{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Incidence de la varicelle" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import isoweek" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "data_url = \"https://www.sentiweb.fr/datasets/incidence-PAY-7.csv\"" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "raw_data = pd.read_csv(data_url, skiprows=1)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020212274507206869467311FRFrance
120212176110345987619513FRFrance
22021207748546011036911715FRFrance
3202119766544370893810713FRFrance
42021187391221105714639FRFrance
520211774686287864947410FRFrance
620211674780289166697410FRFrance
7202115711215762714803171222FRFrance
8202114711197799414400171222FRFrance
920211379714628913139151020FRFrance
10202112711520841514625171222FRFrance
1120211179386667812094141018FRFrance
1220211079056645211660141018FRFrance
13202109710988793814038171222FRFrance
14202108711281836114201171321FRFrance
152021077135611031516807211626FRFrance
16202106713401981016992201525FRFrance
17202105712210898815432181323FRFrance
18202104712026882615226181323FRFrance
192021037891363751145113917FRFrance
202021027779554301016012816FRFrance
21202101710525775013300161220FRFrance
22202053711978840615550181323FRFrance
23202052712012828515739181224FRFrance
24202051710564757413554161121FRFrance
25202050770634744938211715FRFrance
2620204975026314569078511FRFrance
27202048766834312905410614FRFrance
2820204774999296370358511FRFrance
292020467375219635541639FRFrance
.................................
15621991267176081130423912312042FRFrance
15631991257161691070021638281838FRFrance
15641991247161711007122271281739FRFrance
1565199123711947767116223211329FRFrance
1566199122715452995320951271737FRFrance
1567199121714903897520831261636FRFrance
15681991207190531274225364342345FRFrance
15691991197167391124622232291939FRFrance
15701991187213851388228888382551FRFrance
1571199117713462887718047241632FRFrance
15721991167148571006819646261834FRFrance
1573199115713975978118169251832FRFrance
1574199114712265768416846221430FRFrance
157519911379567604113093171123FRFrance
1576199112710864733114397191325FRFrance
15771991117155741118419964271935FRFrance
15781991107166431137221914292038FRFrance
1579199109713741878018702241533FRFrance
1580199108713289881317765231531FRFrance
1581199107712337807716597221529FRFrance
1582199106710877701314741191226FRFrance
1583199105710442654414340181125FRFrance
15841991047791345631126314820FRFrance
15851991037153871048420290271836FRFrance
15861991027162771104621508292038FRFrance
15871991017155651027120859271836FRFrance
15881990527193751329525455342345FRFrance
15891990517190801380724353342543FRFrance
1590199050711079666015498201228FRFrance
15911990497114302610205FRFrance
\n", "

1592 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202122 7 4507 2068 6946 7 3 \n", "1 202121 7 6110 3459 8761 9 5 \n", "2 202120 7 7485 4601 10369 11 7 \n", "3 202119 7 6654 4370 8938 10 7 \n", "4 202118 7 3912 2110 5714 6 3 \n", "5 202117 7 4686 2878 6494 7 4 \n", "6 202116 7 4780 2891 6669 7 4 \n", "7 202115 7 11215 7627 14803 17 12 \n", "8 202114 7 11197 7994 14400 17 12 \n", "9 202113 7 9714 6289 13139 15 10 \n", "10 202112 7 11520 8415 14625 17 12 \n", "11 202111 7 9386 6678 12094 14 10 \n", "12 202110 7 9056 6452 11660 14 10 \n", "13 202109 7 10988 7938 14038 17 12 \n", "14 202108 7 11281 8361 14201 17 13 \n", "15 202107 7 13561 10315 16807 21 16 \n", "16 202106 7 13401 9810 16992 20 15 \n", "17 202105 7 12210 8988 15432 18 13 \n", "18 202104 7 12026 8826 15226 18 13 \n", "19 202103 7 8913 6375 11451 13 9 \n", "20 202102 7 7795 5430 10160 12 8 \n", "21 202101 7 10525 7750 13300 16 12 \n", "22 202053 7 11978 8406 15550 18 13 \n", "23 202052 7 12012 8285 15739 18 12 \n", "24 202051 7 10564 7574 13554 16 11 \n", "25 202050 7 7063 4744 9382 11 7 \n", "26 202049 7 5026 3145 6907 8 5 \n", "27 202048 7 6683 4312 9054 10 6 \n", "28 202047 7 4999 2963 7035 8 5 \n", "29 202046 7 3752 1963 5541 6 3 \n", "... ... ... ... ... ... ... ... \n", "1562 199126 7 17608 11304 23912 31 20 \n", "1563 199125 7 16169 10700 21638 28 18 \n", "1564 199124 7 16171 10071 22271 28 17 \n", "1565 199123 7 11947 7671 16223 21 13 \n", "1566 199122 7 15452 9953 20951 27 17 \n", "1567 199121 7 14903 8975 20831 26 16 \n", "1568 199120 7 19053 12742 25364 34 23 \n", "1569 199119 7 16739 11246 22232 29 19 \n", "1570 199118 7 21385 13882 28888 38 25 \n", "1571 199117 7 13462 8877 18047 24 16 \n", "1572 199116 7 14857 10068 19646 26 18 \n", "1573 199115 7 13975 9781 18169 25 18 \n", "1574 199114 7 12265 7684 16846 22 14 \n", "1575 199113 7 9567 6041 13093 17 11 \n", "1576 199112 7 10864 7331 14397 19 13 \n", "1577 199111 7 15574 11184 19964 27 19 \n", "1578 199110 7 16643 11372 21914 29 20 \n", "1579 199109 7 13741 8780 18702 24 15 \n", "1580 199108 7 13289 8813 17765 23 15 \n", "1581 199107 7 12337 8077 16597 22 15 \n", "1582 199106 7 10877 7013 14741 19 12 \n", "1583 199105 7 10442 6544 14340 18 11 \n", "1584 199104 7 7913 4563 11263 14 8 \n", "1585 199103 7 15387 10484 20290 27 18 \n", "1586 199102 7 16277 11046 21508 29 20 \n", "1587 199101 7 15565 10271 20859 27 18 \n", "1588 199052 7 19375 13295 25455 34 23 \n", "1589 199051 7 19080 13807 24353 34 25 \n", "1590 199050 7 11079 6660 15498 20 12 \n", "1591 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 11 FR France \n", "1 13 FR France \n", "2 15 FR France \n", "3 13 FR France \n", "4 9 FR France \n", "5 10 FR France \n", "6 10 FR France \n", "7 22 FR France \n", "8 22 FR France \n", "9 20 FR France \n", "10 22 FR France \n", "11 18 FR France \n", "12 18 FR France \n", "13 22 FR France \n", "14 21 FR France \n", "15 26 FR France \n", "16 25 FR France \n", "17 23 FR France \n", "18 23 FR France \n", "19 17 FR France \n", "20 16 FR France \n", "21 20 FR France \n", "22 23 FR France \n", "23 24 FR France \n", "24 21 FR France \n", "25 15 FR France \n", "26 11 FR France \n", "27 14 FR France \n", "28 11 FR France \n", "29 9 FR France \n", "... ... ... ... \n", "1562 42 FR France \n", "1563 38 FR France \n", "1564 39 FR France \n", "1565 29 FR France \n", "1566 37 FR France \n", "1567 36 FR France \n", "1568 45 FR France \n", "1569 39 FR France \n", "1570 51 FR France \n", "1571 32 FR France \n", "1572 34 FR France \n", "1573 32 FR France \n", "1574 30 FR France \n", "1575 23 FR France \n", "1576 25 FR France \n", "1577 35 FR France \n", "1578 38 FR France \n", "1579 33 FR France \n", "1580 31 FR France \n", "1581 29 FR France \n", "1582 26 FR France \n", "1583 25 FR France \n", "1584 20 FR France \n", "1585 36 FR France \n", "1586 38 FR France \n", "1587 36 FR France \n", "1588 45 FR France \n", "1589 43 FR France \n", "1590 28 FR France \n", "1591 5 FR France \n", "\n", "[1592 rows x 10 columns]" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", "Index: []" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020212274507206869467311FRFrance
120212176110345987619513FRFrance
22021207748546011036911715FRFrance
3202119766544370893810713FRFrance
42021187391221105714639FRFrance
520211774686287864947410FRFrance
620211674780289166697410FRFrance
7202115711215762714803171222FRFrance
8202114711197799414400171222FRFrance
920211379714628913139151020FRFrance
10202112711520841514625171222FRFrance
1120211179386667812094141018FRFrance
1220211079056645211660141018FRFrance
13202109710988793814038171222FRFrance
14202108711281836114201171321FRFrance
152021077135611031516807211626FRFrance
16202106713401981016992201525FRFrance
17202105712210898815432181323FRFrance
18202104712026882615226181323FRFrance
192021037891363751145113917FRFrance
202021027779554301016012816FRFrance
21202101710525775013300161220FRFrance
22202053711978840615550181323FRFrance
23202052712012828515739181224FRFrance
24202051710564757413554161121FRFrance
25202050770634744938211715FRFrance
2620204975026314569078511FRFrance
27202048766834312905410614FRFrance
2820204774999296370358511FRFrance
292020467375219635541639FRFrance
.................................
15621991267176081130423912312042FRFrance
15631991257161691070021638281838FRFrance
15641991247161711007122271281739FRFrance
1565199123711947767116223211329FRFrance
1566199122715452995320951271737FRFrance
1567199121714903897520831261636FRFrance
15681991207190531274225364342345FRFrance
15691991197167391124622232291939FRFrance
15701991187213851388228888382551FRFrance
1571199117713462887718047241632FRFrance
15721991167148571006819646261834FRFrance
1573199115713975978118169251832FRFrance
1574199114712265768416846221430FRFrance
157519911379567604113093171123FRFrance
1576199112710864733114397191325FRFrance
15771991117155741118419964271935FRFrance
15781991107166431137221914292038FRFrance
1579199109713741878018702241533FRFrance
1580199108713289881317765231531FRFrance
1581199107712337807716597221529FRFrance
1582199106710877701314741191226FRFrance
1583199105710442654414340181125FRFrance
15841991047791345631126314820FRFrance
15851991037153871048420290271836FRFrance
15861991027162771104621508292038FRFrance
15871991017155651027120859271836FRFrance
15881990527193751329525455342345FRFrance
15891990517190801380724353342543FRFrance
1590199050711079666015498201228FRFrance
15911990497114302610205FRFrance
\n", "

1592 rows × 10 columns

\n", "
" ], "text/plain": [ " week indicator inc inc_low inc_up inc100 inc100_low \\\n", "0 202122 7 4507 2068 6946 7 3 \n", "1 202121 7 6110 3459 8761 9 5 \n", "2 202120 7 7485 4601 10369 11 7 \n", "3 202119 7 6654 4370 8938 10 7 \n", "4 202118 7 3912 2110 5714 6 3 \n", "5 202117 7 4686 2878 6494 7 4 \n", "6 202116 7 4780 2891 6669 7 4 \n", "7 202115 7 11215 7627 14803 17 12 \n", "8 202114 7 11197 7994 14400 17 12 \n", "9 202113 7 9714 6289 13139 15 10 \n", "10 202112 7 11520 8415 14625 17 12 \n", "11 202111 7 9386 6678 12094 14 10 \n", "12 202110 7 9056 6452 11660 14 10 \n", "13 202109 7 10988 7938 14038 17 12 \n", "14 202108 7 11281 8361 14201 17 13 \n", "15 202107 7 13561 10315 16807 21 16 \n", "16 202106 7 13401 9810 16992 20 15 \n", "17 202105 7 12210 8988 15432 18 13 \n", "18 202104 7 12026 8826 15226 18 13 \n", "19 202103 7 8913 6375 11451 13 9 \n", "20 202102 7 7795 5430 10160 12 8 \n", "21 202101 7 10525 7750 13300 16 12 \n", "22 202053 7 11978 8406 15550 18 13 \n", "23 202052 7 12012 8285 15739 18 12 \n", "24 202051 7 10564 7574 13554 16 11 \n", "25 202050 7 7063 4744 9382 11 7 \n", "26 202049 7 5026 3145 6907 8 5 \n", "27 202048 7 6683 4312 9054 10 6 \n", "28 202047 7 4999 2963 7035 8 5 \n", "29 202046 7 3752 1963 5541 6 3 \n", "... ... ... ... ... ... ... ... \n", "1562 199126 7 17608 11304 23912 31 20 \n", "1563 199125 7 16169 10700 21638 28 18 \n", "1564 199124 7 16171 10071 22271 28 17 \n", "1565 199123 7 11947 7671 16223 21 13 \n", "1566 199122 7 15452 9953 20951 27 17 \n", "1567 199121 7 14903 8975 20831 26 16 \n", "1568 199120 7 19053 12742 25364 34 23 \n", "1569 199119 7 16739 11246 22232 29 19 \n", "1570 199118 7 21385 13882 28888 38 25 \n", "1571 199117 7 13462 8877 18047 24 16 \n", "1572 199116 7 14857 10068 19646 26 18 \n", "1573 199115 7 13975 9781 18169 25 18 \n", "1574 199114 7 12265 7684 16846 22 14 \n", "1575 199113 7 9567 6041 13093 17 11 \n", "1576 199112 7 10864 7331 14397 19 13 \n", "1577 199111 7 15574 11184 19964 27 19 \n", "1578 199110 7 16643 11372 21914 29 20 \n", "1579 199109 7 13741 8780 18702 24 15 \n", "1580 199108 7 13289 8813 17765 23 15 \n", "1581 199107 7 12337 8077 16597 22 15 \n", "1582 199106 7 10877 7013 14741 19 12 \n", "1583 199105 7 10442 6544 14340 18 11 \n", "1584 199104 7 7913 4563 11263 14 8 \n", "1585 199103 7 15387 10484 20290 27 18 \n", "1586 199102 7 16277 11046 21508 29 20 \n", "1587 199101 7 15565 10271 20859 27 18 \n", "1588 199052 7 19375 13295 25455 34 23 \n", "1589 199051 7 19080 13807 24353 34 25 \n", "1590 199050 7 11079 6660 15498 20 12 \n", "1591 199049 7 1143 0 2610 2 0 \n", "\n", " inc100_up geo_insee geo_name \n", "0 11 FR France \n", "1 13 FR France \n", "2 15 FR France \n", "3 13 FR France \n", "4 9 FR France \n", "5 10 FR France \n", "6 10 FR France \n", "7 22 FR France \n", "8 22 FR France \n", "9 20 FR France \n", "10 22 FR France \n", "11 18 FR France \n", "12 18 FR France \n", "13 22 FR France \n", "14 21 FR France \n", "15 26 FR France \n", "16 25 FR France \n", "17 23 FR France \n", "18 23 FR France \n", "19 17 FR France \n", "20 16 FR France \n", "21 20 FR France \n", "22 23 FR France \n", "23 24 FR France \n", "24 21 FR France \n", "25 15 FR France \n", "26 11 FR France \n", "27 14 FR France \n", "28 11 FR France \n", "29 9 FR France \n", "... ... ... ... \n", "1562 42 FR France \n", "1563 38 FR France \n", "1564 39 FR France \n", "1565 29 FR France \n", "1566 37 FR France \n", "1567 36 FR France \n", "1568 45 FR France \n", "1569 39 FR France \n", "1570 51 FR France \n", "1571 32 FR France \n", "1572 34 FR France \n", "1573 32 FR France \n", "1574 30 FR France \n", "1575 23 FR France \n", "1576 25 FR France \n", "1577 35 FR France \n", "1578 38 FR France \n", "1579 33 FR France \n", "1580 31 FR France \n", "1581 29 FR France \n", "1582 26 FR France \n", "1583 25 FR France \n", "1584 20 FR France \n", "1585 36 FR France \n", "1586 38 FR France \n", "1587 36 FR France \n", "1588 45 FR France \n", "1589 43 FR France \n", "1590 28 FR France \n", "1591 5 FR France \n", "\n", "[1592 rows x 10 columns]" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data=raw_data.dropna().copy()\n", "data" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "def convert_week(year_and_week_int):\n", " year_and_week_str = str(year_and_week_int)\n", " year = int(year_and_week_str[:4])\n", " week = int(year_and_week_str[4:])\n", " w = isoweek.Week(year, week)\n", " return pd.Period(w.day(0), 'W')\n", "\n", "data['period'] = [convert_week(yw) for yw in data['week']]" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "sorted_data=data.set_index('period').sort_index()" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", " delta = p2.to_timestamp() - p1.end_time\n", " if delta > pd.Timedelta('1s'):\n", " print(p1, p2)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXm8HUWZ9vOec7fsOyEbJCFhC3tCCCKbQYkiH4LgoDOCI4oiDjo6o+A+KgyKiqIDioCCsgoqyCqrLIaEEEhCEkIChKxk35O7nVPfH93VXV39VnX1ueduufX8fsntU11bd1fVW+9aJISAh4eHh4eHikJnd8DDw8PDo+vBEwcPDw8PjxQ8cfDw8PDwSMETBw8PDw+PFDxx8PDw8PBIwRMHDw8PD48UPHHw8PDw8EjBEwcPDw8PjxQ8cfDw8PDwSKGmsztQKYYOHSrGjh3b2d3w8PDw6FZ4+eWXNwohhmXl67bEYezYsZgzZ05nd8PDw8OjW4GI3nHJ58VKHh4eHh4peOLg4eHh4ZGCJw4eHh4eHil44uDh4eHhkYInDh4eHh4eKXji4OHh4eGRgicOHh4eHh4peOLgsVdi+cZdeH7pxs7uhodHt0W3dYLz8LDhlJ88AwBYfvUZndsRD49uCs85eHh4eHik4ImDh4eHh0cKnjh4eHh4eKSQSRyIqIGIZhPRPCJaSET/E6Z/j4hWE9Gr4b8PKWWuIKJlRLSEiE5X0icT0YLw3nVERGF6PRHdHabPIqKx1X9UDw8PDw9XuHAOTQDeJ4Q4EsBRAGYQ0bTw3rVCiKPCfw8DABEdCuB8AJMAzABwPREVw/w3ALgYwMTw34ww/SIAW4QQEwBcC+BHbX80Dw8PD49KkUkcRICd4c/a8J+wFDkLwF1CiCYhxNsAlgGYSkQjAPQXQswUQggAtwH4iFLm1vD6XgDTJVfh4eHh4dHxcNI5EFGRiF4FsB7A40KIWeGtLxLRfCK6hYgGhWmjAKxUiq8K00aF13p6oowQohXANgBDmH5cTERziGjOhg0bnB7Qw8PDwyM/nIiDEKIkhDgKwGgEXMBhCEREByAQNa0F8NMwO7fjF5Z0Wxm9HzcKIaYIIaYMG5Z5kJGHR26s2LQbc1ds6exueHh0OnJZKwkhtgJ4BsAMIcS6kGiUAfwWwNQw2yoAY5RiowGsCdNHM+mJMkRUA2AAgM25nsTDowo46Zqncc71/+zsbnh4dDpcrJWGEdHA8LoXgNMAvB7qECTOBvBaeP0AgPNDC6RxCBTPs4UQawHsIKJpoT7hAgD3K2UuDK/PBfBUqJfw8PDw8OgEuITPGAHg1tDiqADgHiHEg0T0ByI6CoH4ZzmAzwGAEGIhEd0DYBGAVgCXCiFKYV2XAPg9gF4AHgn/AcDNAP5ARMsQcAznV+HZPDw8PDwqRCZxEELMB3A0k/5JS5krAVzJpM8BcBiT3gjgvKy+eHh4eHh0DLyHtMdejwfmrcGFt8zu7G54eHQr+KisHns9Lrvzlc7ugodHt4PnHDw8PDw8UvDEwcPDw8MjBU8cPDw6AUIIXPHnBViwaltnd8XDg4UnDh4enYDNu5px5+wVuPB3XlHu0TXhiYOHh4eHRwqeOHh4eHh4pOCJg4eHh4dHCp44eHh4eHik4ImDx14NH7/Rw6MyeOLQTbBi024s37irs7vR7dBVaUMX7ZaHRwQfPqOb4KRrngYALL/6jE7uSfeCX4Q9PCqD5xw89mp0VbGSPyDdo6vDEwePvRpdkzR4eHR9eOLgsVejizIOnmh1IFZu3o0/z13VZbnIrgqvc/DYqyH8Mtzj8T9/W4QnFq/DsWMHY8zg3p3dnW4Dzzl47NXoqptFr3PoOMxdsQUA0FruooOhiyKTOBBRAxHNJqJ5RLSQiP4nTB9MRI8T0dLw7yClzBVEtIyIlhDR6Ur6ZCJaEN67jogoTK8norvD9FlENLb6j+rRE9FViUNndetr987D2Msf6qTWOxderJQPLpxDE4D3CSGOBHAUgBlENA3A5QCeFEJMBPBk+BtEdCiA8wFMAjADwPVEVAzrugHAxQAmhv9mhOkXAdgihJgA4FoAP6rCs1UVa7buwQPz1nR2NzxywouVkrhnzqrO7kKHQ3JpnnHIh0ziIALsDH/Whv8EgLMA3Bqm3wrgI+H1WQDuEkI0CSHeBrAMwFQiGgGgvxBipghI+G1aGVnXvQCmS66iq+C8X8/EZXe+gpIfYd0KfrPoIVcSzznkg5POgYiKRPQqgPUAHhdCzAIwXAixFgDCv/uE2UcBWKkUXxWmjQqv9fREGSFEK4BtAIZU8kDthbXb9nR2FzwqQFddDvw61ZEIqIN/5fngRByEECUhxFEARiPgAg6zZOd2/MKSbiuTrJjoYiKaQ0RzNmzYkNXtdoHffXQvdNXvJcVdXYo93kshOYdyFx0LXRW5rJWEEFsBPINAV7AuFBUh/Ls+zLYKwBil2GgAa8L00Ux6ogwR1QAYAGAz0/6NQogpQogpw4YNy9P1qsEPr+pjy65m7GxqbZe6u/r3qnb/3tm0C7PfTk2dHo1I51Du1G50O7hYKw0jooHhdS8ApwF4HcADAC4Ms10I4P7w+gEA54cWSOMQKJ5nh6KnHUQ0LdQnXKCVkXWdC+Ap0UW3fPe/ugYPL1jb2d3Yq3D0Dx7HCVc/5Zz/L6+swlfvmeeUt2uOIrQb1Tr5mmfwsd/MbJ/Kuyk851AZXDiHEQCeJqL5AF5CoHN4EMDVAN5PREsBvD/8DSHEQgD3AFgE4FEAlwohSmFdlwC4CYGS+k0Aj4TpNwMYQkTLAHwFoeVTV8R//WkevnD73KrUJYTA3BVbuqzooyOxbU+Lc97/vHse7pvraHXTRV9ttbv10vLNaGwpZWf08HBEpoe0EGI+gKOZ9E0AphvKXAngSiZ9DoCUvkII0QjgPIf+7lX489zV+Oqf5uGXHz8aZx45srO7s1di066mzu4CC7kfqIbOYfnGXTjv1zNx3uTR2Zl7IAoh6+A5h3zwHtKdiOWbgvMZ3vbnNLQb/u/pNzu7C1ZUY7na0Rjoaxa/u70Kte198H4OlcETh05EPGj9qG0v1Nd2zSFeTee8SKbuFa5WePFtPnTNmdNTEM5qP2bbDw01xeg6z+LQ3gtJNcVKUZ0VlLlnzkrc+/Le7TVNkVipkzvSzeCjsnYiCtJzs3O7sVejoULOQYh4R96eqMa3L0SbjLi2clmgUEg+ACe+/Nq98wEA5/YAfYXnHPLBcw6dCEJ6UntUF/v0q6+oXHt/kWrWH4eHiNNaNBnTys27cepPnqliq90HsSlr5/aju8ETh05EwdH+urnVC5PzoiZ8uSMG9orS8tDg9hcrVc9DOuIcFJLTUkr2f/2Oxiq01D3hYytVBk8cOhGS7c/a0by6cmsH9GbvQk2xbfqc9t5lVnOd4nbGrSW/oZCQHLrnHPLBE4dOBCcO8Kg2Knu5HRXquxqtSO5D3Rmnowf33ChOnnOoDJ44dCK8zqH9ob7aPG+5O30SisRKMdK75G70QO0E/wbywROHTgR5a6V2R3scDbmnuYSxlz+Ee+bEkelbS2X8bd4aZ0JfTVNWjgP1vjMxvD9RZfDEoRNR8Oxuu0FyZf9x5ysVlbd9Eqnc/eVTS6O0G597C/9x5yvOpwXmFVvdMWsFFq1Je0DvaS5h+k//AQDYtDMOFZJeCHuyWMnrHCqB93PoRHhFWfuB2yUGRNhtkbQt3sTUsW5bQDC27Gp262BOfOMvCwAAy68+I5G+eXfc3vbGOOx5WufQcweZ5xwqg+ccOhE+lLAZ97+6GnOWV34ugetxrtsbWzDrrU0AgB2NcWTYSj+Ja7FqfXITqfNDSkGkse/UXnQ7eOLQiSj48BlGfOmuV3Hurys/l6DEcQ5Mvv+44xX8y40vYtvuFnz5rleteW3Ie+S5Wv/stzfjF08sNea1t8unZ1kr7Wqnw5W6IjznUBk8cehE9DSdwyML1uLvC9/tkLZcX+kb63YAAHY2t2KhItPP+00qzS8AfOw3M3HtE2/kKi9RMFCH9EKY/D3pu4/huaWdc9RuR8PrHCqDJw6diJ42aC+5fS4u/sPLnd2NBOpqginQ1FLC1j2x/L67fBIT5+Aypj558+zqdqaLY09LCT97/A00tfpDkVzgFdKdiNiUtbssRd0b3Oa+PiQOzaVyIkyJCyOg5qlUrNRWGyJOOQ54EYoK+YZueu4tzF+1DX3ri7j4pAM6tU/dAZ5z6ESQ1zl0OiTn0NxaTu62Ld+kGtFa5Tff5GDdZBNZFYycgx9UEvJ7yWNUdzd7zsEFmcSBiMYQ0dNEtJiIFhLRl8L07xHRaiJ6Nfz3IaXMFUS0jIiWENHpSvpkIloQ3ruOwtWRiOqJ6O4wfRYRja3+o3Y9+BOqOh91xWAKNLYkYxF1JW7O1fKqrWXaisaWEl7vgqfRSe4qMh33E84JLpxDK4CvCiEOATANwKVEdGh471ohxFHhv4cBILx3PoBJAGYAuJ6I5IkrNwC4GMDE8N+MMP0iAFuEEBMAXAvgR21/tK4PLg6/R/uBW/Drw8OA9rQkd5N5xUp5ysneuOJuxRPbtZbOGFJX/HkBZvz8uYQzXleA5Bx86O58yCQOQoi1Qoi54fUOAIsBjLIUOQvAXUKIJiHE2wCWAZhKRCMA9BdCzBTBangbgI8oZW4Nr+8FMJ3yCnG7IVxDdnvi0X6QYqU9mqih3c9zyNHAM0vyWxV1hlhpzjuBX8pOg5lsuSxw9vUv4PFF6zqyWylwZs4eaeTSOYTinqMBzAqTvkhE84noFiIaFKaNAqBudVaFaaPCaz09UUYI0QpgG4AhefrWHeEaldUP5fbBQ/PXYmO4y9UtWNr9PIc8eS19Md3qDLGSSTkusaelhFdWbMWX7qospEml0PeZXqzkBmfiQER9AdwH4MtCiO0IREQHADgKwFoAP5VZmeKmuAU2o43UFySii4loDhHN2bCh+9toS7FS1k6mqykXH5i3pkvKlrOgv8ZL75gb+TbonENXWj9sn9+kG/n2/a+lnqm9kbXZaQnPmKgxadHbGbHpeBf6uF0YTsSBiGoREIbbhRB/BgAhxDohREkIUQbwWwBTw+yrAIxRio8GsCZMH82kJ8oQUQ2AAQBSsROEEDcKIaYIIaYMGzbM7Qm7MKRIo7WUJVbqiN6447I7X8GMnz/X2d2oKu6YvSLxu70V0ry+gm+zkp68tno7bp/1TgUlK0eWJ7I8nW57Yyvue3kVm6c9oJOirkT4uzJcrJUIwM0AFgshfqakj1CynQ3gtfD6AQDnhxZI4xAonmcLIdYC2EFE08I6LwBwv1LmwvD6XABPiR4gaK8txmaUNnTWTmfttj34+I0vYsGqbZ3Sfkdivv6M7W3KyjRgWrSs3992q4OHDXeuhIpm5XS6r/5pXsRJtBcaW0o4+ZqnsWhtwB1KhqUzRG7dES6cwwkAPgngfZrZ6o9Ds9T5AE4F8J8AIIRYCOAeAIsAPArgUiGE5G8vAXATAiX1mwAeCdNvBjCEiJYB+AqAy6vydDmwfkcjZr65qUPblIM1a5J01lh+8a1NmPnWpsQOtAfQbACV63naEnjPyDlURhuqQsTyIEuspG+C2nsoLd+0C+9s2h399oEu8yHTQ1oI8Tx4ncDDljJXAriSSZ8D4DAmvRHAeVl9aU984rezsGz9Trx11Yeis51tEELk9oo1oTmLOHQSdZAKRtVpqD0Oz6k2qkHA8lZRjaFgerVd/40H4I4rVaETh6xFesWm3RjYpxb9G2or6o8edyoOkd9d3mjnwntIh3h74y4AwA7HaJXVGF+yjq4qVuJOqmsy9PVv89Z0uALUhKp8m07QOZi+cyXWSp2BrM1S1jjXcdI1T+PMXz5feX8M6e0szdpr4IlDiH4NARO1dbfbYS3VmJOyjq4qVuLATfCX39mC/7jzFXzvgYWd0KM0XBzDsriLvItu7vw5RlAl1kqdgaxjE1rL+TgHAAmxUO7+6JyDFCt1pQnVheGJQwgZRkHdGZ98zdM44eqn2PzVlL23ZFgrdTYbrD4rRxyk09OabXs6rE82VEWs1EHtqDB9587+/q7Ikunrqe29RpsYma5EULsyfFTWEHKgquPatmupCucQVpLFOXSWEpizPpE+GXlM1YUQuPWfy6vXsQ5AXlFOXp0DL1Zyz+tyr5J8bYGU6Zva0tPbe1z7U/LaBs85RBDh/24jp60D7IVlG7EhPKg+W+fQtrYqwbL1O3HZnWlP1kom9Ovv7sD3/raoGt1yglGspNzJ9ErvhHdu9nOwEKr26oyGrbub8cC8NdY82R7/yRvtPa7NpsHt2+7eAs85hOA4B4m12/akBlRbWdN/vWlWdJ1prdQJK9XfFykntiVk9cl8Kxxkwu1tz66jo14X14wr8czDOVQDbbWm+uIdr+D5ZRtx9JiBGDO4t6ENuzVQR3MOlSj4PWJ4ziGEHEjcuDn+f9N6h2qOr67IOajgCCER4anX1+Gka57Go6+ttZfv4P6bCHdCIZ1VR05RTlZcIScY2jxuXBBm7Nixg1L3bAudqpBt6zdYszXQJ9k2MllvQO+CrU8um443N+zE+37yjDEKrE4cdja2sv3w4OGJQwg5jtpbWbWrqRVnXJcMPdEVdQ5Jyx7uvsCiMC5Ryrs4A7ubq3O4vem9/HNZ250Z7aKc9L2844b3kObrkGv8iAG90vV0NOG1tGdSSK/b3ohSWaTKmp532+4WnHTN05l9uem5t/DWxl14bCEf5VX3hH4rNFf3nIMbPHEIYeMcOFQ6vmYv35w4yB7Ijq3U2dYqJkLh6gSoZ7vmsSVV6BX/DTbtbMK///4lh7Jx4Qn79HWqu5I8ecqavvPPn1gKoOM9nvOCOy9h865mHHfVk7jq4cWpRVnNt35HI8Ze/hAemLcmU8wqIc/iaGzh/WvKhmo6mxPvLvDEQcKic+CzVzbCGhlHsaZMD+mKmmoXqM/tGnJcx47G6nAOHK5+5HXjPVM3Ocsr2yNVQ6zE6iuyyuR8z9XYIa/b3pj4bSNQnAfyltBv6KnX16fFSkrK0nU7AQB3zV7hbAknz//+/oOL8McX00EGXU1qPXh44hAi4hza2VqJO782axJ39uEkJiufyHSxozsk+1KlsnqYBSDDlLUN7dqQeehTzvraGurk/ldX47irnsRLy+MAybYuLli9LcyjbCCU+2mFNF+Pa68lcQCAb/31tdR907zpbE68u8AThxByuLhzDpWBiwiZbVbZGToHniDISyJSOAd7/6qirGXAtVtTzN9WkdmquqyrbdFPcX2v5DPbyjS1tI3llETh9bX5zu7gGGEhROp9lQ1jzHXxrinaly+TJ7TXObjBE4cQMefghqdfX19RO1xQv6w2O0NGanZkSu8Ku9ZcMxMH06LAEQfbV2kvD+ysastlgc27kuFdbARKP92uGnDRexgXdwfOgah6er+8ToUPzl+DZ5ZUNq/3RnjiECL2c3AbmY8tfDc7EwNus5PVZnKH1QlchOE6DsyX01KnSo/QJrGSUpgXK2W3q3JE1YnKmm50lxII8qEFa3HMDx43mm7qMAVJzIvrnlqWy2DDPXyGaWfv1q+scWc6t8FU/xfveAWf+l22MYMr9jSXsGpL5bGhOhs9njg8+tpaHPX9v0e+Bu299LILUUYZdYx3jucuf50VLiHK18WtbDjOweU15/G4TpVl8nNVnHzNM6k0lXuwipWqxDls2NGE5ZrfQbkscO/Lq1gzbNWAwuZrYeq7q1ipUnFsR+kcPnvbHLz3R093SFvtgR5PHH7w4GJs3d0S/W7vccOZf+YZ5B1FG4TxF2OtFP7esMNtR1stYsG/NzdFsrqwF/NyDlX5COlKOBn5xgwuwdaVvCGy8+Cvr67Gf/1pHn7zjzdT97jFVyC902+rQjorn1khbS/33Sqdv/38so1trqMz0eOJg472FttUUr+6aHSEWGnTzibc8Ex60gftc2lB4uvv7nCqv3pipepUVOBEfXZj1lRKXoJ378ur07Vq1c5buZUt21GcGGdIINveEm6oNu5Mh7hXiYPNWskYhdZVyZZl5Wesx17u1pnv4A8vLnfrw16MHk8c9InWpXSrIRJiJUu+Lbua8aW7XsHYyx/CP98071qaW8tYtt68kP/3vfOxR3EsmvW2YsoY/iXEXNCbG3bZut8loa4rrFjJxVqpDYPlztkr0vVpX/es/3vBoQ82xblbX/bt3+CW0bFOXWkuy7nqHJz7knU/p0JaRTXDgXVX66geTxx0tPd3rGRCqGVs5b91/2u4/9UgcubfDSEFAOB//rYQp/3s2ZSDk8SOxhbtd6wU3b4nvlfpBrZ9xUr58+dWSLdB5NTUWsKzb2xg76mbAPOuF1DfvC2X8wa8DVsi7lt+5Z557H19kTS1WqnOQa/f9A5d6s8Tkj4L3dUjO5M4ENEYInqaiBYT0UIi+lKYPpiIHieipeHfQUqZK4hoGREtIaLTlfTJRLQgvHcdhVtPIqonorvD9FlENLb6j2p6vuRvVypf6fnRbbVlt5VXLVts3ZsdcgLb9rSYM2n41l8XAAAuvGU2gGCCVbrItycBrqTuWsaEzLZgvrR8SyrN9VXc9/JqXBC+Qx3qomUjDq7vvS0RYrPadqm7saWE7XviMamXMCuM3fqif6OZbyZjapl0Di7VV1N0112d7lw4h1YAXxVCHAJgGoBLiehQAJcDeFIIMRHAk+FvhPfOBzAJwAwA1xNRMazrBgAXA5gY/psRpl8EYIsQYgKAawH8qArP5gRdrur6GSsdO5WME9fBpSpW2+J4xpX944uBGGRXqKgri8rfQXviiNEDc5dRPW0lbK/8G39ZkM7v2JbNDFVt08458GUq7ZMpH7dA6u3Zxtm5v/4nzvyVcgZ0Sueg3op/LN/kJqbU+/Lmxl3a/bYRn2phryUOQoi1Qoi54fUOAIsBjAJwFoBbw2y3AvhIeH0WgLuEEE1CiLcBLAMwlYhGAOgvhJgpgq92m1ZG1nUvgOlU6dY8J9KcQ/u2V5lYKb62FVdfWUe8Pd7yquMmAtdUrzrLkDZ0rY4hDk7tM2mvrExzFSps30V9d+8aRH6ATpTN77utJqFtHUKvrU56VrtYKxEI/+7oa5AioCmxEl/OZYxW06u/m9KGfDqHUNxzNIBZAIYLIdYCAQEBsE+YbRSAlUqxVWHaqPBaT0+UEUK0AtgGYAjT/sVENIeI5mzYwMtt24r2DtldSe0JJzhLDTUFlXNof3ALXUfuytoWviK+zss52PDwArtzpG3PozbJncLH5bPB1ZChI8wwBNxCducx/3xL4xR0YtGWHbsXK+UgDkTUF8B9AL4shLAFWzHFIrDFKHCKXyCEuFEIMUUIMWXYsGFZXXaC3nC7f8dKxEoJU1ZzPtXqpkM4ByaNE4d0pBNcJd9Phn5O1JPzQ7k+ou1dqIuIzb/BVQdlio9lqy8v8nxbV1NWV+gOePrQM5rKdvBivdcqpAGAiGoREIbbhRB/DpPXhaIihH9lUJJVAMYoxUcDWBOmj2bSE2WIqAbAAACb0QHQd3Ku48Y2KUplgbGXP4SfP/FG6l6bxUqWfFzcporQhpWuksCCcb5874b3ubDkVz2alWs2ZLdDVypZY2ziCtWzeI/hjIKgXfU5zHDp379N2y87U4V16/nTCumKmo6gv0l9bhmtlRzMVKtJQPZaziGU/d8MYLEQ4mfKrQcAXBheXwjgfiX9/NACaRwCxfPsUPS0g4imhXVeoJWRdZ0L4CnRjsLrc65/Adc/swwAwzlUgcWWnqnXM45kbRYrWV6LGpC0EpVN3lfOeeC2Jbx4Nb54JVVwh8u01+Cz6hyUVm0euu6KZrdxY7pT7XewbP3OZP1tbEAvnhYrxdcfOnxfpVzH6hyWrtuZsCTsLnDhHE4A8EkA7yOiV8N/HwJwNYD3E9FSAO8Pf0MIsRDAPQAWAXgUwKVCCDnSLwFwEwIl9ZsAHgnTbwYwhIiWAfgKQsun9kC5LDB3xVb8+NHwNLJ2UEjLRbPSHamOsuNOMaGQNuR5esl6LNUmqcS4Kx6OTFVd8IMHF6XS2sQ5OLccIG94ApM4ZuyQPqm8Lrs9Iv76DzOXY+zlD2Hb7rSpsI25U5u0Bc0zhbpO5VOqMGUjkJFwuJwHkWcJ/dGjyYOY2rqj1run91cVx9YobvAuYp6GurSosVJ89IZ/4tMOpxN2NdRkZRBCPA/zGJhuKHMlgCuZ9DkADmPSGwGcl9WXamC75uC1UzuVLGvc7De4N1ZsNkdaLJVFZLHC7T4qmRCtjjqHxMLMfLFXV27NtAT5xxsbMHXc4LxdjMCFPnDlxspCoJhjuXnstXdx+qR9E2nqQnfe5NH408ur9GIpDOpTl0rLK1ZSr3/xZMCVrtq6GwN6D0iUsYqVHMdGctE3l3ElcKZctjAW1eCw21qDTtT043ZVLlY958NlhLVW00UaySgD3QU9zkNa39lu1RzBbOz3YaP647MnjgMAjBsa7zbLZRENpl888UYU9jfv8ZMmqAPV1r+sxWCja2A8t26x4MRKrvQwL+H88yurMfbyh7BeMftUazhm/0FGmbqaj3/eypcuqUxuYc4Gt5uyutXv+p5eUDgrm7mq6Z6Lr4WrUxx325UDcq1TH3tq/bVcAC0LTI/eWirjtJ/9A3+vIGS/vjHt6uhxxCH1zbUEqzUQEc48ciQAYECv2ij9U79/CRO+GUjI5odHJQIGuX87cg7JBS/dtk1MUK3wzqxYybFspVKG/3t6GdsYIfkejKIVh/AZ33tgIS69fa6xD9ynzrv7rMQvweox31yKCIRpp09kFivlsbLJ420v0Va1YupkOZtYSeUcHHY/pr5tb2zFsvU78fX75ufoaQBOzNiVkSlW2tugf/OUY45lKQuOxgxGljoO1Vg5QlucdFRi1qYuuLbiiVPauMXKYqbR2MYjJSV4nYNFPKHce/r19WhsLeEjR40y5ueQIJ5MSPFKoPf49/9cDgD4P2uuJDjOgYvj5Fabms99x+0SRt0oVrJ+t+Tv1Vv3ZLZjq6MSMqEP5zTnEF+rIVK4x9INAExck5QGbKlgoedPHOy66HnEIcNLM8uPoJDBRidSWcahrZyDubzqgOXqg8DV25ZF1YVzeG4AeyEAAAAgAElEQVQpT0wvCXfm+/bvlatNU38JZLzHHXeavJ/drhqumsvfWi7jC7e/jOkHD8dHJ4+29lXvkw0V2c2bxEpkvuekkA4fiCOEWWir/X8W51BKKKQVDpJp953NmkOdw7d4YdlGnDBhqEtXU/3pDuhxxCElRtJvW75fgeKdn/mIQ/t2yHV4fOMvC1Ag4IcfORwlZeKZyus7RG4Rsk3gahkO874HycT1GbvZvGZ/6m480RTp5wmYRCvptNw+F0xaS6mMhxe8i4cXvBsTB0sdrmuHq8d8Vv+C/pDxXt968/Igyzzy2lq8+NYmTBjW194+8z6rba1k85CuUTgHbuHXy7roYdbk5JZciG1XQo8jDlmfx3a/QKQQh+y2uMHvOj7umBUEuvvhRw530jkce+UTmXWWLGKlag1bbrG65YXludrNqTtMEgBDuq1dljjIv0Lg2sfTzow6uG/Nieqs4TOUKgb0qjXK8V09n11AZCaE+w3unVl+5eY9WLl5D+av2mbNt2ZbOlaUS9+tkhidOFgU0mo9LubW5nDf8fXA3mkrNxts868roucppFNiJH3HYB6xBYrFFC6Ho+cJTLd+hznQmjqoXHeKnEK62co5VIc8cHPqoflrc7Wb14HPdE5xqSwS9558fT042EyOZ729Gdc9tSx1P5WfefBGxsvZttipY2rskHhhnrhPXy0fX/6Ozx6XSpOPbzI4sHMyXEPV2/26jLk+Fu5F719arKS0lbNdl9AbNTl1CN2Nc+h5xEGXU2aImVQEOodgQJjGV6Ws8jf/8prxXmJQOVbPra9bmRO6uGrb4h1aDXGMTWnLwZS/Rfu4dymnr+ndPGFCMs6j3Dmef+OLiXSTBRInqmCV/JZn050dZVZdkWnyPyAQLjx+f/bep38/x9iu6Ytx31ImVWMv4bJWcnGvor5ov/VvsKc5Fk8mzspwEHGZ3nHSOCTfS9D9MLo6eh5xyPg+tsWNKN75uZxzy1srmSa2Ga7WSnp9m3c14yePLYnKb7IRhwT9qXwQV2NzpE5qFyROG1P63mLxMtbL12iyLNMu7765vFMdl53jHGzfWXXIFCI+n0MnDsldsFI3Af9zVsrH1IibLpgSipXS9xav3Y6nGE6rmsub2zgz50nHUkre3669T1M+/X5Qd3abeaVE3U0h3fOIQ9Z9SwZV52A8ZSpD6G2qf5BFfqkqkp05EyJ85/7X8Kunl+GZJevxm3+8iQfnrzFmr14oq+x6VEUn1+xtM9/J1aK6dqr1tZTK5o261q4uITDt8nY18eIZVqzEiHJsb+fiP7ys5BNRIEVdfFGNQG596oo47dDhgZ8D06sP/uI5zF2x1Vi+Gh7Szy/NDn9iW09TC7qWWXU6U+/xXvxJmOa3ShBsYqIP//K5VJoXK3VxZHpyWu5t3tUccQ/cLuDLd72CHU32M5ZN9Q/sXcumb97VnNQ5OI6vuiJFO9dSWeB/H3k9YXpp61db1h6X8b9Pv3ql3XSBtoiV1NpaSmUnERkpRF/CpDw0hU5xVUi7vtxyOSYKerRdE5dXiTDQ5iENALVFc9ttxW+efct6v6ZgdtAL+pK8py++TS2qri4G78Wvi5sNYiVVPMUM9pZSGbuaWlMHHZnyd2X0QOJgv//XV1Yb79UWAye4+poiKzL466trEoOCU6yaBl3/XjxxOOYHjydMP12Hl2q656LgdfG6XWmJKZVVNk/+3KHHDdlbSkITOanXyYb1V2Qy+5XOcDq4ed/EjBE1W12xgKlj+ThWArFYycY5VLpYR8UssZWCtgv4xHFxCJL2OgyLIwIfn7qfnXPQfutzS+2rqivi5mCqLqO1Upy+ZN2O1P3P/eFlTPruY2xZmxNqV0SPIw4qDvrWI6m0vy9aZ8wvZb8NtQVr1EyJPNEz+jWYrTJUHwZX8U+w67LnuVNV0CrTw8RSn/jjpzPbdRF5qCd4cdmLuWkDL1fSD4Mxl08j70R2tVZSn3f8sD740mkT2fqEiMVKrvLwPFZesk7KoA41RcJVZx/uXO+08YMxhAlkmBdHjB6AYgbnkHV+g3pbNTtlxUpakmnoqGWve3Ip5q9Kit44PY2EV0h3caiDwGWB58qaOAcdedY414ntrnLIjkL5uxeW441w96ObgFYK1/69ujKYVBwxyStWUrN/+/6F0XUgVsruGx8XKd87mDA87QTGiZXy6Hb69wo2DDv0yMGaVZNEJZ7tQVRWc5/UsBNB28m/OmoKharwFtJs3FaXSr/HD+2T2tQIARw0vB9u+/RUXHLKAVE6v/lJpt3ywttsm3rZ//erFyw91PpbTZlcB6DnEYccQ3do3+QOSJasd+QcOBitnCwDRz2M5tmlbmdnC+H2pE8sDjilpM6h8kHsOgGkiIrLbfJHMMEkhdLFSioSVj5Ic1l5lYdc1M8shbQQ5s8uBDAiDCMyaVT/1L34urJvJUdHls5BF2llNVdTtO/2XVEg/rsk+qJcFwuUmFvrtzfi0YXvYvmmXTjpwGFoqC3iqa+ejHFD+7BWRq5dzmIoG2rNS2r3Ig09kTjk+EImh7kGV86Bc4IztWWpZ6sS5Ote5nyChWvS3qnqIu2yo1QnVltOc8uLauymjH4OmmzAfgpbEnkjqnKkmOM+XB9XQGBI3zo8+uUTcdXZhyf6Xok5tAlZYyPFOWQscTUFcziOPCiLgEC4KqSLBUq8l6lXPQkgKR0YP6wvjh07yDlycCUhP2xWh+14uGW7oOcRhxx50wquAIUCGWWSKvIEdHMdN/U16U92xnXPV1wfl68t55w4h52Wf6ugo/ulwYO5tZT0kE5a+cRQF8jvfPjQoGxOzoF77Kx3IWDmbMoi6NfB+/ZHQ20Rj335pMS9oE1hNaBwhVUhnVMBVFMoVMWiKfBudzdlJSInS7kCEa+QZr8f3y8b+jfwhiVAfr+IzkbPIw4ZI/eoMQPjvKmywd+A084eidzEdwnY9y4Th0bC5jGabCffTkXNunht2gyvknpsuOzOV4L87chs6zoHEwjA8P4NAOJ4QtUwO+QIjJpiX/hEQtE+vF+DUi4o+NCCtbhV8QkxERruHAFVIW0bJ50lVmoNQ5/YCKweO8nFMbVQ4Ot0TbvpeV4XIWELy929+AYH4kBEtxDReiJ6TUn7HhGt1s6UlveuIKJlRLSEiE5X0icT0YLw3nUUbumIqJ6I7g7TZxHR2Oo+YhK2D9S/oSaxM9fHhpwoWTuaGJWJlTgTOYk+9a7EIV52L7rVHDohbr86QzevmKg9Tb8PHz3AKGvRQ5R/58OH4tp/ORLHjR8c3s/Xlp594j59sXB1WtznunAKINn3hEFWUMf2PbonOf+w7/3RU3z9sB8TCgB1jpsRibzxhvT+SJTK5ZSoSOKNdTsindrpk4Zj0fdPN+bVUSRyPudcr6+ptYS/zTM7kgJ2Md3eqJD+PYAZTPq1Qoijwn8PAwARHQrgfACTwjLXE5EcXTcAuBjAxPCfrPMiAFuEEBMAXAvgRxU+ixNs36eoyEsvuGV2KirmhDAAWkE5PavZopiWx0Wq0E3fuH7ZFpCTJg4z3qsEsi3bezlsVH+ccpBbu3mHfyUTZt/+DZl5/vKF9+BT7xnrXGevuiLOPnp0tPPL2y89+9Y9LWwk0mQZYeZsRHKp57zAXRZiIsIOSwj0LIV077okcYitlfhCxUqtlbRCrWWB2gKhpSQSbc1ZvhkfuPZZ/O6F5SgLgZpiAb3rapzFSsWCgTgwvb77pZWJ33+ey4vwXE2m9zqdgxDiWQCup2OfBeAuIUSTEOJtAMsATCWiEQD6CyFmiuAN3QbgI0qZW8PrewFMJ6rEKM8V5g9ULMTbKPV0N4mG2mCiEOId748ffd3amnq+MQC88S7PFQjDdaVwYbFN7eso5pAj5w68V8HDusjBxw/rG5zc53RCdJwnT0h2Fau3Jh0EdxsWZPV5W0oCx40fgpMOTBNeAc0cWbmWfdPfQ65Zo7IOFujEIQs1BTMrMrRvPX8D6cW5VBaRI6e6mC/fFLzn11ZvA0T8vQrkRtALJiLCpH1HMYsGgC27+QgD/3xzU3RdjTPCuwraonP4IhHND8VOg8K0UQBUcrsqTBsVXuvpiTJCiFYA2wAkQ2RWEdmcQzLD98+ahMumB45KsVgp5jCWbdhpb1D3vC0LnHnkSJwXHv6SF+4HwgDPLMk2e5XvwzaxKOM+EO9sc4tj2nnGuCyYap6skOwm/PHFFYnfJtmzOr6aWksoFgg/OGtSOp8QCW5BvZZ9q8axk7IG03dIcQ6wc5o1RbO10qEj++OMw0ew91KmxCURET/2JMSQGMj+FzP0ExImIuLytXV/Ewl1I2YL19LNomdUTBxuAHAAgKMArAXw0zDdFE7IFmbIOQQREV1MRHOIaM6GDW72/k4VhyhS2q56cJ+6SA8hdzLqASkNWTJZrT4hBPo31GDcsD6pdBvkOuBqZpr3hDBbtS4LbCyOSd9738H7GMtVMmHyLviZeZXrOCS7e8c40aKROCjVSie5mmJ6GpZTYiWVcwgq0c1MXaPQqqAMot6rlhcrmVBbLFjfnYvfCRA8Y134fKrYJl40AiIkX3OByMkayCRW4szBdahRc+sU3aRKvHqaziEFIcQ6IURJCFEG8FsAU8NbqwCMUbKOBrAmTB/NpCfKEFENgAEwiLGEEDcKIaYIIaYMG1aZ7N32fQqMjXbvumI0OOvCnYwqp7U5vQBpi5VyyArnPTNBLjbtd86wuUCBIZo6bP1ztTipJkj7q0M3g5TQxUoHaEScA+fsZuYclHKhr0wtkzcwc7UTGL2N3WF9eTgKOQ5NX4EjXDYUmTmUaM/0TNrv1rKIOPVEnKvw8r65q7BlV3NUH7mKlQyK66setouHAWCHEuV19MD4nHNXy7buRRoqJA6hDkHibADSkukBAOeHFkjjECieZwsh1gLYQUTTQn3CBQDuV8pcGF6fC+Ap0Y6yBtuOWsZy2dMcT/aG2iIGh7Fihg8IFKGqrXRDrZ1z4M61Dc6i1vqV8cTRouU6EKso+3cRKxW1RVWFbfJU8qFdI60Gf/PVHZ3XIRX1DmW4V2NyzFPzHrxvPwD8Yi4snIMcw7pCencYTvylb56W3WfpIR1xDnHH7n4pFpGlTFm1vzoCxzVzuya6pY9XVedwzWPxwq3O3+2NrVH/Tf4LOkzWSi5QHerU4JAJh1NL+e6mkM48Q5qI7gRwCoChRLQKwHcBnEJERyEYI8sBfA4AhBALiegeAIsAtAK4VAghV9pLEFg+9QLwSPgPAG4G8AciWoaAYzi/Gg9mglXnEOoSTvvZP6K0XrVF/Otx+2NAr1qcecRIAFKsFNznnNJUpDiH0H5bXzsSRIvpY02B0ATANeRPXic4+24vu76Ic2Bqsk3adzbtMt5rC7JoginUNelEzok6pJOydA63f+Y4TBoZhMXgdudCE8YmdA5lvo1d4SFJgx0C3ymi+xS+ft+CuN2Un4P9hZjOh5BljURT+91aKkfhwu+cvRL/e84RiX5H7YVPUCwQmrODFoScg/n+TRdMwRvrd+DHjy5hy0oUledIEBvHk/66AzKJgxDi40zyzZb8VwK4kkmfAyB1TJUQohHAeVn9qBYyxUoCWL11T5TWu64GxQLhrKNGRWnqBMj63HoYBiGShwZx/WLPOMgtVsqnm7DrHMwTXkIucFw9tiB2X7h9bnYnU/3JkdeJy2B+5+AcuHedJc6avP+giOs0maSqfU9aK0nOIUlUjhuXDv+dy68C6fFa1MdpVC9fT5ZprAtHBQAHDu+Xej61/ag9iv+6jPnaSFRVTulsAGBQnzr0M3g5q+9CJczOYqXuRRt6oIe0TaxEaXmprpADkqasWQMyrXMIxEq67FXNxSnW8trfu3LO7tZK9npinYNev8Cst82W0O0VxlhdNKK+JDqWziuhmjvaFlepb+JyZPk4qG1yprk2a6Vo168V239IWj9y/6u805bss66QbtaJg4FwGc2JyUxQiSh1eFC6R8Bl0yfipgunsG3o41Ry7oFCOnssydD42/ekvcaDesyiL/VdqHQroZC2tN1TrJW6LbI4Bz1DQ136FRUUt9KsD57WOQTt/HOZ+YjEz9yW9miWu0vXuEd5PZ4zrZUM96eGu9VY55DM+LrBr0Nip8VBC0iHfmhsKTmGxIiNB/JCNXe0ituQj2ADMbFRuQJuhyxjK0VtMZyDC0y2+Xq9crw0tdiJQ1bTtvMhhBBGoqIusNPGD8bA3nVGXYwKyX0VM8RFEgPCExd1B1cJ7lRACTVd5SISpqw5rZVeW70Nc1dssfYZCMZ9Xt+ltqLHEQcbuIiSLOegLh4VcA5E6RAZrjL9VDBAQ8Hc/gZZ1krafXnUp5wLsc4hiQ/+In2Wbh48oJx7/ciCtTj4249GjlA2ZIme1H7qoidKcA7mOuIxkNmduF1m188ughBGkZhL3yRciaM752Af91nnQ3CEENDMgSN9CPdekpDcm6sTXN/6gDiYzgK3vS9V/KcSa9W8XC//fdWHheneh3/5PM65/p+WVoMN5sHffhTff3CRNV+10eOIg4vOQQVHHAqK+CnLttqkc0iJXzJ2+nKnkj7rls9v2mWkFeFxv0zgYkkdf0DST1HuCKutdGtQFP55z3kA4OgUkfyphoo2fZczjxypWO7k4Bz4JiObfjWcid71333q2ER7Lu2aTEdnHLZveD+ZrnMOqfFi4Zhv+dQUq85h9dY9RjGV6/koW3clOSE5P8nRCkm2bnp3NuMLE0G3WuMptyqdG/Lsk79UIQJvHvQ84mDVOaTvc5YkKufw0nJ7ZBH9LGKpc7Adacj2rciLlYxRXg319K1P2iC4sKpc5E59iuf1w9BhOloyy1Q4Cy47Z93zVTWLND1OkZILuStiziHZsy+cekDivkB6YT5s1AAAqr4ruz1uLX78P0/CtR87KuiH9HMI62rSfDZcFcgA0Ku2xhrI760Nu4zyfJVz0PUhKn76+BuJ35FYycEXR63TrFA3G1+oc81krcQR4/suOT4sn90/DtIKrU/OUCZtRc8jDpYPVNQ4h48ew4e4IGUgquchc9jdnFx4yqE53yeP39+pv1HfDDJ9067FlK5Pdungl8U5zFu1TUtLipFizsZcjw2mHa7KueWpO1OspNSlR09NKqT58iqXmYs4SP8CLV13Rgs4h2SuOESJm0hTrVfFvgMaIg/faLGUOgdtB6/HAos4Zs5Ci/iNRPIZ+A9jC2BpQ304PgoFt515/Lzm+7bDGgf0qsVL3zwtMb5sCmkhBMYM6h22WdnkkO9GNytub/Q84mC5p4t7TM6hAevs9qH/oQXwK4eT/rMnjgcAfPqEcUG/Muo7aszARNiOuL68xCH5Wy4GVmslhmWPqgmTbeEzOBy938DEb9Ni3qc+09qaRaSQVus1PKPckat9cXH6i5XWOcRKjM5B/a0u/Por0R0hKxXgqXL/SMwScQ7JRVoX5amcjQ6Xc59NfhO6rsMVvVWxUg5iaZ1vhntlEXDew/rVJ8OZZCikU74zOSG/SaXh0CtFZTOvG8M2KHTXf7PVgvvEvG3mO/j+WYcl2i5QEJtlyQ9ngEC45YW32fH4yJdOxL79G7Byy24cOLwf/jZ/bWoCmIhAq0EZou9GpTe47XnYtxAmRjb3xfSkM+0Gp40fjD2abNvVc9YV2QrpuN4TJw7V+qJyBXz76ljJM+nfDjlNI1eA+K+JgORy0GPeg6oT1nfSCwwh5XVw7yXgHDL0elp/yiIQ0TUpx+5GBFTNVxbszrlXKGpxCfGiVmrjHEz31DGT0DkoDb+0PGl5tP/QPqwXeh7IeVSNQIt54DkHBTJ8hoRJ1JF1QpUJciGXRKe+pphaFFSMGNCAQX3qcMTogWioLYa71WQenQaMGxrYuje3unEOkiW2iwLSaXIHJidGMVxx1P7pIjWJXrXFVHsmQtxW671EedP3TFkrJU1ZRw5Inx8RBJgD1u9oxC+fXOrcnwcMh8XEu0uBdzbtwuZdzawVlexT8Dd+uN9eMIWtdzbjY5LkHJJtfO9vdosY+d248V8gZFJl/TuXhcDstzejKYNzMHEFvSKdg6NYKfxr1TmYqUNEWAuOCulTD9pHCeaY2T0WMefQsct1zyMO1l1NepHgwO2Ojh07KPF7aN86HLPfQAzvH8ewl2NI3QHYjq7QleGcuEOfND//l6MwpE+dkXO49NQJid91NUH7CxS5+yEj+mvtmvsoWerYfD3uz54W3lyQi4NjakFdAPOIb2R9CYW70maiea3xJOcAvFfjLIA4IurX7p2Pu7RDYXQcOWag9b4KIYAfPxaEblA99YN+yTwiyisxbmhv5zY4Yp/Xk5rPTsriy9enJz80fy0+9puZ+MPMd5Q2Qr2M0k/TAiwV0vqYkpukVA+jSvn6bCLFIER4UF511zAd9jMxOhwsLl8JvM6hw5AhVlJum74FMSzsnz7/nlS+EQN6JayD5ODg1lpu3OgyRs4LNGX1FPbP5Hn84TA+lIQMG60ebJJWlqYhn0FyHnKxTHIOBltycguvrNeXBfVgJXUnngX9Oyed4Hh/g9qQqLqcAuZ2Ylt8PW9lINrZ1ZS2ogLivqnvpphjV5k8RCj4a3pLF713XOK3zZQ18Pw3t/tv0/ZLpS0PY2upY4U7YMhEHKRYSR9TpvxZnINNPKWK+tQNnmkMyGpiZ0m+XhsWr92OL98dnLdusuhrL/Q44sB9+EGh16R+2I/JCclFYdncWk7JL5et35mqN97HpOvTZYycF6geuG77nhYUyDxgU3btTLhpXSbNcQ4yJQpnXpOOrbTHQBw4hyXT28x6z2cfPSryEdiumKRGnINlokd5Uxxj0lqJW/Bkm5nneSCfVZEQqjc8L3rjQnu0VVlp6uJXP3Agn5/5Yup75OqbuE+/6F1KcZD6iAN61eIn5x2JY/aTXHhcn9yEjNc4gkispFkrGYmDg85hSF9+ERZCPXlOUUibxpjcDBaSv/PgV08vi8zhZeiPjkLPIw5M2o8+egTmfecDgYe0ksG0C3KZh40t5RSH8fHfvgggGRfeZnetT3iOKOmhNijcveme2XI3RgC++aFDEv3U8cVTJ0bX0gJFxaWnHhClyYFbF3EOcbscgfrdp45ld2eTRg5I5QXiCbWjsYX1KRncpy4iTNwCaZqQVz28OLrWSyWd4PhxIDklzg/jk9P2T/zO448gECte9W8o+yEXPvWuq8hBD85HltVy7JDe6F2XXJBsgRoLlDbJTdxXYxMxW/hBvWtx7uTR7GZEcsz6c/YyiJWMHtyaX0f6PnDG4SMwtG99ihAlTp5TQ3Yb9HbyZ1t0DurmTx8P7Y2eRxyY91tfW8SA3rWpnb5JSUrIVkg3l8opk1cpJki425N5MqUtWtJiJX13/t4JQ1EgSi3MsiYiwoRQFgrwnMOMw/bFg//xXgCByWZazBQfViTloXKxlL1buXk33tqQ9gE59eB9WJv0cyePSuUFYoX7F26fi5Wb96Tuq1xIUpcT/DXtIB+av1apg3nPCbl+ehzItuqYkO3Haguwy5RWLZFqIuKQ/IY6R5Ewu84yzwpx9+eOT7Yb9dHOCURguJa4rngjwem8koEEw2dR6tHfZULnYJhvMvZZYG6dnT/LcqgsAl3f8QcMSbyRllIZD85fiw07mhL9D8rwBDMSI2u/80At8viidfjDi++YM1cZPZA4pD9QdDZ0hgOPRKEQfDRb3pEDGlImr3KdYk08dQUtMy+DhTC4fnvjLmzb3ZKyS5eBw3TiIJQ6Tj14Hzz65RPxngOGsJwDAIwNd02FgplIAvEiEIuVBHY2teLEHz+Nr/5pHltGWnvd+s/lUdpOQ6wbOaEWrtnO3i8QYXdzCU8uXpfYVRKz+JigP17yEHphsF0P/zL1Tdynb3RWA5BXrBSfeaDrjYopjqLtO0mVc33xrU3O5TiaK01ZAWDx2nTAxQQBYzjmeouIThJE/X2rYiX1PZtUQTExzG5Hre/O2cEBSDukHkglXGFbJlFpxDkY2syDb//1texMVULPIw5MWrTjzMk5mOb8rz5xNO77wnuMJq86cdA5lrqaAi4+aTzbT1nfqT95BjN+8SzfAZhDYctF6OB9+6OhtshyDkA8MYqMWEmKrtRnqVXOc7jmUfuRi1Ks9N0HYiX4u9vSXAGQLZKRROCiW+ewC3UlrHzClFUYFPIwU4dDRvTH8ePj2FNqH8YP7cMexqNKd6TPSFqsRKgpUBSvS623Uu9bdbE8/8YXM/PLVkwe0oWIu0mvzqMG9Yo5WK0+gOEclGtOlKaW0cVKxl26RYyrltPnpGqwofeNMxBQ25Dfs1IvcB0mE/Fqo+cRB4tsn4DEiDCasoYDxzQdP3DovhgxoJfRISi129fut5bKqGWsT4iSCum1hjMDCgWgxbSqKo0Fh63z2eTcLhTSxAGIQx7LnZucpGUh4t2VAZxC2rRrzNp11yk2hVxON2ultFgpMmVFuOiluAt7nWqVah/69arF4aN4/QoQjJdixDmkP05NkSKiMVPZ6XMH17ggEmuyYiK+f+pfFap+So8pBgAnTozPfZdERH03dSnTbfu3BWLb/wIlvfjN1kpyF8/fV32RbEOHEyvpY03+ri0WUF9TyAxPz/aX+QjVIjJZ6HnEwWIVFJx4FsM0/6WieeabSTb8yNHBpJcHmugK6f2HBLbo0w/eJ92vMF+5LEK5Z7r1ArkFyisQpRaWWOeQrM+0+MbObZS25kEccuLg0CeiXrVWyuhigdJWV586YSx+9YmjcfU5hyfSsx63QTF7vO6JtDOaukiYqkqLlZIh2QNO0V4mXaeysKk7fCFYwlJQWAeTQhoAagsFtJYEXn5nM24LfQO+8aGDMbRvfSqvC2zPwRHWWCHNcw6SsGWZ+Eacg1KNzjmcfOCweNNhGAhy7qqLeVNriSWsso/hg7CQ455g31h88X2xv5BJ56D+7t+rNmGI0hZ0lF46kzgQ0S1EtJ6IXlDwTaMAACAASURBVFPSBhPR40S0NPw7SLl3BREtI6IlRHS6kj6ZiBaE966jcPYQUT0R3R2mzyKisdV9RA0s5xAqtZAc9DZrJSEEbnzurUT67Z+dhocue2+0MJC2+E4Y1hcH79sPHzx8RKKcegyn7jegQo3no2Pq2MH4x3+fEj2HWaykXqfrk7GeBvaqxTnHjMLvPnUsSyQ/f/IBeP7rp+J/zzkc750wFOdODoIUugY/0/PVFgv48BEjMXpQ0pkrqz7VlPTuOWlnNJeJpD9fwpQVJv2PmwI46ENS3MGVjRXSAsP7BR7ZX59xcCpfsUhoLZexYUccuvrUg9KbjbzgXhNHnNT3okM9/tY0/qQuS/5V54d+HntdTQFXnX14mM/W+yRBP+hbj2KXyccG6f6rfYiIENnbPHB4v+japHNQ0a++JhX9t1JUGoYjL1w4h98DmKGlXQ7gSSHERABPhr9BRIcCOB/ApLDM9UQkZ+8NAC4GMDH8J+u8CMAWIcQEANcC+FGlD+MCm85BlzOaEOwqgJ3aTqBvfU3CJJO09hpbS2wgOVX8JBW8XBwVXaykYuq4wdExkQUitJR5hbS6o5WKdXWXJRf5QoHws48dhaP3G5S2WiFCsUAYPag3hvdvwB8/cxwGhr4iDoyDlWXvXZ8UL9kmXF1NITOk9wHDeE9ZvT8qVKLO6RxUr3cTTKSjXOatgNRFq19DDUYOaMCZR45M5aspFNBaFqxlViXgdvAS3AIvF0/TudmS6zEF0jv76FG453PH45yjR4X1xPc4yy/VxNeGQsEx8B5jVqoSwZg2uL9UU0iRhMisplCROMjlwKP2QiZxEEI8C0A3MD8LwK3h9a0APqKk3yWEaBJCvA1gGYCpRDQCQH8hxEwRvMnbtDKyrnsBTCdu9lQJ3PhRWVO3nW+w08+SIaqLYLkssHFHs/FkOdmqHKiczb4tLLE6ed7auIs1I+WeoyxEQj4sw2kknyOzqoTsOmtnYzu1a9/+yThGtqpOPnBYarep49MnjEO/jMiunLVSLFsXICL88uNHR/cnjRwQERR98sqxdOF7xmLSyP6Ysv8ghnPg+hC/Pxm5l8PGnU24Y9YKbEkcepPOe+unp7LlmYaDdpklhxMNlSLiwFcln00t+8RXTsIDXzwhzEOYOm4w68HOEQfVxDfrMZy4RIbYqIt2ZIVmEbnqML0TddNRWyxYRW15CEe1D9QyoVKdw3AhxFoACP9KvnYUAJW3XxWmjQqv9fREGSFEK4BtAJLHjFUR3CRQ7ZGT8mG+DqJgB2gyA03kCyv5+RNvYMm6HWhk4g2pwb7kbi2vWClz8jBpchFUuQxW5OFUV/BXCDfOwfQcI7QgdzLfZu0EsDGDe+GXHz+a1c1c8cFYHFMoEKZoca90cBFS9TOkzzxyZBTczhQm4r8+cCCW/CBgiEcO7IWHLjsR+/SvT40pm1ipFBLXrGgY6jkiHLEZM6iXvQLZbtSx9D2WOAiB9dsbcceswLTzxk9OjvpeCDlKveyEffrhiNHJ+FKcY5iukE7ms4+q4LCf7I2Jzim1lsqR78KAXrWYHHpnq1x/Vp2cxzqQJNC1iiEBh6cMpxyye4SuonPICdOj2B7R+fGJ6GIimkNEczZs2MBlyQT3nUsGOaPpGxTCgSjLcaaJQX/jOv4WOl2xslCKiZYU8XBiJU6RG/VVST/tkOGGnuv1BYugKj4wibOyoMaP4d5xn7piZJ6ri8dsgQhNzzt2SB801BbZvg3vn46imgeSeL38zmbsaGxN6ANkH7kFvlCgdLBEpE0suYVfcnovL99i1Esk+6i0wRIbN+ZbNaHVoS5mknMqlwVmK57qH5i0b/S9VeMFzlqJbVd5N88sSc9p9SyE5taycaGWc0MfL6ccNCzxW3/eb9//Gk75yTMAgP8+/aBILEbKWpC18TKZsqrOprXFpFhpe2MLvnLPq0r/+bq55C6jkDZgXSgqQvhXkr1VAMYo+UYDWBOmj2bSE2WIqAbAAKTFWAAAIcSNQogpQogpw4YN47JkgnuvIqINyU9hMoerCeWbclDoIQkkpLXSVQ8vjuL4D2XitpDSsVghze8uTVYbh4yIFWRS/q+iVnFSU9sti+Quz7artUGVDXM9/OL7JuIbYdgO3Urqhn89xlivicOIxTpptFUoKYnXR2+YGbYRLlCRmaOy01e4Lq6ruh6rHIqpdMhFrLZYQNnAXQDpsyeC/jHtsqW5fOkdvMQPP3JYdH3wvsH4ai0LYxynQCEdXGdZK8WRSuO0d7enTbNlS5t2NuHAbz2CNw3i0gIF81X1zP7yaRPx+3/XxWtJTuRPc2KBhirWUo8LzTqb2mTKqqKuJilWuunZt/DnufGZ0BwHbEKlPi15USlxeADAheH1hQDuV9LPDy2QxiFQPM8ORU87iGhaqE+4QCsj6zoXwFOiHdXxXNXD+gUKRl3OaFyYChQOxFD0YBI/he3d+Gxs1bRPv/SuVl0H5C6ei92uOsHpOOuoOPwEN3fv+dzx+NL0iYkosYVQd6IOWm7X7aScUyY7947VfuscUL1FqSyEwFsbdqbSI79Fi/y+UujES5d7F4iwakvgtPfXV+PzGXjzzqTy3SRWkqaoApKA8H37YhhyXX1//Dvgy5vycQvOOcoxuapfgikCbLFAsSlrhgzdNWqufFd6+PJUPmn+q3LBlo2OzKVyR6r+ShprANnEIdY5mPMFOgd1bdH6b/pgTHoHqRycTFnvBDATwEFEtIqILgJwNYD3E9FSAO8Pf0MIsRDAPQAWAXgUwKVCCClHuQTATQiU1G8CeCRMvxnAECJaBuArCC2f2gvqex0/rA9e+uZp2DeUc5N23yQjrAmJQ5bPAWf9xCl8Zb/e2bQLVz8aBITj/RzcFOacaOjA4f3wn+8/MLFwyjDHrQmFtFkpaPot+xY8CL+vEQni4K5UKwvgkj/OTaV/9QMHBX3hrDnaOHt04iVbkH0uFEhTCMd9TdeV3nDwCungb6ksjAREtg0kd+bcO3C1ttFl8BJfPm1i4rdcaEtlYdzl1hRicZvJlDTVblb/GA5D4gdnTYquORNaLhihqmO5bebyxL2+CcOFeAyYrKB+96ljAQAPhiJj27CrKSRD2ujj33TKGy9W6hjqkBkDVgjxccOt6Yb8VwK4kkmfA+AwJr0RwHlZ/agalPdaU6CIawCSckYAKBnkpsUCheaEskqz6MPlxDMZ0+kzt87B0jCsN8c56MHFJKaaIm1mQC5criIAG+IFFOyMV5sIiFJSvGVCWfCCKnkgEfeoJnm3KYS4Dp14qQpXIFCccgskK1ZCcmEziYyKys7cREBkfUCSOHCLl+vxDrIr0uNd4kvTNeKgBP3jvPeDNikSDV0THlhkgmuk0kj8xFCH4w8YmsrXVCopaWZdTEupnAqJoXrpkyLrNa0Dp2rOrFbOoaaQMO/Vc5oCJ3LJXYZz2NugLjQp+3Ykz3PI4hxsZn1Bfel7vMI3+ODqhOcWHz24mIR0XIvyORMHCnUOGRwQ0u+Jqwsw79ovOH7/RF7XAW56tzaCZeqDJLxZ0BXmckH5wKThuOi94/DtDx/KfkeOiEnRnYRJZCS/WUwcTIuFXNzs4k/X84blt9Q5oZQFFxPuQvfKLhI5ewFL+pLN5dnET2kuoSVhXGGqjR/z6smFgUg4uHbxnwj6aL5Xp5my6s+TJxy3Jw7tBPXF8s5P8W8ueBgQDMRWJ7GSK+cQDPOkXbS7WCl9Ypy1W0r/EPo5ZJvkutQFhDoHZdLO/uZ0LPr+6RikWHTlESsZ4/JbFNJtnTu67ulv4bnPtcUCvv3hQzG4Tx3L2bFdJSROKDObssY7c5ufg/y2quMi947yHkafdR5ELFaKTZ+v1wwJCgVyPpGOrIu+UqemIzDnk2IlN+MKbswfvd/ARD7Z5poMfQcQfINbnn/beL+2mDydUX9sk15DzffT844M0jpIId2xRwt1ASSIgzaOdR2BaUNdUwjEIqVYzM5CJzaAeWEQIrkIG8VKTFv6QuBuxhjskE3nTZvqsymBBZLPPKh3Xcpno1Awm+TqcNHrpNDGuaNzNlyAQ5Zz4MQ7KdNcXmSkipVM8ZfU+lQRBUfbXbnH2JAgY5EOP2FJiEjMojt01hSI3a2zzUY6lnRaol2FaOpIbvSCv7uU0O8sl470+wOCuGcqJ6SG71+6Ph1+XMfitTtws5U4aJyD9jwmziFhyBFxW5ndqQp6HnFQrtMTiJw4h2IYwiAubtjdIu34wi6sCHYD6iLMmQsWwx3tglXbEun6rs9111gI5aquNukueQJHJKUvht1bHoW0XbnqJt7JAxfOhuuR7uMg87nEVorESmWzXiLoW5C+dXcsvuEWTtcxINvVIwWb+xdb6XHH2OoY0CttVg3Ez+FqRs0SB6a+z//xZWt/TJyD7qSnbhT10/A4qGNuxIAG3KMdqqT7OeiPYwoUmNB9OXJb1UIPFCupikZuR6zoHAyLZo0m37RxDvqgZqcsSXGDWtYsVjr7+he0dD0f3x++PnebdKW7bF0AQg/ptCxYz9vEhCzgkLlIM2X1InlNW03ncCTa0H4fP34IPnti+gwOnQsxiYxk0rvbG/HU6+vNCukwfePOJqVOTiHt9sz1tcESsNtw2JKEqpCWY1rXixU0g4k+dUW8eAVrtxI9R2vCOz+djyMiQOBbNFFxMpP5VmzerbRhfge6qa0uxVV1Djbu9XMnj0ddTSFhBrvf4N4YMzgZQDLwc1DEStoIMnEOHGfVQYxDDyQOyjW36CU5B/4z6DsS08ciuCuzgv7E9XJxm2TMen0g6btz14ihnIc0BxezSJmjLITxjAi1XRW2V5T1+lykSqozlwuC92LPo/fr9s8ch151fNws/WxjViEdvhRp5ZN1zKUa4XO/Ib1T+UyOajqkhc6urDhhitjLFBxS98Pp21DDvhMgHqP9G2LOgl3MwyRVDPTxqWNw9+eOT+RnRXUWIqyLlXRiquoLbXO4GFreqbqWo/YbmMpXW0yasupVmjZo3Ga2K0Vl3augvtcTJiS9TdM6B0fiYMgnneWyIGtTB/v7mDMfgsB7fDu238Z2w4FtiqAZ57P/BhTOAcldLQedeOmRalVfi0pYaL2MHswvC5wJsg5952eix/qYMnkY62PKRLBVxWu/hhosv/qMxAKr58uC3PGqmxHVvDvqnyL7jx019U1JckNl21TIomp+G+fwxKJ1SirDjbLvNF2f7JMuStWfRdUXqn2U0WTjNiiKhyXx+ZMOSLVbWywkjFj0MbrbYGadfJ8BvM6h3RC82Rs/ORnTtRhE+hnSWWKlLHC5TMpcXQlpiq3E6UH0vHmslYQwP6fEk4uTQcFsYpGyEJnEQS8/ef9kYLznv34q1m1rwpm/et4hGmc+kZELbDGsJFxFV7rFWmtJGIwNkr9NO8lYIW0OYwG46xxkyHOVc7ApzEsiFitxhhBZi72SO6gvg5jIOuau2Gqtl411ZeMcNLHSiAHJQIWBWXsAuZA//V+nYNzQZAh4KTbMii4rjTJaymXUUSHlV2LywZH1fvvDhyY2YB2BHss5jBncmxnc+i7PpJB2Eyu5BriR7Watc/pRiGp6on/OYqVgAmRZK6mhC047ZB986j1jU3lihTSMO0uufwcph6ZI7NOvAQfuG8iTbaEkAINYKbVwm8uzdVL1lH66qLKlVGbNlPVvZuI4I1PWctlKAFzHgOQcVI9m20KrKqS5yMHvPzTecNkId/wcdmIiCYYav8zGuarIo5C+5JQDUvkisVKYlXuncRTa+Dm49yLnQmtJ4Ppn3sT9StgVwMw5lEUQEfii946L+n76z591OhGyreh5xCH8a7QaUpWHhjUzLVbi87my9rLdzEicBhNQmynrrz5xdMpyIu5fsAjmiSV/1TmHGw4sCtpctGZ7RGxM0VGTine+HddQzbxCWhf5xJkeT4gneCxYvQ2vKDtVDpwHNQdJgCVaDeEn9G9o1jnEi4xtvLiKFuVCph5aP3ZI+oCkaHEri4h7lX3+wVmTMD48VOmECUOj3bXN5YEzUeWNMIK/emwuUz4VVlNWZcx/7qTxqUOjaoqEllIgBooCLjLPw4UoN/koyed4bOG7iXt1NYXE+1dRKotIWa6KlRpb3bz924KeRxzCMcaxsMVCITFY28o58GIlfmEoCT5apwo9Tk9U3qKQPnHCsFR4DTVfoGAM6nziKyez+aaOjctzIhHZNwB4aMHayBLJdBCPunCZnb3kZLJbU3GBDG347G1z2DM1VKhmoiaon8H21f7xxgZs3tWM9TsaozDvJh8WFaaQDfLVNZfKzuJNG+RYblLOJvnh2WkFfqSQVjgH2f4njx+Lp756SqpOm86Bs1Zih0L0vBnEgXkXi9ZuN7arjiku8OPoQb3RXCpj/Y6mxHnqqXYja6oMIleIx7Pe/7pQH8EhCPFOqXqzzM+rgZ5HHMKlnBuIukWBLWR3os4My5IsbNzZjDtmrciUQhWIPwpRX2tUrrZoCQUcOcGFzzyICfUNJA9TN8eAidOl/Jpjr4O8yrWhb+qO0RSmGQAOHz0glZY1bQ7+9qMZOZK4+cIpTBv2xUBCmlYuXL09mtCsWEkbUy2Gsad6UrtyBxJ/vOg4pt3gr2qU0Ndwcp7cxJh0DhJyfti6F3MO6TQun8kPwFZ2+570blzmUolNQ216nPZvCN7BruZW/OqpZQD4sc8p1vn+BX85B0ddka+iXI45RLX5LPPzaqDnEYeIc0ijRjutyUTNpdmaPLnqe/9vEpsvzyH0ALBSsdE21ccxMzaxkk32LOWqm8K4OpwTF5Bc5E2iArUL8rXVGiLQ9lOsa0z1qYe8JMrW12D2N5O28zIIX9R+leWxY4emxSyunEOUH7EJKPee8+ocSmXhrHSWqGcWwUjBrYhZTOO2SEEIiCsfDiMHW0J32+oBVOc2u59DtJhn9I8ryxlvcJzD6EFpU2D5DGu3NkY6N94iKkm8brogvZFQ+1wWvAkw971bS2Ws2dYYjQ31uT1xaAfYdA41mljJhXP44GH74oBhfdl8Fi6ZRZZJqclzV58s6m/bAlKggD39+RNLAfA7WiBpfWEMLcy8UBPnoJqWZpk76gv9sH71KVFSFaQrRpwwYQj7fdVuuW4CWiyKer0KM3FwI/xZZaM6pFipVVVIG8oXgJff2ZI4+Y2DfD6rIYHkCJTnvOrsw5k2g3yqqS1XL9eXCxnDCTA6B/1oWiAZCFFPS/RPipUseokgX/CX92YvsBKBW2e+AwD408srlZ4HaGn1YqWqIxYBcYtZkCY5Au7ULSAesM0lu8VIbjOZjO9tCryXslZSxUpW4pC8Z1rM1bN9XRZCGaPmuvOPZu8nDlXJED2kdkjc7lJLq+a0OVTjSthWHD5zcG5G8Czs+eC6QtooVjKX0aGfCGiTmTc5cg5q343WaIyMPN1u8Fd9zmMZ3ZjMp8a3cj3KdtLItMiR4xzY96KY7uppKiKFdPj+ss7haC2XsXBNUhdSLPA6pk2hSbh8RWrVWRvJaqDHEQcJlnMIB35zqYwzjhiBr884OJ0JyUlhUwpytzgbaAm58OuhkKP6DE5waT8HUq6NzaUmlOlZVPGQbUHqE3rDlsplfHLa/qkQAlz/bARUD7Nh6qM+IfNYoXIbAHnaGlc314bLFqCxtRQrch1MWbP8HIBs4nDixORRujZTTBfiEERdpcRvDlLc5KJzSJqyuvHaPJFLXv/A4BUvsyXC43OLPiNusxERKTLMiol13ZPLUmarRYMuUU/xYqV2hlXnoHz8I0YNMMrg1UFiC1HMiUx0e2oV0tbcZt7pYn+vn/Zmgj7WTXnV3aJNlPEvx+6HfvU1aG4tW4mgPpFNIErvkHSTwyCfRhzMVaYwUnN+AoLYOFH/DB38yvsPTPTTBKkELovYIkg9VMZUhwvnkMXF6Xdt4phErCvDp9vR2Irnl220tqnWadU5hH+zPaSZ+i3iHQCYMnYwPjltf75duegnzn1wI5oscdWslczEIfj7yoot6TqKxOrJUlNdqdoTh3ZAbK3EiZWyZetA5ZzD+ceOcYrwaK6P0Mg4y+gmo65nlbseJZkQK2U8b1kE4ThsxEFt1taDAlHKB4MjjnodeWLPcBFc1Z29iRju078hdZQmhxEDG6I+Sbk+Z+JLRInxYjKGyMM56LdNR88CwLyVW1NplUK2Y9uYqFZXepoK16CCap9NJtSAquCO5xGnWI9ExypHxfo5BH9jzsHQbtg//XEu/+DBgaKfjTqbtArznEM7w8Y5FF0XfeXeJuYs4agOjfMwyfRNfUy1S8njHP/1uP3w3NdOxciByd2vq4mjqyLXutBr7baWgxDgdZZnTYq97MRGJw6cw15bFNLcu06IThxEIzZapOaRu1CO+9Hb/dnHjmTz5NE5uHjOs7vmNhKH2M/B1rfgb5I4pPNt2JGeXzaTUoDnzPQ29rTYxUVxKPNSKi3ZbpJzMBFE0zv9/MkHBDHYOLFSmFTDvM/mrq6QJqLlRLSAiF4lojlh2mAiepyIloZ/Byn5ryCiZUS0hIhOV9Inh/UsI6LrqD0C5oSIiAPTgmqt48o5PLHY7HGr1nfSgcPw3zMOytHTNAoFSh5lSGDl+s5RWR1XVVeiRhQvgDaCorZq6yqnkP6XY/dj2k1WwgWOM4GbYupO0vaO5BixEQdZupzBOQDxc4wY0IBzjhnN5snDOeirM6tQZT6Ay/D5/b8fa7wX+TnYmEdG58Dh4H3T4VW44ZjgHBiT3ajd8KXsVqyfWD2W9P9QNiOsCbJUSJf4SLV6fS2Kee2Pzz0iKEO8WKk18osJCqvfpbtwDqcKIY4SQkgD38sBPCmEmAjgyfA3iOhQAOcDmARgBoDriUiS+BsAXAxgYvhvRhX6xSK2VbKzpjZdgiuHoeb7zocPZaNncrDrHOLfbQ7bUW3OwZG1VxepLRZvZNI4h6f/6xR8+oSxqXwy0N+Bw/vi5gun4P8dOdKpv0A255DlJwLYDxdSOYfL71sAwPxuOHt2Ux4gOwCkzcRZgtMvuIwfk48D4KZzkF1frHgxc99i7NA+CQ99wG41BAANDpyDqhS2cQ5ZoWViPwepc+DzRVZhCsciI7wWC7xYKfaL2XvESmcBuDW8vhXAR5T0u4QQTUKItwEsAzCViEYA6C+EmCkCYfFtSpmqQ8qjuXGbJA7mOtSJYdtV1zjqMFyxbnvyuErTpsu1KVciYvJ/sLVr8rIFkhvaZet3mvMRJRTS44b2Ydn2Uw/aJ+xnAdMPGZ4rUiurc3B8gUVl4TdBdqUsBJaGz8qFawBUE1Bzfap5ahZHpz+GTaFqK8fW7TA/XHQOyTS3trK4HRvnIKHGMrLFusoiDvphRLbovHq7smyxwHMOsV9M+D4T97o+cRAA/k5ELxPRxWHacCHEWgAI/8qDCUYBWKmUXRWmjQqv9fQUiOhiIppDRHM2bNhQcYdNUAehnXOIr20LZ63jDlQHF/UUAJ5bmrQUOfPIEWw+5/McHPtT63hovEps9meCt0Xtuoq9KHtyAvFEroQAc/JpVSfwzBvmceYSQjnmLtQ27fGp7J7FFPlecItaIq/2hblQKjbfBxtcOAdbLXoTV519uJGzTvvx2Pu8j0WsyHEONoX0QwvWGutS+yJ3/qYhKOe/LhaWdXA6B7kR+PzJ48P8ceXN3SC20glCiGMAfBDApUR0kiUv99qEJT2dKMSNQogpQogpw4YN47Jkw6JzcOUcVMJRZ2FhVc7BNt+G9q2Lrn/9b5NxqWJnb8Itn5qC9xxgcNJzXnwd87kSG6U+Ll5NnM+pusBaKdwh/du0tK4hzhf8tRGH/ZnT0g4Z0R9XfCjty9KrLu67zfJJPR3N3DfJXaixfAyno0XiGGN1Yf+C8rYFOqgv+TvLBFTC5fvYOevs59Db/cRx5u/rcla1mmbyEwJ4Kymbn8Pr7+4AAJxxuGEjJnUnpSw/h+DvBOVoU9kXU/gMyRle9N5xQT8V4q4fc9oeaBNxEEKsCf+uB/AXAFMBrAtFRQj/ypNiVgEYoxQfDWBNmD6aSW8X2ExZEzGJLBNPHUx1Ns7BUcF9+2emRdcHDudDcQBBXHeJvvVm/YVrCG71Ffz63yY7lbFBfUSbyMNdJxKbskrRka0+G3fGmZ3+6KP8blVdvG0LsHxeF7GSmqctOgcA2LI7sOCxGUMEbSfr0T2mgfS4fPa/T3Xi7Fx0ci5+Di7Q+2M7pwGwc/PyHasyfpcQ6hccz/tNROKnkj0YYWxskParKRJPHFpKZdQVC1HZgxTlfJcWKxFRHyLqJ68BfADAawAeAHBhmO1CAPeH1w8AOJ+I6oloHALF8+xQ9LSDiKaFVkoXKGWqDpspq/pdbQuNOgBqLYpXdWGxHsyi1mdZVE87JF4gB/epM+bLOolNQp28w/qZ63OFWp9N5OG6MBQLMaEzOSQC8Y47T6gQIBkAUIXqi2LbnLuIsSI/glWxH0FWKPOstXmbQ0jxoO3g70kHDsPyq89gORb9EbjzqDnY5genQE23604e9KHEla11DPHCGVf0Yt9Lsg7TeJbNSks0Uz75nllTbIZz2LSzCTc882ZC59ZP0eO5WhC2BW05JnQ4gL+EVK0GwB1CiEeJ6CUA9xDRRQBWADgPAIQQC4noHgCLALQCuFQIIQVwlwD4PYBeAB4J/7ULbIH3VBltNRZzdaBYLVBUTsRCbJKss3kxd5W9q12qhvWw2qzdOTC+94Oz+Ii2Mp+cHLXW+sI2bTtGprxpkVYXi7wER4fM8fii+KhVk0JaNqWHDNFhEkul26ZEH9g8FX53J6JpqTpPs/o3WK8ZZgDuDqwcV2EzUY1/282Po01MRqTafzA6rJpC2mR7/uptxrYA4KOTeVPnaqJi4iCEeAtAylNHCLEJwPR0CUAIcSWAK5n0OQD4YChVhu2wnwTnUAXiUJsgDuY+uXpcq7s1m1ms68SrJLKoDergtYlj1KYmjUoHR1P7swjDPQAAEwpJREFU5MQ55DQBlTAShzqVOGS3a3t18TuJX7apXWnWu2rLHvZ+VN7BGifoX/JvNWEzVZbjytZunuGmE7AX3tyEr2h51Hljm7uuZtl6vqwjbxtbZFBFE+dgX0/2tCQ5hxWb7OH7OwI9z0PacthPcnGzsM2Os60isZIj52APY+HWPzXefVu9YvV2rWIl5dYx+w2y5ouJg62+4J6rV7uEaQfeK6FzsH23sG6rdVHwV9U5mDYUeY5rdYF8L1kiCHPkWTNsXsh3zFoBANajVtV39vf/tNmxpMfmrqb0IT6uY97mua9CJ35msVKQfufs4JldDrjSEZzTkiQOi5lT7CSO2W+gubIqoucRB0edg4tnbBYSYiVX4uDofGeDS3A+IHkKVxVog7NCWnJtfers4pFiIY7K6hLDqlqcQ10ipHg2UbK9ujwcmas/iWRCzjiCt6CRkE1n7ZYvm55tHafDhXuxmo0r7yWLeOnj/ooPHWLNYzcQoASB+M6HD2XzpYiDYfzphMqsc7BvNnVTVtMxoEt+OMN4Jny10fOIg7xgvlViwDou5l+zhMRwVZIlxVRtJ0qucecSB5lUQfbgfMiQ46hTdQ52qyEp3snXpk1UJWFb2yXB4WzUo/LhX5dPkvdc4I8zoURUyP5lEYdK9A42zkFiQC+z6FNVwNpEVED6G0wameZ01E9p81gH4vdx6Ij++HRoJqpD5ypN4kU9/LZpc9e3wSzBLxQo8rCWkN7RL33ztER6fU3RadxWAz2OOMiVk9U5KG+jt8XDV134bCaWCTloxs6Bqzudz+1zZZ1nK1HOjKUf47L3TcA3GJ8AFQVHDsg1GqwqVrIRzUj/mcG6qziSOXuag83PYfbbm8M82e3miRSb2afwb5YTnFxEshbfSvRNNj8WeVSmbb/RqAS0405iU6HPCW5sqYs3d5SuCqlTss01V85hp8Y5mMTCw/ubn7FI6VD8rSWBA4b1yRUnrNroccTBaq2UUPhaiIPjZHI5exlIDtK8u18OzmKlHAvWVz5wEC4+yXwWBaAp9B0W8ywkdRg2BXe2eEdfCL5zptlKCgBuvjBY4Gx01uk0rrDZah5rLQlNlhhKLmhZcnZ5m/ODMMFW56A+2fXI0PPTxg/O5Fz0+cadTa7myXrVI0NiZNPx6OPN1MX3Hzo8Wc4wuPvZ1pNi2pS1pVTuEHNVG3oecbDoHFSMN5wLDbgfJlOJKau1Pkfq4LoQqQNSDQVeKZxj6jvoCAD3IHNugd6S9ybvb1aEy/u964rWw5kum559nkNsnlpK9JXDRQYRh46Ic8gYD3L8ZYkh5OJsi4cFAHddHDtr2hb0KIqoZZbtGy7Qpx0y3JhHoo/WL27RHKyYdmdxaUvW7Uj8NWGqcmyp6XmH92/AkWNiBbHLUbs6OCe41rLI5AzbGz2QOFjirjsuqpzTDAd1cXN1qrPW58o5OFIHdUDaPLNd4ayQdjAB1e+77KJUUYWOrNDQOgb2rsOi78/AsWPT5xpLZC2mQEyUBvYKFq/bP3OcMa/rUiC/W5YuQRJU13MfsvJliackXL7V+GF9Mfsb050Ion5eCbdR6Ftfg3OOCUKyZTHErpssPRqsCXINHzukt/Ed2t6dGluppVTGo6+9i5ZS2WpG3RFoixNct0QcsjsNV3FMn/oavPTN0zAogw1PnI9bBV2C62CZPDbYFX/vTN4SQ0IOyK/NOAgDe7fdQ9pVUea6GL29cVd0bcv76GvvAgCeWWIOkldtM1HAzbpIEjipYDzs/7d3pkF2VFUA/s5MJiGZJDMwWZjsEULMQsgyBAJEFtlCKEaKRRCSsFQhJRTRHyIgaBVoGSilWDVQmggoYFmKgoAUWOwiS9hD2IksUuBCIAmBEHL80bdnXt7Sfd9Mv9fdzPmqXk3Pfffdvqfve336nnvuORH7OsK6k0eW5jAoJPSQiVrwhe4ZZJxZKby0cebSate8mgdEP0SNiLDDF1LcTlxCnbgF6cED+pWsFZTD16wTfjfnjK+sTKLT9UrXOsll97zM1fe+BkBHzOy21vQ95RAReK+ah0ufhaJiD4RK+Nrg21zIjLh9FvtPHsGTFxwUGWIDumcYSexxqIbwbHFmpcKdwlE34k8+qzxj6G4rvk61+CjDrjj+Hgvr4Q3kyNllgxJ3sfHTQJY45RAGg4sP7e03k/Od4e48YjDzJw3jnAXRDgy+hEqpc+YoLj12ZsV65faURNWLozC8dnuEIgvHdoJn6JFfnDCbg6ft2PV/vwbpengo3ACZhAdhb+h7ZiX3t5w91NfLx5cp7dFPgCG+roSjWwcya1yrV+7iOMUA3fscktgdDf4zLx/X02J8dkhHkdbMofj80V5cAXGX8UdHTmfEkAEMitkn8mmoHMos4G5z3nDmEHMzCt+fNCLaBLldUyM3nLoH00b5eYTFEdreVaP7GP6mfX/FK0+qnM0Otp2JRs38w0CII2O8rkKaGhtKNrSGv8XCsX/UecOlRR+cOVRekU7S3RD8zSy+NDQIt3xr78TaC2/mST2h+K51dC9I+7cdvfs5/vPlomH2Fp88F4XJYBok+iYTfifjzCLHdozl2I6xkXUAPnN5huPNSvEL+sH7saesCd7JppyYvg8pcd5ZQwcGt8c4x4MNnwQzjNaYmVxIsSdfY4N/n+tJn1MOIb01KyXNhZ3T6IiwWdaCcKaUmHJw1y8q9wL4P6kW0tsQ4PN2avM+ly8+eS7Crm3V+AXkwpSiSbBuU/BEG5eettqZXJ2tkF5JlaC7/3G/4/D6xpnbFu7azuNrP+DEiFwTABudW+5QT+VQ/KDT1NjQlZ8haetFb+hzyiHKlbUW2vu0r3yJ/27YHFtv8bwJiZ87jnBB2jeZTxzhzCvuZh1e5qrCNicQS2p82yD+WYOAZjtHmFkK+xb3BN9tVkrmezh2+8AGXpgHoBzdMaISOW3iSJfSjL4ue+3Uxo2Pvll2B3UhoX0/Tlkv2WsCx80dFxsFN7yh+3pzFX+XBzY1dmWI2+SxflYv+p5yiEj2UwvlcF6ZODBZIekF6a2eN/0op4Ce4HtTq8XM/faz9mFMa+WFyMKuxXnIfH33sdz02Jt0zoxekPblzAN2Zr/Jw7fxwy9HGAojLoFMWs+0XUozpt7hM0ax107DYtfblh64Cxf86XnG7RC9gCwiXuHRfV2LQ4pnLIP6N7Jlq7J5y9auXfdZoO8tSEfMHML34r40XzR8o8zGsbVrD4lfvaQWwn3bOXhq/Iarapk2qoWWCNt1NSKOb2vmqR8czNiEvn9NjQ3Mioh6GxLu3i2OE5QVQm+0AR5reD6OGIv2HM8bPznMOy+GL74RX4u/rwNdcqlNmz/3crGtF31PObi/5dccgnfjds9+UfjuIZM5bvexHDFzVHxlD0Kba1QOX0h+ITzcSHVujOtkuWietSaJJEq1Jow1FOYkqEQYH2jRnuVTZtaKcPd+lBKullqMi+/MYf0n20YjCDfVbtycHcUAfdCstGD6juwycnDZqJJbEzZ3ZJ22wQNYdtSMxNo7avYYPt+qHB2Tpcp3huHLgl3bWbtsYWy9tP3Gs8rwwQNYPG88x8yJ9oBqGdjkdZ2TZuGMdq57ZC0n7TWh7ueuBl/lUPzwFLokH/nzh7cpv+HUucl0rIf0OeUwvq2Z8W3NZd8LF7K++uXkzQ99gcYG4fi50Z4d0L2paeQQP7/wJHni/APZlJL55MrjZ6Vy3jhEhAs765KIsUe0twzkwbMPSLsbscSZle5cOp+X31tfsks+XIN476Pu3O+zx7Uyf9Lw5DtZBZlRDiJyKHA50Aj8UlWX1bsPU9qH8uJFhyZuizS2ZcKwZi45ekZs0LXRrQN5Z92mbQKg9ZY4k1ctmVWnDF5GfdltTAvPvP1hZBZHCO4vU8pk3dtSFGP8wbP3T2zdqTdkYs1BRBqBq4EFwFTgeBGJDgxUI0wx1IdjO8bGLh5es2gOAFNiXDHzwpjt0//BG8nz65PnsvzEObH7SSpRHGYnC4oBsjNzmAu8qqqvA4jIzUAn8EKqvTJSZfroFm44dS57TEx+A5thJMX2zf05dPqO8RUrMDujDjBZUQ6jgbcK/n8bqBzb2OgzpG13TYKrvzE7MnOa0beZOKyZtcsWsu7jzZlyJ86Kcii77aCkkshpwGkA48bFL3waRhZYOKM97S4YOaB1UH8i9lPWnaw8zrwNFPrRjQH+VVxJVa9V1Q5V7Rg+PP9PlIZhGFklK8rhcWCSiEwUkf7AccCtKffJMAyjz5IJs5KqbhGRM4G7CFxZV6jq6pS7ZRiG0WfJhHIAUNU7gDvS7odhGIaRHbOSYRiGkSFMORiGYRglmHIwDMMwSjDlYBiGYZQgSaUkrDcish54qcxb44A3PZpoAT7McD2TI1v1TI5s1UtSDt9zVlM3STmSPudkVY0PWKaquXwBT1Qo/7fn56/NeD2TI1v1TI5s1UtMDt9zpiVHDc5Z9t5Z/PoimpXWeda7LeP1TI5s1TM5slUvSTl8z1lN3STlSPqcXuTZrPSEqnb4lucNkyNbmBzZwuSo/TnzPHO4tsryvGFyZAuTI1uYHDU+Z25nDoZhGEbtyPPMwTAMw6gRmVcOIrJCRN4XkecLynYTkUdE5DkRuU1Ehrry/iKy0pU/IyL7FXxmjit/VUSuEJFyOSTyIMd9IvKSiDztXiPqLMdYEblXRNaIyGoRWerKdxCRu0XkFfd3+4LPnOuu+0sickhBeWpjkrAcqY1JtXKISJurv0FEripqKzfjESNHnsbjIBFZ5a77KhE5oKCtVO9ZXu5bab6ArwCzgecLyh4H9nXHpwAXueMzgJXueASwCmhw/z8GzCNILHQnsCCnctwHdKQ4Hu3AbHc8BHiZIO/3JcA5rvwc4GJ3PBV4BhgATAReAxrTHpOE5UhtTHogRzOwD3A6cFVRW3kajyg58jQes4BR7ng68E4WxkM1B66sqvoA8L+i4snAA+74buAodzwV+Jv73PsEbmIdItIODFXVRzS46tcDX6t13wtJQo46dDMWVX1XVZ90x+uBNQRpXjuB61y16+i+vp3Azar6qaq+AbwKzE17TJKSo179rUS1cqjqRlV9CPiksJ28jUclOdKmB3I8paphYrPVwHYiMiDt8YAcmJUq8DxwhDs+hu4scs8AnSLST0QmAnPce6MJss2FvO3K0qZaOUJWuunyBXWfahYgIhMInnweBUaq6rsQ/EAIZjxQPj/4aDI0Jr2UIyT1MfGUoxJ5G4848jgeRwFPqeqnZGA88qocTgHOEJFVBFO3za58BcFFfAK4DPg7sAXPHNUpUK0cACeo6q7AfPdaVNceO0RkMPAH4Nuq+lFU1TJlGlFeVxKQAzIwJlXIUbGJMmVZHo8ocjceIjINuBj4ZlhUplpdxyOXykFVX1TVg1V1DnATgf0XVd2iqt9R1Zmq2gm0Aq8Q3GjHFDRRNkd1vemBHKjqO+7veuBGUjBtiEgTwRf/t6r6R1f8npsKhyaK9115pfzgqY9JQnKkPiZVylGJvI1HRfI2HiIyBrgFWKyqr7ni1Mcjl8oh9D4QkQbgfGC5+3+QiDS744OALar6gpvGrReRPd0UczHw53R63021cjgz0zBX3gQcTmCaqmefBfgVsEZVLy1461ZgiTteQvf1vRU4ztlRJwKTgMfSHpOk5Eh7THogR1lyOB6V2snVeIhIK3A7cK6qPhxWTns8wk5k+kXwRP0u8BmBNj0VWErgBfAysIzuzXwTCCK1rgHuAcYXtNNB8CV5Dbgq/Eye5CDw0FgFPEuweHU5zmOmjnLsQzC9fRZ42r0OA9oIFtFfcX93KPjM9911f4kCj4s0xyQpOdIekx7KsZbAOWKD+y5Ozel4lMiRt/EgeCjcWFD3aWBE2uOhqrZD2jAMwygll2YlwzAMo7aYcjAMwzBKMOVgGIZhlGDKwTAMwyjBlINhGIZRgikHw6gBInK6iCyuov4EKYjYaxhp0y/tDhjGFw0R6aeqy9Puh2H0BlMOhlEGFzTtrwRB02YRbFRcDEwBLgUGA/8BTlLVd0XkPoIYWHsDt4rIEGCDqv5URGYS7H4fRLCh6RRV/UBE5hDE0foYeKh+0hlGPGZWMozKTAauVdUZwEcEeTauBI7WIB7WCuDHBfVbVXVfVf1ZUTvXA99z7TwH/NCVrwTOUtV5tRTCMHqCzRwMozJvaXe8m98A5xEkZLnbRYFuJAiJEvK74gZEpIVAadzviq4Dfl+m/AZgQfIiGEbPMOVgGJUpji2zHlgd8aS/sYq2pUz7hpEZzKxkGJUZJyKhIjge+AcwPCwTkSYXh78iqvoh8IGIzHdFi4D7VXUd8KGI7OPKT0i++4bRc2zmYBiVWQMsEZFrCKJpXgncBVzhzEL9CJIxrY5pZwmwXEQGAa8DJ7vyk4EVIvKxa9cwMoNFZTWMMjhvpb+o6vSUu2IYqWBmJcMwDKMEmzkYhmEYJdjMwTAMwyjBlINhGIZRgikHwzAMowRTDoZhGEYJphwMwzCMEkw5GIZhGCX8HzKRggYgwqkXAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXmcZHV97/35na327uq9e7p79hmWGWCEERAUUYxgomISUcw1YjThXkMSs9w8L03uvXrzXHz0eZ6ExCSakBCF3ETCoyjGBYIgogIzDAPMDAOzL71vVV17nVOnzu/545zfqVNbV3V1d62/9+s1r64+VafmVHXV7/v7fFdCKQWHw+FwOE6ERl8Ah8PhcJoPbhw4HA6HUwQ3DhwOh8MpghsHDofD4RTBjQOHw+FwiuDGgcPhcDhFcOPA4XA4nCK4ceBwOBxOEdw4cDgcDqcIqdEXUCv9/f1069atjb4MDofDaSleeumlRUrpQKXHtaxx2Lp1Kw4dOtToy+BwOJyWghByoZrHcbcSh8PhcIrgxoHD4XA4RXDjwOFwOJwiuHHgcDgcThHcOHA4HA6nCG4cOBwOh1MENw4cDofDKYIbB07HE01n8NgrU42+DA6nqeDGgdPxfP/IDD798CuYjaQbfSkcTtPAjQOn40lqWQBAQtMbfCUcTvPAjQOn41F10zikLCPB4XC4ceBwoOkGACCd4caBw2Fw48DpeFTbOBgNvhIOp3ngxoHT8aiWUUhx5cDh2HDjwOl47JgDNw4cjg03DpyOR+UxBw6nCG4cOB0PNw4cTjHcOHA6HjXDU1k5nEIqGgdCyDgh5MeEkNcJIa8RQj5tHe8lhDxJCDll/exxnPNZQshpQsgJQsitjuPXEEKOWvd9mRBCrOMuQsi/WccPEEK2rv9L5XBKw5QDjzlwODmqUQ46gD+ilF4G4HoA9xBCLgfwGQBPUUp3AXjK+h3WfXcC2APgNgBfIYSI1nN9FcDdAHZZ/26zjn8SQJhSuhPAfQC+tA6vjcOpChaQ5qmsHE6OisaBUjpDKT1s3Y4BeB3AKIDbATxoPexBAB+wbt8O4GFKqUopPQfgNIBrCSEjALoopc9TSimAhwrOYc/1TQC3MFXB4Ww0PObA4RSzqpiD5e55E4ADAIYopTOAaUAADFoPGwUw4Tht0jo2at0uPJ53DqVUBxAB0Leaa+NwasWuc+AxBw7HpmrjQAjxA/gWgN+nlEZXemiJY3SF4yudU3gNdxNCDhFCDi0sLFS6ZA6nKrSspRx0bhw4HEZVxoEQIsM0DP9CKX3UOjxnuYpg/Zy3jk8CGHecPgZg2jo+VuJ43jmEEAlAN4BQ4XVQSu+nlO6nlO4fGBio5tI5nIrwxnscTjHVZCsRAA8AeJ1S+heOu74L4C7r9l0AHnMcv9PKQNoGM/B80HI9xQgh11vP+bGCc9hzfRDA01ZcgsPZcHj7DA6nGKmKx9wI4NcBHCWEvGId+xMAXwTwCCHkkwAuArgDACilrxFCHgFwHGam0z2UUvat+xSArwPwAPih9Q8wjc8/E0JOw1QMd67xdXE4VcMD0hxOMRWNA6X0ZygdEwCAW8qccy+Ae0scPwRgb4njaVjGhcOpNzyVlcMphldIczoaSmlNRXAJlU+N47Q33DhwOppMloJFt6oNSM9H03jTnz2J588sbeCVcTiNhRsHTkejOtJXq405TIRT0LIGppZTG3VZHE7D4caB09Ewl5IiCVUbh0hKA5AbL8rhtCPcOHA6GmYcgh4ZqUwW1WRQR1IZAIDmUB2xdAbnFxMbc5EcTgPgxqEFeeyVKdz+Nz+raiHjrAxr193tkWHQXLX0SiwnLePgeOy9338dH/r75zfmIjmcBsCNQwtyZDKCVycjPPVyHWALfNArA6gunTWnHMzHZg2K/zg+h/mYCr0K48LhtALcOLQgSc1Mo2SLFKd2WHV0t0cBUF1Q2lYOlnF4ZSKMUMKMQ/C/Cadd4MahBYmr5gLGF6K1Y8ccLOVQTTpr1HrfVUslPHl83r4vnOR/E057wI1DC8IKsAqNw2JcxUPPn+exiFXAUlm7PZZxqEY5FLiVfvT6HNyy+VVaTmobcZkcTt3hxqEFYcahcCG678mT+B+PvYbJMM+/r5acW4nFHCobB2aUVd3AUlzF6fk4brlsCEDO5cThtDrcOLQgiRIxh1g6g2+/PAUACPPda9UUuZWqijnk6hzilqHeOeAHwN97TvvAjUMLkiwRc/j2y1NIWv5y7veunkK3UnXKwTQImm7YxmW42w2AKwdO+8CNQwvCdqtRh3H41wMX0e83M27CCb57rRa2uOeMw8qpqJRS+33XdMM2Jv1+F0SBYDnF33tOe8CNQwtSKiB9bjGBmy8xx3hz10b1sCK4oNc0rJWylVKZrF0boWVzysEtCwh6ZK7aOG0DNw4thmFQJDP5biXm3hjr8YAQ7lZaDc72GUDlmIPTIDuVg1sWEfTKPFuJ0zZw49BimP1/zNsspZK5mYIeGV1uvkCtBq3IrVTaOFBK8ZOTC3axGzuXZTu5JAFBr4JwghtmTnvAjUOLwTKVgNwuNpY2f/rdMnq8ct4CxlkZVTcgCgR+tzkUsZxxOHxxGXf900E88uIEAEARBahZA2k9pxx6vLJtsDmcVocbhxYjoeYWr5xxMA1GwC2hx6fwjJlVoOpZKKIAWRQgCaSsW+liyOy4+uTxOQDAQMAFNZO1lYNbEhH0Kly1cdqGijOkOc0FC0b3+1121gxzKwVcEnq8Cuai6YZdX6uwEFPx3JlFqLoBl1Xd7JFFpLTS2UrTy+Z7Oh0xfw4EXIimM7ZycMkCerwyTwbgtA1cObQYzDiMBt2IpDKglDqUg2wFRbly0LMG/uDfXsHp+VjJ+791eBKffvgVTIZTcEnm18Ali/ZiX0jh1LfBgCsv5sCUQzpjVD00iMNpZrhxaDFYzGFT0INMliKVySKuspiDqRz47hWYj6n49stT+NmpxZL3M9V1YjYGlyQCAHwuEfG0XvLxU+EUBGLeFgWCXp9iZis5lAOrsubGmdMOcOPQYrCYw6agB4C5EDljDr0+BUkt2/G714xVi5AoU7fAXHFTyznlMNLtLjsXeno5heu29YEQMytMkQRoWcMumnNJAnqsWglunDntADcOLQZzKzHjEEnljIPfJbXl7vXvf3IGjx+bXdU5zDgktdJKgBkHAHbMYXOvFxdDyaLHUkoxvZzCpSMBXDIUQLdHhiIKVn1JFookgBBi10q003vP6Vx4QLrFiDtiDoBpHOKqDlkkRbvX4W43jk1F4FVEbLcaw7UiDz53HgMBF27bO1z1OZpuFoM4s7ucON1HzK003uPFQkxFOpOFWxbt+6MpHQkti9GgB7/zzp1YTmYwvZyyYw5uS3mwKmuescRpB7hyaDFYc72RbqdyyCDglkEIyTMOlFL81kOH8MUfvtGw610PVN3AkakIIqvYkVdSDs56EeZWGu/1AgAmw6Z6WIyr+N1vvIxj0xEAplp775Wb8NHrt0CRBOgGRVLT4bIMSY/PVA68Qp3TDnDj0GIkVB0uSUCvzzQCkVQG8bQOv8sUgfYClcjg9HwcM5F02YlxcVXHr3zl52UzepoFVTdAKfD82aWqz6kcc8gdVwqMA3MtHb4Qxr+/Oo2/euoUgJwrz3lOLK3bg35YlTWf0MdpB7hxaDESmg6fS0K3FVuIWjGHgFXh61QOz1qZOokyu+eJUBKHLy7j6FSkDldeO6zFxXNnSmcelTyHGQe1TMwhnVvAc8rBXPwnQmZQmsVyDp4LAQBGHcaBuaKi6Yx9m/1Uy6TDcjitBDcOLUZCzcLnEhFwSZAEglBCQ0zNKYdcQFrDsycX7HNKwXbXaoU21Y3EMKi90P/8dPXGIZM1Yw7JMq89oWbtxZ4t6gN+F9yygAlLOcQcBkSRBPRZao39bj4mpxxEgUAWiW3MOJxWhhuHFiOu6vApEgghGO52Y3o5hXhaR8BtGgWXJMKniJiOpHHg3JJ9TinYAqo28WLGDEO/34UzCwmcX0xUdV5GZ26l8tlKe0e7AOSUAyEE4z25jCX2vgkE2NTthsAKHQC4RPOcaCqnHACr51ITv58cTrVw49BiJC23EmC6OaaWU4ipGdutBACDXW7864GLSGcMbO/3IVnWOFjKoYndIEzV/OrVo/DIYtXB9VxAuvi1GQZFQtOxazAAtyzAo+QW9/FeLybCObeSSxJw655hXDUezHuOUsoBMKusm/n95HCqhaeythhxNYsuyxCM9njw/JklpDPZPONw/69fg6femEcooUEUCL76zBkYBoUgEBgGxXdemcL7r9rUEm4lttBu7vPinnfswP/7Hyfx3OlF3LCzf8XzVoo5JK225wG3hL/5yNXYMZhL893c68XBcyFz4pulyP72164GIfnPwYxDNJ2B26EcXJLQ1O8nh1Mt3Di0GAlVxyZrXvFYjxez0SkIhNgxBwDYNRTArqEAAOD+Z88AMBdEv0vCq5PL+MNHXsVAwOVQDs27mLFrc0kifvNt2/HQ8xfw0PMXKhoHO+ZQQjkwg+FzSXjX5UN59431eBBXdavyPIMut5TnTmIollspk6V2EZ15ndytxGkPuHFoEaaWU7iwmEBSzbmVxoIeUApkKbVjDoV4FfOxSStozRbLpJYbGtTMbhB2bS5JgFsWsbnXi2i6cqpoLpVVB6UUxLH1t7vYuos//mM9ZpB6OpJCLK3bcx4KYcoBQIFy4G4lTnvAjUOLcP9PzuCfX7gAUSDwWT5ytpABKLuIMUURV3UMIrfYZrKGwzg0707X2bsIADyKaKeYrgQzDpSa0/OYkQRy1dE+pfg96/W5AJh1InFVL2lAnNcDIF85yFw5cNoDHpBuEULJDAxqujHsgLTDOARcpRcx9liWzsoWW003WiTmYF4b26mbMxcq78yd6aSFqbzMrVTKoPZaRYRLCdWsPHeVVmRO5eAqiDnwVFZOO8CNQ5PxuceO4fcffrnoeCSVgWT5vtmCP9LtsQOl5Xa4Ppe5cDFXilM5tES2ku1WMl+HVxHLTmtzwmIOQHELjZiaa1RYiF1EmNDyigsLUcooB4XHHDhtAncrNRFLcRXfODiBgYCr6L5IKoO37OjDDTv68UtXjAAwF6KhgBuz0XTJhQ7IuU7YAqk6lAOzLGwxO3B2CVeNB/OazjUaOyDNprUpUskgcyFVKYcS71nQq4AQmMWFjvqRQlwrxBx4+wxOO1BRORBC/okQMk8IOeY49nlCyBQh5BXr3y867vssIeQ0IeQEIeRWx/FrCCFHrfu+TKwIISHERQj5N+v4AULI1vV9ia3Do4enoGWNkvMAYqkMuj0yPnXzDmzu89rHmWup3CLmc8QcANhzHrQstQvFVN3AYlzFh+9/Ad86PLl+L2gdUAtjDrJY1awKpoqAYuXgzFYqRBTM1tuLCQ1xdYWAtOgwCIXZSk3spuNwqqUat9LXAdxW4vh9lNJ91r8fAAAh5HIAdwLYY53zFUII+xZ9FcDdAHZZ/9hzfhJAmFK6E8B9AL5U42tpaSil+MaLFwGg5LCeiGUcChmzjcPKAWm2e2Y78byYg561d7sXlornGTSSUm6lpJWBtBJO41DYfG8ltxIA9PoUu4VG16qzlbhbidMeVDQOlNJnAYSqfL7bATxMKVUppecAnAZwLSFkBEAXpfR5an6rHwLwAcc5D1q3vwngFkIKS47an8MXwzi7kMD+LT0ATLcGwyzIyqCrhHFg/YHKGQevFXOw3UrWwpUXc8gYdpCXtatuFnJ1DrlsJYNWzrDSnMpBLVYOokDyKpud9PoU20iuNubAU1k57cJaAtK/Qwg5YrmdeqxjowAmHI+ZtI6NWrcLj+edQynVAUQA9JX6DwkhdxNCDhFCDi0sLKzh0puPHx6dhSIK+Mi1mwHkG4dUJotMlpZUDu/ftwm/+dZtJe8DcjGHwoC0phvQHL2VWJB3Klx6TGajKIo5WPGQSq4lp3Io7C0VT+vwKSLK7UF6vIo9LnTVMQeeysppE2o1Dl8FsAPAPgAzAP7cOl7q20ZXOL7SOcUHKb2fUrqfUrp/YGBgdVfcxFBK8cTxWdy4sw9brHjCksM4RFPm4tZVYqG6dLgL/+29l5dd6ESBwCOLtp+dpbI6lYOm55RDuRnKjULNFLuVgNKVz04yOrWrmAsfG1ezZRd9AOjzK8ga5kewnOupbLaSyFNZOe1BTcaBUjpHKc1SSg0A/wDgWuuuSQDjjoeOAZi2jo+VOJ53DiFEAtCN6t1YbcHxmSgmQincumcYPb5cKiWDxQPKqYNK+FySPdyGKQdVNxwB6aytHBbjWlV1BPWCuYecbiWgCuOQNeyZF4WdWeNqxk7xLQVLZwXKu5UkgdhpxFw5cNqRmoyDFUNg/DIAlsn0XQB3WhlI22AGng9SSmcAxAgh11vxhI8BeMxxzl3W7Q8CeJpWija2GU+8NgeBAO+6fMieGbC0rsZBLEplza9zMPIMQjOph1LZSkBlt5KWNRBwSRBI8UyHhJotqwgA2FP2gPJuJUKIrUycqb8uSUTWoNCz3EBwWpuKdQ6EkG8AuBlAPyFkEsDnANxMCNkH0/1zHsB/BgBK6WuEkEcAHAegA7iHUsq+mZ+CmfnkAfBD6x8APADgnwkhp2EqhjvX44W1Ei+eC+GKsSD6/S4YBoUokDzlELWMQ5entrIUnyLl3EqObCXDWtycMQfANA47HZ1KG4mqG1AkwXab2b2iqlAOiiTA55JKKIfyxW1AvnEol60E5AreClNZ2XVLIq8x5bQuFVcbSulHShx+YIXH3wvg3hLHDwHYW+J4GsAdla6jnUllsrYqEASCHq+8rsrB75JyAemMo7eSdb+ayeYtts2UsaTq2bzgr0dhcYSV+ytlshSyKMCnSEXKIa7q2BR0lz23x2EcytU5AKYhiKE4ldW8bgO+4lpGDqdl4FubJiCTNaCIuYByr0/JVw5WF9JSAelq8LnE4jqHArcSc9MIpLkyllTdyOtd5JHNxbqabCVZJPC6xCLlkLCm6ZWDufZYML8czK3kKhj2Y15388RtOJxa4MahCdB0A7LDBdHjVfJSWSO2W6k24+B1uFZyqazUNg66QRFLm7n/m6zpcs2CmjHylEO12UrsPXW61BjxtF6yOprBAtIBt1Q2CwzIGYKSyoFXSXNaHG4cmgDmH2f0+RUsJVT792hKR8AlQSwxdKYa/M6YQyanHDQ9F/ePpDR4ZBFjPR5MNpVyyObtzFm2UqXme+w99Votvr/wg9fxxmwUetZAXNNXNLR9/pxxWIlSyoH9HTUekOa0OLzxXhPA/OOMHq+CcDLXvC2SKl0dXS0+l1TkVsroRl6ByXIyA48iYjToxc9PL9b8f603qm7YizDgMA4VA9LmeyqLAp45MY9DF8JQRAG/dt1mUAoMd5WPOXhkES5JgL9Mu24GMwSFjfcArhw4rQ83Dk2AWuBW6vMpCCc1ZK3MpbUaB7/ld6eU5txKWSNvLnI4aSqH4W4XFuKqPXO60ZjZQM6YQ/V1DrJIIIsCrHo2TEdSmImkAQAj3eWNAyEEvT6lsnKQSsQc7IA0jzlwWhvuVmoCMtl8v3qvTwGluVhD1JplXCtel2RPRCtV5wBYykEW0edzIWtQLDdJ22k1k5+tZKoBUtGtpGVNg8vqGRRRwPRyCjMR02U2skK2EgBs7fPlTdorhe1WkkqnsnI4rQxXDk0A2+UyWCplKKGi16cgmspgc6+33OkVcbbtdvZWcgZbl5MZDHe70W/NkliKq3n5/o1C1Y2iHXw10+DMDDABV2/pwWQ4haBXxpHJCGaZcuhaeeH/+49dYw9XKociCXk1GEB7ZStRSvHlp07jvVeNYMdAc9S9tAqFc8tbEa4cmgBNLwhIWwnyoYSlHMq0664Wv9UqIqHmlIOWNdtnsM/vshWQ7reCsQtxteRz1ZvCVFbAjDuUqnOglOKbL00iqenI6GbM4UP7x/G/f/M6jPd6MRNJYTKcglcRKxYUdrnlvLnTpVAkAW4p/yvUTtlK0bSO+350Eo8fm230pbQUr04s49ovPIV/f3W68oObGG4cGoxhUOhGfkCaZct86fE38MyJ+TXHHNgil1D1onkOfoXVDRjwKiL6/Uw5FA8cagSF2UqA+XpSJRbfF8+H8V//v1fxo9fnTTUm5XZum7rdyGQpjk1FMNztXpddnUsS8uIh7Jh53a1vHBIFA6I4lTk6GcF/+scDWIipeH0m2ujLWRPcODQYlvLoNA67hwL441svwWwkjd/4+otIaNk1KQfmlommMvb/x2IOzgpgt8M4LDaLciiocwCYW6lYObx43uzXGEtn7JgDY5M19+LIVASbuld2KVXLWI+3yN1np7Jy49CR/PML50EIEHBJTRO3qxUec2gwLCjsXABFgeCed+zEJ27chru+dhAHz4XWFJBmhmU+llvwNd2AJAh5Dei8soigR4YokCZSDuXcSsUL1iHLOCRU3Y45MJhx0HQDwytkKq2GP771Eru1N8NOZW2DmEO8oDaGU5nzS0lcMhRAOKlhucS431aCK4cGk7EG7sglmrR5FBEP3LUfn7hxG9556VDN/wdruzEfM4OxokCQyVJoBcrBo4gQBDONs2mUQ0FvJcCski7MVjIMipcuhAGY8xoKa0eYcQBWTmNdDaJA8mJFQC6ttR3cSsw4VMoM4+S4uJTE5j4vgl4Fy8nWVg7cODQY5n4oXGQYAbeM//G+y7G5r/ZsJTbXYD6qWs8p5WIODuXAagj6/a6mMQ5aQddToHS20qn5OKJpczGLpTPIFsRxutyS/VpH1smtVAoec+hc0pksZqNpbO3zoccr5xWytiLcODSYTImYw3rjV8y5BnMxh3HIGtAK0kRZ9XG/X8FiE7iVzKK90m6lwt3soQumS0kUCCLWl9IZkCaE2J1Y10s5lIK5stQ2WFDZgCjuVqqOiyGzm/GWPi+6PQoi3K3EWQu5gPTG5UQLAkGXR8aC5VYKWG0hUplsUyuHwilwDG+JmMNL58Po97uwudeLsPWlVAoMLlMMlQrg1gIhBC6pPabBJQrmjnNW5sKSaRw293q5cuCsHeZWKlwA15sut2wHpFmcgVLk9Q9iHU/7fErDA9LHp6N2wVrhe+Mu4VY6PhPFlWPd8LlE+0tZqMZY3KFSAdxaUdrEOMS5W2lVXFhKADCr64NeGalMtqXfO56t1GDq4VYCzIylc4vmh9eZ+ZSXysqUQ8CFVCZrzj1YobX1RvLxrx3ENVt6AKColoAFpFkVaiZr4OxCAjdfMoiEqttGsPA9fcclA5iPpmueqFctLklsC+NQ2MmXszIXQ0kE3BKCXhlBq+17NJXJGyPbSnDl0GCYcqiHcWA7QedcZI8sgnWJYMVyzVDrsJzK4MhkBEApt5KErEFtt9OFpQS0rIFLhv3wuSTbrVToqnv3nmE88PE3b3hbA9Ot1Lo7RgYPSK+O80tJbOnzghCCoJUE0squJW4cGgxb4MplK60XziI6ZxBakQQ74MtGcLIK7UYFpQ2DQtMNe+hQKbcSkGvbfWI2DgDYNRiAzyXZDQs3+j0th0tuD7dSzJ47zo1DNVxcSmBLnw8AEPSY36FWrnXgxqHBrFTnsJ44XSnOILQiEjtVlC26Aw1WDoULa6mANJDLvz8xF4NAgJ2DfvhdIqhVl7bR72k5XJLYFr2VuFupevSsgclwClusinmuHDhrpm4B6TzlkLsti4L9fxe6lRoVlC50YxSmshaOCj05G8PWPh/cspg3G7pxxqFd3EoslbX1X8tG8+dPnoRuUFw51g0gZxwiqdZVDjwg3WDqGZBmON1KpnGw3EqWcsjtehrzwS6sYajkVjo5F8PuoQAAc3YFYyPTg1eiXVJZebaSSULV8ddPn8ZojwfvumywqIjy0cOT+OozZ/Br123GrXuGAeTmkLdylTQ3Dg0mU4c6B2AF4yA5lYO56LokAaJASrbFrgdFyqGgQpqpg6RmpgqeX0rgvVdtApBrTw4U1znUC0US7GrtVoa5lTJZak8l7ER+emoRf/eTMwCAHxzpwzfuvj7v/h+fWMBItxt/9v49drKDVxEhi4S7lTi1o1Zon7FeOI1Dl8OtVCrmQAgpWWhWLwp93EVuJTafQtNxdiEBgwK7Bs1hNM7UW7lRAWlJbKuurEBnq4dpKzHibbv67SpoJwlVR59fgeTYjJgZS0pLu5W4cWgwTDls9C7XaRD8ZdxKTDmw20m1QcbB8tczRVPoVvI55lOwbJABa4JdU8Qc5PaIOcRV3VYLnWwcZiIpuCQBV4x2YzaaLurEG0/reUkejKBHRjjBlQOnRjJ1rHMw/x8Ct2Mn7gxIO4t1fIqERKPcSpZiuWTYjCMUKgefpRySatb2i7Mvp69ZYg4tnuFDKUVCy9qjYtNtoIRqZTqSxki3G5uCHmQNioVYfhZfXC1tHHq8Cpa5cuBUSzih4f5nz0DP5sZ1AvVzK7klMa8hHTMOihVnYHhdlec0bxRMObxlRx/csoCgL3/Qka0cNN02Dj7bODQ+5tAOFdLpjIGsQdHHjEMnK4flFEa6PXbjxulIKu/+csah2yuXDEg/f2YJb/3S0/Znt1nhxqHOfPnpU/jCD97Aj08sAKhfnQMzDi5ZyFs0FYnAJYl5LiUA8MoNVA7WrvuX3zSKg3/6rjyXGJAzBAlVt/3izCj4XU3gVmqDVFa2cLG05o42DpE0RoJuDFs9uWaW03n3l2szE/SUNg5Hp5YxGU7h4lJx/KKZ4MZhgzAMilg6/4MRSmh4+OAEAOAHR2cA5ALSG+0CYRlKLknMWzRlUYBLFuw0VobX1biANFMsbkksMgyAqbJkkSChZe220swoeJVmCEi3fiorM7qsWr5TC+H0rIG5aBqbHMphpkA5xFQ9L47H6PEpCCU120vACFlxiAWryFTVs5gIJZvOAHPjsEF86/Akbvzi03mumQefO49UJotrt/biR8fnoOpZe5zlRvf7kURzJKhLFvICvLIo4EP7x3HPO3bmPd6nSI3LVrJ23R6lfMMyryLZykEguRoNfxPEHPr8CjTdwHw0XfnBTQpTDn0+Uzm0w3yKWpiPqTCo2ea92yPDI4uYdigHTTfnoviVYuNw7dZeaLqBh1+cyDsM+nxDAAAgAElEQVTOkigWYyoOXwxj7+eewNv+7x/jTx49urEvZpVw47BBnF9KIJrW7U6oAPDYK1O4afcAfvsdOxBTdfz05CIyulG3RazbI5dUDjfu7MdHr9+S91iPIiLZIJ8o26W6pfLGwe+SkLAC0j5Fso1rM8QcbtjRD8DMj29VmHLoD7CAdGcaB6YSNnV7QAjBSNCdpxzY+1RKOdxy2SCu3daL+548medFCCUs4xBXcXQygkyWot+v2EqiWeDGYYNgzd+cxmE5lcHWPi9u3NmPbo+MJ16bhZY16tYgrssj28FnRrkF1KeISDSszsFKZZXLvy9eRbSVg9Pf622CVNbLR7rQ51Pw7KmFhvz/6wGLN7GYQ0rrTLcSUwlsQNSmbg+mIznlUJgQ4YQQgv/2S5dhKaHhXw9ctI+zzgOLcRUzkTRkkWB7v99Oa28WuHHYIKIp80NzbtHsGEoptfOhZVHAjgEfZiJpZLJG3Raxbf1ejAY9+cpBKq1avC6pcdlKmSwIWbnflM9lBswTmp6nFkSB2C6mRhkHQSB4265+/PTUIoyCnPhWgcVy+v2dna3EVII9RbDbjZnlnHKw2+CXmXty5VgQfT4FFxzFc6xqeiGmYjaSwlCXGy5ZaLrCSd4+Y4PIKQfzQ6HqBnSD2vLT75YRSWWg6bRui9hffGgfgHxffLn/2yuL9pzpere+TmeycEviinEYnxUwJ4QUpRH6XBJSmWzDYg4AcNPuAXznlWm8Nh3FFVYztlYins6POXSqW2l6OQ2fItoDskaCHizEVXtTl1hBOTD6/ApCjiaWYdutpEHLGtjUbW7YNK4cOoOccTCVQyydX6wVcEmIpzPQssaGd2RluGURbtlcdJk7qaxxsK6zEeohnTHgXsGlBOQHpAu/mH6X2ddmo4P8K/G2XQMAgJ+dbs24A89WMpmJpDAS9NifpU3dblAKzFnJBrEVYg6MPp8LSwkznmAYNM+tNBtJY7jbDUUUkNGbS2Vy47BBRK0A1HkrlzlRUMnrd0mIq7oVkK7/n4GpgZViDgCQzNQ/KJ3OZCuOVvQzt1IJ4+BVpIYFoxkDARd6fQomw82dy16OwmylTnUrzUZVjHS77d9HrDnkM1bcofB7XYpef24meyytg3kaTbeSWX0tS1w5dAzRVAaEmJkJy0mtqM2D3y0hntbrGpB2wlwu5VwvLI000YD+SqlMtqjuohAzIJ0tWZ3qd0kNq3Fw0u9XGjpqdS0kVB0eWYRbFkBI56ayxtKZvFkoLAbDFvt4urJx6PflPgchSzWM93qwlDDdSiOWcmi2mEPFbxAh5J8IIfOEkGOOY72EkCcJIaesnz2O+z5LCDlNCDlBCLnVcfwaQshR674vE0unEUJchJB/s44fIIRsXd+XWH8opYimdOwYMDuFnltMFLmVzJ2v2XK6Eb5xRTK/9OXaMOfaYjdCORhwVaMcbLdSce+lRgWjnQwEXEV9eFqFxbiKXp8CQghcktCxvZWSatZW0UCugSXzDKyUrcTo87sQTevQdMNOY909GLDvH+72QGlR5fB1ALcVHPsMgKcopbsAPGX9DkLI5QDuBLDHOucrhBD2zn4VwN0Adln/2HN+EkCYUroTwH0AvlTri2kW0hkDWtbAvvEgALPmoTAfmlUsLyczDVnIZFGAvELxHWuL3YhCOFXPVhVzUHUDsXSxW8nnkiA3weyBfr+rYXO418pMJG1XBLtlEelMFl9+6hSOTC43+MrqS0LT89KjmXFgm71Cj0ApWNwmnNTsArhdQznjsCnohiKS1ktlpZQ+CyBUcPh2AA9atx8E8AHH8YcppSql9ByA0wCuJYSMAOiilD5PKaUAHio4hz3XNwHcQhoZSVwHWDB676YuCAQ4t5AoditZP0MJrSFuJUUSVvTLexuoHFJadsUCOCBX7KYbtKg69Y7947j7pu0bdn3VMuA3lQOlzRVorIaZSNpO33RLIpbiGv7iyZP4zsvTDb6y+kEpRVLL5ilTtrmLWt9x5n5baRASa164GFdt5cDmjwAwA9JSC7qVyjBEKZ0BAOvnoHV8FICzVnzSOjZq3S48nncOpVQHEAHQV+N1NQVMcvYHXBgMuDETSRdlNbCfoaTWkOCpIgorurN8DYw5pPXsiq0zgHwZX6gc3r57AB+/cduGXNtqGAi4kMpkG1ZMWCuGQe1AKWDGn96YjQJo3OjYRqDqZmdap3IQBTN12qkcVspUAky3EmDGKdj7x9rRyyJBv88FWRRaTzmsklKrDV3h+ErnFD85IXcTQg4RQg4tLDRv9SlTDt0eGT0+BeGkVjJbCUBD6ggA1rxuBeXQ9Kmsjt3cCpK+kbDq4sUmiTtQSqtyC4WSuUApYBYjsqw7tvPtBJhL1VewUQm4JbsdRlzNVvz8MeWwlFARTmYgiwRb+30AgKEuNwSBQJEEZLK0qYoma12V5ixXEayf89bxSQDjjseNAZi2jo+VOJ53DiFEAtCNYjcWAIBSej+ldD+ldP/AwECNl77xRKwKyC63jD6fgqWEhng6v0FcoGAaW71hMYdyeOXcKM56w4rgVsK/gnJoFth0umbpmXPgXAjv/5uf49hUZMXHzdgtIyy3kiza0886yTiwDZ234PMVcEu5gHQ6U9k4OJVDQkPQq8CnmJlgzACz72LGaB71UOuq9F0Ad1m37wLwmOP4nVYG0jaYgeeDluspRgi53oonfKzgHPZcHwTwNG1FJ60D9sGxlUNCs1MuWTjF78qlxzWkzkEUVlQsjQxIpzPZitlKTqlfSdY3imZTDpNhs+1DpfTaabtlBAtI5z4nnWQccsoh//PV5ZZtt1JCzRZlyxXS5ZYgiwRLCQ2hhIZer5kFtrnXi619poJghbDNFHeo+K0ihHwDwM0A+gkhkwA+B+CLAB4hhHwSwEUAdwAApfQ1QsgjAI4D0AHcQyllq8unYGY+eQD80PoHAA8A+GdCyGmYiuHOdXllDcTpVmLKIZbWESgzx7khdQ7SyjEHRRQgCaRhqayV6hycuzV/hS9no2g25bBkXUelONKsVeBlB6Qdf4tOijkw1ex1FbuV2N80puoYtRRWOQgh6PUpWIqrWE5m0GNNNvzab1xru6xs5ZBtnn1xReNAKf1ImbtuKfP4ewHcW+L4IQB7SxxPwzIu7QIzDgG3hF6fglhax3JSy896cCxuSgPqHEa63Ctm0RBC4LEKzeqNWSFdIebgeC+b1a3U61MgkOZRDkvWrr+Sq3A6koIiCrav3OniS1q1OZUq2NuBpFpGOXhknLW6LSdUvarNSZ/PhaW4hlBSszOVnEZFaULl0PhKoTYkmjJdSJIooMf6gk2EkwW73cbGHP7n7Xvwdx+9ZsXHmAN/dPz1U6cq+qnXi0zWbFBYafFxfmELv7zNgigQ9PpcTaMcmJFivvRysH4/gpWeyQz1cJfpZuoU15KtHEoGpKvPVgLMWoeJcBKzkbRd9+CErQHcOLQ5kVTGntnMdl8XQ0n4HW4lUSD2h64RbiW3LFbccXsVERdDSfz5kyfx2CtTdbku1sOnknIop8KaDbNKujkW00WmHMoYhy8/dQof/OpzmAynMOzoJ8QM9Zs2m0WdnWIcmEu18HvS5ZYRTWXMNvxl5kcX0u934eRcHHFVxwf2jRbdbyuHJkpn5cZhA4ikMnY2Uo8319WysOc7W9SaodVDKbwuES9fNFMf2U5po2HdPyv3Vmr+bCXAMg5NohxYzCFexlX4+LFZHLoQxksXwti0gnHolLhDQi2XyipDN6jdEqPcLAcnvdYm8a07+7F/a2/R/cy1zJVDmxNNO5SDQ0IWZjUwOdoI5VANrEUFUE/jwKbArWwc2FCfSllXjabfrzRPzMFq5VEqySCp6XahG5BLYwVyE/n2jZst1DpNOZRKZQVygftqNidDXWZywqfftavk/ewz3EyFcM275WphoqkMNvd6AeR2DEB++iqQmx7V6PbS5XD6WqOOGbgbSc6tVDnI53Pl8u+bFaYcKKUNnS9BKbVnCsRLuJWOTkZgUOA/37Qdf//sWfvzC5i73dlIGjsGzLTLcIcYB6YcvAWfRdallaX8VuPW/PD+zdg1FMCbS6gGwBFz4MahPaGUIpXJIpLKtfkNekqnrzp/b+TEspVwBnqjTeZWAkxlYzR5ScxgwA1NN6wUxuJAZL2IpnQ7TbJUzOHlCdN9ePdN2/GLV4zY7R0Ac3DR23YNIGtQuw19J5DUdHgV0Q7MM5hyODUXA2C2yalEt1fGOy4ZLHs/2yBmuFupPfn6c+ex53NPYCaStt1Kkigg6DVvF6a8sR2HUqEauFE4lUNsnZRDJmvg977xMk5aXywnPz4xjwlrOE6lgDRgyvlmDkYDwFiP6Z5hBWiNYjGRc22VKmx85eIyNvd60ed34arxYEnlJgoEPV7FnknQ7iS0bF5si8E6s746aWbwbbdaYawFNn9EbSLlwI3DOnJhKQlZELBvPIgbduR6BzLXUqFbif3erMqBGYft/T5EU+ujHGYjaXz31Wl878hM3vFM1sBvPngI937/dQDVuZUCbimvDUkzMt5jumcmGjwRjsUbJIGUdCu9PBG2A84r0eOVEU7Ux8XYaJIlZoUAsOdJH5lchiySikVw1dCMyqG5v1ktRlzV0e9X8J17bsw73utVcBaJIrdSoMkD0gG3DEKA67b34dHDk5VPqIKUFVM4OZuvHBZiKrIGxdSyucOu1FsJAD7znkvR5F4ljPeaC8fFUKONg6kcxno8RW6lqeUU5qKqPX9kJXp9Sse4lcoqB8srMBFKYfuAD9I6xAxdTZjKyo3DOhJPly6IYcqhXCprswakP3r9Fly9JYjj01GougFVz8K1RhcY6/Ja6FZiA9sZHqXye3L15p6Kj2k0AbeMHq+MiQYbB1bjMN7rxdmFRN59T78+B8AMPFei16fg/GJrzsVeLUlNL0pjBfKbZq6HSwlwts9oHuPQnKtSi1JqnjGQMw6FKW+5gHRz/hmGu91456VD9k5pPdJZmb/7/FIib2j9XDQ/3XOtRqiZGO/1YqLRMQcrnXa811vUPuPx12axY8CXN52sHL2+Doo5qNmiNFYAecN9tq2TceDtM9qcmKrnVUEzcjGHMsqhSd1KDLZTWg/jwAyCQYHT83H7+ELMVA6DVuZHO/XuGe/xYrLRbqWEih6vjG6PnOdWCic0vHA2hFv3DFf1PD1es8twizdOropyyoEQYscdtq6zctCaqPFec69KLUZC1UtWS9pupTIxh2ZVDoyAFThnoxHXQsqhFpyupbmoCoEAv3z1KESBVGyD3EqM93oxGU41dJDLUlxDn98Fv0tCJkuh6ubf4ak35pE1KG7bW51xGAy4oBsUC01S2LeRJNTSMQcAdofldlYOPOawjsTTpd1K77x0EKfn43Z/fAZLiasmbbORbIRbCQBO5BmHNAYCLvzuO3fh5t2DZb+Urch4rwda1sBcLDeXud4sxTX0+RQ7Ay2pmvGjZ07MY7jLjStGu6t6nss3mY87OhXBLV3uCo9ubZJa6WwlAOjymJ/P7f3+kvevFoXHHNqbch0atw/48cVfvbIoq+HGnf34Xx/YiyvHKmeJNJKcW2n9lEO/X8nLWJqLqRjqcsPvkvCWHS09QrwIO5011Li4w1JCRZ9fseNeLJ11NpLGtn5f1dXbe0e7IJBcjn87Uy5bCTDVtEcW7bYYa6UZlQM3DuuEYVTfoZGhSAI+ev0WO7jVrDDlsB4tNNKWcrhqLIhj01F7pzQfTWMw0J470fFeZhwaF3cIJzPo9Sm2smVB6VBCy2vxUgmvImHXYKCqWdStTCZrQNONkjEHANjS58UVY93r1hJFFAgEwo1DW8K+bNV0aGw11jMgzdxKd+wfw0JMxYPPnQcAzMdUDK7TLqzZGA16QEjjah2yBsVyUkOPN6ccWFA6lFydcQCAK8a6cWQy0tZBafY5LZWtBACff/8efP033ryu/6ciCdyt1I4wmd6s84zXgl+RQMj69FdKZbJQRAG37hnGOy8dxH1PnsTFpSRCCQ1DbaocFMmcqraRrbufP7OEX3/gAPQSi0s0lYFBzUwjthNOqFnoWbPn02qNw1Vj3QglNLtgsR2xZzmUUQ5uWVz3uJgsCnYXZCeUUjx5fM5OIqgX3DisE2wn1uy9fmpBEAj8LmldspXYCFBCCD7/vj3Qsga+8AOzZcZ6+W+bEY8i2i61jeDwxTB+emoRi/HiGgRWl9Dry1cO4aT59yw1mWwlWIzsSBvHHeyOrHX8PrvKKIfXpqP4rYcO4fsFLWc2Gm4c1gnmcmlH5QCYmVXr41bS4bF2Y5v7vLjl0iE8cXwWADDUxtkvHlnMS+Ndb1TruZcSxeqEtdjuccQc4qput8FYrXK4dCQAWSQ4WqfRsY2gknLYCGRRKBlzeNWK79TbLcmNwzrB3ErtGHMAzLjDegSkUxkjT45/8Joxuz9Su8YcAMCjSCW7oa4XaWtRKdX3iCmE3oKYg20cvKszDi5JRJ/PZfdrakds5VDHlOpyMQc2v326zm48bhzWiXhHKId1MA5aNq/6+e2XDNhztts1WwkAPLJQF+VQ0jjYykG26xwSWjZnHFbpVgLMEbKJDTR2jSY3P7rOyqGkcTAn9NU7xsONwzoRU5kMbU/jEHBL6+JWSmX0vDkRsijgjv3j6PbItpFoR7yKZDcd3AjYkKSlCjEHlyRAEoilHFT7+GrxKRKSJVp/twvss17P+eSKKEDT8zPANN3ACaseaHo5Xeq0DYMbhxr43y9cwGcfPZJ3jCmHZp8vUCtdHnl93EpatmjK2x+9ezee/IObiiZutRMeRSw5u3m9SOsrxxxckgCPLIIQAp9LQkLVscQUxSrdSoA566OdlQN7b+q5YZGlYuVwci4GLWtgNOjB1HJ9W7Bw41ADz55cwHdens7L82bZSvXcadST9VMORlFTPVkUMNjGwWjADEiz3f1GoGbKxxxCCbPGgRVs+V2S7Vbq9sg19fbyu6QNNXaNJpzQIArEbnFTD1yiUDTsh8Ub3r1nCJpu2EarHnDjUAPLqQxSmWxe2mBc1eGWhaZvolcrLFtprYVPKS3frdQpeOulHOIakpqOn55asP9W4YL51V5FtAPStbiUADPFkwVt24WXLoRw218+a6uqHq9cVzWrlFAOR6ciCLglvGW72VKmnnGH9lzJNhiW7+9MLYupetEY0HYi4JaQNeiaM25SmWK3Uiew8amsOeXwrcNT+PUHDuKBn50DAISTGnp9uc+mzyXZqay1GgefZWDaiQPnQnhjNobzSwmEEmrN702tyCIpylaaWk5ha58PY1Z/rnpmLHHjUAPLVmrgpGMucDytt228Aci5ywoHxayWlJa16xw6CY9iupU2ymfMlEMooeGU1e323h+8jmdOzCNsuZUYI91unF1IrE05bHBqbiNgbcjnYyrCidVXjq8VRSquc4imMuj2yBjtMbv5TtVxaBQ3DjUQYcphyWEcykyBaxdYSl9yja6EVKZDjYOlltJraIGwFFfLGhemHJYSGs4uJHDJUABber346jNnivon3bR7AFPLKZyaj9cccPW5RCS0tbsZm4l5yzgsRFUsNUQ5FBuHmLXp7HJL8Lsk7lZqZlQ9a7sHnG6leLp87/d2gBUDxdfgSshkDWSytCPdSvYchRp325FkBjd88Wl8/2jpFgrM6ERSGZyci+HyTV24de8wDl8MI5LK5CmHd1wyCMBsyFezW8klgVJsqKus3ixEmXJIr0lV1UqpmAMzDoQQO2OpXnDjsEoijv5CecahzWMOTBWtxZXARoR2onFgGVq11jrMRtNQHTnvhaiOTKj5mIpt/T7ctGsAmSwFpfm1DMPdblw20gWgthoHAHkN/NqFeWtU7UwkjeVUBr2++lbsKyWUQzSdsTOmRns8PObQzESseINLEjDp8P/F1faOOdiVtWtQDmxh7ES3ElNete60WYrqdKT04qDqWfR4c5uT7QM+XLOlx54y2FNgBN5xyQCA2o0Dez3tlM7K3Eqn5uKmQfXWd7NX2D5DzxpIall7JOlItxszkfoVwnHjsEqYcrh8UxemIynb0rd7zKFwSEwtpDpYOXgU86tWq/JatqqcZ8pUyaYzBjYFcyNIt/f74ZZFXLfNTIHsKVjobts7DEKArTXOQGYu1HZRDnFVt/82r8+a7Sp6/fVVDoUxB7tfm7XpHOpyI5TQ6ta6mxuHVcKMwxWj3aA0l3ccT5ceEdoueAuGxNQCMw6dWOfgkS3lUKNxYC0wZlZQDk7jwAbfv21XP4BihXDlWBAH/+RduHpzT03X027KYT5qGl1FFOxiz9U2JFwrpnLIBfijKfM62CTGYatQlGVVbTTcOKwSlsa61xrIfjGURDqThZY12ls5KMw41L5rYTszdwcaB2YQU5naFlPWPG8mkkY6k8V1X/gRHntlCoAZWM5kKTZ1m4vHaNBju+4+/OZxfP59l+Oy4a6i5xwI1L4zLpxF3eowl9IlwwH7WEOylbKGnQHG2tUw5cC6Fs9FuXFoSphyuMoaeHJ2IY7T83EAuVnB7YiXpbKuYafIht10pluJBaRra6HB2m6ruoHnzy5hLqri8IUwgFygf6jbDULMeAMj4Jbx8Ru3rXulr53a3Ca1Dsw4sE0fsPohSGvFJZnLMVMPsXSxWwkA5qL1iTu071Z3g1i2jMPOQT+Gulx4ZWLZzkS5aqx7pVNbGlkUoEgC4mtQDp3tVlqbcQ07euo8/fo8gFy2HBst6VMkbOv3Yd94cC2XWhU+Ze1uxmaCuZX2juYUVrDOAWlZNA24ljWgSIKtHFi2EjcOTU40lUHALUEUCK7e3IOXLy7Dq5hFKpvbWDkAZvriWpRDkiuHmrOVwknNaq9A8fQb+caBKQe3LOB7v/vWuvT3WmvdRrOxEFOhSAJ2DZpupYBLgkuq7+dUsf5uGd0AXDnlwIxDj1eGIgqt4VYihJwnhBwlhLxCCDlkHeslhDxJCDll/exxPP6zhJDThJAThJBbHcevsZ7nNCHky4S1j2xClpOavaN40+YgLoaSePbkAq4cC6KJL3td8CrSmnzMKXsR6zzjYMccag5IZ7B7yFy4WBLERNhs4cyUg0syh97XwzisVzuVZmE+pmLA77LnmNcyAGmtyJZbiRXCxQpiDoQQDHa56qYc1uNT9A5K6T5K6X7r988AeIpSugvAU9bvIIRcDuBOAHsA3AbgK4QQtkp8FcDdAHZZ/25bh+vaECKpDIIe84PDMj2mllO4oo1dSgy/S1pT+4x0B7uV3NLadtrLSQ07Bvz27tItm2mP8zE1TznUC5ckQCBt5FaKpTHY5bKnEdYy42KtsL8tS2dl2UrOLMihLndLGYdCbgfwoHX7QQAfcBx/mFKqUkrPATgN4FpCyAiALkrp89QM0z/kOKfpWLYaYQFm8Ir5Cds53sDwWv10aiXZwUVwgkDglgV7IV8trJ3DsJWR9PbdZhHbxVAyTznUi9zQoPZwK81HVQwGXPAoIgJuqSFTCZUSysGriHlKcKiFlAMF8B+EkJcIIXdbx4YopTMAYP0ctI6PAphwnDtpHRu1bhceL4IQcjch5BAh5NDCwsIaL706KKV4/sySnV4WSWXQbbmV3LKIy602BFeMbXwQsNH4rQlitcJcKu46+3KbBY8s1qQcMlkDsbSOXp+CEcs43LpnGEAulRoAXHVUDoA1KrRN3Epz0bStGt556SCut+Yn1BM75mAbh+KuC4MBN+ZbIeYA4EZK6dUA3gPgHkLITSs8tpRDnq5wvPggpfdTSvdTSvcPDAys/mpr4MhkBB/5hxfw/JklAGb7DKYcAHMHt63fZ+eYtzPmwJq1uZXcstDW40BXwqtINQWkWW1Nj1fGaNADQoBbLh2CQAqMQ52NrqkkW185RJIZRNM6xnvNIsK/uvNN+K2bttf9OuRCt1I6Y7fOYAx3uxFT9bq489ZkHCil09bPeQDfBnAtgDnLVQTr57z18EkA447TxwBMW8fHShxvClhF6nxMBaXUijnk/mCfftduPP77b2v7YDSQGxJTK8kS86M7Cbcs1BSQDlvV0T0+Bb989Sh+++Yd6PbKGOn2YMLhVqpnzAEwlUM7xBwmrLksjc427LeKEv/nvx/HybkYYmkdXQXKYcguhNt411LNnyZCiI8QEmC3AbwbwDEA3wVwl/WwuwA8Zt3+LoA7CSEuQsg2mIHng5brKUYIud7KUvqY45yGw2a2Lic1JLQsdIPmKQdRIHXfsTUK3xoHvHS6cfDW6IZhNQ49XgVv2zWAP771UgDmYtZQ5aCIa57v0QxMWCnBjS5i3TcexJd+9QqcXYjjj795pKRyGAqwWoeNdy2tpc5hCMC3rR2zBOBfKaWPE0JeBPAIIeSTAC4CuAMAKKWvEUIeAXAcgA7gHkop+2R9CsDXAXgA/ND61xSErDnRy6mMXR1d7+KYZsHrEtekHMJJrag7aCfhUWobFWorh4IMms29Xjx9Yr5hysHvkjBbp+DoRnKxSYwDAHz4zZtxfimJf3j2LAYDriI1M2gVwrH24htJzcaBUnoWwFUlji8BuKXMOfcCuLfE8UMA9tZ6LRsJUw6RVMbewXV7OnOB8ysSNN1AJmvUlEs/H0tjcA39fFodjyza3VVXA2ud0ePL35SM9niwEFPtYql61494Xa03KvQHR2dw+EIYg10u3H3TDgCmcQh6ZbvYrNHsGw9CNyimI2m8vVA5dLlwyVAAkrDxGwFeIV0B1kc/kszYt+vdc6VZ8DoG/nR7ajAOURV7Rto/5bccXkXETGT1i2koUVo59FstpdkAGNabp174FLGlYg6vTizjt//lMESBIGtQ3L5vFENdbkyEUw2PNzhxtj/p8uQv0QG3jCf+YKW8n/Wj4xrvPXp4Eu/7658hW+Wg95BDOSwlTD9fI3KgmwG/3cN/9QtC1qBYjKt2Z8lOZLWprMtJDe/5q5/i316cgEcWi5QB26SwofN1Vw4tFv6gaA0AABYMSURBVJD+2s/Pwe+S8NAnrgUAvHg+BMCMOYz3NI9xGOpy2+25G6lmOs44ZLIGjk5F7C9UJeyAdCqDJSv+0Ffn8YHNwlp6+C8lVBgUne1WUsRVFcEdmYzg9ZkoLoaSGAkWp0oz5TC1nIJAAKnOKcI+l4hkJgujyo1WI5mLpvG9IzP40P5xXLutFx5ZxKHzYWQNislwsiniDU6YemjkdMmOcyvtGPADAM4sxrG5r/IHImSpheWkhlBCgySQIqnXKfjtHv6rd42wwp2BQPvXg5Rjtcrh7ILZCv67v3NjyXYOA5ZxmAwn4ZbFuqdT+1wSKAXSetbeODQbhkHxxcffwBOvzSJLKT5+w1bIooCrtwRx8FwIc9E0MlnaVG4lALhqPIjHX5vlyqGebGfGYT6OQ+dD+JWv/NxucFUIpdThVtKxFDdbGHRCTUMpnHOkq81aevbkAh57ZcqeXrWWATOtjtfKVmLV9pU4u5hAwCXhitHukjtb5lYKJzN1jzcAZswBaO6BP5PhFO5/9iyCHhn3fWifvSHcv6UXb8xG8dq0ORKUFcA1C/u3mn3b+us8qtRJxxmHXp+CHq+MMwsJ/ODoLA5fXMbjx2ZLPjam6shkKRRJQCSlYcnqb9OpsE6c3zh4EXs/9wQ++o8HcGwqsuI5f/vj07j3+6/bqXed7FZyKyIozc1fqMTZhQS2D/jKbkZ8LsmuG2lEp1s2vjKSLL25agYWLeX/++/ajQ+8KdeV59ptvTAo8A8/PQug8QVwhbx5ay+++V/eght21L+NB6PjjANgqoczC3G8PGFO0vruq6ULslmNw9Y+LzJZ0zfZqZlKQM44PPHaLLo9Mg5fDNtfrnJMhlOYj6l4YzYGoMOVg7y6zqxnFuK20i1Hf8D8PDbCOLDY21Ji9em59WLRUqyF39t940EoooCD50K4ZksPRoPNpRwAYP/W3oa2mmlOR+EGs2PAhyePzyGhZuFVRPz89KKVg5/vD2cf+m39Ppyci+PcYsLuqd+JMDdCJkvxi1eM4NhUBNFU+V1jJmvY7UeePbmAbo/ckbMcGCPWAnTofAjvthrnlSOp6ZiJpLHDMfKzFH0+FyZCqYa4ldiCG2pi48C+w4XuGZ9Lwjc/9RZ4FQk7B1c2wJ1KRyqHHQN+hJMZaFkDv33zDhgU+N6rM0WPYx96tntTdYO7lSxuvmQAAbdkF2CVYno5BZbIcmYh0dEuJQC45dJBjPV48NWfnKkYdzi7kACAysrBWvRcDVEO5ndhKV6fLqG1wK6t1Pf2yrEgNwwr0JHGwfmFu2P/OLb0ee2cZycsU2l7f2731qk1DkBuvKckENywow/+Co34JkL56cKdXOMAAJIo4O6btuPli8s4cK748+bk7CIzDisrhwHLrdQI5cBaoTS1WymuIeCSOlqx1kpHGgcm1Td1uzHU5cZYj6dkj5ilAuUANGZ8YLMgCAQ+RcT+rT0IuGUE3PKKyoF1u2Tvd6HbrhP50P5xBL0yHjk0seLjzi7EQQiwta+yWwloTMxBFgV0e+SmdistxlW72ylndXSkcRjv9UIWCd5kjfkc7vJgNlJsHEJxDR5ZtKdvAZ1bAMf4zbdtx6du3gnALNCJlkkDBszKU0kgeMcl5rynTncrAeYifulwAOctZVBI1qD4lwMX8K3DkxgNeiou+v3+xikHwIw7sOLQZmQprnW02l8LHRmQlkUBX/jlK3CZNcVtuNuF+ZiKrEEhOrIDQkkzddU5v6GTs5UA4A9+Ybd9O+A23UqU0pLplhPhFDYFPdgzar7PnZyp5GS8x4tnTpaeZPjq5DL+9NvHsGvQj8+859KKz8V2xY1ym/T5FLutTDOyGFcruuY4pelI5QCYsYa9o2YTuOFuj937x0kooaHPr8CriHZrgk4OSBcScJsVsuWmgU2Ekhjv9eCqsSAIMbO+OKZyXYipJVtpsNTLv/jQPtxy2VDF57LdSo1SDj5XcyuHhNbQQrJWpmONg5MRq8nVTIFr6dRcHOM9XhBC7BkO/R3uVnLCBpGUqzCfDJsNzbYP+PHMf70Z77x0sOTjOo2xHjOldbJEf6/c1Lfq2ibYAek6z3Jg9PqVpo056FkD4aSGPm4caoIbB8COKTjjDgsxFVPLKbsBVpdH7ui+SqWwey2VCEonNR2Lcc1eCLf0la/07TRYKwwWsHcSSpiGtlqFynbF7gZNI+z3KQgntaq7HK+FN2ajdt1MNYSSGijNxWU4q4MbBziNQ+6D98rEMgBg32bTOAQ9Mno6uK9SKVjHyGgJ43DCqohutm6XzQBrDz0ZKjYO4aQGlyRUPU612yOjz6dgqKsxmWC9PgUGRU1DjFbLbz10CF/64RtVP565u7hbqTb4NhhAr1eBIgqYcaSzvjIRhigQ7N1kxiWGutx12R21EuXcSgsxFb/38Mvo9Sl4y/bG9YZpVgYDLiiSgIkSbqVQYnXNHQkhePIP326ruHrDXDZmfG7jFmFNNzAVTq0qWzDXYp8rh1rgxgFm/v5QtwtzkTQeeXECPpeEVyaWcdlIAB6rZcTn3rcHWpUN0zoFphwKC+E+860jWIxp+Mbd19szbzk5BIFgLOjBZAm3UjihlWzPvRKNTJJgC+9iXMOuyvHzmpmNpGFQc3ZFtbAEEx5zqA1uHCyGu9w4ORfHD4/NQjcoJIHgjv1jufu7+SJXCDMOzkK4cELDMycXcPdN2/PGHXLyGe3xFFWQA7n06VbBqRw2ksll05CyLK8vP3UKfX4XPvnWbXmP+9HxOYSTGu7YP24bhwFuHGqCxxwshrs9OD4Thaob8LskqLqBfeM9jb6spqaUW+lHr88ha1C8Z+/KjeU6nfFeb8mAdDih2W0pWgFmyEIbXOvgnNw4G0nj4Rcn8L0jxd2U//zJk7jvyZMAzDRWnkRSO9w4WIxYymBLnxcPfeJaXL05iJt29Tf4qpobryyCkPxspcePzWI06MEVVg0JpzTjPV4sJzNF8ZpwMoNeb+Omf62WHutaFze41sHpTjoyFUEooWFmOT/1PJLMmBlN0TRUPYuFmIo+P08iqRVuHCzYQO8P7BvFVeNBPPrbN3J/eQUEgcDvkuxspbiq46enFnHrnmH+hawAmzx20ZGxpGcNRFKZllIOkiigx7vx/ZWmwim7EPWZN+YBAPOxNPRsLg548HwIlAKUmjUk5xYT2FKhNxWnPNw4WFwx1o2AW8KvXj1W+cEcmy5H870Xz4WgZQ2863Je7FYJVi3OWnMDwHJqdTUOzcJgwF1UQLreTC2ncPmmLhAC/MRqPWJQYC6Wc2e9cHbJvn1xKYnT83HeknsNcONg8eatvTjyuXfbM2Y51WG27TYXNbYL5l/IymzvN98jp3EIW7vv1WYrNZotfV5cWCrdSHC9mFpOYUufD0MBd16L8BmHu+nAuSXssj57hy+GEUllsKPCPAxOebhxcMBdIavHOfBnatmcSMazQyrjUUSMBj04uxi3jzHXTKsph239PlwIJWFsUB2QYVBML6cwGvRg1Kq477aaYU5biiWazuD4dBS/eMUIvIqIp143XU98o1I73Dhw1oTTOEyGkxgNeriRrZLtA7585ZBsVeXgg6YbJWeirAfzMRWZLMVYj8ee9fzWnWayCFMOh86HYFDguu292NzrxfGZKABuHNYCNw6cNeF3y3YR3FQ4Ze/sOJXZ3u/D2YW4PTKU9VWqtules7DVcsWWm1GxFh4+eBFfe+4cALM2hH2+3rQ5iIBLsmMdB86GoIgCrt7cgy3W9XgVEZt4fVLN8ARgzpowlYO5qE2GU3j3pq4GX1HrsH3Aj4SWxen5OP791WlkLLdMyykHK7h+fimJG3au3/OGEhr+5NtH7TnkY0EPJi3lsGsogJGgG9OWcnjhXAhXjXfDLYt2htKOAT9XsWuAGwfOmghYqawpLYulhIaxHh7QrxY2hOazjx7FoQtheGQRXkVsuXnHI11uKJKw7kHpH78xD4MC/8dtlyCtZbFjwA9FEvDOSwdx9eYgRro9mImkEVd1HJuK4FNv3wEA2Gw1e+QupbXBjQNnTQTcEjTdwDnLpcB8wpzKsNnkhy6EIRAglcm25PsnCARber32Z2C9eOqNOQwGXPgvN+2AYNU4bOnz4Z8+/mYAwKagG8emInjpQhhZg+J6q8kjcytx47A2eMyBsyZYC403Zs0A4BiPOVTNSJcbbmtIz30f3gdJIC2XqcTY0ufDhaXidiCr4XtHpvHxrx1EUtOh6QaePbmIWy4bsg1DISPdHiwlNDx7cgGSQHD1FrOX1+UjXRjucuMtO3hH4LXAlQNnTbBW0UcmIwDAA9KrQBAIrhjthksScfu+USwnM5DF1tyvbe3z4menF2AYFAlNx/3PnsWnbt4BjyzimRMLuHFnP5QVRplGUhn89+8cQziZwV/+6BT2b+lBXNXxrsvKF1Syljdf+/k5XLutF17F/Cz2+V144U9uWd8X2IFw48BZE/u39kAUCB5+8SJkkWAwwLNDVsMDH3+z3Rbirhu2NvZi1sCWfh/SGTOd9ak35vHXT5/Glj4fen0yPvH1Q/j4DVvx+ffvKXv+3zx9CsupDN66sx//+NOz+NrPCUaDHty4s3x/syvHglAkAbdftQl/fOslG/GyOhpuHDhrYkufD3dcM4aHX5zA5l4vxDIuAE5putytlbZajn1jpkvnp6cW8JMTZgHaj47P2W3dv/7cebxlRx9u3VPcrTeU0PDgcxfwwavH8N9+6XL86t89h0uHA/iz2/euGJy/ZDiAk//rPRvwajgANw6cdeD3btmFRw9P8XhDB7N3tAube7149PAUjk5FIBDg2VMLUCQBv3TFCC6GkvjTbx/DTbsG8NDz53HgXAh/eec+dLllfP/oDLSsgU+8dRu6vTJ+9Idvb/TL4YAHpDnrwKagB1/+yD58+pZdjb4UToMghOC9V47gwLkQkloW/+m6LUhqWSwnM3jfVSP47++9HItxFf/n94/j/3niBJ5+Yx4fe+AgoukMHnt5CruH/Lh0ONDol8Fx0DTGgRByGyHkBCHkNCHkM42+Hs7quG3vCK7j86I7ml+6cgQAoIgC/ujdu62aDQE37R7Atdt6cePOPvzrgYvwyCK++CtX4NhUBB/++xdw6EIYt+8b5QVrTUZTuJUIISKAvwXwCwAmAbxICPkupfR4Y6+Mw+FUy+UjXdg95Mdo0IOgV8HHb9iKLKV2FtEf/sJuHDj7Av7o3btx57Wb0eNTcM+/HAYAvP+qTY28dE4JCOvr0tCLIOQtAD5PKb3V+v2zAEAp/b/KnbN//3566NChOl0hh8OphsW4ClkQ0F1mml0okT8j+9mTCzg9H8cnCmZBczYOQshLlNL9lR7XFMoBwCiACcfvkwCua9C1cDicGumv0K69sMjvpt0DuGn3wEZeEqdGmiXmUMrZWCRpCCF3E0IOEUIOLSws1OGyOBwOpzNpFuMwCWDc8fsYgOnCB1FK76eU7qeU7h8Y4LsNDofD2SiaxTi8CGAXIWQbIUQBcCeA7zb4mjgcDqdj+f/bu7dYuaY4juPfXxwh1WrpRYjSeEGJtEjcKhLSB15ISBDR4kVdgjeXSHjx0AaRtg/VUGkRQUqoW1OCuIsiraNBK422aYioaiuE+HvYa2Jy5pweM7Ome+85v0+ys+es2bPOf/0zZ/6z15lZuxL/c4iIvyXdCqwFDgJWRMRgyWGZmY1ZlSgOABHxGvBa2XGYmVl1ppXMzKxCXBzMzKyFi4OZmbWoxDekOyFpD/DNMHdNBHZn/FW5+wOYAvycqa86jDd3nznzB9XPYc7+nLvu1Dl/jdiPj4jRvwsQEbXcgM9GaF+e+fdk7W9/sVchvh6NN3eM2fJXhxzm7M+5G7v5azf2fpxWWlPx/nKrw3idw2r1l1PVx1rl3EGFx1vnaaXP4n8sHlVFdY69Cpy/zjl33alz/tqNvc5nDsvLDqALdY69Cpy/zjl33alz/tqKvbZnDmZm1jt1PnMwM7MecXHIQNJ0SW9L2iRpUNLtqf1ISeskfZf2R6T2yen4vZKWDunrakkbJW2Q9IakKWWM6UDKnL8rU+4GJS0qYzwHUge5mytpfXqOrZd0YVNfZ6T2zZIWawxctzNz/h6QtE3S3rLGk1XOj1GN1Q04Gjg93Z4AfAvMBBYBd6X2u4CF6fZhwBxgAbC0qZ8B4CdgSvp5EcUV8kofY03yNxn4AZiafl4JXFT2+CqWu9nAMen2qcCOpr4+Bc6huL7K68DFZY+vZvk7O/W3t+xx5dh85pBBROyMiM/T7T3AJoqr211K8QJF2l+WjtkXEe8DfwzpSmk7LL1rO5xhrmvRbzLm7wTg24hoXAnqTeDyHodfqg5y90VENJ5Tg8Chkg6RdDRweER8FMUr3arGY/pZrvyl+z6OiJ0HMv5ecnHITNIMincXnwBHNZ4saT9tf4+NiL+Am4CNFEVhJvB4D8OtnG7yB2wGTpI0Q9IAxR/09FEe0zc6yN3lwBcR8SfFC+L2pvu2p7Yxo8v89R0Xh4wkjQdWA3dExG8dPP5giuIwGzgG2ADcnTXICus2fxGxiyJ/zwLvAVuBv3PGWFXt5k7SKcBC4MZG0zCHjZmPMmbIX99xccgkvbCvBp6OiBdS84/pdJ20/2mUbmYBRMSWdGr/HHBuj0KulEz5IyLWRMRZEXEOxdpb3/Uq5qpoN3eSjgVeBOZFxJbUvJ3i8rwNw16qtx9lyl/fcXHIIP1/4HFgU0Q83HTXy8D8dHs+8NIoXe0AZkpqLIo1l2IOtK9lzB+SpqX9EcDNwGN5o62WdnMnaRLwKnB3RHzQODhNneyRdHbqcx7/I991lyt/fans/4j3w0bxyZmgmAb6Mm2XUHx65i2Kd69vAUc2PWYr8Auwl+Jd28zUvoCiIGygWCdlctnjq1n+ngG+TttVZY+tarkD7gX2NR37JTAt3Xcm8BWwBVhK+pJsP2+Z87coPRf/Sfv7yx5fN5u/IW1mZi08rWRmZi1cHMzMrIWLg5mZtXBxMDOzFi4OZmbWwsXBrAckLZA0r43jZ0j6qpcxmbVjoOwAzPqNpIGIWFZ2HGbdcHEwG0ZahO0NikXYZlMs5TwPOBl4GBgP/AxcFxE7Jb0DfAicB7wsaQLF0s0PSpoFLAPGUXzB7IaI2CXpDGAF8Dvw/oEbndnoPK1kNrITgeURcRrwG3ALsAS4IiIaL+wPNB0/KSIuiIiHhvSzCrgz9bMRuC+1PwHcFsU6UGaV4jMHs5Fti//Wz3kKuIfiAi/r0kXSDgKa1+9/dmgHkiZSFI13U9NK4Plh2p8ELs4/BLPOuDiYjWzo2jJ7gMH9vNPf10bfGqZ/s8rwtJLZyI6T1CgEVwMfA1MbbZIOTuv6jygidgO7JJ2fmq4F3o2IX4Hdkuak9mvyh2/WOZ85mI1sEzBf0qMUq3MuAdYCi9O00ADwCMXlIvdnPrBM0jjge+D61H49sELS76lfs8rwqqxmw0ifVnolIk4tORSzUnhayczMWvjMwczMWvjMwczMWrg4mJlZCxcHMzNr4eJgZmYtXBzMzKyFi4OZmbX4F04REYUe7cnPAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Etude de l'incidence annuelle" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", " for y in range(1985,sorted_data.index[-1].year)]" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [], "source": [ "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_august_week[:-1],\n", " first_august_week[1:]):\n", " one_year = sorted_data['inc'][week1:week2-1]\n", " yearly_incidence.append(one_year.sum())\n", " year.append(week2.year)\n", "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGDRJREFUeJzt3X+wXOV93/H3V1xFwhjZEkgUSYDImJIIp8HmjiB1mwbTIEgyiEzAVSGgNnRoHJIhmUxBNHToGDxjdzJxrCF2YQK2MDaYEnsgxYoj5HhCUipxZexikBUpgQgZBYm5FISnuviib//Y50ar6/vjSHfv7tnd92vmzp599pyzz310tZ9znuc5ZyMzkSSpijmdroAkqXsYGpKkygwNSVJlhoYkqTJDQ5JUmaEhSarM0JAkVWZoSJIqMzQkSZUNdLoCrXbqqafmihUrOl0NSeoq27dvfy0zF0+3Xs+FxooVKxgaGup0NSSpq0TE31dZz+4pSVJlhoYkqTJDQ5JUmaEhSarM0JAkVWZoSJp1+988xEfueZr9Bw91uiqaIUND0qzbsGUXz7w0zIYnd3W6KpqhnrtOQ1J9nHv7JkZGD//j8we37uHBrXuYNzCHnXdd3sGa6Xh5piFp1jx1y8Vccf5S5s9tfNTMnzuHNecv5albL+5wzXS8DA1Js2bJgvmcPG+AkdHDzBuYw8joYU6eN8CSk+d3umo6TnZPSZpVr701wrUXnsU1q87kS9v2cMDB8K4WmdnpOrTU4OBgeu+pI/a/eYjffOhZ7r7mAx7daVb4N9YbImJ7Zg5Ot57dUz3OWSuabf6N9RfPNHrU+FkrY5y1olbxb6y3eKbR55y1otnm31h/MjR6lLNWNNv8G+tPlUIjIn4nIp6PiO9GxEMRMT8iFkXE5ojYVR4XNq1/W0TsjoidEbG6qfyCiHiuvLYhIqKUz4uIL5fyrRGxommbdeU9dkXEutb96r1vbNbKV3/jQ1x74VkceGuk01VSj/FvrP9MO6YREcuAvwJWZub/i4hHgK8BK4HhzPxERKwHFmbmrRGxEngIWAUsBZ4E/mlmvhMR24Cbgf9d9rEhMzdFxG8A/ywzfz0i1gK/nJn/JiIWAUPAIJDAduCCzHx9svo6piFJx67VYxoDwIkRMQC8C3gFWANsLK9vBK4sy2uAhzNzJDNfBHYDqyLidGBBZj6djaR6YNw2Y/t6FLiknIWsBjZn5nAJis3AZRXrLElqsWlDIzO/D/w+sAfYB7yRmX8OnJaZ+8o6+4AlZZNlwMtNu9hbypaV5fHlR22TmaPAG8ApU+zrKBFxY0QMRcTQgQMHpvuVJEnHadrQKGMVa4CzaXQ3nRQRvzrVJhOU5RTlx7vNkYLMezNzMDMHFy9ePEXV1E+8HbfUelW6p/418GJmHsjMHwJfAf458GrpcqI87i/r7wXOaNp+OY3urL1leXz5UduULrD3AMNT7EualhedaTb160FJldDYA1wUEe8q4wyXADuAx4Gx2UzrgMfK8uPA2jIj6mzgHGBb6cI6GBEXlf1cP26bsX1dBXyjjHt8Hbg0IhaWM55LS5k0qXNv38SK9U/w4NY9ZDZux71i/ROce/umTldNPaRfD0qmvWFhZm6NiEeBbwGjwLPAvcC7gUci4gYawXJ1Wf/5MsPqhbL+TZn5TtndR4HPAycCm8oPwH3AFyJiN40zjLVlX8MRcSfwTFnvY5k5PKPfWD3vqVsu5q6v7eDPn/8HDv3wMPPnzmH1ef+E3/vFn+xovbxHU2/o9+8IqXSX28y8A7hjXPEIjbOOidb/OPDxCcqHgPdPUH6IEjoTvHY/cH+VekpQ34vOmo9M7/rln+poXXT86npQ0i7eGl09qU634+73I9NeU9eDknYxNNST7rnuyDVKd135Iye3bdXvR6a9qE4HJe1maEizrN+PTHtRnQ5K2s3QkNqgn49M1Vv8Pg1Jk3LGV//w+zQkzVi/Xougydk9JdVIXY7snfGlyXimIdVIXY7s/VY+TcYzDakG6nZk74wvTcYzDakG6nhk77fyaSKeaUg1UMcj+36+FkGTMzSkmvBaDnUDr9OQJHmdhqT+069fjNROhobUp3rxA7YuU5Z7mWMaUp/qpe/3qNuU5V7mmIbUZ8Z/wI7p5g/Y/W8emvT2815bUo1jGpImVMdrQmaqjlOWe5XdU1Kf6dUPWKcst4ehoUrqciM9tUYvfsB6MWJ7OKahSm7/6nN8cdserl115qwPmhpQUvs5pqGWOPf2TaxY/wQPbt1DZmNWyor1T3Du7Ztm7T2dNqnZ1ItTjdvJ0NCU2jlo2omAUv/xoGRmHNPQlNo5aPrULRdPOm1Smimv5WgNzzQ0rXbdIvtYAsouBh2rXpxq3AmGhqZ1z3WD3HXl+1m5dAF3Xfn+o2aptFrVgOrnLoYqgWmo/qhenWrcbnZPqVazlaabNtmJLoY6tQ9Uu/1HL90ipJV6capxuznlVi2bTtuOD9dO3C6indONp1Ll9h+9eIsQtYdTbjWtVs9WakeXUTu7GOo2m6tKn3y39tvbndY9DI0+1qoPmHZ/uLZrYL5uH8BVArNb++37eYyq2zim0cda9QHT7qmy7bpdRB0/gKv0yXdTv73TYLuPodHnWvEBU8cP11ap2wdwlcDspnsweW1O9zE0+lyrPmDq9uHaKt30AdyNevmAo1cZGmoJP1x1vKoecNRt6nO/csqtpK5Ql6nPvarqlFvPNCTVmhd01otTbiXVWiemPjsFeHKVQiMi3hsRj0bE9yJiR0T8TEQsiojNEbGrPC5sWv+2iNgdETsjYnVT+QUR8Vx5bUNERCmfFxFfLuVbI2JF0zbrynvsioh1rfvVJS8q6wb9fEFnHVU90/g08GeZ+RPATwM7gPXAlsw8B9hSnhMRK4G1wHnAZcBnIuKEsp/PAjcC55Sfy0r5DcDrmfk+4FPAJ8u+FgF3ABcCq4A7msNJmimPKLtDv17QWUfTjmlExALgZ4F/B5CZbwNvR8Qa4OfKahuBbwK3AmuAhzNzBHgxInYDqyLiJWBBZj5d9vsAcCWwqWzzX8u+HgXuLmchq4HNmTlcttlMI2gemsHvLHlRWZfp5ws666bKmcaPAweAz0XEsxHxxxFxEnBaZu4DKI9LyvrLgJebtt9bypaV5fHlR22TmaPAG8ApU+xLmhGPKDWZdp3VdKsqs6cGgA8Cv5WZWyPi05SuqEnEBGU5RfnxbnPkDSNupNHtxZlnnjlF1aQGjyg1Ga85mlqVM429wN7M3FqeP0ojRF6NiNMByuP+pvXPaNp+OfBKKV8+QflR20TEAPAeYHiKfR0lM+/NzMHMHFy8eHGFX0nyiFLdo04TNqYNjcz8B+DliDi3FF0CvAA8DozNZloHPFaWHwfWlhlRZ9MY8N5WurAORsRFZbzi+nHbjO3rKuAb2bjq8OvApRGxsAyAX1rKpBlr5zcSSjNRpwkbVS/u+y3gixHxY8DfAf+eRuA8EhE3AHuAqwEy8/mIeIRGsIwCN2XmO2U/HwU+D5xIYwB8bB7bfcAXyqD5MI3ZV2TmcETcCTxT1vvY2KC4JPW6Ok7Y8DYiklRT7fymSr+5T5K6XB0nbHjvKUmqsbp97YDdU5I0S7rpxod2T6mW6jR1UJptdZr11Cp2T6mtmv8T+Z0I6lV1nPXUKnZPqS3G/yca0wv/iaTxjmXWU126sOyeUq14ryf1k2OZ9dRtXVh2T6kt6jh1UJpN08166tYuLENDbVO3qYPSbJruxodP3XLxpF1YdWZoqG28e6h0RLeefRsaktQh3Xj27ewpSZKzpyRJrWdoSJIqMzS6mLfkkNRuhkYX67aLgnqZAa5+4eypLtStFwX1Mu+ppX7h7Kku1M5v89LUvKeWeoWzp3pYt14U1Iu8p5b6jd1TXaobLwrqRQa4+o2h0aW8JUd9GODqJ45pSJIc05AktZ6hIUmqzNCQJFVmaEiSKjM0JEmVGRqSpMoMDUlSZYaGJKkyQ0OSVJmhIUmqzNCQJFVmaEiSKjM0JEmVGRqSpMoMDUlSZYaGJKmyyqERESdExLMR8T/L80URsTkidpXHhU3r3hYRuyNiZ0Ssbiq/ICKeK69tiIgo5fMi4sulfGtErGjaZl15j10Rsa4Vv7Qk6fgcy5nGzcCOpufrgS2ZeQ6wpTwnIlYCa4HzgMuAz0TECWWbzwI3AueUn8tK+Q3A65n5PuBTwCfLvhYBdwAXAquAO5rDSZLUXpVCIyKWA78I/HFT8RpgY1neCFzZVP5wZo5k5ovAbmBVRJwOLMjMp7PxHbMPjNtmbF+PApeUs5DVwObMHM7M14HNHAkaSVKbVT3T+EPgFuBwU9lpmbkPoDwuKeXLgJeb1ttbypaV5fHlR22TmaPAG8ApU+xLktQB04ZGRPwSsD8zt1fcZ0xQllOUH+82zXW8MSKGImLowIEDFaspSTpWVc40PgRcEREvAQ8DH46IB4FXS5cT5XF/WX8vcEbT9suBV0r58gnKj9omIgaA9wDDU+zrKJl5b2YOZubg4sWLK/xKkqTjMW1oZOZtmbk8M1fQGOD+Rmb+KvA4MDabaR3wWFl+HFhbZkSdTWPAe1vpwjoYEReV8Yrrx20ztq+rynsk8HXg0ohYWAbALy1lkqQOGJjBtp8AHomIG4A9wNUAmfl8RDwCvACMAjdl5jtlm48CnwdOBDaVH4D7gC9ExG4aZxhry76GI+JO4Jmy3scyc3gGdZYkzUA0Duh7x+DgYA4NDXW6GpLUVSJie2YOTreeV4RLkiozNCRJlRkakqTKDA1JUmWGhiSpMkNDklSZoSFJqszQkCRVZmhIkiozNCRJlRkakqTKDA1JUmWGhiSpMkNDklSZoSFJqszQkCRVZmhIkiozNCRJlRkakqTKDA1JUmWGhiSpMkNDklSZoSFJqszQkCRVZmhIkiozNCRJlRkakqTKDA1JUmWGhiSpMkNDklSZoSFJqszQkKQesP/NQ3zknqfZf/DQrL6PoSFJPWDDll0889IwG57cNavvMzCre5ckzapzb9/EyOjhf3z+4NY9PLh1D/MG5rDzrstb/n6eaUhSF3vqlou54vylzJ/b+DifP3cOa85fylO3Xjwr72doSFIXW7JgPifPG2Bk9DDzBuYwMnqYk+cNsOTk+bPyfnZPSVKXe+2tEa698CyuWXUmX9q2hwOzOBgemTlrO++EwcHBHBoa6nQ1JKmrRMT2zBycbr1pu6ci4oyI+IuI2BERz0fEzaV8UURsjohd5XFh0za3RcTuiNgZEaubyi+IiOfKaxsiIkr5vIj4cinfGhErmrZZV95jV0SsO7ZmkCS1UpUxjVHgdzPzJ4GLgJsiYiWwHtiSmecAW8pzymtrgfOAy4DPRMQJZV+fBW4Ezik/l5XyG4DXM/N9wKeAT5Z9LQLuAC4EVgF3NIeTJKm9pg2NzNyXmd8qyweBHcAyYA2wsay2EbiyLK8BHs7Mkcx8EdgNrIqI04EFmfl0NvrEHhi3zdi+HgUuKWchq4HNmTmcma8DmzkSNJKkNjum2VOl2+gDwFbgtMzcB41gAZaU1ZYBLzdttreULSvL48uP2iYzR4E3gFOm2Nf4et0YEUMRMXTgwIFj+ZUkScegcmhExLuBPwF+OzPfnGrVCcpyivLj3eZIQea9mTmYmYOLFy+eomqSpJmoFBoRMZdGYHwxM79Sil8tXU6Ux/2lfC9wRtPmy4FXSvnyCcqP2iYiBoD3AMNT7EuS1AFVZk8FcB+wIzP/oOmlx4Gx2UzrgMeayteWGVFn0xjw3la6sA5GxEVln9eP22ZsX1cB3yjjHl8HLo2IhWUA/NJSJknqgCoX930IuA54LiK+Xcr+M/AJ4JGIuAHYA1wNkJnPR8QjwAs0Zl7dlJnvlO0+CnweOBHYVH6gEUpfiIjdNM4w1pZ9DUfEncAzZb2PZebwcf6ukqQZ8uI+SVLrLu6TJGmMoSFJqszQkCRVZmhIkiozNCRJlRkakqTKDA1JUmWGhiSpMkNDklSZoSFJqszQkCRVZmhIkiozNCRJlRkakqTKDA1JUmWGhiSpMkNDklSZoSFJqszQkCRVZmhIkiozNCRJlRkakqTKDA1JUmWGhiSpMkNDklSZoSFJqszQkCRVZmhIkiozNCRJlRkakqTKDA1JUmWGhiSpMkNDklSZoSFJqszQkCRVZmhIkiozNCRJlXVFaETEZRGxMyJ2R8T6TtdHkvpV7UMjIk4A/gi4HFgJ/NuIWDkb77X/zUN85J6n2X/wUMfXqbIPSWq32ocGsArYnZl/l5lvAw8Da2bjjTZs2cUzLw2z4cldHV+nyj4kqd0iMztdhylFxFXAZZn5H8rz64ALM/M3J1p/cHAwh4aGjuk9zr19EyOjh3+kfN7AHHbedXlb16myD0lqtYjYnpmD063XDWcaMUHZUUkXETdGxFBEDB04cOCY3+CpWy7mivOXMn9uoznmz53DmvOX8tStF7d9nSr7kKRO6YbQ2Auc0fR8OfBK8wqZeW9mDmbm4OLFi4/5DZYsmM/J8wYYGT3MvIE5jIwe5uR5Ayw5eX7b16myD0nqlIFOV6CCZ4BzIuJs4PvAWuCaVr/Ja2+NcO2FZ3HNqjP50rY9HJhgALpd61TZhyR1Qu3HNAAi4heAPwROAO7PzI9Ptu7xjGlIUr+rOqbRDWcaZObXgK91uh6S1O+6YUxDklQThoYkqTJDQ5JUmaEhSarM0JAkVdYVU26PRUQcAP5+kpdPBV5rY3VmqtvqC9a5Xazz7Ou2+sLM6nxWZk57dXTPhcZUImKoyjzkuui2+oJ1bhfrPPu6rb7QnjrbPSVJqszQkCRV1m+hcW+nK3CMuq2+YJ3bxTrPvm6rL7Shzn01piFJmpl+O9OQJM1AV4dGRNwfEfsj4rtNZT8dEU9HxHMR8acRsaCUz42IjaV8R0Tc1rTNNyNiZ0R8u/wsqUmdfywiPlfKvxMRP9e0zQWlfHdEbIiIib6sqm51bks7R8QZEfEX5d/5+Yi4uZQviojNEbGrPC5s2ua20pY7I2J1U3lb2rnFda5lO0fEKWX9tyLi7nH7mvV2bnF969rGPx8R20tbbo+IDzftqzVtnJld+wP8LPBB4LtNZc8A/6os/xpwZ1m+Bni4LL8LeAlYUZ5/ExisYZ1vAj5XlpcA24E55fk24GdofLPhJuDyLqhzW9oZOB34YFk+GfgbYCXw34D1pXw98MmyvBL4DjAPOBv4W+CEdrZzi+tc13Y+CfgXwK8Dd4/b16y3c4vrW9c2/gCwtCy/H/h+q9u4q880MvMvgeFxxecCf1mWNwO/MrY6cFJEDAAnAm8Db7ajns2Osc4rgS1lu/3A/wUGI+J0YEFmPp2Nv4YHgCvrXOfZqttEMnNfZn6rLB8EdgDLgDXAxrLaRo602RoaBxQjmfkisBtY1c52blWdZ6NurapzZv4gM/8KOOpbxdrVzq2qbzsdR52fzcyxbzZ9HpgfEfNa2cZdHRqT+C5wRVm+miNfFfso8ANgH7AH+P3MbP4g/Fw5zfwvs9nVM4nJ6vwdYE1EDETjmwsvKK8to/E1uGP2lrJ2OtY6j2lrO0fEChpHX1uB0zJzHzT+M9I4E4JG273ctNlYe3aknWdY5zF1bOfJtL2dZ1jfMXVv418Bns3MEVrYxr0YGr8G3BQR22mczr1dylcB7wBLaZzO/25E/Hh57drM/CngX5af69pb5UnrfD+Nf9whGt9c+L+AURqnl+O1exrcsdYZ2tzOEfFu4E+A387Mqc4qJ2vPtrdzC+oM9W3nSXcxQdmstXML6gs1b+OIOA/4JPAfx4omWO242rjnQiMzv5eZl2bmBcBDNPp6oTGm8WeZ+cPSbfLXlG6TzPx+eTwIfIn2n+ZPWOfMHM3M38nM8zNzDfBeYBeND+XlTbtYDrwyfr81q3Nb2zki5tL4T/bFzPxKKX61nKaPdYnsL+V7OfpsaKw929rOLapzndt5Mm1r5xbVt9ZtHBHLga8C12fm2Odfy9q450JjbBZDRMwBbgf+e3lpD/DhaDgJuAj4XulGObVsMxf4JRpdLx2vc0S8q9SViPh5YDQzXyinowcj4qJyWnw98Fid69zOdi5tch+wIzP/oOmlx4F1ZXkdR9rscWBt6fs9GzgH2NbOdm5VnWvezhNqVzu3qr51buOIeC/wBHBbZv712MotbePjGT2vyw+NI9x9wA9pJOkNwM00Zhj8DfAJjlzA+G7gf9AYHHoB+E95ZIbEduD/lNc+TZmFUoM6rwB20hj8epLGXSjH9jNI4w/1b4G7x7apa53b2c40Zrxkea9vl59fAE6hMUi/qzwuatrm90pb7qRpVkm72rlVde6Cdn6JxqSKt8rf0sp2tXOr6lvnNqZxAPeDpnW/DSxpZRt7RbgkqbKe656SJM0eQ0OSVJmhIUmqzNCQJFVmaEiSKjM0JEmVGRqSpMoMDUlSZf8fuaDn64/6sjIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.plot(style='*')" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1986 0\n", "1987 0\n", "1988 0\n", "1989 0\n", "1990 0\n", "2020 229363\n", "2002 502271\n", "1991 507329\n", "2018 543281\n", "1996 553859\n", "2017 557449\n", "2019 584926\n", "2000 605096\n", "2015 613286\n", "2012 620315\n", "2011 645042\n", "1995 648598\n", "2001 650660\n", "1993 653058\n", "2005 654308\n", "2006 657482\n", "1998 660316\n", "2014 673458\n", "1997 679308\n", "1994 682920\n", "2007 701566\n", "2013 708874\n", "2004 736266\n", "2008 745701\n", "2003 770211\n", "2016 780645\n", "1999 784963\n", "1992 821558\n", "2009 822819\n", "2010 848236\n", "dtype: int64" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yearly_incidence.sort_values()" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEc9JREFUeJzt3X2QXXV9x/H3l0TbwGJEg4sN6lLGUh1XjazFhynugrYiPrSMrVBUUh/WGZ8yNp1p6uhQq46ZKo4Og+2kFaGFcavRFgxWYdTFZ2QXrAtGhULEBA1SJLo0EiLf/nFOxpUkd7Pn3tx797fv18xO7sM593zvN2c/+7vnnofITCRJi98RvS5AktQZBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEMu7ubBVq1bl0NBQo3nvu+8+jjrqqM4WVBD705r9OTh701o/9Gd6evruzDx2vum6GuhDQ0NMTU01mndycpLR0dHOFlQQ+9Oa/Tk4e9NaP/QnIn54KNO5yUWSCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUiK4eWCSpfwxtuAqA9cN7WVvf7pZtG8/s6vKWCkfoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFWLeQI+IiyPiroi4ac5jj4qIayLilvrfYw5vmZKk+RzKCP0S4IUPeWwD8IXMfCLwhfq+JKmH5g30zPwycM9DHn4ZcGl9+1LgTzpclyRpgSIz558oYgjYkplPqe/fm5mPnPP8zzLzgJtdImIcGAcYHBw8eWJiolGhs7OzDAwMNJp3KbA/rdmf/c3s2AXA4ArYubu7yx5evbK7C2xDP6w7Y2Nj05k5Mt90h/2aopm5CdgEMDIykqOjo41eZ3JykqbzLgX2pzX7s7+1c64pesFMdy8vvO3c0a4urx2Lad1pupfLzoh4LED9712dK0mS1ETTQL8SOK++fR5wRWfKkSQ1dSi7LX4c+AZwUkRsj4jXAhuBF0TELcAL6vuSpB6ad8NZZp5zkKdO73AtkqQ2eKSoJBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1Ih2gr0iHhbRNwcETdFxMcj4rc7VZgkaWEaB3pErAbeCoxk5lOAZcDZnSpMkrQw7W5yWQ6siIjlwJHAne2XJElqIjKz+cwR64D3AruBqzPz3ANMMw6MAwwODp48MTHRaFmzs7MMDAw0rrV09qc1+7O/mR27ABhcATt3d3fZw6tXdneBbeiHdWdsbGw6M0fmm65xoEfEMcCngFcA9wKfBDZn5mUHm2dkZCSnpqYaLW9ycpLR0dFG8y4F9qc1+7O/oQ1XAbB+eC8XzCzv6rK3bTyzq8trRz+sOxFxSIHeziaX5wO3Z+ZPM/MB4NPAc9p4PUlSG9oJ9DuAZ0XEkRERwOnA1s6UJUlaqMaBnpnXAZuBG4CZ+rU2daguSdICtbXhLDPPB87vUC2SpDZ4pKgkFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIK0VagR8QjI2JzRHwvIrZGxLM7VZgkaWGWtzn/h4HPZebLI+LhwJEdqEmS1EDjQI+IRwCnAmsBMnMPsKczZUmSFioys9mMEU8HNgHfBZ4GTAPrMvO+h0w3DowDDA4OnjwxMdFoebOzswwMDDSadymwP63Zn/3N7NgFwOAK2Lm7x8X0sU71Z3j1ysbzjo2NTWfmyHzTtRPoI8A3gedm5nUR8WHg55n5zoPNMzIyklNTU42WNzk5yejoaKN5lwL705r92d/QhqsAWD+8lwtm2t36Wq5O9WfbxjMbzxsRhxTo7Xwpuh3YnpnX1fc3A89o4/UkSW1oHOiZ+RPgRxFxUv3Q6VSbXyRJPdDu54i3AJfXe7jcBvxl+yVJkppoK9Az89vAvNt1JEmHn0eKSlIhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFWLRXKZkZscu1tZXWOm2dq40Iknd4ghdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQrQd6BGxLCJujIgtnShIktRMJ0bo64CtHXgdSVIb2gr0iDgeOBP4l86UI0lqKjKz+cwRm4H3AUcDf52ZLz7ANOPAOMDg4ODJExMTjZZ11z272Lm7caltGV69sjcLXoDZ2VkGBgZ6XUbf6uf+zOzY1dPlD66gZ79bi0Gn+tNOjoyNjU1n5sh80zW+pmhEvBi4KzOnI2L0YNNl5iZgE8DIyEiOjh500pYuvPwKLpjpzSVQt5072pPlLsTk5CRNe7sU9HN/enWt3H3WD+/t2e/WYtCp/nQjR9rZ5PJc4KURsQ2YAE6LiMs6UpUkacEaB3pm/m1mHp+ZQ8DZwBcz85Udq0yStCDuhy5JhejIhrPMnAQmO/FakqRmHKFLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKoSBLkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEI0DPSIeFxFfioitEXFzRKzrZGGSpIVZ3sa8e4H1mXlDRBwNTEfENZn53Q7VJklagMYj9Mz8cWbeUN/+BbAVWN2pwiRJC9ORbegRMQSsAa7rxOtJkhYuMrO9F4gYAK4F3puZnz7A8+PAOMDg4ODJExMTjZZz1z272Lm7nUqbG169sjcLXoDZ2VkGBgZ6XUbfmq8/Mzt2dbGa/jK4gp79bi0GnepPOzkyNjY2nZkj803XVqBHxMOALcDnM/OD800/MjKSU1NTjZZ14eVXcMFMO5v8m9u28cyeLHchJicnGR0d7XUZfWu+/gxtuKp7xfSZ9cN7e/a7tRh0qj/t5EhEHFKgt7OXSwAfBbYeSphLkg6vdrahPxd4FXBaRHy7/nlRh+qSJC1Q488RmflVIDpYiySpDR4pKkmFMNAlqRAGuiQVwkCXpEIY6JJUCANdkgphoEtSIQx0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAjPat/HFnLRhfXDe1nboYs0LIYLekjanyN0SSqEgS5JhTDQJakQBrokFcJAl6RCGOiSVAgDXZIKYaBLUiEMdEkqhIEuSYUw0CWpEAa6JBXCQJekQhjoklQIA12SCtFWoEfECyPi+xFxa0Rs6FRRkqSFaxzoEbEMuAg4A3gycE5EPLlThUmSFqadEfofALdm5m2ZuQeYAF7WmbIkSQsVmdlsxoiXAy/MzNfV918FnJKZb37IdOPAeH33JOD7DWtdBdzdcN6lwP60Zn8Ozt601g/9eUJmHjvfRO1cUzQO8Nh+fx0ycxOwqY3lVAuLmMrMkXZfp1T2pzX7c3D2prXF1J92NrlsBx435/7xwJ3tlSNJaqqdQL8eeGJEnBARDwfOBq7sTFmSpIVqvMklM/dGxJuBzwPLgIsz8+aOVba/tjfbFM7+tGZ/Ds7etLZo+tP4S1FJUn/xSFFJKoSBLkmFWDSBHhEx919J0m/q60CPiGURsS4iNgNvAkg3+ndMRJwWESf0uo5+ZG9asz+t9ao/7RxY1A3PB/4Y+BCwoT5/zOWZ2eujtha1+pw7E8C9wIMRcX5mXtvjsvqCvWnN/rTW6/709QgdeDVwdWZeDbwDeCzw0t6WtPhExPER8Yg5D70C+FRmnkq18p0TEc/uTXW9tZDeLMXNfa47rfVbf/o90L8BDNW3bwRuAdbUI3XNIyKeFBGfBb4K/H1E7Dt52i+BI+vbn6A6T8WzllJgNenNUtrc57rTWr/2p98D/TZgICIenZm76/tQna5XBxARR825+3Rge2YOAV8EPlA/fg9wf0QcnZn3AD8ABvn1H88itejNl9i/NwN1b25hCfQGXHfmsxj60++BPgPcD5xe3/8ZVXN+2rOK+lBEHBMRl0TE9cDGiDi2HhE8FfhaPbq8Erg3Is6kWsmOBobrl7iF6oxye3pR/+HUojfD/Lo3V7B/b55av8QPKLQ34Lozn8XWn34P9B3AN4G31vd/ShXov+hZRf3pVGAv8CKqs2C+HXgE1f/vcXM2FVwK/AXwLaoengGQmd8ATgN+3t2yu+JgvVmGvQHXnfksrv5kZt//AJcDVwF3AW8Blve6ph71YRnwBuBaqnPMr6of/wTw1vr2CcDG+vlnUm3jW1Y/N0D1R3EZsBrYCrwZ+BjwEeDIXr9He2N/7E/zn34foe+zluov4xMy88LM3NvjenrlxVR7+bwLeDbwD/Xj1wDPqW//CPgKcEZmXk81qhgDyMxZ4DrgmZm5A3gV1SeenwDvyMz/69L7OBzsTWv2p7Ui+tPv+6EDkJkPAP/d6zq6Yd/eFBHxTKqPcF8BrsrM+4HfA27LzC9GxO3A+yPij4Bp4E8jYlVm3h0RtwD3RcTjgQuBV0bEY6jOWf+/VB8LycwpYKrrb7Ihe3No7M+BLYX1Z7GM0JeEOSvcqcDFVLtAPR94Xz3Jg8APImJFZt5O9bHuqVTb7O6k2gcW4FdUH/2OAD5FdfrPc4GTgU2Z+WCX3lLH1O85I2IUe7OfiHh0/e9zgEuwP78hIh5erz/Po9oMUmR/FsUIvWQRcSTVAVSnAl+KiEuAZwD/lJkXRcQxwLURsYbqKlFrqD7KbaP6iPdSqr1//hN4X0RcBjwBWAncWX+6+XpEvKTXK1sTEXE01QEaO4HXUL3/Jd+bOX/8/wxYB+yNiDdQXbz9I0u9PwAR8TDg9VRfUG6PiAuodjf8x1L74wi9hyLiOGALMAr8G9WXLWdRbcPbC5CZPwOuoNrT5xrgMcCT6pf4MvA8YE9mbgE+CmwGLqL61v2BfcvqlxWugRXAbwEnRsQq4ESqEdKS7k0d5iuBPwc+lJmjmfl9qpHivmmWbH9qb6Law+RDVNc7Pqu+/ysotD/d+ObVn4N+s74COGXO/bVUX8acB3xrzuO/QzUigGolnQCOqef/DPD4OdOu6vX76nCPzgPeD7wTeC3wEuB6e5MAbwTeXd/ed7Gas4Dr7E9Sv79X17dfS7WH3CtK/t1yhN5bvwS+Neew4O9QBfylVCPS4wAy807g5og4JTMvAm4F/p3qY+JXM/OOfS+YhZy4bE5PjgD+B7gZOC0zPwOcEBGDsDR7M8fdwB9GxLnAdERcSjX6/P3608xS789/AedFxCeBvwOeBtxEdS3kY6G8/rgNvYdy39Dq1+G1Dvh0ffuzwNuAv4mIRwE/BH5cP/cu4CTg1sz8Zfcq7p59vaE6oONsqv1810XEO6h2BRsH3r0UezPHjVSbo06hOpr6DOrNBMBrIuIDwCNZov3JzI9ExB6q3Q7XUO0X/nKq41leHxEbKaw/jtD7QGZmRBwPHEc1qoBqREFEbAG+QHUAwx319A9k5k2LcYVbiIgYoBqF/jPwOaq9Dk4BzgGOiYjPsER7U7uDKryXZ7U9eEv92BaqE0RdydLuD1TnfZqsR9cfo/r+5eNUm1SK648j9P6xhurcNbdHxOuoPvK9nWqb3/cy84ZeFtcje6mC6QGq0yf/Cnh7Zs4AfxURrwRuzswbe1hjz2Tm/fUo8z31Q0dQfaG+MTNvXOr9ieqsrNup9iD7V+A+qiM835iZt5fYn31fpKjHIuJrwO9S7TJ1J/CuzPxOT4vqM/XBHGcBE5n5k17X0y8i4r1U684a4Grg/HrEvuRFxIlU+4rvoerRfwDvyerIzuIY6H2g3l/2fOB24LKsjlxTrR5pPZiurAcVEScBP1ysmwoOp3og8ETg61mdhrtYBrokFcIvRSWpEAa6JBXCQJekQhjoklQIA12SCmGgS1IhDHRJKsT/A/L9CrvJQgZYAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "yearly_incidence.hist(xrot=20)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }