{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# ** À propos du calcul de $\\pi$**\n", "\n", "## ** En demandant à la lib maths**\n", "\n", "Mon ordinateur m'indique que $\\pi$ vaut *approximativement*\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from math import *\n", "print(pi)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "## ** En utilisant la méthode des aiguilles de Buffon**\n", "\n", "Mais calculé avec la **méthode** des https://fr.wikipedia.org/wiki/Aiguille_de_Buffon - automatic!, on obtiendrait comme **approximation** :\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "np.random.seed(seed=42)\n", "N = 10000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "theta = np.random.uniform(size=N, low=0, high=np.pi/2)\n", "2/(sum((x+np.sin(theta))>1)/N)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "## ** Avec un argument \"fréquentiel\" de surface**\n", "\n", "Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si *$X \\sim U*(0,1)$ et *$Y \\sim U*(0,1)$ alors $P[X^2+Y^2<=1]=\\pi/4$ (voir https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80). Le code suivant illustre ce fait :\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "np.random.seed(seed=42)\n", "N = 1000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)\n", "1\n", "accept = (x*x+y*y) <= 1\n", "reject = np.logical_not(accept)\n", "fig, ax = plt.subplots(1)\n", "ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)\n", "ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)\n", "ax.set_aspect('equal')\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Il est alors aisé d'obtenir une approximation (pas terrible) de $\\pi$ en comptant combien de fois en moyenne $X^2+Y^2$ est inférieur à 1 :\n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "4*np.mean(accept)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }