDfQ6k2RpdXDB1tz+AI/lJjU9tevj5gf+XnCXKtxef7jxRDCXlInFaFn7LevGcgcJUGH4/XqFooUZ9ZPSxf1Mik4qhECPEogEfl710AzjSUuxbAtZrtiwEcrdk+COAiQ10LASyMKnMUisvXGxTKKMVQTMTxKlz5h6W4Z+lWvGVqOw6f1l6+DDEIYS9fb8ryimmkG9QPKznicXlFOSaky6v8qkuggIVPX9/Wg3N/+AS+8f65uPTUg0tl8JG1Nlleo3scY8Ez5csg9PL1tUobjuFl2C4/ndo7OBLp+Djex8A64grKB/QexRhK9HMEddRxEO88FP3+9Tv7AADPrd3lW49+YqNyeY0ekdOG2UKpCFYoEVCfNPVS7bRh30waxDNyTyWtswxH+WZtXIQMlldKvVsooU8bR5ZXQNqwkt9kffvJ2kgz5VmdVAYrlDJQja1vKKfdb6cNV2m54dFo7Omk1SRGTLnRAcSTNhy0P6agfGAMxf03CpUsCx/2OuNQsEFZXsW2rT9eyaqf2FgsNVpEfWb1kuXVqLBCKQfZ1vqG9Qoll69xllcM70JGKRSDFRYsQwwBbNtzWP5ouBzCWiiVXJM6MkrgPHyWVxwuL/95KEHLCvnJ2lAz5VmfVAQrlDJQbW1wJK/dr4Ly1Vq+Pmi0G8fLoCyUWrq8Rm0tr9DzUCo/V5Qqwh4TZyDZdE/UZqNC8ZRzHyuM+6oFr+VVG1ihlIF6MXIGd1Ctl22I4+xBy8uMhgyBLq9RWm04jhhKULDbj/DL18dgoQR87ri4CoRJBvm3zH3Vgi2U2sAKpQxs94Wh1eUDXrrY5DAF5ePsWCquKTp2slzVP7AVtF8plDjOFSWGErbusqsuQd1qk2FqB+UDGrdOluJM+dGMobBCqQWsUMpANTbTN+WLo/rGnYdS/C5GDYPyIYPllRJooRTCyeNLBYsuhrZQYkzzMmZ5BcVQfGRopG/Ks8urMlihlIF6aQJXG27gtbyCUpODiHN5jf19YmP4mfLl1+0l6HsoYV1eutbpF1+pFvxN+drACqUMbAvFEEMpZsKMjhyaPRXXXXR51e7FCnZFxXOe0QzKR1scMt5yoeoyVBY0D8W/TuH6OxpEfWasTiqDFUoZqPch+HsolWmUgeE89g6UP1M9jvc1Ybu8IlYQS0ZUuGB5GIZzBfy/3yzBqu29pecJuZZXHKPWKFWEtlBijJ0FLitkGC35ZXLVwuUVx1pePGu+fFihRMD4CWA7bbiy+s/90eM47psPGvdX03qoJCsJiCnLK8hCcZX1L7x0817cu3QbvvqHV0v2BV1jnK6aSEH50FleZVddQpDLS8kS7PIqxXbJNYDLy3lYPeiTWmeOlgsrlDKw04ZNs4ljevhv7uqPdFycQfla+pKLqQ3Bk+iCxBzKWXOGsqnSpj46acPRP1wVPssrvmdlqik4KK9kCV+nl0/837P45l+WhyztT9S4kvM51UM8pR5kKAdWKGWgHm3e0FpVymXNvtgYi8tLVRbt+DhkCFpt2Clc0OnUumvZVFJzniA5wpULQ7Qsr5Dlyq7Z75ymoLz1N2imvN835YPkfGrNLvz8qfVhxAwkjqC833P/xp+X4XO/fTHSOcrB5A2pV1ihlEFwUD54WLRyWy+6eoeind/zt3R/fL70mlooZQTlg0bnQyNKoZQ29dGIoVTyGeHwa3nF8dz9Lamwn7f2nyk/em0qcpZiSAvlV8++ibtf3RrpHF++/WX85rk3y5anEWCFUgaBacMhOqBzfvg43vnfD8cvHGIOykeVYRQc5c7bH3S2EWk2qiVl3PWEc3lV1BGqkXs1LZQYb7k5y8vaobmN1nH24pDmOkezb4xj+fpqdeZ/fHEzvv6nZaHKsstrDGNneZmC8tJACWoEgyNRF170/vDsj1Srm+ISHP7llm7aa38jwyXDKASwnUor6F4r5Z/URJODDEq1v5J5HpXEYWrh8jLJmbPnWEVZHLJisWy27h3AA8u3BZaL4wNb9dCZj9ZXYOOCFUoZFGMo/i6vuNpA0OdWw5YvD2Wh+Nf1gRuexOnfezSG85VSnsvLv6yvQhmFoHzAGCDg2HAHjUZQfljGolKVpA3HIOaH/udpfPpXSwLLRf8eSvjBymjQYPqEFUo5BMdQrL9xZXt5FddouJOKMZRox8chYVAd5bznfr7/sIrL7148vqoLl//GHJytJLBfG5eXvjKlUEynyttKo7REMfYXTlC/r4Vuk18UDXrHoipZt4USqYpY4bThMY1/DCXOpToAs2ttdLK8KvdBRyWoCuf9DXIJvLhhNwC97z+sheKn4i5Z+DzuWbrV+OJXEpAOe0ScI2lTVUqhBLnE9DGU8iwU3SRU0/lMxLGWVz1MbKwHK6kcWKGUgW2hBMyUj+0TtR7f/Wi0rUrmTcRFOS+RX1pld98wfvf8RgAml1c4OcLciyDlX9XFIWN8ViY51fdxjF90tNt+6f6Cj7LREeZTPOEHA2USg4Wy5M1uPLaqK9rBHhotbThVawEaCfVog0Zp1bJQglwHcbjEEnZQPqoPunJUHWECwHmfTxUPO746qXN5hV/LK/iq8gWBdOlUl7KUkpf6tFD0+20LRRtDUZWbz+tUVLkQWRCjYaFEva8fuekZAMD6b78vmhAOGkyfsIVSDsUPbOkbfMHnpYqCyZ1TTZdX0HyEUSHATeRUnH4jOKdVogsmh5+H4lsMgLmDq8RCCatRwhRbtnkvXt20J7BcoIVi2O9noYSJoTifY5jMJr+BBFDBgMhlodS+N68HGcqBLZQyUI82aB6KWRGU1zi87oVysp+iUvHExhhkCKrC9dKH1Hy6RQ1d81mEKLGIyvkwlKmDqyTDKewzCCPf+3/8JIDgUbOpKlthGO53mBiKH+XExazz+VsxccyUj1JF3Gm+nDY8hgkbQzGNmsttG0a/vKF8HE2vGEOJ6vIq77jzfvQEbnthg7sO4f7rxSmbn+vD2ZHpLJSgzqOcJAtTB2ePziPFUOIt50dxxR3/ths0k153nWGUqvP2hbJQAsqEicNo5ajQQlFrx8VFgxkorFDKQb0sQcvXm0Zx5Y42SuvxfzHj/ARw1BeyXFZs7cFX/7DUta046zpYofrdU+euQAvF53i/wbB9v4xB+fBus5JjQ5aLcxAbpDBM16lS6XW77QGC73nDDRLClonuKioeF+W+juTYQmFCYru8DI01H/DSlds6SOPQAAAgAElEQVQ4SoLyQS6vsmrXk6jQ5VXOYcYYSRmuPX+FUtynn4citL+92/zuRfFb7EEje3MdSzftxZ0vb/aVzw/XZLwKO6Cg+JxJJr9lh8K4Dp1tPcw16O53HN8ycVkoIVzX3vMM5YsWiu74st3eDWaicAylHByumEJBlIx6nUF53f5yUwC9L01x1VbTW19W9VrsoHxIV1LpPnc5U6YWYB4BFt1ExrPYv/zuqfP+6Ts6/9FoGFcNEQFCGCe7hrFQPnCDFd+44PgZ7mPNh3jkLP4eKRSQTWjSzULXZVKM4axzP9ehH8JhBUa1UNwB9cAqtISJoTjvQb4gkEoW27gzszBXEMh4+4ByvRSNpU/YQikH57PVNWjnNl1HV77Ly3z+ahHkwgH8X/hygppBE0TNMRTHb1/Fp/+tq0e/7LpbHh1hLZRqxlCcBUcCsp+iEpT+7DcHy57Y6FN/2VleGj+k86g4LGxTHc577BXVuU93HeUOKhvNQmGFUgYioNEXCuH3h8Ho8jKO7ONrfH6i+r3w5bzUxv2qEzbFUBybwyo33b2PIyivFHBwUN5Yhc3giDegG86F47JQcv7BryDFZpy4GKBcixaK2XLwO7WzTUW1UMJ+y8SPMPNQRhzP2lvGaaHolEe5+oEVyhjG+Wi1FkhAY4zP5WWQL2T1uXwBv3nuTf18GtVx+LyR/plVxd9BL7UxvTrg+CDFXjy/fwcTZMGobWE6pyBZw3QMQ55VqIPk854DKC7XbyLIgjG3LXkdQS4v3b4Q1x6k/L3oXIzObXEkqJjEcCpt72mcAwtdKnnZcdQG83lFVihENIuIHiGi14hoORF9UW6fSESLiGi1/DvBccyVRLSGiFYS0TmO7fOIaKncdz1JxzsRZYnoNrn9OSKa7ThmgTzHaiJaEPU6ykGIYvppUGPRmrtl+0895QMOD1v7L55ej6//aRl++/yGkn3Fztxcm/+ksuARnsI8GdA82nWfwf8cQaNNZ8fl+6XBEJ1T8PpugVW4Rr5hj/GWGwqwUKLO3whKGy66vALus6F+Z1sIY6Ho7ref5RAW93EGC8Xp1vKcx6nUdPc6jFzu+xVYvK6oxELJAfhnIcSRAE4GcDkRzQVwBYCHhBBzADwk/w+572IARwE4F8CNRKSihzcBuAzAHPnvXLn9UgC7hRCHAbgOwHdkXRMBXAXgJAAnArjKqbiqhYCwP9SkayyuILDmva10dFJ0n5g64nD17u4fBgDs7S9d1dVOjfapzPniemUpJ4/fnEVTWpduPxDk8nIeo1MY+t/FbeGVQdCqBmGUknfU7VRy4VR45RZK1LTh4mrD/nUaFZIr9hBt6ZWcT2xD0Ts4gtlX3IM/vrhJu995alMdG7r7HWU8CiUgjhrm2zphJnnu7R/B/zyypu5WI46sUIQQW4UQL8rfvQBeAzADwAUAbpHFbgHwQfn7AgC3CiGGhBDrAKwBcCIRTQfQIYR4Rlhv3S89x6i67gBwprRezgGwSAjRLYTYDWARikqoahQE7IyOIAsklqB8SWdtfmmB8DEUdbwuAasYRDYf7+fvLsvlFTAaDrPigN8LFTaLy/u7WLd5X1EW91/TOcKMTL3KIOwAwe3yCrAKTcsGBVxIUHKBn4USJuBeflBep1CCLZRte63l72989A3t/jDW79f/VJw3JTy3M9BLEcbaDRHHufruFfjuAytjW4QyLmKJoUhX1AkAngMwVQixFbCUDoApstgMABsdh22S22bI397trmOEEDkAewFM8qlLJ9tlRLSYiBZ3dVV284UoWija0YdjW5C5G2ZkYVptOMzI3Q9VTJfSq+rwe6ld7gmfUXVQJxqc5WVQKCHqANz3Tx8gdbz8mo64nEmJwasNB9dRopw1svidA4huoeQD5CwuvaLf7/8cgtuE0yoJF5QvFWQkhKsoJd9f031yv6P6OoZ8Au9OuXRxnlAp1CEGZf3DOfk33pn5lVKxQiGiNgB/APAlIUSPX1HNNuGzPeox7o1C3CyEmC+EmN/Z2ekjXjBCAGlpoWiDgmW4vModqQDBo92w9o9vgBfBI2pn5zvsM6oOUppBcxrCfA8mbFA+yOWlzxoyH+sl0OUVWEOp9RA2sOy8Tu/z8GLqSIupvf5K3jhT3i+GEmLE7RTL75kWV3IIsFAC2l7QvCHALOtbprYZy7jdbjqrt7y2ZJJBLXwaZmXm0aQihUJEaVjK5DdCiD/KzdulGwvy7w65fROAWY7DZwLYIrfP1Gx3HUNEKQDjAHT71FVVCk4LJShtOMDlFcWsF4btxQLhOiDVaehcXvaI2tdCKTZibwdVTupmkPvD9K64fMxhg/KauoJ81eW4q8xKPnwdfu4qv6Od+4LShqN+yyfIavRbaTsfIi6RK9NC0QblQ8RQlCVkUrxO+U2PbPakVsd53IWC0p/DrAgQxpPh1w/VkkqyvAjAzwC8JoT4gWPXXQAWyN8LANzp2H6xzNw6GFbw/XnpFuslopNlnZd4jlF1XQjgYRlneQDA2UQ0QQbjz5bbqkpBwBGUL7+xlOsnNmV5VfzRHXk4aQw9dU6/l9rP5aWry0RQjCSMJRY2KO+3JIhVj85FqeQxnqKYFWfsHFQdwc/MK0PYx1yOhWKOofifMyiuFdZCMbo5nUrHz0LxqWckRAxlxGfNMes45299od7BnENW9z63l8K/zQ0aFpIMctUCDgulShNZo1LJ0ivvAPBJAEuJ6GW57WsAvg3gdiK6FMAGABcBgBBiORHdDmAFrAyxy4UQ6o5+FsAvADQDuE/+AyyF9SsiWgPLMrlY1tVNRNcAeEGWu1oI0V3BtQSiOgTl8tI1tlzQLNlyXV6eOuwRs6kjDqzRXU4flA8eUTuv0y+QHKhQIgR4vdsrCco7O3k/f3cY68KcYOBvbTnxWihhVx0I6wIEzAqnaGEEKXl9vX4JI06ZzGnD4SwUe6kbTRnnxFDjeQLn4TjbjL7svqGcsUxQLMjZXnsGcmjJlHbBYZ570OrQtSKyQhFCPAl9LAMAzjQccy2AazXbFwM4WrN9EFIhafYtBLAwrLyVotpBKiEtlICAW1DKYNAHgqzy7jLqf+V+eKu0nFVQ9/BU1X4vnvP8JQrFtVChvxzmSXJuWbyEntgY0JG5kyjMA4Aw99V0rcWgfAgLxUc5+3UcYfz+xXP4Kz7T0YWA6/Bbbfj1bcXQalDczK+MqbxiwKFQgl1r/halXx1+llDQ0ivO8m907cO0cU0lZcJkeanBYKXOirjhmfIhsS2UlNl36Z6Hotkf0vdvKhM0RyR8ENf667cC733LthmPd8dQPKNql788moUSaImFHJGX4/Lye56VWCiVfPUxtMXpuo6gc+gL5APueZC1VlRIpftfWL/bUU4vV1jrXbXYIAvFqPgCHkSYFYv95puVM7m5z2HpOAnjIqxXWKGERD3XtE92RUEAGb8Yi3NZhgijMHuUWKHLS6F1eUkR9w3lsGvfUKBcpRaKo66Io+Vgl5ejbNigvKZYUJp3UKAacCiMgGcSRtmXug+dnZv5uCDF6D6Hv5I2u7TkX4PCyoW4V9b+uCyUUkEGhsPEUKwypvvpdtnqy7jiJJ6Kgmb8O8sPlKzdJss4Ls3s8pLz4erMRGGFEhLVEFRQXhtDKRSQ8bVgnL+DG4Lx5QvxMrRnzd5M/87J0YkZyoz4xlDCdYLeczkJ+q5M2BFckAsy7GiykiyvIFeSk9I5PeEoZ+5PkBI3pg0XAp5JQAwmSD5nvX7uVnsxTk0Z59cSo8yX8coXRvn5xVD0Lq/i774hg0IJ0b797kMt4e+hhEQ945TPPJRCwT9oX/4ozHl+p5ntPxo+cnoH2pvMj1bJppvYGGa0G3amfNA1mjN+1Khff1zYc7hiEJrn4VwZVjdy91tOpKRsQPZSqBhKxO8VlGeh+E/oM4npt5owEN5CCcoSs8qY/XbWyFxo61HPk8hnvkwZS8+Y3WbRYyjObWpyol+ZoBhK0ETW0YYtlJCokVvGJ/87XwiYp1Kmb9TdsPTbXTL6BNt1aGeHOmQ0NVZXDCXndXmFHy0HKSxj2nDI+xi0tpprqfESxSgC5bD2wbeM8JTzw6vUwmbwhJmJXjxHtCwve7JpwDMLktgkXtAcLi86d5LKYGtKJYNdXoZ6ncosSLkCpc+1nBjKgGGWexi3m3p7q/X9m6iwQgmJerC2haJ50jmHQtG7xMwje/05i2VcnWjAC5dIwPfN9v+2RrDrwflS+M6UjzhaDQ4AB9fhPV5X15BDdq91EGakeu/SrQ459DIErZzsxCtDPoQvHShvfpOp3RUVo79sQUH1qKsj5AI6YhufmfJq+f/mTDJwmX0TfvGRMGXc77jmI2CO4n8wLFBZTpYXWygNyMbufjz02nYACFzLK2vHUErrKWckadXhUCiGenToJiw6KY6adddQ/G3KCPJfy8vxO3KWV6ks7nOEU65Bys3PQvEbhSr+umK7o4zJmvLf78Q72gyz6q5VLrxCMXVAtnsvIJ02KAbiVVjv//ETAIDJbVlXuZLjfdqUDn8LJWFO+Q1SeKFm25vvd97HHQa4r3/9rv6S/d7jgqz0elMoHEMJwXk/egK9MsXPViiG76H4ubzKfWlMDStojSuioHkLpXXqzmMazfpNbCxn6ZWgwGnQ7HO/Ml5ZgmIo3msNOhZwW2dBQfkwusHbJpwKxu95hvG56+p0EpTeXLRQ/BXCsGf297LN1hwUNdAKk4rru5aXXab0hqpFG5vSSR/FpbK8yrc+7DKuD3m59znvr+4dd16bUrJegr786jwPu7wakF5Hvrj9gS1dZ1wQdpZX0Oik3CyvMIHo4hpdFGoBSO0HG50WiqGxumIoFQTlTRZQkMtLhFB6zvMnE6StazhXQFNaP0Bwdyz6+v0snOKx/iN/9zm9Li9zx2Uqp3+mzk4u4tIrBfdfkwymmfjZtNlydx4PhIuh6DrS4VwBmWQCyQQZFUZQBxxmVn++IOxYqt9aXro2p+o8aFKLeV004Syvl1M9x3qzUFihlImKoehGxjmHQgladiEo/RIwv3xB7pWgoHxYC8XoHnHIWBqUD5YzaH9QADis0rLjXgnSploP5wv20hd+nXlQgNdXVo8sJftd99tjoYR0eZWTHr1Ffg/ESy4fNHIPa6HoZW5KJUMdn0kmfAcJfmtYDeestP0EkTlWE/S9mIBEDqtMwZHN6a3ff+kVJVdbNmVcej6MtaYGcqYBQq1ghVImaukV74s7ki9gYCRvm/a6Bx0mNdK0uFyYDDG1NUH+2TZqX9DyMUaXl1/g0WBV6TB+m0NlDJlGyyF8zNbxxU5Kd7+HcwW0ZKyOznutSgaicK43kxi28g4RJPa2mbzL5WUmXxB2kDZoQcIdPQaFotyMxg7fXU4nA2BWKEULJUChpBK+yxIp8XSDneF83lIoCQp03ZnOEOYjXfmCMK6YEZRcoDa1ZlMYGMkHLglklEHeozH3PZT9DdMXG298xPoC3NNv7AKgb/BupaCv39lB5w2dc5DbIZVI+AbE/ZZwcV5WGAtluGRBQ+dvf40SNCciKGgPhFttOJNKGEe0SqGYgvLpRCKUYguahBlOOXstFOfz97vO8OnqvYblPvzW4rLqtZ6VSWEEKRRVr7F+pfxTCV+Xl59rTbm8Ej6DAJUJltQtE4Fwrk5nNqf3uQQrFGtbq2x3gyP+/YTR5SWfx++XbAq95NJowAqlTExpwRt3uzM2tBPl/Eb29nZ9gwwXlLe2JwKequo8dC9d0Aq81vaC9rf3+CBfePSlV/RWXEk9jk7KlBXUrFxehpV+00l9/MV7TJCLxbiGltN96LVQHMc4U5R158j6pKs7z+Fcet1VR0BacC5AYah7bYqhqHW2gj7QZVmTwc9UJ8eQdHklE2Q8j5IvkdArlPJjKO59I2FdXk1pAPrlV5yHma7D2b8s3+L3XcPRhRVKmSgfrve9US9Mwic/PIx/1p22qHd5mN0GRRmDXCRAsIUSRun5reUVNHIydT5Bn6N1nsTPhSyCFEqugJa03kJR5VNJcwpq37B5GXPv9pFcsFLyKjXn/1dv36cXAtZzNFnOar9iSNeBFUQxKG9oOX6WgXMS6EheaJW8uldmF45VbzZtjqG4z2OwUGQMxfTMhgI+QOZeSVhfxrJQ9Pc7aJChrr8ta7U7nUIJE79zvps7evVuzFrACqVMbAvF01iU6douRx660bd79KJv2M5ArCnLJ2gugG4VYfc5REn9zrqV0gyKcejKuOX0FSPwM6xhvmi3u3/YWL9z/TVdTGvIJ4aizu1noTiXtzHJquo1Bdid7cDrD3fKZFpIUJ3bb36UM3FCpxCcsukuVQhhD5h0loFqD81SOevOcd4x021ZdaimYIp3Af5ryCnZAl1eMq3ZNChz3mc/qzJjSIMO7/Ky2s6AZvmVMMssjeQFxrdYfc2Qxm1WK1ihhMBpHXfITsT74qqGqjoZk49XUe6qq2GWGxFC2LL6p5kWjPUUhGPFZGPasPnFDuuO0h1blC/I5WX97WhK4c1dfcb6VX9gcqMM5/JothWKWxbbQkkkjNbexNas3Yma4sh+I2rneYBS5ehUgn4j67wwD3QAd1vUdT5Bbp6hXMG+51qFIo9Rytl5vomtGfzNSQfitDmdlnzG+2Qdk0mZXV7Oe6hNG84XkE0njGniTvlNz6N/OG+/w6aOOu+jwHP5gmNys87lZf1tzSqF4v88jFZSvmArpaCvdI4mrFBC4BzxqzRT50P/19+/gidW7wQAHDCuGYA+y8s1kc7QAzldI6aMK79MmQSRNQ/FfDn2ufUNvjg3wzRCc75ofnnwQTEUl3tBc30Foe/glFtmakcT9g6MBJ4/nUoYsoKKL6X3edgJDknznIahkTwmtmZK5NfVE0Y57+obNu7zS3DIu1a5Lt3vbFNDms/OBn2LXa051dGUwnC+UHI/1DU2KQvF1c4tq4F8lkxxyp31USjOe2iMoSQTIJ+0YaWYTc9j0PFMTZ/ozReEPZAocVMWiqtl+C1f3ypdXroFIsMktuQKwlbgbKE0GM6GMX/2BADuB/37JcU1eb7/0eMAmCdeKUwNpdsxSnV2DmG+l50XAolE0MIrjgCrzv2RN78siv7hHLKpBJrSpdlTTtHKSRs2rV+kq0M9jgktGfQYgsxAUf7mtL6TGhwp2BaKd7+SIeMTQ7HmsSgLxV+hGC0Ux/buviHPvuBBBAAM5xxL/mjkUM85nSTtM3fGVXRn6Zf7J8iO1luHks3u4DwrEKQSZGdVmQPdRQvFFENxuuaMWV6pBNJJMtah3kHTYKl/OI/xLVKhGNyMuUKx3XjlGMkXbMWqTeFWQfmsX1A++Lnn8gIt0soZYgulMXn/sdPRqdYk0jzoZILQ2W7t1/nMv79olf3b1OCdLhzTQo1+E/6SIb4N6pexky8I+4UwvXR9wzm0ZlNIJxKli0OWsdqwaWJg0Kxp1SmNa0n7WihK/mwqWaLgX1jfDQC465UtsqzXdVG0UEzXMTRiTjv2XospHuXMbureZ7ZQ/BTKSL6AbDppLbmjUyjyObdlU9rR7DX3vGb/1l2rslDGN0uffU6vUOxO1qNQkkmys6rMitf6m0mZF3Z0u7z0CiWbSqA5nTQqgyHb5SW092pgOI8JMjahS+m1ZC2+I145cnnn+6OzUKy/ykLRrTgcZoWEkXzBDuzrEi1qBSuUMph7QEfxxTCkBCrfqjerx+vrN3UQX7z1ZW0Z97pRevksl5f+S4xO1KhYp1ByBYGs/bLoT9Q3lEdrNom0Zn5HmDx+hamDCDL51abxzQEKxbZQkiX3e0fPkCyj4kn6WFA6ac1D0ccW8mhrSiGZoMBvWwTFizrbs9jWM+jqTJ0KXbm0dIzkC8gkLStA167UuduaUtpYzJOru+zfpk4WAMbJkbu33ZQE5T0ur3QiYbuNzYpXWig+1oXfGnKA9TwyqQSa0kljEoNzrTHdeQZG8mhvSiOVIK1SEkJgJF90N5UolIJzgVhzvMkOymvOYZqL5mQwl8f4Zr3FWEtYoYTgXW+xAoqfPu1QOwPKNGpNJghEpaP7nZ7RZ5hF3dzzPazyfj7mfEHYCs+vdr+MnVzeEUMxNNS+oRxaMymkElSSmeRKew4MyhuskoARmnqJJ7RmMJwrGOdGqGfQlE6UPA81Qrz+4yeUyGIdqywUlc3jrlsIgRc37EHPQA6tmaTx63vqvMaYmbyWOVPbUBDAqh29Lhmmj2sCALvz0DGcKyCdtGaIa7O8lELJprX36mNvOxAAMKU9q73fSlkqC8WoUDwWikpHTiXJThbxiwmkEuS7bIqz49Rdx7CM1zSnkxg0zCAPimP2D+fQnLaUks5CGbbvpaUQvAPHXKHo8vJbcbytyaxQnFak6X4NDBfQ0eyfPFALWKGE4L8+fAwe+9fTkUyQvTikn0JIJ0tdQeqlvO5jVozlX37/Sslxy7fsBQBccspBaEonMOj6oqD1e1xzGn2G2c5CpvwS/OMXA7IB6kY2+YKw110yjRT7h/NoySTR1pTCeo/lNeKyUMK7vEzuHV3nosqOkx2cyTpQz6gpnSy5FtVZdLZnkaDS8xRnyusHECu3Wx3/0s170ZZNaScMClGc36ELZjvPc9DEFgBwPdtcvoBxzWlMbstog+nF67QUSpJIn+Ul21F7NoWhXOlyHwmy4isTWjLaZ6ZiKHaaqlehlGR5WeWLmXJkW1jGVHTZdlM+ForTPaRVKDKG0pwxWyjO7Tq39MBwHi2ZlHz/Sutwug+B0vhFLi8cCRJ6D4DzeJ3Ly3l/Ta/Q4IglpykuVitYoYRgxvhmHDSpFYBlIaSTpO3Ub/rEWwFYnZB39KPKq2Ccjvdd/yQAYNq4JmRTSZdvVHW+ne1Z7BkY0XYceWFleaUCFtgb8rNQCsK2UEwv/74hK4ZyaGcb9nk60lwI15yurGkVAV0Hp+ZVKIWyL2A5kaZ0suR5qA66KZ1EKlmaBabkyab1GTvO1Ie2ppS2Paj757dgqCrTYSvH4jPPF6xONptK+qYND+ctV2syQdpR8bDD5VUQpXL0D+fRZMdgSo9Xnd7UDsta6h10uxmd9xkodojFTLkEsqnSgL2TfN661mQiYbRs1b1pz6b01oNSKD4ur30uha13eTVnksim9HEY9bxUtqd3cdSRfMEeeGoTJGR5pZz1CsXdBrwIISw500nZT7BCaViICG3ZlN0w7c/uEvBeOXlLl6a6u996CWdNbNbW6xw1nnrYZDSlE66XT71AR07vQL4gsGJr6XIL+YKV4pzRdJDO86gX02ih2Fle+jq6eocwuS2LNrnAnZOwqa7W+Z1KxBEvclz3f937GmZfcY/rOGUFqZfStEBerlAAkcoccl+L6iya0km0ZVOuWe9A8aVWI0lvJ5x0TE5avWMf7l++reTlV21koow96DqwnfusWI6a++B0ne0byqElk0Q2lTAGmQFrclxLJmlN6NO6vNyjYu9AwhrtJkGGGeZru6xZ+tOkQtnT71Yo3sl6qoNTFkAqQXZcwRRAHszl7cGaSekoS3RiW8ZoPWRTSdtdpVNMTkvS275H8gU7y7EpndB21OreKZepbiCSThKSCb2lpdqV7TLWubwCskFH8taKAc2ZJDKphG0R1gOsUCKQSSXw5Bpr3omKjTife3tTCj2eYHG3nGMwe1IrPvX22fbicNaxAod+7V77/9mUe4QkhMDH//dZAMA7DpsEAFi70+1q2rS7H0+/sRPJhOWzNimUj/30WWyTK87qLBRn2qPuhRBCYEfvIKZ0ZNGUTpZ05i43VkCcyOmqcr7cI3mBKTJb7nfPbwTgjsfk8gWkEmRPDjNZKCN5gXQigZTGYlQKujmdRGu2NAai9rdm9SNR5wBA/bzthY2uMmt2WB3xREO6LQB8+ldLAFjtArCeo2JH7xCmtDchk0oYO9lXNu7B+l39GBjJSwvFx+WlJux56uoftka7Vrpt6Xm+96CVnajiOb985s2S4wFgaof1zHqkBaPueTJBtqVnuo6egRw6mtO+GVp3vWxl5HW2ZUtG9iP5AgZzBTSnk3YsR3eufYO5otvac6/U4KglY9Whk8Pr8vK+ZyMFgVRCWoua9q9kyqYTRsvW2Z511zDgGAxlUwnXe7yjZxDXLVpldANXG1YoEdjeM4S1XX3YtncQ/+83VofwqbfPtvfPmtBSsmDb757fAMBqBJ3tWfQN5+0Ge+fLW1wjQzXHQzWm59d12/tUx+NVWBfe9Aze3NWPgrBiON4OUPH8+mJdOoWi4iPWCKt0/5od+zCSF5jW0aR9+d0LEZozsADg9a3uALRTrikd7q/ZDXqyc1JJsl9qU0xpUH5OICVHi04lUHwpE2jNlMZA7JUPNB1HoSDwoRufBmCN2q+54Cjr2j2jyY/+9BkAwAHjrY5YWSM6DhhvWa7OeTVdPUPobM9qByiKHz20GgCwcluvdHWWPrPvL1oJwOH394zuB0Ysl1ezZoDg5MBJVpznr69td21Xndc0OalXDZ7U9hbpQgLMczt6B0fQ0ZT2dVf98aXNAICZE5pLyrzRtQ/5gsCcqW32IKBH0/56B3P2fBqvhfKGHADMnNCMplRSawWtkzHDGROsa/Wutp3LF2wLRefyUlZPJpmwPB2a2Ns9r1oLgU5szWjfIXUPm9PJksHGzY+vxY8eWo0Hlm8rOW40YIVSAV29Q3hh/W4AwBlHTLG3zz9oAt7o2md32K9u2oNNuwfs/ROkC0S5Dl7dtNdVb1PabaE4O9u3TG0HULpqrLI6dvcNy6QAvXXhZEevu4MrFAT29A9jQksGmaTe5H9Qfkf9rCOnojmTKPmmgzOl0i+l94nVXXZgGyj6koUQGM4XMLW9yVV+0DM7P51I2OfRZVgtXt+NXzy9Hm1NKTtTy6nsbJdXSrq8PEppyLM2m9O62LlvyB5FXvPBo/GReTOlHHrFduLBEwG4FSjg7thbMkmXq3JgOI/eoRw627PobGtBEr8AABqiSURBVM8alZHqcDrbs8bkgLVdfXYZwOzyaskktT59xRTPM1Go+3/gxBaMb0njNemOVfeovSmNjqYUJrSksWp7r7aOnsEcOppTlgya74Q4n9308c0limn9TsuyO7SzDQdIS2rzngFXmcGRPIbzBXueiTdGuGWP9Q4dNKnVmOW1R048PmB8MzIa17Y1iEkarcXBXB6phBXnbMumtJ8TUIPR9ib983xODjCbMwlkkm4LRbWTXfvMa9xVE1YoEThIjtScq3wqJWHtb0VBFBv0+Tc85Tp+YqvVoHfJmdELn1rn2u+1UNSL+efL32FbD6bRf64gkDG4vLypyzv3Dbnq+eFDq1EQVmxiUlumZCmQZ9fuwncfWImJrRnMmthiz+/wLto3rtnK4zcplI3d/fjKHa+6tql1rJTyLLFQHB3IcK6AdCrha6Fc+BPLOti6d9BeidcpZ/+wZb0kEmS5Hhwugje69uHZtdZ3bVR6p/PY3Y4YQipJaJYB7X6DQjlsShsAlGTEOe9PW9bK2FGW5WOrdtjbO9uy6OrVKxQ1oHnv0dPQ3pRyuUuEEC5FNF1aEFqXVyaJlkxpLAkAJrSk8TcnHYhMKoETD56Ikw+Z6Nqvnt3E1jSmdTTZ9+ebd62wr4GI8Jap7fjji5u119EzMIL2bBpNmSSEKJXxfx5ZAwB464Hj0ZK2Jqo627iyRsY1p20LZK8n1qNckLMmWO+v15rbLgdlUzua0JROaJWrGvm3ZlIlnTmgssSStlXsZe/AiJ1M0t6kt1Cmj2vCuw/vNCqUL/zuJQBWYkDWE2vtkzIri/aLt76EP7+kv+fVgBVKBK6/2Jq78MrGPfa2Ca3F7C3lGvBOZvzm+ZZrZGKr1Vk+8voObNjl/o4KYPlXnZk9qlFNbMmAiIwNTZFOJrBvKFfS2Dd0ly6kqEav23sGcb10n0xszWhHxRffbMVxlEtDjeC27i2OBPuGcmjLpjDOZ9Lh5377IrbKT9HeKDPjVJ3KlTGtw5284BxxqZdSuTZ0naATNYdDdXwPLt+Ge17disly1YPWrLsjPvP7j9nL6dhBeUfn5VzEUQhhrZ0mgOsftjq9kXwBH76xOIh49+FTMK2jyb7XCmWhnn54J6Z0NCGdKqabr5Mj7qNndGD6+Gb0DObsDhGwFOz7f/yE/f9LTz24pF385z2vYf5//hUA8NVzj0BzxnrdvTGngeE8mtMpTG7LoKtnqMQ66BvKo0Naaro5N2qS6JSOJkztaMJqaYU8I5XyNGkxPLeuG7mCwBaP5QBYbbyjOWV/TsDbmT+4wurIt/cM2TE+5yBDKY+O5rS9gKvX5XXrC5bb+e2HTQbgjvHt6R/GK5v2yPTpNMY1Z7Tt996llhwtWSvm5H3H+qW1Z7LwnQqlzdPuFD0DIzh4chvas2mjqxOwBipOpba9ZxCLpAdh2ZYezL7iHtz58hZ86baXjXXEDSuUCBwzYxzSSbI7EKA4+gMs0x8ANnT32w39kycfhAUyzqIslO89uAqnffcROwNGkU1Z7odtewchhLCtCDVabm9K2dYN4HZhXDhvJqZ2NCFfEHjLv91nb39xw2585CZr1P7Yv56O3/3jyQCKo+Stjm+NT2rLYrJmVKy+AXGSdOGs3Wl1cI+8vsOW475l27BnYAST2jL2iM+L09V1yiFWkoFSKHfK0ZRyzyjWOZTz7v5hTGhJ2539fUvd/uLbFxeD4x9+6wy7rt8+Z3Uol/1qCTbvGcCkNkvRtGX0I0WgGFB3uib2OBTKtr3ue7R5zwC++ZfleHHDHvv8RIQjp7fjxQ27XWW//6AV2/j8GXMAyNhXXlmlI0gmCCfMmoDjZo4HAJz1g8fsY5du3otlmy3XyBHT2q2BRjbtsjh/9mTR8v3kKQfZqe9OxXbOdY9jxdYeNGeSmDWxBb1DOfQMFK/1F0+tw7BjmY8WTUbc9p5BNKeTaM+mMO+gCVi/q9/V2R88udVV3un+BYAfPLgS23oGrRhKpvQ7Ic+t3WVf6/cuOg5NnjJ3v7oF195rLR/T0ZSylZ9TuY7kC/j1s9bzP37WOACWJar4l9+/ijtf3oLJbVkQESa3ZbBzX1G55vIF3Pho8X1vy5QOmoZyeewbzKG9yRrs6ALjPQMjdop4R3O6ZIXprt4h9A3nMaktg3HNaezxKJR8QaA9m8JF82bi0M42Vx2/d7T7h+U7qQiaZBwXDa1QiOhcIlpJRGuI6IrROm8iQfjHdx5i//8/P3i0K41UZSj9+53LsaHbGmm+Q46KAGCmNLkVh01pw7sP77T/n0wQzjhiCjbvGcCyzT32i6E60I3dA7h36Ta849sPo7tv2Ha9XfHeI/DtDx9T4i4CgB9L6wOwFJ7qTP/3ibUAiibyxNYM3jZ7AjrbsyUumvamNI46oAM//7u3AQAuf/dhAIDJ8nqvvns5AOulOHbmeDy1ZperY3n6jZ2YfcU9GBwp4NiZ47DuW+fZo7WbHn0DQ7k8vnGnVUffUA4XzpuJo2d0AADWO7LanlqzC+mkNZs5nSQ8s3YXFstkg537hmx32ttmT8APPno8JstrveGRNbjdkYk1SSqLVk8MRQ0InL9//cyb+Itc98vp8vrIvBkAgFv+/kQAwHk/esLuuIDis54/eyLW7ezD2dc9hu6+Ycz99/vxwHJrNDl3unWN1mjTevEfeb0Lk9sySCTIlWr++jarY3WO8g/ttFxqbQ4LxduBtGVTOGhiC1IJstOA+4dztnKf1pHFTBloVl8f3blvCP/xF8ttpazqtkwK/R4L5bl13WjNWmnHyh2svjC54JSD7OWI7v78qQBgvxOAZS2pgVleFFPWnZ3xx6RlDACnHDrJfm5qwPO5375k77cseKtN/dufl+HLcnT+tT8utcucMGsC2ptS9npuQDHRQA2sJrZmMJQr2C6kB1dsx3/fbw0AjpjWjkSCSgZdl/1yCXIFgeNmjUeLxvq46s5leGL1TnsViwPGN2PbXvdyOyoBZ86UNsya2IwN3f2u/Wu79qF3KIeT5EDsLVPbsWp7L3oGR+yvj+pYaYhdxU3DKhQiSgL4HwDvBTAXwMeJaO5onf8r5x5h/1YTvhyy2b/P/x9rsqKzk1IvjWL5lh4c0tlmdyxAUQF94IYn8QO5qKSaIKdGfJv3DOCt1yyyFzg8fFo7UskEPnDsAXY9z6/rxoZd/eiWneCnTzsERIRDZB1PrN6Jx1Z12dbEHz/7drRkUjhgXBMGRwpYKEe5G7v70d03jAvnzbQndalVWW95ej2WbtqLpTK54Bd/9za8Z+5UDIzk8ejKHRjJW8ujPLe2+AJf9YG5ICouGrijd8g1cj7+wPH43kXH4e7PvxPTxzXZiQvv+u4jAICXpLvxS2e9BUAxZvLqpqIbUo1UlWsLAL7yh2Ls5j1zpwGwLD6VdXf/sm2uDm+GzL7640ub8fnfvYTXt/XYI8JfX3qSnb30NrkKtddNcsQ0K4lCLSq6avs+XP/Qalc2lRqVN6UT+MurW7Dkzd3Y1Tdkd+JO6/fcHz6Bf779FZer9FPvmA3A6qC27h3E69t6bItqUmsG37vIWp1BTXi9+fG1KBQEnlqzy65jwdtn28rvwRXbsXPfEFY4MhXPO8a6Vx3NKWzrGUT/cA47egdxx5JNWLp5rx2fU23zy7dbK0E4LY0jprWjNZPE/cu2oX84h0dW7sDrjvlUPQM5WzkuedOy5pxxkP/60DGuZ7Jlz6A2a6wpnbBTg//40mas2t5ruzBv+sRbkUgQZk9qxapt+9AzOILdjlihWopHWbXbpDv3WrmAZlM6gT9f/g67TJd0C7/RtQ+PrbLWRHvnnMkY35zGE6t32kplw65+3CLTrZVHYXJbFrmCsAcBPYMjuPy3LwIA3nV4Jw6e3IbhXAFbpAxDuTzec93jAGAPtE6b04mRvMBNj76BH/51FdJJwiWnHAQAuPPyd+C2yyxPxHt/9ITtiqwmZpVW/5wIYI0QYi0AENGtAC4AsGK0BPjSWXPww7+utkdlTn74sePxpdtetucoHNLpNvt/+w8n4W/+7zn7/8fOHIcvnTUHu/vUBMgWY2Dvvi++E6f99yN2lpYaOamJZ4kE4fefOQUX/eQZO3X1wIktOOvIKbjyvCMBWJ3Lp087BD99fC0WLHwegGUZqXTIT54yGwufWo+r716Bq+8u3lK1rhlQXNvphfW78YEbLMX57sM7cfrhU7BRdsqf+fWLJfL/5G/nYd5BxcDu1887Etfe+xr+8ZeLrXvzjyfhbbOL+884Ygp+89wGfOjGp/Cm7Ejv+MwpAICPn3ggvvuAdf3eCZCfPf1QAKXuMwC463PvwLHSlaSezRHfuN9VZuaEZnvypOLcHxbjFqfOKVqdLZrR4TfPPwrvPdrqiKeOKw46fvH0evv369eca/8+6oBxeKOrDx+5yUpJVmtsJROE6z52HP7pNquT/sOLVuc4fVwTnrnyTMfxHSUyfuvDx+Dso6a55MoVBOZedT/OPGIqAGvi4cwJLWjNWB3r9Q+ttuNpAPCXz51qDx7mHTQR//vEOsz99wdcdX73wmMBWIMaJ1d94Cj7dyqZwNsPm4xFK7aXHD+5LYPL330oDp7cimwqga/+YSm++oelrjIfP3EWANiWlGovAHD41HY88E+nAbAGdFPas9girY2zZSfcnk3hrLnWNQ/nCli6eS+O/Y8H7Tr+3+mH4vzjrMGYyqY86weP4+oLjsLmPQOYNbEZ937hnfaAcEJrBmt27HO1u3cf3ommdBLvPXoaHlvVhfNveBJHHTDOtm4B4GvnWYNR9f4cd/WD+Np5R+A30iV7woHjkU0l7Xb5tT8tw0feOsM1mfkwqXhPONBqwzc9+gYAa2DzzfOPwtfOO9KW8+K3zcJjq7rsWFY1aVgLBcAMAM6ZZJvktlHjS2e9BS9+4z1243PywRNm2KPT9x87vcQqefthk3HD31ijoY+fOAvvO2Y62pvSdkAfAJ77WrGz+O0/nGT/bkon8fzXz3Jtm9qRtUd3gKWgnGzo7rfTVxVXvPcI/PN73mL//5DJrbZ7YlxzGl855/CS63L6w1uzKZxz1FTX/ovmF196NQnTyaGdrTj3aHcH99H5s9DRlMKm3QOY2JqxO3rFB+RL/pKMS3zj/XPtMhNbM7jqA6WG6bpvnYf5Uik1pZP4/BmH4TSHMnSeY95BE0qOf/RfTseTXz0DRIRX/v3skv06TnLc39ZMEgvePtu2Vk89bLLdESpu//QprnahRpaKgycX28KHTpiJT592iGu/040KwI61ODl+lnvbRTLFeXCkgHuWWokJq/7zvQBQojwVTuvaqUQV5xw11X7u2VQSz1x5BuYdNAH3ffGdduKE4kcXH19y/OFT2/HC18/CIZ1tICKXEgIsi+TZK8+076WKazlZKN2wiuNmld6LF/7tLLt9XzR/Zsk5/tXR3p3v9L9LN+zXzzvSdqcBVkc9xTFYmdSawcJPWXJ8VN6PtV19tjJpzSTxwJdOwzvl1yuPcbyj/3Xv63hzVz8+dMIM3PSJeQCAtx5otcvHV3Xhi7e+jJ8+thaHdLbi1f84206Fb82m7PcDAL55/tEgIle7+vZHjsUzV57pkr1akOmDN/UOEV0E4BwhxD/I/38SwIlCiM97yl0G4DIAOPDAA+e9+eabJXVVi/7hHO5YsgnnHTPd5XZRqDV5dKPbsGzs7seO3iFtp/j8um6s3N6LR1/fgcltWXzzgqNKFBsArNvZh4de244PnTADkzxy5vIFpGQmSTpJLneeYjhXwKrtvZg7vbi8v2LzngH84MFVGM4X8OnTDsER0i3nZXAkj4VPrcO5R03DIQ7FqNiyZwB/emkz+oZy+MKZc1zXIYTAyu29eGNHH97o2ofLTjtEe52FgsDdS7fKlEz3yzUoJ/c9vWYnTjhwgu2G8l7n+Tc8iWNnjsPXzjvSHrU72dEziK/84VV89dwjcKTDhanYuW8Ij63sQksmaS/V4z1+Q3c/Xtm0F596+2xXbM7J8+u6Me+gCSX7B0fy2N4ziPuWbcPph3fiiGmlMvQP5/DhG5/G69t68dcvv8tOawas571p9wC+dd9rWLa5B988/yh7VK/oGRzB7S9stF20xx84vqw2PJTLY+W2XvQM5PDoyh34l3MOL3leu/YN4ek3dqEgBN53zPSSNrOjdxC79g0jlxc4dEpryfl391lZW31DefQN5XD6EZ0l82hG8gW8uavfXrVXN89mR88gXli/G6u29+Kzpx+qbVdrduzDss178e4jptgxQQC4b+lWPLeuG1M6svjAsQegvSlV0mYefn07nl3bjVMPm4xcoYB3Hz7F9Y6t7dqHh1/fgbU7+3BoZxved8x0raWh1jGrFkS0RAgxP7BcAyuUUwD8hxDiHPn/KwFACPEt0zHz588XixcvNu1mGIZhNIRVKI3s8noBwBwiOpiIMgAuBnBXjWViGIbZb2nYoLwQIkdEnwPwAIAkgIVCiOU1FothGGa/pWEVCgAIIe4FcG9gQYZhGKbqNLLLi2EYhqkjWKEwDMMwscAKhWEYhokFVigMwzBMLLBCYRiGYWKhYSc2RoGIBgD4pRaPA7DXZ/+BADb47A9TR6X7w5QJkjOOc8RxHZXKORrXUQ/PfDTuZRxyNMK9DFOmEe4lUP33x7n/cCFE6RpTXoQQ+80/AF0B+2+u5PiQdVS0Pw45YzpHHNdR6fMYjeuo+TMfjXs5StdR83sZh5z1cC/jkLOc/QAWB8kjhNjvXF57Avb/pcLjw9RR6f4wZSq9zjBl4riOSuUcjeuoh2c+GvcyDjka4V6GKdMI9xKo/vsTRgYX+5vLa7EIsR5NtY4fLVjO+GgEGYHGkLMRZARYzkrOtb9ZKDfX+PjRguWMj0aQEWgMORtBRoDljHyu/cpCYRiGYarH/mahMAzDMFViv1coRLSQiHYQ0TLHtuOI6BkiWkpEfyGiDrk9TUS3yO2vqW+wyH2PEtFKInpZ/ptSIxkzRPRzuf0VIjrdccw8uX0NEV1Puq9l1Yec1byXs4joEfn8lhPRF+X2iUS0iIhWy78THMdcKe/ZSiI6x7G9avczZjmrcj/LlZGIJsny+4joBk9ddXMvA+Ssm7ZJRO8hoiXyvi0hojMcdVX1XTcSJhVsLP8DcBqAtwJY5tj2AoB3yd9/D+Aa+ftvANwqf7cAWA9gtvz/owDm14GMlwP4ufw9BcASAAn5/+cBnAKAANwH4L11Kmc17+V0AG+Vv9sBrAIwF8B/A7hCbr8CwHfk77kAXgGQBXAwgDcAJKt9P2OWsyr3M4KMrQBOBfAZADd46qqne+knZz21zRMAHCB/Hw1g82jcT79/+72FIoR4HEC3Z/PhAB6XvxcB+IgqDqCViFIAmgEMA+ipMxnnAnhIHrcDVmrhfCKaDqBDCPGMsFrcLwF8sN7kjFMeg4xbhRAvyt+9AF4DMAPABQBukcVuQfHeXABrEDEkhFgHYA2AE6t9P+OSMy554pBRCNEnhHgSwKCznnq7lyY5q00EOV8SQmyR25cDaCKi7Gi86yb2e4ViYBmA8+XviwDMkr/vANAHYCusGarfE0I4O9CfSzP4G6NgYppkfAXABUSUIqKDAcyT+2YA2OQ4fpPcVm3KlVNR9XtJRLNhjfKeAzBVCLEVsF5sWFYTYN2jjY7D1H0btftZoZyKqt7PkDKaqLd7GUS9tE0nHwHwkhBiCLV711mhGPh7AJcT0RJYpuew3H4igDyAA2C5Ff6ZiA6R+z4hhDgGwDvlv0/WSMaFsBrQYgA/BPA0gBws09fLaKT4lSsnMAr3kojaAPwBwJeEEH5Wpum+jcr9jEFOoMr3swwZjVVottXyXvpRT21TlT8KwHcAfFpt0hQblXReVigahBCvCyHOFkLMA/A7WP5owIqh3C+EGJFumqcg3TRCiM3yby+A36L67gatjEKInBDin4QQxwshLgAwHsBqWJ33TEcVMwFs8dZbB3JW/V4SURrWC/sbIcQf5ebt0lWgXDA75PZNcFtO6r5V/X7GJGdV72eZMpqot3tppM7aJohoJoA/AbhECKH6qZq86wArFC0qc4OIEgD+DcBP5K4NAM4gi1YAJwN4XbptJstj0gDeD8vVM+oyElGLlA1E9B4AOSHECmkq9xLRydJMvwTAndWUMYqc1b6X8tp/BuA1IcQPHLvuArBA/l6A4r25C8DF0jd9MIA5AJ6v9v2MS85q3s8IMmqpw3tpqqeu2iYRjQdwD4ArhRBPqcK1etfVyffrf7BGzVsBjMDS7JcC+CKsDItVAL6N4gTQNgC/hxUAWwHgX0UxK2QJgFflvh9BZtjUQMbZAFbCCuj9FcBBjnrmw3oB3gBwgzqmnuQchXt5Kizz/1UAL8t/5wGYBCtJYLX8O9FxzNflPVsJR7ZMNe9nXHJW835GlHE9rMSNfbKNzK3Te1kiZ721TVgDtD5H2ZcBTBmNd930j2fKMwzDMLHALi+GYRgmFlihMAzDMLHACoVhGIaJBVYoDMMwTCywQmEYhmFigRUKw9QJRPQZIrqkjPKzybGyM8PUmlStBWAYxpo0J4T4SXBJhqlfWKEwTEzIBf3uh7Wg3wmwJnNeAuBIAD+ANTF2J4BPCSG2EtGjsNYweweAu4ioHcA+IcT3iOh4WKsKtMCanPb3QojdRDQP1jpo/QCeHL2rY5hg2OXFMPFyOICbhRDHwvq0weUAfgzgQmGtZ7YQwLWO8uOFEO8SQnzfU88vAXxV1rMUwFVy+88BfEEIcUo1L4JhosAWCsPEy0ZRXFfp1wC+BuvjR4vkSudJWMvTKG7zVkBE42ApmsfkplsA/F6z/VcA3hv/JTBMNFihMEy8eNcy6gWw3Mei6CujbtLUzzB1A7u8GCZeDiQipTw+DuBZAJ1qGxGl5fcrjAgh9gLYTUTvlJs+CeAxIcQeAHuJ6FS5/RPxi88w0WELhWHi5TUAC4jop7BWh/0xgAcAXC9dVilYHxRbHlDPAgA/IaIWAGsB/J3c/ncAFhJRv6yXYeoGXm2YYWJCZnndLYQ4usaiMExNYJcXwzAMEwtsoTAMwzCxwBYKwzAMEwusUBiGYZhYYIXCMAzDxAIrFIZhGCYWWKEwDMMwscAKhWEYhomF/w/5q02HwTH1YQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXuc3FV9//98z8zO3nezm+zmsgnkCiEECCaGIHJRKkGpgi3Y2CqxxUYp1lttFdtvQS39ibVgqRWlEgW8AKKWqFwMIAoICQkEciNkISG3zXWv2dvszLx/f3zObGY3s7OzM7M7u7Pv5+Mxj5l9z+ecOZ9PJp/XvC/nHFFVDMMwDCMVfLkegGEYhjF2MNEwDMMwUsZEwzAMw0gZEw3DMAwjZUw0DMMwjJQx0TAMwzBSxkTDMAzDSBkTDcMwDCNlTDQMwzCMlAnkegDZZtKkSTpz5sxcD8MwDGNMsXHjxqOqWjPYcXknGjNnzmTDhg25HoZhGMaYQkTeSuU4C08ZhmEYKWOiYRiGYaRMyqIhIn4ReVlEfu3+rhaRtSKy0z1XxR17o4jUi8gOEVkeZ18sIpvde3eIiDh7oYg84OzrRGRmXJuV7jN2isjKbJy0YRiGkR5D8TQ+A2yP+/tLwJOqOg940v2NiCwAVgBnApcD3xERv2tzJ7AKmOcelzv7dUCTqs4FbgdudX1VAzcB5wFLgZvixckwDMMYWVISDRGZDlwBfD/OfCVwj3t9D3BVnP1+Ve1W1V1APbBURKYCFar6vHqbeNzbr02sr4eAS50XshxYq6qNqtoErOWE0BiGYRgjTKqexreAfwKicbbJqtoA4J5rnb0O2Bt33D5nq3Ov+9v7tFHVMNACTEzSVx9EZJWIbBCRDUeOHEnxlAzDMIyhMqhoiMifAodVdWOKfUoCmyaxp9vmhEH1LlVdoqpLamoGLTM2DMMw0iQVT+MC4AMishu4H3i3iPwIOORCTrjnw+74fcCMuPbTgQPOPj2BvU8bEQkAlUBjkr4MY0hsfKuJLftbcj0MwxjzDCoaqnqjqk5X1Zl4Ce6nVPUjwBogVs20EnjYvV4DrHAVUbPwEt7rXQirTUSWuXzFtf3axPq62n2GAo8Dl4lIlUuAX+ZshjEkblqzhf94fEeuh2EYY55MZoR/HXhQRK4D9gDXAKjqVhF5ENgGhIEbVDXi2lwP/BAoBh51D4C7gftEpB7Pw1jh+moUka8BL7rjvqqqjRmM2RinHDseoqQg7xZAMIwRZ0j/i1T1aeBp9/oYcOkAx90C3JLAvgFYmMDehROdBO+tBlYPZZyGEY+qcqw9RE15Ya6HYhhjHpsRbuQ9HaEIoXCUrp7I4AcbhpEUEw0j72lsDwHQ1RMd5EjDMAbDRMPIe5o6YqJhnoZhZIqJhpH3nPA0TDQMI1NMNIy8p1c0whaeMoxMMdEw8p6YaITCUaLRkxYUMAxjCJhoGHlPLKcB0G3ehmFkhImGkfc0tvf0vra8hmFkhomGkfc0tnf3vu4Km2gYRiaYaBh5T1MfT8PCU4aRCSYaRt7T2BHC7/NW2bfwlGFkhomGkfc0tYeYUlEEmGgYRqaYaBh5TTSqNHWEmFoZEw0LTxlGJphoGHlNS2cPUYVpE4oBS4QbRqaYaBh5TaObozF1gudpdFt4yjAywkTDyGua3GzwaZXO07DwlGFkxKCiISJFIrJeRF4Rka0i8hVnv1lE9ovIJvd4X1ybG0WkXkR2iMjyOPtiEdns3rvDbfuK2xr2AWdfJyIz49qsFJGd7rESwxgCTR1eue2USkuEG0Y2SGXnvm7g3ap6XEQKgGdFJLZN6+2q+s34g0VkAd52rWcC04AnROQ0t+XrncAq4AXgEeByvC1frwOaVHWuiKwAbgX+QkSqgZuAJYACG0Vkjao2ZXbaxnghJhJVJcE+fxuGkR6Dehrqcdz9WeAeyVZ9uxK4X1W7VXUXUA8sFZGpQIWqPq+qCtwLXBXX5h73+iHgUueFLAfWqmqjE4q1eEJjGCkRcmtNVRR7v49spVvDyIyUchoi4heRTcBhvJv4OvfWp0TkVRFZLSJVzlYH7I1rvs/Z6tzr/vY+bVQ1DLQAE5P01X98q0Rkg4hsOHLkSCqnZIwTQhFPJMoKnWiYp2EYGZGSaKhqRFUXAdPxvIaFeKGmOcAioAH4T3e4JOoiiT3dNvHju0tVl6jqkpqamqTnYowvYp5GUYGfAr9YItwwMmRI1VOq2gw8DVyuqoecmESB/wWWusP2ATPimk0HDjj79AT2Pm1EJABUAo1J+jKMlIiJRjDgoyjgN0/DMDIkleqpGhGZ4F4XA38CvOZyFDE+CGxxr9cAK1xF1CxgHrBeVRuANhFZ5vIV1wIPx7WJVUZdDTzl8h6PA5eJSJULf13mbIaRErHwVNDvo7DAT7dN7jOMjEilemoqcI+I+PFE5kFV/bWI3Ccii/DCRbuBTwCo6lYReRDYBoSBG1zlFMD1wA+BYryqqVgV1t3AfSJSj+dhrHB9NYrI14AX3XFfVdXGDM7XGGf0ehp+H0UFPgtPGUaGDCoaqvoqcG4C+0eTtLkFuCWBfQOwMIG9C7hmgL5WA6sHG6dhJCIUiVLgF3w+oajAwlOGkSk2I9zIa0LhKAV+72vueRomGoaRCSYaRl4TCkcJBpxoBPwWnjKMDDHRMPKankiUYK+n4bdVbg0jQ0w0jLymj6dhiXDDyBgTDSOv6Y6cEI3CAr8tjW4YGWKiYeQ1oXBceMom9xlGxphoGHnNSeEpW7DQMDLCRMPIa05KhJunYRgZYaJh5DUnJ8IjeCvUGIaRDiYaRl4TivSdpxFVCEdNNAwjXUw0jLym74xwP2B7ahhGJphoGHlN//AUYHM1DCMDTDSMvCYUiVLoPzFPA8zTMIxMMNEw8pq+noYnGranhmGkj4mGkdf0TYRbeMowMsVEw8hr+swIt/CUYWRMKtu9FonIehF5RUS2ishXnL1aRNaKyE73XBXX5kYRqReRHSKyPM6+WEQ2u/fucNu+4raGfcDZ14nIzLg2K91n7BSRlRjGEAiFoxTE1p5yzyGbFW4YaZOKp9ENvFtVzwEWAZeLyDLgS8CTqjoPeNL9jYgswNuu9UzgcuA7bqtYgDuBVXj7hs9z7wNcBzSp6lzgduBW11c1cBNwHrAUuClenAwjGdGoEo5qr6cRcM+xfcMNwxg6g4qGehx3fxa4hwJXAvc4+z3AVe71lcD9qtqtqruAemCpiEwFKlT1efWm5N7br02sr4eAS50XshxYq6qNqtoErOWE0BhGUmLiEMtpxMSjJ2KT+wwjXVLKaYiIX0Q2AYfxbuLrgMmq2gDgnmvd4XXA3rjm+5ytzr3ub+/TRlXDQAswMUlfecVrB1v59lM7cz2MvCMmGrGwVEFAAAibp2EYaZOSaKhqRFUXAdPxvIaFSQ6XRF0ksafb5sQHiqwSkQ0isuHIkSNJhjY6+fUrDXzzt69bgjbLxHIXMU+jwMJThpExQ6qeUtVm4Gm8ENEhF3LCPR92h+0DZsQ1mw4ccPbpCex92ohIAKgEGpP01X9cd6nqElVdUlNTM5RTGhV0hCJ9no3sEBONmFhYeMowMieV6qkaEZngXhcDfwK8BqwBYtVMK4GH3es1wApXETULL+G93oWw2kRkmctXXNuvTayvq4GnXN7jceAyEalyCfDLnC2v6OwJA9DeHc7xSPKLnlhOozcRLn3shmEMnUAKx0wF7nEVUD7gQVX9tYg8DzwoItcBe4BrAFR1q4g8CGwDwsANqhr7CX098EOgGHjUPQDuBu4TkXo8D2OF66tRRL4GvOiO+6qqNmZywqOR9m7zNIaDgcJTltMwjPQZVDRU9VXg3AT2Y8ClA7S5BbglgX0DcFI+RFW7cKKT4L3VwOrBxjmWiYlFe8g8jWzSPWBOw8JThpEuNiN8FGDhqeFh4JJb8zQMI11MNEYBvZ5Gt4WnsklveKp/TsNmhBtG2phojAI6e6unzNPIJj39PI2AzxLhhpEpJhqjgFguo90S4Vmlv6chIgT9Pnpsu1fDSBsTjVFAZ294yjyNbNK/egqgwC8WnjKMDDDRGAX0Tu4z0cgq/RPhAAUBn4WnDCMDTDRyjKrS2RMrubXwVDbp7heeAgj4fFZyaxgZYKKRY7p6oqi7h1kiPLv0T4QDBP1ik/sMIwNMNHJMvFBYyW126Z8IBwtPGUammGjkmPilQywRnl0SJ8J9tmChYWSAiUaO6SMaFp7KKgOJhi2NbhjpY6KRY2LhKZ/YgoXZJiYOsUl94EpuTTQMI21MNHJMbI5GdWmhhaeyTCgSJRjw4a3E71Hg9xG28JRhpI2JRo6JeReTyoKWCM8yoXCUQn/fr3iBXyw8ZRgZYKKRYzrcHI2a8kLLaWSZUDjaJ58BsUS4iYZhpIuJRo6JzQKvKSukIxRB1UIn2SKRaARNNAwjI1LZ7nWGiPxORLaLyFYR+Yyz3ywi+0Vkk3u8L67NjSJSLyI7RGR5nH2xiGx2793htn3FbQ37gLOvE5GZcW1WishO91hJnhELT9WUFxKJau8sZiNzQpFo78ZLMQJ+sZyGYWRAKtu9hoF/UNWXRKQc2Cgia917t6vqN+MPFpEFeNu1nglMA54QkdPclq93AquAF4BHgMvxtny9DmhS1bkisgK4FfgLEakGbgKWAOo+e42qNmV22qOH2BIik8oKAW+uRlGBP5dDyht6IonDU5bTMIz0GdTTUNUGVX3JvW4DtgN1SZpcCdyvqt2quguoB5aKyFSgQlWfVy8Gcy9wVVybe9zrh4BLnReyHFirqo1OKNbiCU3e0BEK4/cJE0oK3N+WDM8WoXC0z2xwsPCUYWTKkHIaLmx0LrDOmT4lIq+KyGoRqXK2OmBvXLN9zlbnXve392mjqmGgBZiYpK+8oSMUoaTAT1mh5/RZMjx7dA+UCA9beMow0iVl0RCRMuDnwGdVtRUv1DQHWAQ0AP8ZOzRBc01iT7dN/NhWicgGEdlw5MiRpOcx2ugMRSgO+imJiYaV3WaNRInwgE3uM4yMSEk0RKQATzB+rKq/AFDVQ6oaUdUo8L/AUnf4PmBGXPPpwAFnn57A3qeNiASASqAxSV99UNW7VHWJqi6pqalJ5ZRGDe2hCKWFAUqDXh7DJvhlj1Dk5PCUldwaRmakUj0lwN3AdlW9Lc4+Ne6wDwJb3Os1wApXETULmAesV9UGoE1Elrk+rwUejmsTq4y6GnjK5T0eBy4TkSoX/rrM2fKGzlCY4gI/JUHP07Dl0bNHokR4MGALFhpGJqRSPXUB8FFgs4hscrYvAx8WkUV44aLdwCcAVHWriDwIbMOrvLrBVU4BXA/8ECjGq5p61NnvBu4TkXo8D2OF66tRRL4GvOiO+6qqNqZ3qqOTjlCEkmBcTsPCU1kjUSLc1p4yjMwYVDRU9VkS5xYeSdLmFuCWBPYNwMIE9i7gmgH6Wg2sHmycY5WOUITyogAlhX73t3ka2WKgGeHhqKKqfdakMgwjNWxGeI7pDEUoDQYodeGp4+ZpZI3ucJSigpNFA7AQlWGkiYlGjunoCVMS9FNU4MMnlgjPJl09EQoDfSdKFvg978JCVIaRHiYaOaaj2yu5FRHKiwpo7erJ9ZDyhu5wlMIE4Skw0TCMdDHRyDGxRDjAxNIgx9pDOR5R/uCFp/p7Gt5X3pYSMYz0MNHIIdGo0tkTodjlM6pKgzSZaGSFnkiUSFRP8jRi1VS2aKFhpIeJRg6J/dotdr+Gq0uDNJpoZIXYasGFBSfPCAcLTxlGupho5JDuHndjc7+GLTyVPbrd6sEnJ8Itp2EYmWCikUO6w+7G5n4NV7vwlG3ElDkxT2OgktuQLVpoGGlhopFDekMogRPhqXBUae20sttM6RrA0wgGLDxlGJlgopFDToiGC0+VBQE41t6dszHlC/2vbYyYpxGOmmgYRjqYaOSQWHgqttRFVYknGk0dltfIlBPhqb6eRsBn4SnDyAQTjRxykqdR6m35euy4iUamnEiE91/l1sJThpEJJho55ET1lMtpuPCUld1mTtcAJbdWPWUYmWGikUP6V09NLI3lNEw0MmXwklsLTxlGOpho5JBQv/BUUYGfkqDfPI0sMHDJrYWnDCMTTDRySKIKn6oSmxWeDQYqubXwVHrsbezI9RCMUUIq273OEJHfich2EdkqIp9x9moRWSsiO91zVVybG0WkXkR2iMjyOPtiEdns3rvDbfuK2xr2AWdfJyIz49qsdJ+xU0RWkkf0n6cBXtmthacyZ7CSWxON1HlpTxMXfuN3vLK3OddDMUYBqXgaYeAfVPUMYBlwg4gsAL4EPKmq84An3d+491YAZwKXA98Rkdhd8U5gFd6+4fPc+wDXAU2qOhe4HbjV9VUN3AScBywFbooXp7FOb04j7sZWbYsWZoVEggzxq9xaTiNVXnViseNgW45HYowGBhUNVW1Q1Zfc6zZgO1AHXAnc4w67B7jKvb4SuF9Vu1V1F1APLBWRqUCFqj6v3joZ9/ZrE+vrIeBS54UsB9aqaqOqNgFrOSE0Y57+1VNgixZmi/5FBjFOrHJrnkaq1B85DsAeC1EZDDGn4cJG5wLrgMmq2gCesAC17rA6YG9cs33OVude97f3aaOqYaAFmJikr7wg0Uqs3qKFNiM8U7p6EoenbJXbobPzkImGcYKURUNEyoCfA59V1dZkhyawaRJ7um3ix7ZKRDaIyIYjR44kGdroIlY9Ffv1C96eGl09Udv2NUO6wxGCAR8ubdaLldwOnTfM0zDiSEk0RKQATzB+rKq/cOZDLuSEez7s7PuAGXHNpwMHnH16AnufNiISACqBxiR99UFV71LVJaq6pKamJpVTGhV0hyMU+AWf78SNbXpVCWD/QTOluydKUeDkr3es5DYm2EZyGttDHD0ewu8T9jXZd9JIrXpKgLuB7ap6W9xba4BYNdNK4OE4+wpXETULL+G93oWw2kRkmevz2n5tYn1dDTzl8h6PA5eJSJVLgF/mbHmBt4d130TtnJpSAN480p6LIeUN3eEIhf3WnQIQEQr8YgsWpkj9Yc/LWHxqFUePh8wDNgikcMwFwEeBzSKyydm+DHwdeFBErgP2ANcAqOpWEXkQ2IZXeXWDqkZcu+uBHwLFwKPuAZ4o3Sci9XgexgrXV6OIfA140R33VVVtTPNcRx3d4chJMfdZk2KicTwXQ8obunuiJ13bGAV+n4WnUiQmGpfOr2X9rkb2NnUwf0pFjkdl5JJBRUNVnyVxbgHg0gHa3ALcksC+AViYwN6FE50E760GVg82zrFIohtbSTBA3YTi3jiykR6eF5dYNAI+sfBUiuw83EZJ0M95sycCsOeYicZ4x2aE55BQJNq7LHo8s2tKefOohacyoTscOWlZ9BjBgM+qp1Kk/vBx5tSUcWq1l2vb29SZ4xEZucZEI4d4nsbJN7Y5NWW8cfi4bfuaAV2DhqdMNFLh6PEQkyuKmFBSQHlhwJYTMUw0comXrE3sabSHIhxus/ka6eLlixJ7GgV+H2HLaaRERyhMaaEfEWFGdYlV9RkmGrlkoLj7nJoyAN44bHmNdOkORxMKMnhltyHzNFKivTtCSdBLfU6bUERDS1eOR2TkGhONHNIdHjinAfCG5TXSxpunMbCnYeGp1OgMhSkNetdxQkmQZtuKeNxjopFDQgnmaQBMqSiiNOhn7bZDdnNLk64BQn9gJbepEo0qHT0RSgo9T6O6NGj71xsmGrkk0TwN8Cagff6y0/nD60f45H0biUbtBjdUks/TEBPjFOgKR1AlztMooKsnSmcoMkhLI59JZXKfMUwkm0tw3Ttn0dUT4T8e38G2hlYW1lWO8OjGNslKbi08lRrt3Z449HoaJd52xE0dIYqDxTkbl5FbzNPIIQOV3MZYfuZkwJtgZQyNZCW3wYDPJvelQEfIWzIkPqcB2NL94xwTjRwSW4l1IE6dWErQ7+M12/xmSKhq0pLbwoCvd1l6Y2B6PQ0nGtWlnmg0d/TkbExG7jHRyCGhJOEp8MIos2tKed1EY0iEo0pUT95LI0Zhgb93D3FjYGKeRqzktqqkAIBGS4aPa0w0ckiyuQQxTp9SzuuHbL7GUIh5EQPlNIoC/t5NmoyBaXcJ79JC7zpWOU/DtiMe35ho5IhwJEo4qklzGgCnTS5nf3MnbV0WEkiVmBcxkCAXB33maaRAZz9PY0Kx52lY2e34xkQjR8RmJCcLTwHMn1IOYN7GEOjdRneAa+t5GiYagxHLaZQ60Qj4fVQUBczTGOeYaOSIbhceSZYIB8/TANhheY2U6XaCMGB4qsBPVzhqC0IOQm9Oo/DEdfQm+JnXO54x0cgRJzyN5OGpugnFlAb97DiYbFt2I55YvmJAT6PARySqNit8EHpzGsET07kmlNis8PFOKtu9rhaRwyKyJc52s4jsF5FN7vG+uPduFJF6EdkhIsvj7ItFZLN77w635StuW9gHnH2diMyMa7NSRHa6R2w72Lyge5AbWwyfT5hbW8ZOW7wwZbrDLqcxgCDHPJCusIWoktHRHUbEE9kYtpSIkYqn8UPg8gT221V1kXs8AiAiC/C2aj3TtfmOiMT+594JrMLbM3xeXJ/XAU2qOhe4HbjV9VUN3AScBywFbnL7hOcFvTe2QaqnAObUltlOfkNg0JxGTDQsr5GU9lCEkgJvWfQYE0oKaGq38NR4ZtA7lqr+AW/f7lS4ErhfVbtVdRdQDywVkalAhao+r14g+V7gqrg297jXDwGXOi9kObBWVRtVtQlYS2LxGpPEbmxB/+CiMbe2jEOt3bRaBVVK9IpGkpwGQFfIym6T0REK9y4hEqPawlPjnkxyGp8SkVdd+CrmAdQBe+OO2edsde51f3ufNqoaBlqAiUn6ygtOeBrJcxoAc21/jSHRW3KbJKcBFp4ajI5QpHcJkRhVpUE6QhHz0sYx6YrGncAcYBHQAPyns0uCYzWJPd02fRCRVSKyQUQ2HDlyJNm4Rw2p5jQA5rkKqnoTjZQ4Mblv4JJbsPDUYMRvwBSjKm7RQmN8kpZoqOohVY2oahT4X7ycA3jewIy4Q6cDB5x9egJ7nzYiEgAq8cJhA/WVaDx3qeoSVV1SU1OTzimNON0pztMAmFFVTNDvo97yGilxwtNI7MUVB2OiYeGpZMS2eo0ntpSI5TXGL2mJhstRxPggEKusWgOscBVRs/AS3utVtQFoE5FlLl9xLfBwXJtYZdTVwFMu7/E4cJmIVLnw12XOlhec8DQGD08F/D5mTSq18FSKxPZ7KA4OlNPwvvad5mkkpT2UwNMoNU9jvDPofhoi8lPgEmCSiOzDq2i6REQW4YWLdgOfAFDVrSLyILANCAM3qGrsf+b1eJVYxcCj7gFwN3CfiNTjeRgrXF+NIvI14EV33FdVNdWE/KgnltMYbHJfjLm1ZWw90ML+5k6Cfh815YXDObwxTUwMSgYQjUILT6VER3eYuglFfWwTnWgcPd6diyEZo4BBRUNVP5zAfHeS428Bbklg3wAsTGDvAq4ZoK/VwOrBxjgWGawstD9zast4ZEsD7/rm0yyaPoEHP3n+cA5vTNPhPI2B9gi3ktvU6AhFKC7oe4uYVOb9WDl63DyN8YrNCM8RJ8pCU/snWDC1HFUoLwywfncjB1u6hnN4Y5rOUJjiAj8+X6JaihNhq27LaSSlPUFOo7K4gAK/mKcxjjHRyBGhcOo5DYDLFkzhgVXLeOATywB4dEvDsI1trNMRigwYmgIoClhOIxU6EuQ0fD5hYmkhR9pMNMYrJho54sRSF6n9E/h8wnmzJzK3tpzTJ5fz6OaDwzm8MU1nKDJgEhwsPJUKPZEooXD0pHkaADXlheZpjGNMNHJE7yq3KcwI7897z5rCi281crjVQlSJ8GLxqYiGhacGIpYX6j8jHDzRME9j/GKikSO6w1GCft+AcfdkXDivBlV4ZV/LMIxs7NPRkzw85fcJQb/PZoQnIbYseiJPY1JZ0ERjHGOikSO6eiIph6b6c+rEEgD2NnZkc0h5Q2conDQ8BV4BQmw+h3EysQ2YBvI0jrWHiEZtafnxiIlGjugMRShN8B8yFSaWBikJ+tnbZKKRiEQJ3P4UFfh780rGyST3NAqJRNUm+I1TTDRyRHsonDSEkgwRYUZViXkaA9DZkzwRDt6scMtpDEzM00h0HWMTS22uxvjERCNHdIQifbbRHCozqkvY29iZxRHlD51uH4hkFBfYPuHJ6OxxW70m8Nhq3AQ/y2uMT0w0ckR7d3jQEEoyZlQXs7epw/a5TsBg8zTAC0/ZPI2Bae30RKOi6OTv6KReT8NEYzxiopEjEu1VMBRmVJXQEYpwrN1CBP3x5mkMktMImKeRjGaXr5jglkKPJxaeMk9jfGKikSPaE+yKNhROqbYKqkSEI1FCkeignkah5TSS0tzpLX2eyNMoLwwQDPg4Yp7GuMREI0d0dGfoacREo8nyGvF0DLLCbYwiy2kkpaWzh/KiAIEEk09FhJqyQo46TyMcifZWWxn5j4lGjugIZZ7TAPM0+hObe1FkifCMaOnoobK4YMD3a8oLez2Nm3+1lffc9gcTjnGCiUYOUNWUkrXJKAkGmFQWNNHoR+/yF1ZymxHNnT1MKEkuGruPtdPS2cPPN+5nf3MnP3hu98gN0MgZ6f/UNdImFIkSjmrak/tizKguYY+JRh9iv3ZTCk/Z5L4Bae4IMaH45CR4jD89eyprtx3i7368kc6eCKdNLuO7T79BYcDH5Ioi3n/OtBEcrTGSDOppiMhqETksIlvibNUislZEdrrnqrj3bhSRehHZISLL4+yLRWSze+8Ot+0rbmvYB5x9nYjMjGuz0n3GThGJbQk75unoTu3X8GCcVlvO9oZWK7uNIxZyGrR6qsBvy4gkoaWzh8oknsb7z57GwroKnqs/xvwp5fzPX76Nzp4I//ab7Xz+wU32ncxjUglP/RC4vJ/tS8CTqjoPeNL9jYgswNuu9UzX5jsiErsz3gmswts3fF5cn9cBTao6F7gduNX1VY23tex5wFLgpnhxGsu09y7RkJmncdb0Spo6ethnyfBeUg9P+ekOR+3mNgAtnclzGj6f8OX3ngHAh5eewrzJ5fz+n97Fp989l56I9s7zMPKPQUVDVf9hwwwgAAAgAElEQVSAt3d3PFcC97jX9wBXxdnvV9VuVd0F1ANLRWQqUKGqz6v3v/Tefm1ifT0EXOq8kOXAWlVtVNUmYC0ni9eY5MSy05l5GmdPrwRg835b7TZG7NomWxodvJwGnNhB0TiBqtLc0cOEJKIB8I65k/jt5y7iI8tOBaBuQjGzakoBONZu5bj5SrqJ8Mmq2gDgnmudvQ7YG3fcPmerc6/72/u0UdUw0AJMTNLXmCd2Y8vU0zh9SjkFfuFVWyK9l85UPY2AbcQ0EO2hCOGoJk2Exzhtcjn+uOX9J5Z6E/9s0mn+ku3qqUSbQ2gSe7pt+n6oyCoR2SAiG44cOZLSQHNJR3dqydrBKAz4mT+lgs37m7MxrLzgRHhq8JwG2JaviWhxE/uSJcIHorrUa3PMFjPMW9IVjUMu5IR7Puzs+4AZccdNBw44+/QE9j5tRCQAVOKFwwbq6yRU9S5VXaKqS2pqatI8pZGjPcUbWyqcNb2SV/e1WGzeEaueGmyV2+Kg99W3stuTiS0hUjFIeCoRk8pinoaFp/KVdEVjDRCrZloJPBxnX+EqombhJbzXuxBWm4gsc/mKa/u1ifV1NfCUy3s8DlwmIlUuAX6Zs415estCM8xpAJxVV0lbV5i3jlnpLVh4Khu0dDhPI4XwVH/M08h/Bv2pKyI/BS4BJonIPryKpq8DD4rIdcAe4BoAVd0qIg8C24AwcIOqxv5XXo9XiVUMPOoeAHcD94lIPZ6HscL11SgiXwNedMd9VVX7J+THJLG9CjLNaQCcOa0CgNcOtjFzUmnG/Y11OnoiBHxCwSB7r5/YJ9xEoz+xdafSEY1gwEd5UYBGy2nkLYPetVT1wwO8dekAx98C3JLAvgFYmMDehROdBO+tBlYPNsaxRjY9jWkTvOVEDrZY2S3EVrgd/LoWuuopy2mcTCY5DfBCVLZsev5iy4jkgN79lwcpC02F6pIgQb+PhtaujPvKBzpTXJ4l5ml0W07jJJpdeCrZPI1kVJcGzdPIY0w0ckBHT5jCgC/hCqJDxecTaisKOdRiogFeeCqVAoPYkt+tXT3DPaQxR3NniGDA1zuXZahMLA1aTiOPMdHIAR3dkYzXnYpnamURDSYaAHSGwoNO7AOodvMJmuwX8Um0uIl9bqWfITOxrNDmaeQxJho5oD3FG1uqTK4o4pCFp4DUtnoFL/QigoVREtAyyAq3gzGxNEhjezfRqJWB5yMmGjnA8zSyJxoxT8PmaniikUoi3O8TJhQX0NhhotGf5kH20hiMiWVBonqiCsvIL0w0ckB7hhsw9WdyRRHd4Whv1ct4JtVEOEBVaZCmdrtm/Wnu7KEyzcop8MJTAI02wS8vMdHIAR2hbHsaXtmt5TW8IoNUBbm6xKp8EnG4tYua8sK02090E/yOWjI8LzHRyAHt3dn1NKZUev/BD1peg7aucMqCXF0apMnCU33oDEU41h5ielVx2n1MLPNEwwQ5PzHRyAGdPRFKM1ysMJ4plbEJfuNbNDpCYZo7eno9r8Gw+QQns7/ZW44mI9GIrXRrE/zyEhONHNDeHaEkiyW3teWFiJho7HebUaV6w6tynoYVEJwgtqFX3YT0RaOqxKtMO2LhqbzERCMHdITCWZkNHqPA72NSWeG4F419zUO74VWXBOmJKG3dtstcjH29wluSdh8Bv4+JpYUcaRvf38d8xURjhIlG1ZtLkEVPA2BKRdG4z2nEPI26IXgaYBP84tnf3EmBX6jNIBEOnvd7uNXCU/mIicYIE1sgL5s5DfDmauxtGt/Lo+9v7iTgE2rLi1I6PlblY3mNE+xv6mTahGJ8vvRmg8eYXFHIIfM08hITjREmNpeivCj9yVOJOKuukjePtPfuhTAe2d/UydQJRX22H01Gr6dhFVS97GvqyCifEaO2vMg8jTzFRGOEaXBLmE+dkNqv4VRZPLMKgJf2NGW137HEgebOId3wqktinsb4Fdr+7G/uzKhyKkZthbc8esSWEsk7TDRGmP3NnsuejV9z8SyaMQG/T9jwVl7sU5UW+5s7qZuQegK3qtTz9iyn4dEdjnCotXtI13AgaiuKiKqV3eYjJhojTIOr8JlamV1PoyQYYOG0Cl7cPT49jZ5IlEOtXdQNwYMrKwwQ9PtsRVZHQ+wHTTY8DZdIP2QhqrwjI9EQkd0isllENonIBmerFpG1IrLTPVfFHX+jiNSLyA4RWR5nX+z6qReRO9w+4ri9xh9w9nUiMjOT8Y4GDjR3Ul4UyHpOA2DxqdW8sreZUHj8bSx0sKWLqA7thiciVJUWmKfh2DfEeS7JmFzhifdhS4bnHdnwNN6lqotUdYn7+0vAk6o6D3jS/Y2ILMDb//tM4HLgOyISKyG6E1gFzHOPy539OqBJVecCtwO3ZmG8OWV/c1fWQ1Mx3j6ziu5wlK0HWoal/9HMiUlpQwutVJUEbaVbx1uN7UB2RMM8jfxlOMJTVwL3uNf3AFfF2e9X1W5V3QXUA0tFZCpQoarPqzc1995+bWJ9PQRcKunuDDNKONDc2buvd7ZZdMoEADbvH3+isb95aHM0YlSXBs3TcOw42EZ5YSArP2piCx6ap5F/ZCoaCvxWRDaKyCpnm6yqDQDuudbZ64C9cW33OVude93f3qeNqoaBFmBi/0GIyCoR2SAiG44cOZLhKQ0vB1o6mZblyqkYUyqKKCsM8OaR9mHpfzSz9UALhQHfkG94NeWF435SZIztDa3Mn1qe9o598RT4fUwsDZqnkYdkKhoXqOrbgPcCN4jIRUmOTfRN1CT2ZG36GlTvUtUlqrqkpqZmsDHnjNiCesPlaYgIc2pKqT98fFj6H82s39XI206pIhgY2ld6Tk0Z+5o66QiN76VEVJXXGtqYP6Uia33WlNtSIvlIRqKhqgfc82Hgl8BS4JALOeGeD7vD9wEz4ppPBw44+/QE9j5tRCQAVAJjtqb0gKtOmZbiKqzpMKemjDeOjC/RaOnsYVtDK0tnVQ+57WmTywB44/D4887i2dfUSVt3mDOmZk80vG2Ix4ansb+5k68/+horV6/n4U37bRHLJKQtGiJSKiLlsdfAZcAWYA2w0h22EnjYvV4DrHAVUbPwEt7rXQirTUSWuXzFtf3axPq6GnhKx/C/5gEXdx8uTwNgTm0ZDS1dHB9Hi/Bt2N2IKpw3e+iiMW9yOQCvH2rL9rDGFK8d9M5//tTyrPVZW144ZnIan7t/E99/5k12HmrjM/dv4l/+b0uuhzRqycTTmAw8KyKvAOuB36jqY8DXgfeIyE7gPe5vVHUr8CCwDXgMuEFVI66v64Hv4yXH3wAedfa7gYkiUg98HleJNVY5IRrDk9MAmFNTCsCb48DbiEaVrp4I63Y1EvT7eNspVYM36sep1SUE/T5ePzy+RWN7QysicPrk7InG5Ioijh4PEY6M7hLwfU0drN/dyOfecxrPfPHdXLVoGg9u2EvPKB93rkh7qVVVfRM4J4H9GHDpAG1uAW5JYN8ALExg7wKuSXeMo40DLV345EQN+3Awt9aFW44c5+zpE4btc0YD9zy/m1t+s53ioJ9zZlRSlMZy8wG/j9k1pew8lP8im4zXDrZyanUJpVlcfXl2TSmRqLLraHuvRzcaWfOKFw3/wDnT8PuES06v5f82HWD3KB93rrAZ4SPI7qPtTKkoosA/fJf9lOpS/D4ZFzH6x7YcpLwoAArLz5ySdj/zJpeP+/DU1gOtWU2CA739bT84uq/tmk0HWHxqFTOqvTk+pzmh2DHOvxMDYaIxQqgqL+5u5NxThx5CGQrBgI9Tq0vyPhneEQrz0p4mPrRkBpu/spyPXzg77b5Oq/UqqNrHSR6o/vBxvv/Mm73J3tcOtvLWsQ4umHtSNXtGzKktJeATXmtozWq/2WTrgRZeO9jGB86Z1mubXeP98Hp9lItdrjDRGCH2NXXS0NLFeWlU+AyV2TVl7MzzstsXdzfRE1EumDsp475iIYjxUqp8+xOv82+/2c5P1u8BvF/afp/wvrOmZvVzCgN+5taW9SbZRyM/XreHwoCPKxedEI2iAj8zJ5aYpzEAJhojxIu7vUrht88cftE495QJ1B8+zqE8nrT2XP1Rgn5fVq7n/CmeaLw6DmbSt3X18MS2QwR8wr/9ejv1h9tY88oBLpg7iYllme3Wl4j5U8pHrafR2tXD/728nw+cM40Jbpn8GKdPKef1Ec5z9USifOFnr/D0jsODH5xDTDRGiPW7GqkoCmS1OmUg/uSMyQA8uX10f/ky4dmdR1l8ahXFWdgB8dSJJcyaVMpvtx7MwshGN49vPUR3OMq3ViwiGPBx+beeYV9TJ1fGhWeyyfypFRxo6RqVm4P98qX9dIQifGTZqSe9d9rkcnYfa6erJ5Kg5fDwk3V7eGjjPv7+py+zbxTvwmmiMUKs39XI0lnVGW+jmQqnTS5jRnUxT2w/NOyflQv2NXWwraGVd87LPDQF3kz6yxdO4fk3jtGc54sXPrxpPzOqi7nirKk88pkL+cCiaZw+uZzLzpw8LJ8X8+JeO5hbb0NV2X20vc/fP3rhLc6eXsk5M06uMjx9cjmqmYUsI1HlhTePpVRy3NbVw389uZOz6ipRhc8/8ArRUbqBlYnGCHC4rYs3j7aPSGgKvJvgn5wxmWfrj+bl8hg/37gfoE/yMlPeu3AK4aiydlt+Ci3Ar145wLP1R/ngojpEhLoJxdz2oUU8/rmLhmWpfqB3hvn2HIeoHt50gEu++XRv6GfdrkZ2Hj6e0MuAE3muTBb//OZvd7Dirhf4519uQVWT7mL4vd+/SWN7iFs+uJB//dMFrN/dyP9t2p/2Zw8nJhojwPNvHAPg/DnZrU5JxnvOmEwoHOUPr4/uBRyHSjSqPPTSXt4xZ2JviWQ2OKuukroJxTy6JT9DVM/sPMLnH9zEklOruP6SuSP2ubXlhUyvKmbNKwdytjSHqvK/z7wJwDce20E0qtz3wltUFhfw/rMT//CYPamUubVl3PWHNxNO8otGtXdlZYAjbd38/vUjvRN4n3rtEHc+/QazJ5XywIa9XPLNp5n3z49w2e2/55uP7+izo+HBli6+/+ybfOCcaZw9fQJXL57OOdMrufWx10bljz4TjRHgufqjVBYXcOa0yhH7zLfPqmZqZRGrn9s9Yp853Oxv7uT+F/eyt7GTa5ZMH7zBEBARPrBoGk/vOMzOPKuaeePIcf7uxy8xp6aM7698e1byQKkiInzy4jm8tKeZZ3YeHbHPjWfjW01sPdDKO+dOYltDK1/6xas8vuUgVy+ePuC18PmEL79vPruOtvOTdXtOev+rv97Ghbc+xSt7m/nly/tY+u9PsHL1ev7q++vY29jBF372KgumVvDIZy7k7989l+lVxVz3zlnUlhfxP0/Xc+E3fsfjLod2+9rXiUSVf1x+eu9n/+v7F3CotZtP/uilPmG10YCJxjCjqjxXf4zzZ0/EPwL5jBgFfh9/e+Fs1u9q7K3cGsv8bsdhLvrG7/jyLzczoaSAy8/MbnkowN9eOJvSYIBvPL4j633nioaWTj5+zwaCfh/fX7mEyuLhCUMl45ol05lWWcR/rn09J7+cf/DH3VQUBfjuRxdz5rQKHtywj7m1ZfzNO2clbfeu02s5f/ZEvvXE67R2nUjkv7SniXue301U4cu/3MzNa7Zx7owJ/PsHz2LX0XauuOMZjneH+a8Viygq8PMPl53Ojz++jH++YgE/+vh5rP3cxcybXM7f/+RlbvjJSzywYS/Xnj+zj+e8+NRqbn7/AjbubmT5t/7AE6MobGqiMcy8dayD/c2dWZ84lQofXnoKE0uDfPup+hH/7Gzy2sFWPvXjl5g/pZyf/u0yfvvZi4bl13J1aZBPXDybtdsOse7NY1nvf6R57WArV/3Pcxxp6+Z7H13M9KrshfOGQmHAu3G+sreZS/7jaZ7ZOXIh02PHu51XMYOywgAPffIdvHLTZTz22YsG3XtFRPjnK86gqaOHO59+A4DOUIQv/fxVplYU8ZUPnMnWA610hiJ84+pz+MvzTuFj75hJa1eYf7zs9AGXIJlbW8Y9f/12Zk4q4dHNDay6aHavlxHPxy6YxVNfuIT5U8r5xI828ptXGzK/IFnARCMNHtvSwBV3PJP0yx+ORHlo4z7uff4tgKxMQhsqxUE/f3XeKfxh55ExuztddzjCp37yMmVFAe5e+XbOnzOR2mFcu+tv3jmLGdXFfOb+TRxpGxvLeidCVfnCz14hqvDQ9eezZISKMAbizxdP5+fXn09FcQGfuX8TjSP0fVzzygHCUeVDb/fCmcVB/5C8rYV1lfzZuXXc/ewuth5o4Z9/uZmdh4/z9T8/m48uO5VrFk/nq1ee2bvm243vm8991y3lukG8mAklQR66/h089Q+X8OX3nTHgummTK4r48d8u45zplXzx56+OilJcE40hsmF3I5++fxM7Drbx0bvXs+Ku57nxF5tPWgL6J+v38IWfvcLq53ZRN6GYWZNKczLei0+vRRWeH4O/nFWV/36ynvrDx7n1z89mSuXwiUWMkmCA731kCc2dIT7905fH7L4Kj289yJb9rXzx8vlZX1MqXRafWs23//JcWjt7+Nqvt43IZz60cR9n1VVmdA2+sPx0CnzCFXc8yy9e3s9nLz2Ni06rwecT/uOac1ix9JTeYwsDfi6cV5NSaX1FUQEzU7gvlBUG+K8V56KqfOonL/Ptp3by8p6mtM8nU7K3pGWe0x2O8J3fvcH3/vAGdROK+fHHz+OHf9zNht2N/PLlffx+x2Hu/tjbOWNqBa1dPXzriZ2cN6uaT717LrXlRVnZQjMdzpleSVlhgGfrj2Z9mYjh5Gu/3sYP/7ibSFT5s7fVccnptYM3yhILplXw5fedwb8+vJXn3zzGO+aMvJeYDm1dPZQVBugOR7lt7evMqSnlg+fWDd5wBJk/pYK/e9dc7nhyJ0UFfm7+wAIKA9kPNb68p4m12w6x9UArX/nAmRn1NW1CMWs/fzFPbD9EW1eY6y+ek6VRps6M6hK+dtVCvvjzV9m0t5lvPbGTL14+n1AkygtvHmN7Qxvzp5Rz8Wk1/O1F6a/DlgomGiny7afq+e+n6rni7Kn8vysWMKWyiC+/7wwAtuxv4eP3bODqO//IzR84k6dfP0Jje4j/96cLWFg3chVTiQj4fSybXc1z9bmpXOlPW1cPwYCPcERpaOliy/4WOkIRplQW8o45kygq8PPbrQe5+9ldvHfhFJbNnsjVi7NbKZUKH1oygzue3Mn//uHNUScah1u7+NG6PRT4hA+9fQYHW7q48+k3eGzrQc6bVc3x7jCvHzrO9z66eESLL1Ll0++eSygc5bu/f4PdR9v5wV+/PaVl7Tftbea+59/iUGsXNeWFXHxaDVclEMUXdzfy4bteIBxVzqqr7LOuVLpMm1DMtefPzLifTPizt03nirOn0tEd4dP3v8wtj2wHvImIF86bxGsH23i2/uiwi4aMVfd7IJYsWaIbNmzIap+doQjnf/1Jls6s5q5rlyQ85lBrFx+/ZwOb97fg9wmfvHg2/7h8flbHkS4/eG4XX/nVNp75p3dldW7DUOgOR7h5zTZ+uv7k8sUYlcUFLDm1io17mphaWczDN1ww5D2/s8kdT+7ktrWv8/hnL+L0KbnfVyEaVe565k1uW/s6PZEo8f91iwv8fPBtdTy+5SDhqHLbh87h0jOGZ5Z3tvjFS/v4h5+9wiWn1XDnRxYnFY7DrV1c/l/PEI5EmVVTRkNzJ4fburntQ+fwjjmTeLb+KF09EULhKHf+/g1Kg35+8XcXUF0aHLDPsUxPJMore5uZNam0z5ph4UiUQJpbL4jIRlVNfIOLP24siIaIXA78F+AHvq+qXx/o2OEQjZ+s28OXf7mZB1Yt47zZA1dBdYYi/GZzA++cO2lE4u+psvNQG++5/Q988uI5fPHy02nu6KGyuCBp3DUSVX679SBrtx1i/tRylsysZl5tWVozhze+1cTNa7ayeX8Lf3XeKUyt9PYUmVRWyJl1FVQUFVB/+DgPbtjLG0faqSgK8LWrFvbua5ArGttDXPyN31EQ8PHP7zuDd8+vpcrdhGL/b0Yq7LjtQCs3/2or63c1svzMydz43jMIR5XHtx7k1IklLJs9kUllhXSGvBtnZcnIl9amw0/X7+HGX2xm0YwJrLpoNg0tXVwwdyLzp1Sgqqzb1cj2hlYe3XyQV/c38+u/fydza8sJR6J85O51vLSnGYBQ+MQEvKqSAh74xPk5//6MNfJGNETED7yOt3XsPuBF4MOqmjCTlq5odITCfOwHLzKpLEhxQYCungjtoTAdoQg7DrYxo7qYX33qnTnLTWSCqnLDT17ikc0HmVZZxIGWLhbNmMC/XHEG97+4l8Nt3USjytYDLZwxtYJrzz+V29a+zuuHjlNRFKC1y6utF4EPLqrj/edMo6kjRHiAZRFOqS7h1IklNLaH+M7Tb/CbVxuoLS/kq1eeyeULx05eBTzB/fyDr/QuJ/GeBZN5zxmTueOpnTS2h6gtL6S2ooja8kImu+ezpleybNZEmjt7eOtYO4dau3l1XzMBv4+rFk3jrWMd7D7WTlGBn6Nt3fREorzt1CqqSoJEVIlGlVOqSwj4fTy0cS+/3XqIjXuaqCwu4Mb3zudDS2aMye/hQDy25SCfe2ATnXGLA04qK0SE3go2v0/49w8u5C/efiLpfOx4N9fds4F5bs5FdWmQoN9HaWEgpx7qWCWfRON84GZVXe7+vhFAVf+/RMenKxrHjndz/Y9f4tjxbjpCEUqCfkqCAUqCfkoLA6y6aDbLkngZox1V5Yd/3M3TO44wf2o59/7xLTp7vPOcV1tGVGHe5DLWbvOSfVMri/iXKxZw+cIpHGnrZvP+Fl548xg/euEtusOp751cXOBn1UWzWXXR7KxuJTqShCNRXtzdxHP1R1n93C46QhHOmFrB+bMncriti8Nt3Rxu7eJQa3fvja+8KEBb14mJbAGfEFUlkc76hKT2s+oq+ZMzJvOxd8wcMx7EUDnQ3MnB1i4mVxTxxLZDvHbQm/9w8ek1XDSvhqIC/5j9/owV8kk0rgYuV9WPu78/Cpynqp+KO2YVsArglFNOWfzWW2/lZKxjie0NrTy25SB/dd4pfeY9HGrt4rEtB/ng2+qoSBCKOtzWxe6jHUwqCyb8NReNwhtHj3OguZOSoJ93zJk0rHuijzSHWrvY3uAtSdE/dqyqtHaFeXrHYZ6rP8rsmjLm1ZZRU17IaZPLOXq8m8e3HmJebRlnTqugOxylujRIJKq8sq+Zrp4IPhFEhPrDxzl2vJurzq2zMIsxIuSTaFwDLO8nGktV9e8THT8cOQ3DMIx8J1XRGAuBv33AjLi/pwMHcjQWwzCMcc1YEI0XgXkiMktEgsAKYE2Ox2QYhjEuGfWZJVUNi8ingMfxSm5Xq+rWHA/LMAxjXDLqRQNAVR8BHsn1OAzDMMY7YyE8ZRiGYYwSTDQMwzCMlDHRMAzDMFLGRMMwDMNImVE/uW+oiEgbkGiT50qgJYsfle3+YkwCsrGO+Vg432z3ma1rF2O0X0O7fqOnv7F+7SYBpapaM2hPqppXD2DDAPa7svw5We1vsPHnenzDcb7DMMasXLuxcg3t+o2e/sb6tRvK+MdTeOpXo7y/bDMWzteu4ejqL9uM9vMdzddv1J5rPoanNmgK66eMVsb6+HOJXbvMsOuXPmP92g1l/PnoadyV6wFkyFgffy6xa5cZdv3SZ6xfu5THn3eehmEYhjF85KOnYRiGYQwTJhrDjIjMEJHfich2EdkqIp9x9moRWSsiO91zlbNPdMcfF5Fv9+vrwyKyWUReFZHHRGRSLs5ppMjytfsLd922isg3cnE+I00a1+89IrLRfcc2isi74/pa7Oz1InKH5NN+swnI8rW7RUT2isjxXJ1PVslmWZc9EpayTQXe5l6X4+13vgD4BvAlZ/8ScKt7XQq8E/gk8O24fgLAYWCS+/sbeNvg5vwcx8C1mwjsAWrc3/cAl+b6/Ebh9TsXmOZeLwT2x/W1HjgfEOBR4L25Pr8xdO2Wuf6O5/q8svEwT2OYUdUGVX3JvW4DtgN1wJV4Ny/c81XumHZVfRbo6teVuEep+5VXQZ5vRpXFazcbeF1Vj7i/nwD+fJiHn3PSuH4vq2rsO7UVKBKRQhGZClSo6vPq3QXvjbXJV7J17dx7L6hqw0iOfzgx0RhBRGQm3i+SdcDk2BfJPdcma6uqPcD1wGY8sVgA3D2Mwx1VZHLtgHpgvojMFJEA3n/0GYO0ySvSuH5/Drysqt14N8t9ce/tc7ZxQYbXLu8w0RghRKQM+DnwWVVtTaN9AZ5onAtMA14FbszqIEcpmV47VW3Cu3YPAM8Au4FwNsc4mhnq9RORM4FbgU/ETAkOGxdll1m4dnmHicYI4G74Pwd+rKq/cOZDzu3HPR8epJtFAKr6hgsRPAi8Y5iGPGrI0rVDVX+lquep6vl4a5PtHK4xjyaGev1EZDrwS+BaVX3DmfcB0+O6nU6eh0Yha9cu7zDRGGZc/uFuYLuq3hb31hpgpXu9Enh4kK72AwtEJLag2Hvw4qx5SxavHSJS656rgL8Dvp/d0Y4+hnr9RGQC8BvgRlV9LnawC8O0icgy1+e1pHDNxzLZunZ5Sa4z8fn+wKvmUbxw0ib3eB9eRc+TeL94nwSq49rsBhqB43i/8hY4+yfxhOJVvLVkJub6/MbQtfspsM09VuT63Ebj9QP+BWiPO3YTUOveWwJsAd4Avo2bGJyvjyxfu2+472LUPd+c6/PL5GEzwg3DMIyUsfCUYRiGkTImGoZhGEbKmGgYhmEYKWOiYRiGYaSMiYZhGIaRMiYahjHCiMgnReTaIRw/U0S2DOeYDCNVArkegGGMJ0QkoKrfzfU4DCNdTDQMY4i4Bewew1vA7ly8ZbOvBc4AbgPKgKPAx1S1QUSeBv4IXACsEZFyvGWyvykii4DvAiV4E4KwuJoAAAFUSURBVOf+RlWbRGQxsBroAJ4dubMzjORYeMow0uN04C5VPRtoBW4A/hu4WlVjN/xb4o6foKoXq+p/9uvnXuCLrp/NwE3O/gPg0+qtlWUYowbzNAwjPfbqiTWGfgR8GW/znbVuUzs/EL+HwgP9OxCRSjwx+b0z3QP8LIH9PuC92T8Fwxg6JhqGkR79199pA7Ym8Qzah9C3JOjfMEYFFp4yjPQ4RURiAvFh4AWgJmYTkQK3t8KAqGoL0CQiFzrTR4Hfq2oz0CIi73T2v8r+8A0jPczTMIz02A6sFJHv4a14+t/A48AdLrwUAL6Ft/VnMlYC3xWREuBN4K+d/a+B1SLS4fo1jFGBrXJrGEPEVU/9WlUX5ngohjHiWHjKMAzDSBnzNAzDMIyUMU/DMAzDSBkTDcMwDCNlTDQMwzCMlDHRMAzDMFLGRMMwDMNIGRMNwzAMI2X+f6AbdCYbEkeAAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'][-200:].plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Etude de l'incidence annuelle" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", + " for y in range(1985,\n", + " sorted_data.index[-1].year)]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "year = []\n", + "yearly_incidence = []\n", + "for week1, week2 in zip(first_august_week[:-1],\n", + " first_august_week[1:]):\n", + " one_year = sorted_data['inc'][week1:week2-1]\n", + " assert abs(len(one_year)-52) < 2\n", + " yearly_incidence.append(one_year.sum())\n", + " year.append(week2.year)\n", + "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+QldWd5/H3B0FxElEg6PBDhY3GCppZHLrQLfdHxB0gPyrgjJmwOkrVWEXijy1nNrWiE7fMKFMVU5M4y7ohMWNG1FF0TCzdRIa0UWucWQSaoFE0TjMrgygjWI2KUwVj43f/eL53fLhpbt9ubve9t/vzqrrVT5/nnHNPPzT9vefH8xxFBGZmZkdrTLMbYGZmI4MDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNYQDipmZNcTYZjdgOH3sYx+LmTNnNrsZZmZtZcuWLW9FxJT+8o2qgDJz5ky6urqa3Qwzs7Yi6R/ryechLzMzawgHFDMzawgHFDMza4i6AoqkHZJekPScpK5M+7qk1zPtOUmfLeW/UdJ2Sa9IWlhKn5v1bJe0SpIy/ThJD2b6RkkzS2WWSerO17JS+qzM251ljz36y2FmZoM1kB7KhRExJyI6Smm3Z9qciHgcQNJsYClwNrAI+I6kYzL/amA5cGa+FmX6lcC+iDgDuB24LeuaBNwMnAfMA26WNDHL3JbvfyawL+swM7MmGYohr8XA2og4GBGvAtuBeZKmAhMiYkMUu3rdAywplVmTxw8DF2XvZSHQGRE9EbEP6AQW5bn5mZcsW6mrre159wC/+70N7Nl/oNlNMTMbkHoDSgA/lbRF0vJS+rWSfiHpB6Wew3TgtVKeXZk2PY+r0w8rExG9wDvA5Bp1TQbezrzVdbW1VT/rZvOOHlY90d3sppiZDUi996FcEBFvSDoZ6JT0S4rhq1spgs2twLeA3wfUR/mokc4gytSq6zAZAJcDnHbaaX1laQln3bSOg70f/Ov3923cyX0bd3Lc2DG8svIzTWyZmVl96uqhRMQb+XUP8AgwLyLejIhDEfEB8H2KOQ4oegunlorPAN7I9Bl9pB9WRtJY4ESgp0ZdbwEnZd7quqrbfmdEdEREx5Qp/d7o2TTPXH8hX5gzjfHjin+S8ePGsHjONJ5ZcWGTW2ZmVp9+A4qkj0g6oXIMLABezDmRiouBF/P4MWBprtyaRTH5vikidgP7JZ2fcyBXAI+WylRWcF0CPJnzLOuBBZIm5pDaAmB9nnsq85JlK3W1pZMnjOeE48ZysPcDjhs7hoO9H3DCcWM5+YTxzW6amVld6hnyOgV4JFf4jgXuj4i/lnSvpDkUQ007gC8DRMQ2SQ8BLwG9wDURcSjrugq4GzgeWJcvgLuAeyVtp+iZLM26eiTdCmzOfLdERE8erwDWSloJbM062tpb7x3ksvNO59J5p3H/pp3s9cS8mbURFR/2R4eOjo7ws7zMzAZG0paqW0b65DvlzcysIRxQzMysIRxQzMysIRxQzMysIRxQzMysIRxQ2pCf92VmrcgBpQ35eV9m1opG1Z7y7c7P+zKzVuYeShvx877MrJU5oLQRP+/LzFqZh7zajJ/3ZWatys/yqsOedw9w7QNbuePSc90bMLNRx8/yaiCvqjIz65+HvGrwqiozs/q5h1KDV1WZmdXPAaUGr6oyM6tfXQFF0g5JL0h6TlJXpk2S1CmpO79OLOW/UdJ2Sa9IWlhKn5v1bJe0KrcCJrcLfjDTN0qaWSqzLN+jW9KyUvqszNudZY89+svxqyqrqh65+gIuO+909r53cCjexsys7dW1ykvSDqAjIt4qpX0T6ImIb0i6AZgYESskzQYeAOYB04AngE9ExCFJm4DrgGeBx4FVEbFO0tXAb0TEVyQtBS6OiC9JmgR0AR0UWw1vAeZGxL7cZvhHEbFW0neB5yNida2fwzs2mpkN3HCs8loMrMnjNcCSUvraiDgYEa8C24F5kqYCEyJiQxRR7J6qMpW6HgYuyt7LQqAzInoiYh/QCSzKc/Mzb/X7m5lZE9QbUAL4qaQtkpZn2ikRsRsgv56c6dOB10pld2Xa9DyuTj+sTET0Au8Ak2vUNRl4O/NW12VmZk1Q77LhCyLiDUknA52Sflkjr/pIixrpgylTq67DG1MEwOUAp512Wl9ZzMysAerqoUTEG/l1D/AIxfzImzmMRX7dk9l3AaeWis8A3sj0GX2kH1ZG0ljgRKCnRl1vASdl3uq6qtt+Z0R0RETHlClT6vlxzcxsEPoNKJI+IumEyjGwAHgReAyorLpaBjyax48BS3Pl1izgTGBTDovtl3R+zoFcUVWmUtclwJM5z7IeWCBpYq4iWwCsz3NPZd7q9zczsyaoZ8jrFOCRXOE7Frg/Iv5a0mbgIUlXAjuBLwJExLZcgfUS0AtcExGHsq6rgLuB44F1+QK4C7hX0naKnsnSrKtH0q3A5sx3S0T05PEKYK2klcDWrMPMzJrED4c0M7Oa/HBIMzMbVg4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEA4oZmbWEHUHFEnHSNoq6cf5/dclvS7puXx9tpT3RknbJb0iaWEpfa6kF/Lcqtxbntx//sFM3yhpZqnMMknd+VpWSp+Vebuz7LFHdynMzOxoDKSHch3wclXa7RExJ1+PA0iaTbEn/NnAIuA7ko7J/KuB5cCZ+VqU6VcC+yLiDOB24LasaxJwM3AeMA+4WdLELHNbvv+ZwL6sw8zMmqSugCJpBvA54M/ryL4YWBsRByPiVWA7ME/SVGBCRGyIYiP7e4AlpTJr8vhh4KLsvSwEOiOiJyL2AZ3Aojw3P/OSZSt1mZlZE9TbQ/kz4Hrgg6r0ayX9QtIPSj2H6cBrpTy7Mm16HlenH1YmInqBd4DJNeqaDLydeavrMjOzJug3oEj6PLAnIrZUnVoNfByYA+wGvlUp0kc1USN9MGVq1XUYScsldUnq2rt3b19ZzMysAerpoVwAfEHSDmAtMF/SfRHxZkQciogPgO9TzHFA0Vs4tVR+BvBGps/oI/2wMpLGAicCPTXqegs4KfNW13WYiLgzIjoiomPKlCl1/LhmZjYY/QaUiLgxImZExEyKyfYnI+L3ck6k4mLgxTx+DFiaK7dmUUy+b4qI3cB+SefnHMgVwKOlMpUVXJfkewSwHlggaWIOqS0A1ue5pzIvWbZSl5mZNcHY/rMc0TclzaEYatoBfBkgIrZJegh4CegFromIQ1nmKuBu4HhgXb4A7gLulbSdomeyNOvqkXQrsDnz3RIRPXm8AlgraSWwNeswM7MmUfFhf3To6OiIrq6uZjfDzKytSNoSER395fOd8mZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGZm1hAOKGY2Kux59wC/+70N7Nl/oNlNGbEcUMxsVFj1s2427+hh1RPdzW7KiHU0z/IyM2t5Z920joO9H27ldN/Gndy3cSfHjR3DKys/08SWjTzuoZjZiPbM9RfyhTnTGD+u+HM3ftwYFs+ZxjMrLmxyy0YeBxQza5rhmNc4ecJ4TjhuLAd7P+C4sWM42PsBJxw3lpNPGD9k7zlaOaCYWdMM17zGW+8d5LLzTueRqy/gsvNOZ+97B4f0/UYrP77ezIZd9bxGhec1WpMfX29mLcvzGiOTA4qZDTvPa4xMdQcUScdI2irpx/n9JEmdkrrz68RS3hslbZf0iqSFpfS5kl7Ic6tyb3ly//kHM32jpJmlMsvyPbolLSulz8q83Vn22KO7FGY2nDyvMfLUPYci6b8BHcCEiPi8pG8CPRHxDUk3ABMjYoWk2cADwDxgGvAE8ImIOCRpE3Ad8CzwOLAqItZJuhr4jYj4iqSlwMUR8SVJk4CufN8AtgBzI2Jf7lv/o4hYK+m7wPMRsbrWz+A5FDOzgWvoHIqkGcDngD8vJS8G1uTxGmBJKX1tRByMiFeB7cA8SVMpgtGGKKLYPVVlKnU9DFyUvZeFQGdE9ETEPqATWJTn5mfe6vc3M7MmqHfI68+A64HysoxTImI3QH49OdOnA6+V8u3KtOl5XJ1+WJmI6AXeASbXqGsy8Hbmra7rMJKWS+qS1LV37946f1wzMxuofgOKpM8DeyJiS511qo+0qJE+mDK16jo8MeLOiOiIiI4pU6b0lcXMzBqgnh7KBcAXJO0A1gLzJd0HvJnDWOTXPZl/F3BqqfwM4I1Mn9FH+mFlJI0FTgR6atT1FnBS5q2uy6wmP3XWbGj0G1Ai4saImBERM4GlwJMR8XvAY0Bl1dUy4NE8fgxYmiu3ZgFnAptyWGy/pPNzDuSKqjKVui7J9whgPbBA0sRcRbYAWJ/nnsq81e9vVpOfOms2NI7macPfAB6SdCWwE/giQERsyxVYLwG9wDURcSjLXAXcDRwPrMsXwF3AvZK2U/RMlmZdPZJuBTZnvlsioiePVwBrJa0EtmYdZkfkp86aDS0/esVGjT3vHmDl4y/z023/xIH3P2D8uDEsPPvX+drnPukb6sxq8KNXzKoM5O7sdpxnacc228jigGKjSr13Z7fjPEs7ttlGFg95mZW041Nw27HN1l485GU2CO34FNx2bLONTA4oZiXt+BTcdmyzjUxHs2zYbESqzLNcOu807t+0k71tMMndjm22kcdzKGZmVpPnUMzMbFg5oJiZWUM4oJiZDYBvID0yBxQzswHwDaRH5lVe1lb2vHuAax/Yyh2XnutlsTas/HDR/rmHYm3Fnw6tWXwDaf/cQ7G2MNo/Hbpn1ny+gbR/7qFYWxjtnw7dM2sN9T5cdLRyD8VaRq1P4aP10+Fo75m1mu9d/uG9fSuXnNPElrSmfnsoksZL2iTpeUnbJP1xpn9d0uuSnsvXZ0tlbpS0XdIrkhaW0udKeiHPrcqtgMntgh/M9I2SZpbKLJPUna9lpfRZmbc7yx7bmEtiA9WoZZT9fQofjZ8OR3vPzNpLPT2Ug8D8iHhP0jjgbyVVtu69PSL+tJxZ0myKLXzPBqYBT0j6RG4DvBpYDjwLPA4sotgG+EpgX0ScIWkpcBvwJUmTgJuBDiCALZIei4h9mef2iFgr6btZx+rBXwobrHIgWHnxpwZcvt5P4aPx0+Fo7ZlZe+q3hxKF9/Lbcfmq9QCwxcDaiDgYEa8C24F5kqYCEyJiQxQPELsHWFIqsyaPHwYuyt7LQqAzInoyiHQCi/Lc/MxLlq3UZcPkrJvWMfOGn3Dfxp1EFIFg5g0/4ayb1vVfuMSfwmsbjT0za091zaFIOgbYApwB/O+I2CjpM8C1kq4AuoCv5h/96RQ9kIpdmfZ+Hlenk19fA4iIXknvAJPL6VVlJgNvR0RvH3XZMHnm+guPuEf7QPhTeG2jsWdm7amuVV4RcSgi5gAzKHob51AML30cmAPsBr6V2dVXFTXSB1OmVl2HkbRcUpekrr179/aVxQapkYHAn8JHHj+iZPQZ0CqviHhb0tPAovLciaTvAz/Ob3cBp5aKzQDeyPQZfaSXy+ySNBY4EejJ9E9XlXkaeAs4SdLY7KWU66pu853AnVA8vn4gP6/1r1H7cPhT+MhztHNr1n763Q9F0hTg/QwmxwM/pZgQ3xIRuzPPHwLnRcRSSWcD9wPzKCblfwacGRGHJG0G/iuwkWJS/n9FxOOSrgE+FRFfyUn5346I381J+S3Ab2Zzfg7MjYgeSX8F/LA0Kf+LiPhOrZ/F+6GYDT3vcT/y1LsfSj09lKnAmpxHGQM8FBE/lnSvpDkUQ007gC8DRMQ2SQ8BLwG9wDW5wgvgKuBu4HiK1V2V2du7gHslbafomSzNunok3Qpszny3RERPHq8A1kpaCWzNOsysyRo1t2btp9+AEhG/AM7tI/3yGmX+BPiTPtK7gF8Zz4iIA8AXj1DXD4Af9JH+/yh6QWbWQrzIYvTynfJm1nDe43508p7yZmZWk/eUNzOzYeWAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYmZmDeGAYjaEvCeIjSYOKGZDqLwniNlI54dDmg2B6j1B7tu4k/s27vSeIDaiuYdiNgSeuf5CvjBnGuPHFf/Fxo8bw+I503hmxYVNbpnZ0HFAMRsC3hPERiMHFBtRWmkSvLInyCNXX8Bl553O3vcONrtJZkOq34AiabykTZKel7RN0h9n+iRJnZK68+vEUpkbJW2X9IqkhaX0uZJeyHOrJCnTj5P0YKZvlDSzVGZZvke3pGWl9FmZtzvLHtuYS2LtrJUmwb93eQcrl5zD7GkTWLnkHL53eb/bSZi1tX432Mo/+h+JiPckjQP+FrgO+G2gJyK+IekGYGJErJA0G3iAYnveacATwCci4pCkTVn2WeBxYFVErJN0NfAbEfEVSUuBiyPiS5ImAV1AB8Xe9VuAuRGxL/et/1FErJX0XeD5iFhd62fxBlsjV/UkeIUnwc2OXsM22IrCe/ntuHwFsBhYk+lrgCV5vBhYGxEHI+JVYDswT9JUYEJEbIgiit1TVaZS18PARRnIFgKdEdETEfuATmBRnpufeavf30YhT4IPr1YaWrTWUdcciqRjJD0H7KH4A78ROCUidgPk15Mz+3TgtVLxXZk2PY+r0w8rExG9wDvA5Bp1TQbezrzVdVW3fbmkLklde/furefHtTbkSfDh1UpDi9Y66roPJSIOAXMknQQ8IumcGtnVVxU10gdTplZdhydG3AncCcWQV195bGSoTIJfOu807t+0k73+9Nxwvr/GahnQjY0R8bakp4FFwJuSpkbE7hzO2pPZdgGnlorNAN7I9Bl9pJfL7JI0FjgR6Mn0T1eVeRp4CzhJ0tjspZTrslGqPOm9ckmtzzw2WM9cfyErH3+Zn277Jw68/wHjx41h4dm/ztc+98lmN81aQD2rvKZkzwRJxwP/Gfgl8BhQWXW1DHg0jx8DlubKrVnAmcCmHBbbL+n8nAO5oqpMpa5LgCdznmU9sEDSxFxFtgBYn+eeyrzV729mQ8RDi1ZLPT2UqcAaScdQBKCHIuLHkjYAD0m6EtgJfBEgIrblCqyXgF7gmhwyA7gKuBs4HliXL4C7gHslbafomSzNunok3Qpszny3RERPHq8A1kpaCWzNOsxsiHlo0Y6k32XDI8lQLhve8+4Brn1gK3dceq4/rZk1UDv+32rHNtfSsGXDVh+vejEbGu34f6sd29wI7qEcJd9QZzY02vH/Vju2uR7uoQwT31BnNjTa8f9WO7a5kRxQjtJAVr347mJrB63ye9qOK8rasc2N5IDSAPU+VXa0jqtae2ml39N2fGJzO7a5UTyHMgxG6riqjSz+PbUj8RxKCxnt46rWHvx72npaZfixXg4ow6Cdx1Xb7RfaBq+df09HqlYafqzHgJ7lZYPXrncXl3+hV178qWY3x4ZYu/6ejjTt+hBOz6FYnzyebtY8e949cMSHcDajx+g5FDsqHk83a552HX70kJf1qV1/oc1GinYcfnRAsSNqx19os5GiHff38RzKKDbSnohqZkPDcyjWr3Zbkmhmrc1DXqNQuy5JbDXu4Zkdrp4tgE+V9JSklyVtk3Rdpn9d0uuSnsvXZ0tlbpS0XdIrkhaW0udKeiHPrcqtgMntgh/M9I2SZpbKLJPUna9lpfRZmbc7yx7bmEsy8nkFV2O4h2d2uHp6KL3AVyPi55JOALZI6sxzt0fEn5YzS5pNsYXv2cA04AlJn8htgFcDy4FngceBRRTbAF8J7IuIMyQtBW4DviRpEnAz0AFEvvdjEbEv89weEWslfTfrWD34SzF6eAXX0XEPz6xv/fZQImJ3RPw8j/cDLwPTaxRZDKyNiIMR8SqwHZgnaSowISI2RLES4B5gSanMmjx+GLgoey8Lgc6I6Mkg0gksynPzMy9ZtlKX1WE0PxH1aLmHZ9a3Ac2h5FDUucBG4ALgWklXAF0UvZh9FMHm2VKxXZn2fh5Xp5NfXwOIiF5J7wCTy+lVZSYDb0dEbx91WR3acUliq3APz6xvda/ykvRR4IfAH0TEuxTDSx8H5gC7gW9VsvZRPGqkD6ZMrbqq271cUpekrr179/aVxWzA3MMz+1V19VAkjaMIJn8ZET8CiIg3S+e/D/w4v90FnFoqPgN4I9Nn9JFeLrNL0ljgRKAn0z9dVeZp4C3gJEljs5dSruswEXEncCcU96HU8/Oa9cc9PLNfVc8qLwF3AS9HxLdL6VNL2S4GXszjx4CluXJrFnAmsCkidgP7JZ2fdV4BPFoqU1nBdQnwZM6zrAcWSJooaSKwAFif557KvGTZSl1mZtYE9fRQLgAuB16Q9Fym/RHwXyTNoRhq2gF8GSAitkl6CHiJYoXYNbnCC+Aq4G7geIrVXesy/S7gXknbKXomS7OuHkm3Apsz3y0R0ZPHK4C1klYCW7MOMzNrEj96xczMavKjV8zMbFg5oJiZNcFI3F7bAcVsFBmJf8Ta1Uh8dI8fDmk2ipT/iK28+FPNbs6oNJIf3eNJebNRoPqPWMVI+CPWbhq5X/xwPfHak/Jm9q/8/LHW0chH97TasJmHvMyabDg+Zfr5Y63laLfXbtVhMwcUsyYbrnmNo/0jZo1ztI/ueeb6C484bNZMDihmTTLcnzL9/LGRo1V7nJ5DMWsSz2s0zmhcDt2KT7x2D8WsSVr1U2Y7Go3LoVuxx+mAYtZEntc4Oq06OT1a+T4UM2tbjbynw47M96GY2YjnYcPW4iEvM2trHjZsHR7yMjMbwRpx46yHvMzMbFgfz1LPnvKnSnpK0suStkm6LtMnSeqU1J1fJ5bK3Chpu6RXJC0spc+V9EKeW5V7y5P7zz+Y6RslzSyVWZbv0S1pWSl9VubtzrLHNuaSmJm1v7NuWsfMG37CfRt3ElGsgJt5w08466Z1/RcepHp6KL3AVyPik8D5wDWSZgM3AD+LiDOBn+X35LmlwNnAIuA7ko7JulYDy4Ez87Uo068E9kXEGcDtwG1Z1yTgZuA8YB5wcylw3Qbcnu+/L+swMzOac+NsvwElInZHxM/zeD/wMjAdWAysyWxrgCV5vBhYGxEHI+JVYDswT9JUYEJEbIhi4uaeqjKVuh4GLsrey0KgMyJ6ImIf0AksynPzM2/1+5uZjXrNWAE3oFVeORR1LrAROCUidkMRdCSdnNmmA8+Wiu3KtPfzuDq9Uua1rKtX0jvA5HJ6VZnJwNsR0dtHXWZmxvCvgKs7oEj6KPBD4A8i4t2c/ugzax9pUSN9MGVq1XV4Y6TlFMNsnHbaaX1lMTMbkYb78Sx1rfKSNI4imPxlRPwok9/MYSzy655M3wWcWio+A3gj02f0kX5YGUljgROBnhp1vQWclHmr6zpMRNwZER0R0TFlypR6flwzMxuEelZ5CbgLeDkivl069RhQWXW1DHi0lL40V27Noph835TDY/slnZ91XlFVplLXJcCTOc+yHlggaWJOxi8A1ue5pzJv9fubmVkT1DPkdQFwOfCCpOcy7Y+AbwAPSboS2Al8ESAitkl6CHiJYoXYNRFxKMtdBdwNHA+syxcUAeteSdspeiZLs64eSbcCmzPfLRHRk8crgLWSVgJbsw4zM2sS3ylvZmY1+U55aymjcQMks9HGAcWGxXA+/sHMmsNPG7Yh5Q2QzEYP91BsSHnfdLPRwwHFhpQ3QDIbPTzkZUPOGyCZjQ5eNmxmZjV52bCZmQ0rBxQzM2sIB5QRyjcSmtlwc0AZoXwjoZkNN6/yGmF8I6GZNYt7KCOMbyQ0GzwPFR8dB5QRxjcSmg2eh4qPjoe8RiDfSGg2MB4qbgzf2Ghmo96edw+w8vGX+em2f+LA+x8wftwYFp7963ztc590754G3tgo6QeS9kh6sZT2dUmvS3ouX58tnbtR0nZJr0haWEqfK+mFPLcqtwEmtwp+MNM3SppZKrNMUne+lpXSZ2Xe7ix7bD0XxcysLx4qbox65lDuBhb1kX57RMzJ1+MAkmZTbN97dpb5jqRjMv9qYDnFHvNnluq8EtgXEWcAtwO3ZV2TgJuB84B5wM25rzyZ5/aIOBPYl3WYmQ1aZaj4kasv4LLzTmfveweb3aS20+8cSkT8TbnX0I/FwNqIOAi8mnvEz5O0A5gQERsAJN0DLKHYU34x8PUs/zBwR/ZeFgKdlT3kJXUCiyStBeYDl2aZNVl+dZ1tNDP7Fd+7/MMRnZVLzmliS9rX0azyulbSL3JIrNJzmA68VsqzK9Om53F1+mFlIqIXeAeYXKOuycDbmbe6LjMza5LBBpTVwMeBOcBu4FuZrj7yRo30wZSpVdevkLRcUpekrr179x4pm5mZHaVBBZSIeDMiDkXEB8D3KeY4oOgtnFrKOgN4I9Nn9JF+WBlJY4ETgZ4adb0FnJR5q+vqq613RkRHRHRMmTJloD+qmZnVaVABRdLU0rcXA5UVYI8BS3Pl1iyKyfdNEbEb2C/p/JwfuQJ4tFSmsoLrEuDJKNYyrwcWSJqYQ2oLgPV57qnMS5at1GVmZk3S76S8pAeATwMfk7SLYuXVpyXNoRhq2gF8GSAitkl6CHgJ6AWuiYhDWdVVFCvGjqeYjF+X6XcB9+YEfg/FKjEiokfSrcDmzHdLZYIeWAGslbQS2Jp1mJlZE/nGRjMzq6neGxtHVUCRtBf4xz5OfYxibqaduM1Dr93aC27zcGm3Nh9te0+PiH4noUdVQDkSSV31RN9W4jYPvXZrL7jNw6Xd2jxc7fXThs3MrCEcUMzMrCEcUAp3NrsBg+A2D712ay+4zcOl3do8LO31HIqZmTWEeyhmZtYQIzKgHGEPl38raUPuyfJ/JE3I9HGS1mT6y5JuLJV5Ovd1qez7cnKLtPlYSX+R6c9L+nSpTJ/7zrR4m4flOks6VdJT+e+8TdJ1mT5JUmfur9NZetjpgPf3afE2t+R1ljQ5878n6Y6qulryOvfT5iG/zoNo729J2pLXcouk+aW6GneNI2LEvYD/CPwm8GIpbTPwn/L494Fb8/hSikfuA/waxZ3/M/P7p4GOFmzzNcBf5PHJwBZgTH6ruEO0AAADpklEQVS/Cfh3FA/RXAd8pg3aPCzXGZgK/GYenwD8PTAb+CZwQ6bfANyWx7OB54HjgFnAPwDHDOd1bnCbW/U6fwT498BXgDuq6mrV61yrzUN+nQfR3nOBaXl8DvD6UFzjEdlDiYi/oXiMS9lZwN/kcSfwO5XswEdUPGzyeOBfgHeHo51lA2zzbOBnWW4P8DbQoeIZaxMiYkMUvymVfWdats1D1ba+RMTuiPh5Hu8HXqbY+mAxxb465NfKNfvX/X0i4lWgsr/PsF3nRrV5KNrWqDZHxD9HxN8CB8r1tPJ1PlKbh8sg2rs1IioP0d0GjFfxzMWGXuMRGVCO4EXgC3n8RT58kvHDwD9TPIZ/J/Cn8eEzwwD+Irut/2Moh4+O4Ehtfh5YLGmsiodwzs1ztfadGS4DbXPFsF5nFZvGnQtsBE6J4gGm5NfKEMVg9vcZMkfZ5opWvM5H0srXuT/Ddp0H0d7fAbZGsRFiQ6/xaAoovw9cI2kLRRfxXzJ9HnAImEYxRPBVSf8mz10WEZ8C/kO+Lh/eJh+xzT+g+IfvAv4M+L8UD+Mc0F4xQ2SgbYZhvs6SPgr8EPiDiKjVG23InjyN0IA2Q+te5yNW0Udaq1znWobtOg+0vZLOpthC/cuVpD6yDfoaj5qAEhG/jIgFETEXeIBibBmKOZS/joj3cyjm78ihmIh4Pb/uB+5n+IcO+mxzRPRGxB9GxJyIWAycBHRTe9+ZVm3zsF5nSeMo/gP+ZUT8KJPfzK5/ZZhlT6YPZn+fVm1zK1/nI2nl63xEw3WdB9peSTOAR4ArIqLy96+h13jUBJTKSgtJY4CbgO/mqZ3AfBU+ApwP/DKHZj6WZcYBn+fDfV+a2mZJv5ZtRdJvAb0R8VLU3nemJds8nNc5r8ldwMsR8e3SqfKePOX9dQazv09LtrnFr3OfWvw6H6meYbnOA22vpJOAnwA3RsTfVTI3/BoPdja/lV8Un4x3A+9TROArgesoVkL8PfANPryp86PAX1FMVL0E/Pf4cBXHFuAXee5/kqtlWqDNM4FXKCbinqB4Emilng6KX+B/AO6olGnVNg/ndaZYlRP5Xs/l67PAZIoFA935dVKpzNfyWr5CafXLcF3nRrW5Da7zDooFHu/l79LsNrjOv9Lm4brOA20vxYe7fy7lfQ44udHX2HfKm5lZQ4yaIS8zMxtaDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQDihmZtYQ/x/rFzgxQKYDrwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "yearly_incidence.plot(style='*')" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2014 1600941\n", + "1991 1659249\n", + "1995 1840410\n", + "2020 2053781\n", + "2012 2175217\n", + "2003 2234584\n", + "2019 2254386\n", + "2006 2307352\n", + "2017 2321583\n", + "2001 2529279\n", + "1992 2574578\n", + "1993 2703886\n", + "2018 2705325\n", + "1988 2765617\n", + "2007 2780164\n", + "1987 2855570\n", + "2016 2856393\n", + "2011 2857040\n", + "2008 2973918\n", + "1998 3034904\n", + "2002 3125418\n", + "2009 3444020\n", + "1994 3514763\n", + "1996 3539413\n", + "2004 3567744\n", + "1997 3620066\n", + "2015 3654892\n", + "2000 3826372\n", + "2005 3835025\n", + "1999 3908112\n", + "2010 4111392\n", + "2013 4182691\n", + "1986 5115251\n", + "1990 5235827\n", + "1989 5466192\n", + "dtype: int64" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "yearly_incidence.sort_values()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGbhJREFUeJzt3X2UJXV95/H3h5kBhmkYjAONDkr7QAjIqDgXXWQ13WhcdNCcGE5QQcVIGo0PRCdnM8v6sLrLOj5MsphgkklUiAodw8PZyBjUE2hQNEgPqA2OEBdmlSEMAjLSMAuMfPePX7XctP1wq27dvsXPz+ucPn3vrbpVn/rdut9b9auqexURmJlZPvbqdwAzM6uXC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLzNJeTnzVqlUxNDQ067AHH3yQFStW9HL2lTU5GzQ7n7NV1+R8zlZd2Xxbt269JyIO6mqmEdGzv7Vr18ZcrrrqqjmH9VuTs0U0O5+zVdfkfM5WXdl8wER0WXvdFWNmlhkXdjOzzLiwm5llxoXdzCwzLuxmZpkpVdglvUfSzZJuknSRpH17FczMzKrpuLBLWg28G2hFxNHAEuB1vQpmZmbVlO2KWQosl7QU2A+4s/5IZmbWDUWJ3zyVdBZwDrAb+GpEnDrLOKPAKMDg4ODasbGxWac1NTXFwMBAlcw91+RsUH++yR27apvW4HLYubvz8desXlnbvBfyq/a61snZqiubb2RkZGtEtLqZZ8eFXdKTgEuAU4D7gX8ALo6Iz8/1nFarFRMTE7MOGx8fZ3h4uGzeRdHkbFB/vqENW2qb1vo1e9g02fk3VWzfuK62eS/kV+11rZOzVVc2n6SuC3uZrpiXA7dHxE8i4lHgUuDF3czczMzqV6aw/wj4D5L2kyTgZcC23sQyM7OqOi7sEXEdcDFwAzBZPHdzj3KZmVlFpb62NyI+CHywR1nMzKwGvvLUzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMdF3ZJR0j6TtvfzyT9US/DmZlZeR3/NF5E3AI8H0DSEmAHcFmPcpmZWUVVu2JeBvyfiPi/dYYxM7PuKSLKP0n6DHBDRPzFLMNGgVGAwcHBtWNjY7NOY2pqioGBgdLzXgxNzgb155vcsau2aQ0uh527Ox9/zeqVtc17Ie3tVucylzHf8jZ5vXO26srmGxkZ2RoRrW7mWbqwS9obuBN4TkTsnG/cVqsVExMTsw4bHx9neHi41LwXS5OzQf35hjZsqW1a69fsYdNkxz18bN+4rrZ5L6S93epc5jLmW94mr3fOVl3ZfJK6LuxVumJeSdpan7eom5lZf1Qp7K8HLqo7iJmZ1aNUYZe0H/BbwKW9iWNmZt3qvDMUiIiHgCf3KIuZmdXAV56amWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZabsT+MdKOliST+QtE3Scb0KZmZm1ZT6aTzgXOCKiDhZ0t7Afj3IZGZmXei4sEs6AHgpcDpARDwCPNKbWGZmVpUiorMRpecDm4HvA88DtgJnRcSDM8YbBUYBBgcH146Njc06vampKQYGBqon75HJHbsYXA47dy/+vNesXtnReHW33eSOXbVNq2zbdbrMdWhvtzqXuYz5lrep7wlwtm6UzTcyMrI1IlrdzLNMYW8B/wIcHxHXSToX+FlEvH+u57RarZiYmJh12Pj4OMPDw+UT99jQhi2sX7OHTZNle6m6t33juo7Gq7vthjZsqW1aZduu02WuQ3u71bnMZcy3vE19T4CzdaNsPkldF/YyB0/vAO6IiOuK+xcDL+hm5mZmVr+OC3tE3AX8WNIRxUMvI3XLmJlZg5Ttb3gX8IXijJjbgLfUH8nMzLpRqrBHxHeArvp+zMyst3zlqZlZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmSv2CkqTtwAPAz4E93f6StpmZ1a/sb54CjETEPbUnMTOzWrgrxswsM4qIzkeWbgd+CgTw1xGxeZZxRoFRgMHBwbVjY2OzTmtqaoqBgYEqmXtqcscuBpfDzt2LP+81q1d2NF7dbTe5Y1dt0yrbdp0ucx3a263OZS5jvuVt6nsCnK0bZfONjIxs7babu2xhf2pE3CnpYOBrwLsi4pq5xm+1WjExMTHrsPHxcYaHh0vG7b2hDVtYv2YPmyar9FJ1Z/vGdR2NV3fbDW3YUtu0yrZdp8tch/Z2q3OZy5hveZv6ngBn60bZfJK6LuylumIi4s7i/93AZcALu5m5mZnVr+PCLmmFpP2nbwOvAG7qVTAzM6umTH/DIHCZpOnnXRgRV/QklZmZVdZxYY+I24Dn9TCLmZnVwKc7mpllxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWWmdGGXtETSjZIu70UgMzPrTpUt9rOAbXUHMTOzepQq7JIOBdYBf9ubOGZm1i1FROcjSxcDHwH2B/44Ik6aZZxRYBRgcHBw7djY2KzTmpqaYmBgoErmnprcsYvB5bBzd7+TzK3J+cpmW7N6Ze/CzNC+zk3u2LVo82033/I29T0BztaNsvlGRka2RkSrm3ku7XRESScBd0fEVknDc40XEZuBzQCtViuGh2cfdXx8nLmG9dPpG7awfs0eNk123DSLrsn5ymbbfupw78LM0L7Onb5hy6LNt918y9vU9wQ4Wzf6ka9MV8zxwGskbQfGgBMkfb4nqczMrLKOC3tE/JeIODQihoDXAVdGxGk9S2ZmZpX4PHYzs8xU6qiNiHFgvNYkZmZWC2+xm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMdFzYJe0r6duSvivpZkkf6mUwMzOrpswvKD0MnBARU5KWAd+Q9E8R8S89ymZmZhV0XNgjIoCp4u6y4i96EcrMzKpTqtcdjiwtAbYCzwbOi4g/mWWcUWAUYHBwcO3Y2Nis05qammJgYGDOeU3u2NVxrroNLoedu/s2+wU1OV/ZbGtWr+xdmBna17l+rV/zLe9C74l+eqJma8LrXLbtRkZGtkZEq5v5lyrsv3iSdCBwGfCuiLhprvFarVZMTEzMOmx8fJzh4eE55zG0YUvpXHVZv2YPmyYr/c73omhyvrLZtm9c18M0/177Otev9Wu+5V3oPdFPT9RsTXidy7adpK4Le6WzYiLifmAcOLGbmZuZWf3KnBVzULGljqTlwMuBH/QqmJmZVVNmf/4pwAVFP/tewBcj4vLexDIzs6rKnBXzPeCYHmYxM7Ma+MpTM7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8yU+c3Tp0m6StI2STdLOquXwczMrJoyv3m6B1gfETdI2h/YKulrEfH9HmUzM7MKOt5ij4h/i4gbitsPANuA1b0KZmZm1Sgiyj9JGgKuAY6OiJ/NGDYKjAIMDg6uHRsbm3UaU1NTDAwMzDmPyR27Sueqy+By2Lm7b7NfUJPzOVt1vc63ZvXKys9d6P3aT/Nl61cdaW/rsm03MjKyNSJa3cy/dGGXNABcDZwTEZfON26r1YqJiYlZh42PjzM8PDznc4c2bCmVq07r1+xh02SZXqrF1eR8zlZdr/Nt37iu8nMXer/203zZ+lVH2tu6bNtJ6rqwlzorRtIy4BLgCwsVdTMz648yZ8UI+DSwLSL+tHeRzMysG2W22I8H3gicIOk7xd+repTLzMwq6rhDLyK+AaiHWczMrAa+8tTMLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsM2V+8/Qzku6WdFMvA5mZWXfKbLGfD5zYoxxmZlaTjgt7RFwD3NfDLGZmVgNFROcjS0PA5RFx9DzjjAKjAIODg2vHxsZmHW9qaoqBgYE55zW5Y1fHueo2uBx27u7b7BfU5HzOVl2v861ZvbLycxd6v/bTfNn6VUfa27ps242MjGyNiFY386+9sLdrtVoxMTEx67Dx8XGGh4fnfO7Qhi0d56rb+jV72DS5tG/zX0iT8zlbdb3Ot33jusrPXej92k/zZetXHWlv67JtJ6nrwu6zYszMMuPCbmaWmTKnO14EfAs4QtIdkt7au1hmZlZVxx16EfH6XgYxM7N6uCvGzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDOlCrukEyXdIumHkjb0KpSZmVVX5jdPlwDnAa8EjgJeL+moXgUzM7NqymyxvxD4YUTcFhGPAGPAb/cmlpmZVaWI6GxE6WTgxIg4o7j/RuBFEfHOGeONAqPF3SOAW+aY5CrgniqhF0GTs0Gz8zlbdU3O52zVlc13WEQc1M0Ml5YYV7M89kufChGxGdi84MSkiYholZj/omlyNmh2Pmerrsn5nK26fuQr0xVzB/C0tvuHAnfWG8fMzLpVprBfDxwu6RmS9gZeB/xjb2KZmVlVHXfFRMQeSe8EvgIsAT4TETd3Me8Fu2v6qMnZoNn5nK26JudztuoWPV/HB0/NzOyJwVeempllxoXdzCwzLuxmZpl5QhZ2Saslre53jtlIeqak90g6od9ZZmpyNmh2Pmerrsn5mpwNqud7QhV2SUOSrgauAD4u6SX9ztRO0n8Evkb6Lp23SXp7nyP9QpOzQbPzOVt1Tc7X5GzQZb6IaPQfsG/b7dcCnyhuvxn4B2BNcV99yHYC8Izp+QMfAE4r7r8I+BIw3I98Tc7W9HzOlme+JmerO18jt9glHSDpryTdCnxC0mHFoN8BflTcHgN+CJwx/bRFzHeUpO8B/w34rKQTIrX2UcAhABFxHfBN4C2Lma/J2Zqez9nyzNfkbL3K18jCDpwI7EtasEeAD0haTtoteTVARDwMXAy8pLj/WK/CSDpU0gFtD50CXBIRLyV9wLxB0uHAhdP5CpcBR0vap1f5mpyt6fmcLc98Tc62WPn6VtiVLJX0Vklfl3SWpGcVg58NPBIRe4A/A34KnAZ8FXiKpF8rxrsV+LGk43qU8UhJXwa+AXxY0vTXFP8/YL/i9heBu4B1pE/UJ7ftYdxH+nbL5/0qZWt6PmfLM1+Tsy12vr4V9mJX4zeBNwEfA/YB/qYYfBdwd/HJ9GPSwjyL1ADf5/GvBV4G3Fs8XgtJK9ruPh+4IyKGgCuBTxSP3wc8LGn/iLgP+FfgqUWObwLvLcbbG/g5sD33bE3P52x55mtytn7mW7TCLuk4SR+VdHpxX8CRwBUR8aWI+BhwmKQXAztIn2BHFk/fBgwUj/0F8CpJryZ9KAwC3+0y25MknS/pemCjpIOKfGuAayUpIv4RuF/SOtKewv7FcIr7BwOPkfYwDpb0N8BFwJ6IuDvHbE3P52zVNTlfk7M1Jd+iFHZJzwH+EngA+D1J7y3mvRp4oFhogPOBN5AK9R7gxcXjN5COGD8UEdcAG4DTgeOB/x4Rj7VNo4qXFvN7FemgxNnAAaQvOzuk2LsAuKDI9+1iWV4JEBHfKqaxNCK2AWcCNwP/MyLeQneanK3p+Zwtz3xNztaMfHOdLlP1j7RlfQZpt2Np8difAmcVt1vAJ4GTgZcDX2l77tNIuyqQCvmNpF9hOgb438BT2sYtfTpS0bBnAleTunNWFY9/EXh3cfsZwMZi+LGk/rAlbcv2k2I6q0l7Eu8EPgt8CljRRbs1NlvT8zmbX1e33b//q3WLXdLzSQc4fxv4IPC+YtAO0m+mQvrkuRb4XeCfgUMkPVfSskj96TskvSQiriR93eVHgUuBiyLi36bnFUXLlHQS8BrgQ8BxpL59SGfbTO8d/Bj4OvDKiLie9Ik7UsxzCrgOODYidgBvJHUF3QW8LyIeLBuobU/j1U3LNoPbrprGtRu47brJ9kRouzI/jfdLJL0QOBz4akT8hLQ1fmtEnC7pBcA5klrAOPCfJO0XEQ9J+i7we6RzNC8E/gD4pKTdwCRwezGLvwIujIhdJTIpIkLSsaTdnK8DWyKdHvnrwG0RcaWk20lXr74C2Ar8jqRVEXGPpH8FHpT0dODPgdMkHUz61ah7SbtORMQEMFGh3VqkvZoHgI8DdwPP7Hc2t121bE+EdnPb5dd28ym1xa5kmaQ3SbqR1LF/IDBdeH8ObC+2vm8g7VocBzzE46fwADxK2gU5hLRVfhOpf/1q4J6IuAPSVnnFov5S4DOko8ovBz5SjPIYcKuk5RFxe5HvuaQX607S+aTTy7GE1D6XFBlPBdYCm6PiOa6SVkr6bDHN24FzI+JuSXuRPsn7mW1J0Xa/SdoVbEzbFevdgKTzaVjbFfMMScM0c53bR9KKhrbdAQ1vuwFJ+0q6gIa13YI66a8BVgAvLm4fWAT75CzjnUW6DHZ1cf9kUn/6YaSvALi6eHxfUjfMqrbnHgPs3UmeGfPcD3gbj2/5LwP+CHhHMfxJwPeK6Z9C6u8aKoadVCzLquL2JLCS1L//5fY8wF5dZLuIdMXYAKlr6cy2caaPQ7wT+B+Lla3tdT2DtLKtJx3gaUrbTWe7tFivDmpY2+0PbCH9khjAe5rQbjPyfRn46+L+x4C39bvtSO+JN5Pe/5c0re3a8l0J/H3xWGPWu07/Ftxil3Q2cBuwRdJgRNxP6he6s+gbf40ev0DoW6QDoNMXGl1LOoj6UERcAPxU0udIB0VvAX7RhxQRN0bEIwvlmZHtEOByYBj4HOkAxWtJewl7iun+lHTg9d2kvq+Defw0ymtI59I/EhGXA58mXc16HumI9aNt+Up9qs7I9nfA24tstwJHSNpYbEX9vtIFV1eQ9mB6nq3It4L05jqBdP3AK0jHPY4lbSn1s+3as20mnS3wWtI1DL/R77YrLCdde/EsSatI6/ySYpp9abdZ8u1NWteeSuriOFrSR/rVdpKWkY6xnQx8PCJ+txh0TNs0+9Z2M/J9LCKmt7gngaP62XaldfAJNkzavfhb4D3FY8eSitYdRfALgU3FsHOAD7c9/3rgmOL2PqRTgI6t41OJtPK+qO3+6aQtkzcD3257/KnAncXtd5Au231S8fwvAU9vG3dVj7K9iXSk+9eBvy/+Xg/8L9K5/IuWrW16B7bd/s+kN9Op/W67WbL9MemUsWc2qO3eTOprfT/wVtKBtOv73W6z5HsfaY9nVRPajrQHduqMx04BrmtC282R7+lFhr6vdx0vRwcLOn1qzinAeHF7GWlramVx/zDS1vqxpF3Ai0lbWv9E+qTapyfhUx+X4Be/3foCHu/uuZd0zuj0uF+jKLSk3aevFuP8ySJlOwb4xvSK2zbeMtLB5ROK++f0OtuMnAeQjm/sBD5c3L8XGOxX282S7a5ivisouvn61XZtr+dbSN1srwW+UDx2T7/bbY58Y8Vj7acL92W9I3VR3ApsKub/gaJ+3Acc3IB1rj3fVaQv5jq03+td6eUoscBPJl0o9Jzi/tIZw88HTp5egUhdD2fSo6I+x8p8AY+fL/854KPF7V8j7XE8ve2FOZq2rwRepGzvaH+suH1I0XbPXexsbRn+kHS+7WZSv/Y3izec+tl2M7KdRzqt7NlNaDvSV0YvIfWhXk3aMr4JeH+/17lZ8v0z6QyzFzSk7b5C2gN7Gmkr+CzShmFT1rn2fF8gXfp/eBPartO/6aLTEUmfAn4WERuK+3uRzrt8B/Ac4JQo2U9eF0mHkvq03hURtyp9odhokWs18J2o56qybrK9PSJuKx47htQtta7I9of9yNZO6TqEM0lvsiNJK+uh9LHt2rIdTXqz/TnpLKuT6FPbSRogdXPsQ2qn3yBdeHI2aUv5cPrYbrPkO5x0fOK3SMe8XkZqv76sdypOey5uP4/0Pr2WdEl939e5GfmOJl3pfi7pm2b7tt6VUfY89s3AucVBhiNJK/HxpBfl7H4V9cIxFOfASzqD1P9/NqkL6QeRTr/sd7YfFdluJ60ce0hb8Tf2MVu7e0kHAd8XEX8n6TTg5obku5/UT3wT6XVdRv/abg/p7IlHSVvqPyet/5PAexvQbnPle1jSa0gFv2/r3XTRLNxPOu70/oi4sAFtNzPfA6SN123Af6W/613Hym6xv450oPRh0jeOXRkRt/QoWymSriUdXNtOOof0QxHxvb6GKszIdhewoUHttpK0BfcG0vffbwbOi4hH533iIpgl26cjYlN/U/2y4sKT6b7su/qdZ6Yi38nAZyOdddLvPPuQfnPhjaQ96r8EPhXpa7r7bpZ8myPiz/qbqpyOC7uk55LO57yYdLCotq/K7VaxB/FB0pbw5yNdtdYITc4GIGkpqfvlYVK+Jr2ujc0G6aIu4LEos3W0iJqcT9KZpNNqP9e01xWan28hpbbYzcys+Zr603hmZlaRC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDP/H+KofDj+oV4qAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "yearly_incidence.hist(xrot=20)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +2351,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } -