diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index d4ae724fe1ac9c1b19971c021fcdc2e0476e072a..f965d1752265c3355917fe69d3e058c908a6e978 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -28,7 +28,7 @@ theta = pi/2*runif(N) ## Using Fraction arguement -A method that is easier to understand and does not make use of the sin function is based on the fact that if X∼U(0,1) and Y∼U(0,1), then P[X2+Y2≤1]=π/4 [Mont carlo method](https://en.wikipedia.org/wiki/Monte_Carlo_method). The following code uses this approach: +A method that is easier to understand and does not make use of the sin function is based on the fact that if $X\sim U(0,1)$ et $Y\sim U(0,1)$ then $P[X^2+Y^2\leq 1] = \pi/4$ [Mont carlo method](https://en.wikipedia.org/wiki/Monte_Carlo_method). The following code uses this approach: ```{r} set.seed(42)