{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Analyse du risque de défaillance des joints toriques de la navette Challenger"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Le 27 Janvier 1986, veille du décollage de la navette *Challenger*, eu\n",
"lieu une télé-conférence de trois heures entre les ingénieurs de la\n",
"Morton Thiokol (constructeur d'un des moteurs) et de la NASA. La\n",
"discussion portait principalement sur les conséquences de la\n",
"température prévue au moment du décollage de 31°F (juste en dessous de\n",
"0°C) sur le succès du vol et en particulier sur la performance des\n",
"joints toriques utilisés dans les moteurs. En effet, aucun test\n",
"n'avait été effectué à cette température.\n",
"\n",
"L'étude qui suit reprend donc une partie des analyses effectuées cette\n",
"nuit là et dont l'objectif était d'évaluer l'influence potentielle de\n",
"la température et de la pression à laquelle sont soumis les joints\n",
"toriques sur leur probabilité de dysfonctionnement. Pour cela, nous\n",
"disposons des résultats des expériences réalisées par les ingénieurs\n",
"de la NASA durant les 6 années précédant le lancement de la navette\n",
"Challenger.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Chargement des données\n",
"Nous commençons donc par charger ces données:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
"
\n",
"
\n",
"
Date
\n",
"
Count
\n",
"
Temperature
\n",
"
Pressure
\n",
"
Malfunction
\n",
"
\n",
" \n",
" \n",
"
\n",
"
0
\n",
"
4/12/81
\n",
"
6
\n",
"
66
\n",
"
50
\n",
"
0
\n",
"
\n",
"
\n",
"
1
\n",
"
11/12/81
\n",
"
6
\n",
"
70
\n",
"
50
\n",
"
1
\n",
"
\n",
"
\n",
"
2
\n",
"
3/22/82
\n",
"
6
\n",
"
69
\n",
"
50
\n",
"
0
\n",
"
\n",
"
\n",
"
3
\n",
"
11/11/82
\n",
"
6
\n",
"
68
\n",
"
50
\n",
"
0
\n",
"
\n",
"
\n",
"
4
\n",
"
4/04/83
\n",
"
6
\n",
"
67
\n",
"
50
\n",
"
0
\n",
"
\n",
"
\n",
"
5
\n",
"
6/18/82
\n",
"
6
\n",
"
72
\n",
"
50
\n",
"
0
\n",
"
\n",
"
\n",
"
6
\n",
"
8/30/83
\n",
"
6
\n",
"
73
\n",
"
100
\n",
"
0
\n",
"
\n",
"
\n",
"
7
\n",
"
11/28/83
\n",
"
6
\n",
"
70
\n",
"
100
\n",
"
0
\n",
"
\n",
"
\n",
"
8
\n",
"
2/03/84
\n",
"
6
\n",
"
57
\n",
"
200
\n",
"
1
\n",
"
\n",
"
\n",
"
9
\n",
"
4/06/84
\n",
"
6
\n",
"
63
\n",
"
200
\n",
"
1
\n",
"
\n",
"
\n",
"
10
\n",
"
8/30/84
\n",
"
6
\n",
"
70
\n",
"
200
\n",
"
1
\n",
"
\n",
"
\n",
"
11
\n",
"
10/05/84
\n",
"
6
\n",
"
78
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
12
\n",
"
11/08/84
\n",
"
6
\n",
"
67
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
13
\n",
"
1/24/85
\n",
"
6
\n",
"
53
\n",
"
200
\n",
"
2
\n",
"
\n",
"
\n",
"
14
\n",
"
4/12/85
\n",
"
6
\n",
"
67
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
15
\n",
"
4/29/85
\n",
"
6
\n",
"
75
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
16
\n",
"
6/17/85
\n",
"
6
\n",
"
70
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
17
\n",
"
7/29/85
\n",
"
6
\n",
"
81
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
18
\n",
"
8/27/85
\n",
"
6
\n",
"
76
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
19
\n",
"
10/03/85
\n",
"
6
\n",
"
79
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
20
\n",
"
10/30/85
\n",
"
6
\n",
"
75
\n",
"
200
\n",
"
2
\n",
"
\n",
"
\n",
"
21
\n",
"
11/26/85
\n",
"
6
\n",
"
76
\n",
"
200
\n",
"
0
\n",
"
\n",
"
\n",
"
22
\n",
"
1/12/86
\n",
"
6
\n",
"
58
\n",
"
200
\n",
"
1
\n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Date Count Temperature Pressure Malfunction\n",
"0 4/12/81 6 66 50 0\n",
"1 11/12/81 6 70 50 1\n",
"2 3/22/82 6 69 50 0\n",
"3 11/11/82 6 68 50 0\n",
"4 4/04/83 6 67 50 0\n",
"5 6/18/82 6 72 50 0\n",
"6 8/30/83 6 73 100 0\n",
"7 11/28/83 6 70 100 0\n",
"8 2/03/84 6 57 200 1\n",
"9 4/06/84 6 63 200 1\n",
"10 8/30/84 6 70 200 1\n",
"11 10/05/84 6 78 200 0\n",
"12 11/08/84 6 67 200 0\n",
"13 1/24/85 6 53 200 2\n",
"14 4/12/85 6 67 200 0\n",
"15 4/29/85 6 75 200 0\n",
"16 6/17/85 6 70 200 0\n",
"17 7/29/85 6 81 200 0\n",
"18 8/27/85 6 76 200 0\n",
"19 10/03/85 6 79 200 0\n",
"20 10/30/85 6 75 200 2\n",
"21 11/26/85 6 76 200 0\n",
"22 1/12/86 6 58 200 1"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"data = pd.read_csv(\"shuttle.csv\")\n",
"data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Le jeu de données nous indique la date de l'essai, le nombre de joints\n",
"toriques mesurés (il y en a 6 sur le lançeur principal), la\n",
"température (en Farenheit) et la pression (en psi), et enfin le\n",
"nombre de dysfonctionnements relevés. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Inspection graphique des données\n",
"Les vols où aucun incident n'est relevé n'apportant aucun information\n",
"sur l'influence de la température ou de la pression sur les\n",
"dysfonctionnements, nous nous concentrons sur les expériences où au\n",
"moins un joint a été défectueux.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Non, au contraire, ça apporte des informations très importantes de savoir qu'il n'y a pas eu de dysfonctionnement ! Il faut garder toutes les données !**"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"#data = data[data.Malfunction>0]\n",
"#data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Très bien, nous avons une variabilité de température importante mais\n",
"la pression est quasiment toujours égale à 200, ce qui devrait\n",
"simplifier l'analyse.\n",
"\n",
"Comment la fréquence d'échecs varie-t-elle avec la température ?\n"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAF31JREFUeJzt3X2QXXWd5/H3N51kkk6DODAThMCYWBnYrCsITXCdBxNRN3FKkRkYHnbBZRYzlMluuVszCzvlzjA7TBU76pS6ojGwqGFrjA8DmpmJi2AZHNZBnszyJGA2IDYREBRj54Gkk+/+cU4fL00/3Nvp07fv5f2q6rr3nPO7p7+/e/r2556H+7uRmUiSBDCr3QVIkmYOQ0GSVDEUJEkVQ0GSVDEUJEkVQ0GSVKktFCLihoh4NiIeHGN5RMTHI2J7RNwfEafVVYskqTl17il8Flg1zvLVwNLyZw3wqRprkSQ1obZQyMxvAT8Zp8nZwMYs3AkcFRGvqaseSdLEZrfxdx8P/LBheqCc96ORDSNiDcXeBPPnzz/9hBNOmJYCm3Xo0CFmzerO0zPd2jf71Xm6tW/T1a/HHnvsucz8lYnatTMUYpR5o465kZkbgA0A/f39ec8999RZV8u2bt3KihUr2l1GLbq1b/ar83Rr36arXxHxg2batTN2B4DGt/yLgJ1tqkWSRHtDYTNwSXkV0puAn2Xmyw4dSZKmT22HjyLi88AK4JiIGAD+DJgDkJnrgS3AO4HtwB7g0rpqkSQ1p7ZQyMwLJ1iewNq6fr8kqXXddypfkjRphoIkqWIoSJIqhoIkqWIoSJIqhoIkqWIoSJIqhoIkqWIoSJIqhoIkqWIoSJIqhoIkqWIoSJIqhoIkqWIoSJIqhoIkqWIoSJIqhoIkqWIoSJIqhoIkqWIoSJIqhoIkqWIoSJIqhoIkqWIoSJIqhoIkqWIoSJIqhoIkqWIoSJIqhoIkqWIoSJIqhoIkqWIoSJIqhoIkqWIoSJIqtYZCRKyKiEcjYntEXDnK8ldFxN9FxP+NiIci4tI665Ekja+2UIiIHuBaYDWwDLgwIpaNaLYWeDgzTwFWAB+JiLl11SRJGl+dewrLge2ZuSMz9wObgLNHtEngiIgIoA/4CTBUY02SpHFEZtaz4ohzgVWZeVk5fTFwZmaua2hzBLAZOBk4Ajg/M/9hlHWtAdYALFy48PRNmzbVUvNkDQ4O0tfX1+4yatGtfbNfnadb+zZd/Vq5cuW9mdk/UbvZNdYQo8wbmUD/CtgGvBV4HXBrRPxjZu56yYMyNwAbAPr7+3PFihVTX+1h2Lp1KzOtpqnSrX2zX52nW/s20/pV5+GjAeCEhulFwM4RbS4FbsrCduBxir0GSVIb1BkKdwNLI2JxefL4AopDRY2eBM4CiIiFwEnAjhprkiSNo7bDR5k5FBHrgFuAHuCGzHwoIi4vl68H/gL4bEQ8QHG46YrMfK6umiRJ46vznAKZuQXYMmLe+ob7O4F31FmDJKl5fqJZklQxFCRJFUNBklQxFCRJFUNBklQxFCRJFUNBklQxFCRJFUNBklQxFCRJFUNBklQxFCRJFUNBklQxFCRJFUNBklQxFCRJFUNBklQxFCRJFUNBklQxFCRJFUNBklQxFCRJFUNBklQxFCRJFUNBklQxFCRJFUNBklQxFCRJFUNBklQxFCRJFUNBklQxFCRJFUNBklQxFCRJlVpDISJWRcSjEbE9Iq4co82KiNgWEQ9FxO111iNJGt/sZhpFxOsz88FWVhwRPcC1wNuBAeDuiNicmQ83tDkK+CSwKjOfjIhfbeV3SJKmVrN7Cusj4q6IeH/5j7wZy4HtmbkjM/cDm4CzR7S5CLgpM58EyMxnm1y3JKkGkZnNNYxYCvwBcB5wF/CZzLx1nPbnUuwBXFZOXwycmZnrGtp8FJgD/HPgCOBjmblxlHWtAdYALFy48PRNmzY117tpMjg4SF9fX7vLqEW39s1+dZ5u7dt09WvlypX3Zmb/hA0zs+kfoAf4PeAp4HvAI8DvjtH2POD6humLgf8xos0ngDuBBcAxwPeBXx+vhtNPPz1nmm9+85vtLqE23do3+9V5urVv09Uv4J5s4v98s+cU3gBcCvwOcCvwrsy8LyKOA/4JuGmUhw0AJzRMLwJ2jtLmuczcDeyOiG8BpwCPNVOXJGlqNXtO4RPAfcApmbk2M+8DyMydwAfHeMzdwNKIWBwRc4ELgM0j2nwV+K2ImB0RvcCZFHsgkqQ2aGpPAXgnsDczDwJExCxgXmbuycwbR3tAZg5FxDrgForDTjdk5kMRcXm5fH1mfi8i/jdwP3CI4nBTS1c5SZKmTrOhcBvwNmCwnO4Fvg68ebwHZeYWYMuIeetHTH8I+FCTdUiSatTs4aN5mTkcCJT3e+spSZLULs2Gwu6IOG14IiJOB/bWU5IkqV2aPXz0AeBLETF89dBrgPPrKUmS1C5NhUJm3h0RJwMnAQE8kpkHaq1MkjTtmt1TADgDeG35mDdGBDnKp48lSZ2r2Q+v3Qi8DtgGHCxnJ2AoSFIXaXZPoR9YVn5UWpLUpZq9+uhB4Ng6C5EktV+zewrHAA9HxF3Ai8MzM/PdtVQlSWqLZkPhqjqLkCTNDM1eknp7RPwasDQzbysHr+uptzRJ0nRr6pxCRLwP+DLw6XLW8cBX6ipKktQezZ5oXgv8BrALIDO/D/h9ypLUZZoNhRez+J5lACJiNsXnFCRJXaTZULg9Iv4EmB8Rbwe+BPxdfWVJktqh2VC4Evgx8ADwhxTfkTDWN65JkjpUs1cfHQKuK38kSV2q2bGPHmeUcwiZuWTKK5IktU0rYx8NmwecB/zy1JcjSWqnps4pZObzDT9PZeZHgbfWXJskaZo1e/jotIbJWRR7DkfUUpEkqW2aPXz0kYb7Q8ATwO9PeTWSpLZq9uqjlXUXIklqv2YPH/2n8ZZn5l9PTTmSpHZq5eqjM4DN5fS7gG8BP6yjKElSe7TyJTunZebPASLiKuBLmXlZXYVJkqZfs8NcnAjsb5jeD7x2yquRJLVVs3sKNwJ3RcTNFJ9sPgfYWFtVkqS2aPbqo7+MiK8Bv1XOujQzv1tfWZKkdmj28BFAL7ArMz8GDETE4ppqkiS1SbNfx/lnwBXAfylnzQH+V11FSZLao9k9hXOAdwO7ATJzJw5zIUldp9lQ2J+ZSTl8dkQsqK8kSVK7NBsKX4yITwNHRcT7gNvwC3ckqes0e/XRh8vvZt4FnAT8aWbeWmtlkqRpN+GeQkT0RMRtmXlrZv5xZv5Rs4EQEasi4tGI2B4RV47T7oyIOBgR57ZSvCRpak0YCpl5ENgTEa9qZcUR0QNcC6wGlgEXRsSyMdr9d+CWVtYvSZp6zX6ieR/wQETcSnkFEkBm/odxHrMc2J6ZOwAiYhNwNvDwiHb/HvhbigH3JElt1Gwo/EP504rjeekoqgPAmY0NIuJ4istd38o4oRARa4A1AAsXLmTr1q0tllKvwcHBGVfTVOnWvtmvztOtfZtp/Ro3FCLixMx8MjM/N4l1xyjzcsT0R4ErMvNgxGjNywdlbgA2APT39+eKFSsmUU59tm7dykyraap0a9/sV+fp1r7NtH5NdE7hK8N3IuJvW1z3AHBCw/QiYOeINv3Apoh4AjgX+GREvKfF3yNJmiITHT5qfPu+pMV13w0sLcdIegq4ALiosUFmVuMnRcRngb/PzK8gSWqLiUIhx7g/ocwcioh1FFcV9QA3ZOZDEXF5uXx9S5VKkmo3USicEhG7KPYY5pf3KaczM48c78GZuQXYMmLeqGGQmf+2qYolSbUZNxQys2e6CpEktV8r36cgSepyhoIkqWIoSJIqhoIkqfKKCYU9++Dp54pbSZ1lzz4YGvL1Ox2aHfuooz2yAzbeDAcOwJw5cMk5cHKrH8WT1BbDr99lx8PV1/r6rVvX7yns2Vf8QfX1wqJji9uNN/uOQ+oEja/fuXN8/U6Hrg+FXYPFHsKC+cX0gvnF9K7B9tYlaWK+fqdf14fCkX3FIaPde4vp3XuL6SP72luXpIn5+p1+XR8KvfOKY5CDe2Dg6eL2knOK+ZJmtsbX7/4Dvn6nwyviRPPJS+CDa4tdziP7/IOSOsnw6/fbd8DvvsfXb91eEaEAxR+Sf0xSZ+qdB7Nn+xqeDl1/+EiS1DxDQZJUMRQkSRVDQZJUMRQkSRVDQZJUMRQkSRVDQZJUMRQkSRVDQZJUMRQkSRVDQZJUMRQkSRVDQZJUMRQkSRVDQZJUMRQkSRVDQZJUMRQkSRVDQZJUMRQkSZVaQyEiVkXEoxGxPSKuHGX5v46I+8ufb0fEKXXWI0kaX22hEBE9wLXAamAZcGFELBvR7HHgLZn5BuAvgA111SNJmlidewrLge2ZuSMz9wObgLMbG2TmtzPzp+XkncCiGuuRJE0gMrOeFUecC6zKzMvK6YuBMzNz3Rjt/wg4ebj9iGVrgDUACxcuPH3Tpk211DxZg4OD9PX1tbuMWnRr3+xX5+nWvk1Xv1auXHlvZvZP1G52jTXEKPNGTaCIWAn8O+A3R1uemRsoDy319/fnihUrpqjEqbF161ZmWk1TpVv7Zr86T7f2bab1q85QGABOaJheBOwc2Sgi3gBcD6zOzOdrrEeSNIE6zyncDSyNiMURMRe4ANjc2CAiTgRuAi7OzMdqrEWS1ITa9hQycygi1gG3AD3ADZn5UERcXi5fD/wpcDTwyYgAGGrmmJckqR51Hj4iM7cAW0bMW99w/zLgZSeWBXv2wa5BOLIPeudNXdtO0q39qsvzL8DeF4vbo49qdzXqVLWGgibnkR2w8WY4cADmzIFLzoGTlxx+207Srf2qy9duh2s2wEVnwTVr4co1sPot7a5KnchhLmaYPfuKf4Z9vbDo2OJ2483F/MNp20m6tV91ef6FIhB65xUB2juvmH7+hXZXpk5kKMwwuwaLd8cL5hfTC+YX07sGD69tJ+nWftVl5zMwdKAITyhuhw4U86VWGQozzJF9xbu93XuL6d17i+kjR/lsSyttO0m39qsuxy2E2XNgcE8xPbinmD5uYXvrUmcyFGaY3nnF8fPBPTDwdHF7yTmjn2htpW0n6dZ+1eXoo4pzCHv2FXtUe/YV055s1mR4onkGOnkJfHBtc1fetNK2k3Rrv+qy+i2w/BS46ztw07UGgibPUJiheuc1/4+wlbadpFv7VZejj4L5v2Qg6PB4+EiSVDEUJEkVQ0GSVDEUJEkVQ0GSVDEUJEkVQ0GSVDEUJEkVQ0GSVDEUJEkVQ0GSVDEUJEkVQ0GSVDEUJEkVQ0GSVDEUJEkVQ0GSVDEUJEkVQ0GSVDEUJEkVQ0GSVDEUJEkVQ0GSVDEUJEkVQ0GSVDEUJEkVQ0GSVDEUJEmVWkMhIlZFxKMRsT0irhxleUTEx8vl90fEaXXWI7Vqzz54+rnidiIDT8PWO4vbqVpnK22ffwH2vljcTqW66m21hqGhidf7/AvwwKPd+xzUsd6RZte14ojoAa4F3g4MAHdHxObMfLih2WpgaflzJvCp8lZqu0d2wMab4cABmDMHLjkHTl4yetvrvgB/dR0cPAg9PfCf3wfvO//w1tlK26/dDtdsgIvOgmvWwpVrYPVbJtfv6ah3MjUsOx6uvnbs9Q4/B0MHYPac7nwOpnq9o6lzT2E5sD0zd2TmfmATcPaINmcDG7NwJ3BURLymxpqkpuzZV7wI+3ph0bHF7cabR3+XNvB0EQi/NBeOfnVx+1fXvXyPoZV1ttL2+ReKf4a984p/GL3ziunDfbdcV72TrWHunLHX2/gcHLewe5+DqVzvWCIz61lxxLnAqsy8rJy+GDgzM9c1tPl74JrMvKOc/gZwRWbeM2Jda4A15eRJwKO1FD15xwDPtbuImnRr38bvV8ydM2vOca/JPLC/mhVz5h46sPNH5P4DL2na86ojZs1dvAQODv1ibs/sQ/sf35EHf/bzyayzpbazFsyfNXfxYvLA/jz407nR8+r9xJy5h/Y//jiHdu9t+hk5jOegpbaTreHQ4AJm9e0edb0Nz8EvHtsxz8GU/S1O4Ncy81cmalTb4SMgRpk3MoGaaUNmbgA2TEVRdYiIezKzv9111KFb+9bN/Tp04Jmu6xeU22zoha7r20z7W6zz8NEAcELD9CJg5yTaSJKmSZ2hcDewNCIWR8Rc4AJg84g2m4FLyquQ3gT8LDN/VGNNkqRx1Hb4KDOHImIdcAvQA9yQmQ9FxOXl8vXAFuCdwHZgD3BpXfXUbMYe2poC3do3+9V5urVvM6pftZ1oliR1Hj/RLEmqGAqSpIqhMAkR8UREPBAR2yLinnLeVRHxVDlvW0S8s911tioijoqIL0fEIxHxvYj4lxHxyxFxa0R8v7x9dbvrbNUY/eqG7XVSQ/3bImJXRHyg07fZOP3qhm32HyPioYh4MCI+HxHzZtr28pzCJETEE0B/Zj7XMO8qYDAzP9yuug5XRHwO+MfMvL68YqwX+BPgJ5l5TTl+1asz84q2FtqiMfr1ATp8ezUqh5V5imKYmLV0+DYbNqJfl9LB2ywijgfuAJZl5t6I+CLFxTbLmEHbyz0FARARRwK/DfxPgMzcn5kvUAxF8rmy2eeA97SnwskZp1/d5izg/2XmD+jwbTZCY7+6wWxgfkTMpnhzspMZtr0MhclJ4OsRcW85BMewdeVorze0exdwEpYAPwY+ExHfjYjrI2IBsHD4syPl7a+2s8hJGKtf0Nnba6QLgM+X9zt9mzVq7Bd08DbLzKeADwNPAj+i+FzW15lh28tQmJzfyMzTKEZ5XRsRv00xwuvrgFMpNvhH2ljfZMwGTgM+lZlvBHYDLxvuvAON1a9O316V8pDYu4EvtbuWqTRKvzp6m5UhdjawGDgOWBAR/6a9Vb2coTAJmbmzvH0WuBlYnpnPZObBzDwEXEcxSmwnGQAGMvM75fSXKf6ZPjM8cm15+2yb6pusUfvVBdur0Wrgvsx8ppzu9G027CX96oJt9jbg8cz8cWYeAG4C3swM216GQosiYkFEHDF8H3gH8GC8dMjvc4AH21HfZGXm08API+KkctZZwMMUQ5G8t5z3XuCrbShv0sbqV6dvrxEu5KWHWDp6mzV4Sb+6YJs9CbwpInojIij+Fr/HDNteXn3UoohYQrF3AMWhib/JzL+MiBspdmsTeAL4w04bxykiTgWuB+YCOyiu9pgFfBE4keKP+rzM/EnbipyEMfr1cTp8ewFERC/wQ2BJZv6snHc0nb/NRutXN7zG/hw4HxgCvgtcBvQxg7aXoSBJqnj4SJJUMRQkSRVDQZJUMRQkSRVDQZJUqe2b16TpVl6K+Y1y8ljgIMUQF1B8wHB/WwobR0T8AbCl/DyF1HZekqquNJNGrY2Insw8OMayO4B1mbmthfXNzsyhKStQauDhI70iRMR7I+Kuchz+T0bErIiYHREvRMSHIuK+iLglIs6MiNsjYsfweP0RcVlE3FwufzQiPtjkeq+OiLuA5RHx5xFxdzmO/voonE/xYawvlI+fGxEDEXFUue43RcRt5f2rI+LTEXErxeB+syPir8vffX9EXDb9z6q6kaGgrhcRr6cYFuHNmXkqxWHTC8rFrwK+Xg5wuB+4imL4gfOA/9awmuXlY04DLoqIU5tY732ZuTwz/wn4WGaeAfyLctmqzPwCsA04PzNPbeLw1huBd2XmxcAa4NnMXA6cQTEw44mTeX6kRp5T0CvB2yj+cd5TDDnDfIohFAD2Zuat5f0HKIYzHoqIB4DXNqzjlsz8KUBEfAX4TYrXz1jr3c8vhkMBOCsi/hiYBxwD3At8rcV+fDUz95X33wH8s4hoDKGlFMMkSJNmKOiVIIAbMvO/vmRm8UUnje/ODwEvNtxvfH2MPPmWE6x3b5Yn7MpxfD5BMTrrUxFxNUU4jGaIX+zBj2yze0Sf3p+Z30CaQh4+0ivBbcDvR8QxUFylNIlDLe+I4rueeynGxP8/Lax3PkXIPFeOsPt7Dct+DhzRMP0EcHp5v7HdSLcA7y8DaPh7jee32CfpZdxTUNfLzAfK0Slvi4hZwAHgcoqvQmzWHcDfUHzJy43DVws1s97MfD6K74l+EPgB8J2GxZ8Bro+IvRTnLa4CrouIp4G7xqnn0xSjam4rD109SxFW0mHxklRpAuWVPa/PzA+0uxapbh4+kiRV3FOQJFXcU5AkVQwFSVLFUJAkVQwFSVLFUJAkVf4/wQSANJ/pqusAAAAASUVORK5CYII=\n",
"text/plain": [
"
"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas\n",
"import matplotlib.pyplot as plt\n",
"\n",
"data[\"Frequency\"]=data.Malfunction/data.Count\n",
"data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1], color=\"#1133ff77\")\n",
"plt.grid(True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"À première vue, ce n'est pas flagrant mais bon, essayons quand même\n",
"d'estimer l'impact de la température $t$ sur la probabilité de\n",
"dysfonctionnements d'un joint. \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**En affichant toutes les données on voit effectivement que les dysfonctionnements semblent se produire plus fréquemment pour des températures plus basses**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Estimation de l'influence de la température\n",
"\n",
"Supposons que chacun des 6 joints toriques est endommagé avec la même\n",
"probabilité et indépendamment des autres et que cette probabilité ne\n",
"dépend que de la température. Si on note $p(t)$ cette probabilité, le\n",
"nombre de joints $D$ dysfonctionnant lorsque l'on effectue le vol à\n",
"température $t$ suit une loi binomiale de paramètre $n=6$ et\n",
"$p=p(t)$. Pour relier $p(t)$ à $t$, on va donc effectuer une\n",
"régression logistique."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"
Generalized Linear Model Regression Results
\n",
"
\n",
"
Dep. Variable:
Frequency
No. Observations:
23
\n",
"
\n",
"
\n",
"
Model:
GLM
Df Residuals:
21
\n",
"
\n",
"
\n",
"
Model Family:
Binomial
Df Model:
1
\n",
"
\n",
"
\n",
"
Link Function:
logit
Scale:
1.0000
\n",
"
\n",
"
\n",
"
Method:
IRLS
Log-Likelihood:
-3.9210
\n",
"
\n",
"
\n",
"
Date:
Tue, 26 Oct 2021
Deviance:
3.0144
\n",
"
\n",
"
\n",
"
Time:
08:58:58
Pearson chi2:
5.00
\n",
"
\n",
"
\n",
"
No. Iterations:
6
Covariance Type:
nonrobust
\n",
"
\n",
"
\n",
"
\n",
"
\n",
"
coef
std err
z
P>|z|
[0.025
0.975]
\n",
"
\n",
"
\n",
"
Intercept
5.0850
7.477
0.680
0.496
-9.570
19.740
\n",
"
\n",
"
\n",
"
Temperature
-0.1156
0.115
-1.004
0.316
-0.341
0.110
\n",
"
\n",
"
"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Frequency No. Observations: 23\n",
"Model: GLM Df Residuals: 21\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -3.9210\n",
"Date: Tue, 26 Oct 2021 Deviance: 3.0144\n",
"Time: 08:58:58 Pearson chi2: 5.00\n",
"No. Iterations: 6 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
"Intercept 5.0850 7.477 0.680 0.496 -9.570 19.740\n",
"Temperature -0.1156 0.115 -1.004 0.316 -0.341 0.110\n",
"===============================================================================\n",
"\"\"\""
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import statsmodels.api as sm\n",
"\n",
"data[\"Success\"]=data.Count-data.Malfunction\n",
"data[\"Intercept\"]=1\n",
"\n",
"logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], family=sm.families.Binomial(sm.families.links.logit)).fit()\n",
"\n",
"logmodel.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"L'estimateur le plus probable du paramètre de température est 0.0014\n",
"et l'erreur standard de cet estimateur est de 0.122, autrement dit on\n",
"ne peut pas distinguer d'impact particulier et il faut prendre nos\n",
"estimations avec des pincettes.\n"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"logmodel"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Estimation de la probabilité de dysfonctionnant des joints toriques\n",
"La température prévue le jour du décollage est de 31°F. Essayons\n",
"d'estimer la probabilité de dysfonctionnement des joints toriques à\n",
"cette température à partir du modèle que nous venons de construire:\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4VOXd//H3dyb7QmLYISA7yA5hEXEBrYK2KiriinVBpHWp7SNVn199tE+16oNt1VZxQ3GpgisupYJa44JbQBBkX8UEkJ0kkD33748ZMGAgQzLJLPm8rivXzDlzn3O+dwY+c3LmnPuYcw4REYkunlAXICIiwadwFxGJQgp3EZEopHAXEYlCCncRkSikcBcRiUI1hruZPW1mW83s28O8bmb2sJmtMbPFZjYw+GWKiMjRCGTPfTow+givnwl09f9MBKbWvSwREamLGsPdOfcxsPMITc4FnnM+XwDpZtY6WAWKiMjRiwnCOtoC31eZzvXP23xoQzObiG/vnsTExKx27drVaoOVlZV4PNHxdYH6Ep6ipS/R0g9QX/ZbtWrVdudc85raBSPcrZp51Y5p4Jx7AngCYNCgQW7+/Pm12mB2djYjRoyo1bLhRn0JT9HSl2jpB6gv+5nZd4G0C8bHYC5QdRc8E9gUhPWKiEgtBSPc3wKu8J81czywxzn3k0MyIiLScGo8LGNmLwEjgGZmlgvcCcQCOOceA2YDZwFrgH3AVfVVrIiIBKbGcHfOXVLD6w64PmgViUhEKCsrIzc3l+Li4gbZXlpaGsuXL2+QbdW3QPqSkJBAZmYmsbGxtdpGML5QFZFGKDc3l9TUVDp06IBZdedVBFdBQQGpqan1vp2GUFNfnHPs2LGD3NxcOnbsWKttRMd5RSLS4IqLi2natGmDBHtjY2Y0bdq0Tn8VKdxFpNYU7PWnrr9bhbuISBTSMXcRiVher5c+ffocmJ41axYdOnQIXUFhROEuIhErMTGRRYsWHfb18vJyYmIaZ8zpsIyIRJXp06dz4YUXcvbZZ3PGGWcAMGXKFAYPHkzfvn258847D7S955576N69Oz/72c+45JJLeOCBBwAYMWIE+4dH2b59+4G/BioqKpg8efKBdT3++OPAj8MJjB07lh49enDZZZfhO0sccnJyOOGEE+jXrx9DhgyhoKCAUaNGHfShNHz4cBYvXhzU30Pj/EgTkaD649tLWbYpP6jr7NmmCXee3euIbYqKiujfvz8AHTt25I033gDg888/Z/HixWRkZDB37lxWr17NV199hXOOc845h48//pjk5GRmzJjBwoULKS8vZ+DAgWRlZR1xe9OmTSMtLY2cnBxKSkoYPnz4gQ+QhQsXsnTpUtq0acPw4cOZN28eQ4YM4aKLLmLmzJkMHjyY/Px8EhMTueKKK5g+fToPPvggq1atoqSkhL59+wbht/YjhbuIRKzDHZY5/fTTycjIAGDu3LnMnTuXAQMGAFBYWMjq1aspKCjgvPPOIykpCYBzzjmnxu3NnTuXxYsX8+qrrwKwZ88eVq9eTVxcHEOGDCEzMxOA/v37s2HDBtLS0mjdujWDBw8GoEmTJgCcd955DB8+nClTpvD0009z5ZVX1u0XUQ2Fu4jUWU172A0tOTn5wHPnHLfffjvXXXfdQW0efPDBw55uGBMTQ2VlJcBB55o75/j73//OqFGjDmqfnZ1NfHz8gWmv10t5eTnOuWq3kZSUxOmnn86bb77Jyy+/TG1HyD0SHXMXkag2atQonn76aQoLCwHIy8tj69atnHzyybzxxhsUFRVRUFDA22+/fWCZDh06sGDBAoADe+n71zV16lTKysoAWLVqFXv37j3stnv06MGmTZvIyckBfFemlpeXAzBhwgRuuukmBg8efOCvjGDSnruIRLUzzjiD5cuXM2zYMABSUlJ44YUXGDhwIBdddBH9+/fn2GOP5aSTTjqwzC233MK4ceN4/vnnOfXUUw/MnzBhAhs2bGDgwIE452jevDmzZs067Lbj4uKYOXMmN954I0VFRSQmJvL+++8DkJWVRZMmTbjqqnoaa9E5F5KfrKwsV1sffvhhrZcNN+pLeIqWvtRnP5YtW1Zv665Ofn5+va7/zjvvdFOmTKnXbeyXn5/v8vLyXNeuXV1FRcVh21X3OwbmuwAyVodlREQa2IsvvsjQoUO555576u3WgTosIyIC3HXXXQ22rUsvvfQnX/AGm/bcRaTWnKv2dskSBHX93SrcRaRWEhIS2LFjhwK+Hjj/eO4JCQm1XocOy4hIrWRmZpKbm8u2bdsaZHvFxcV1CrtwEkhf9t+JqbYU7iJSK7GxsbW+S1BtZGdnH7jKNNI1RF90WEZEJAop3EVEopDCXUQkCincRUSikMJdRCQKKdxFRKKQwl1EJAop3EVEopDCXUQkCincRUSiUMSF+77Sct7bUEZ5RWWoSxERCVsRF+7vLN7MP1eUMu7xz/lux+HvXSgi0phFXLiPG9SOSX3jWbO1kDMf+oSZORs15KiIyCEiLtwBjm8Tw7s3n0z/dunc+toSbnhxIXuKykJdlohI2IjIcAdok57IC9cM5dbRPZizdAtnPfQJX2/cFeqyRETCQsSGO4DHY/xqRGde/dUJeDww7rHPefLjdTpMIyKNXkDhbmajzWylma0xs9uqeT3NzN42s2/MbKmZXRX8Ug+vf7t03rnxJE47rgX3zF7OxOcX6DCNiDRqNYa7mXmBR4AzgZ7AJWbW85Bm1wPLnHP9gBHAX8wsLsi1HlFaYiyPXZ7F//yiJx+u2Mq5//iUFVvyG7IEEZGwEcie+xBgjXNunXOuFJgBnHtIGwekmpkBKcBOoDyolQbAzLj6xI7MmHg8+0orGPPIPN76ZlNDlyEiEnJW0/FpMxsLjHbOTfBPjweGOuduqNImFXgL6AGkAhc55/5VzbomAhMBWrZsmTVjxoxaFV1YWEhKSsoR2+wuqeTRRSWs2lXJWR1jGdstFo9ZrbZXnwLpS6RQX8JPtPQD1Jf9Ro4cucA5N6jGhs65I/4AFwJPVZkeD/z9kDZjgb8BBnQB1gNNjrTerKwsV1sffvhhQO1Kyirc/3tjsTv21nfcFdO+dHuKSmu9zfoSaF8igfoSfqKlH86pL/sB810Nue2cC+iwTC7Qrsp0JnDosY6rgNf9217jD/ceAay7XsXFeLh7TB/uPb8P89Zs5/xHP9NVrSLSKAQS7jlAVzPr6P+S9GJ8h2Cq2gicBmBmLYHuwLpgFloXlwxpz/PXDGV7YQnnPjKPL9btCHVJIiL1qsZwd86VAzcAc4DlwMvOuaVmNsnMJvmb/Qk4wcyWAB8AtzrnttdX0bUxrHNT3rx+OE2T4xg/7UveWJgb6pJEROpNTCCNnHOzgdmHzHusyvNNwBnBLS34jm2azOu/Gs6kFxbw25nfsHFHETed1gULwy9aRUTqIqKvUK2NtKRYnr16COcPbMvf3l/Fba8t0fDBIhJ1AtpzjzZxMR7+cmE/MtMTefg/a9hWWMI/Lh1AUlyj/HWISBRqdHvu+5kZvzujO/ec15vslVu59Mkv2bW3NNRliYgERaMN9/0uG3osUy/PYtnmfC58/HM27S4KdUkiInXW6MMdYFSvVjx71RC27Clm7NTPWLetMNQliYjUicLdb1jnpsyYeDzF5ZWMe/xzlm/WoGMiErkU7lX0bpvGy9cNI8bj4aLHP2ehbv4hIhFK4X6ILi1SeGXSMNKT4hg/7StyNuwMdUkiIkdN4V6NdhlJvHzdMFo0ieeKaV/x2ZqwuthWRKRGCvfDaJWWwMyJw2ifkcRV03P4eNW2UJckIhIwhfsRNE+N56WJx9OxWTITnpuvgBeRiKFwr0FGchwvXns8nZunMOG5+XykgBeRCKBwD0BGchwvThhK5+YpTHxuPvN0DF5EwpzCPUDHJMfxzwlD6dA0mWuezdGY8CIS1hTuRyEjOY5/XjuUzGOSuHp6Dgu+02mSIhKeFO5HqVlKPC9eO5SWTRK48ukcvs3bE+qSRER+QuFeCy1SE/jnhKE0SYxl/LQvWbmlINQliYgcROFeS23SE3nx2qHExXi4fNqXuvG2iIQVhXsdHNs0mReuGUp5RSWXPfUlW/YUh7okERFA4V5nXVum8uzVQ9i9r4zLp+mGHyISHhTuQdA3M50nrxjExp37uHJ6DntLykNdkog0cgr3IBnWuSn/uGQAS3J3M+mFBZSW66bbIhI6CvcgOqNXK+47vy+frN7Of73yDZWVLtQliUgjFRPqAqLNuMHt2LG3lPvfXUHzlHju+MVxmFmoyxKRRkbhXg8mndKJrQXFPD1vPS2bxHPdKZ1DXZKINDIK93pgZtzx855sKyjh3n+voEWTeM4bkBnqskSkEVG41xOPx/jLuH7sKCzl968upkVqAsO7NAt1WSLSSOgL1XoUH+PlsfFZdGqWwqTnF7B8c36oSxKRRkLhXs/SEmN55qrBJMfHcNUzOWzeUxTqkkSkEVC4N4A26Yk8c9VgCkvKueqZHAqKy0JdkohEOYV7AzmudRMevWwgq7cWcv2LCymr0EVOIlJ/FO4N6ORuzfnzeb35eNU2/ufNpTini5xEpH7obJkGdtHg9ny3Yx+PZq+lY7MkuoW6IBGJStpzD4FbzujOz/u05t5/r2D+Fg0yJiLBF1C4m9loM1tpZmvM7LbDtBlhZovMbKmZfRTcMqPL/nPg+7dL54nFJSzO3R3qkkQkytQY7mbmBR4BzgR6ApeYWc9D2qQDjwLnOOd6ARfWQ61RJSHWyxPjB5EaZ0x4dr5OkRSRoApkz30IsMY5t845VwrMAM49pM2lwOvOuY0AzrmtwS0zOjVPjee3WQnsK63gmunzNQ68iASN1XTGhpmNBUY75yb4p8cDQ51zN1Rp8yAQC/QCUoGHnHPPVbOuicBEgJYtW2bNmDGjVkUXFhaSkpJSq2XDTWFhIeuKEvjbghL6t/By44B4PBE6imS0vS/R0Jdo6QeoL/uNHDlygXNuUE3tAjlbprqkOfQTIQbIAk4DEoHPzewL59yqgxZy7gngCYBBgwa5ESNGBLD5n8rOzqa2y4ab7OxsbvrFCJq0Wc9dby8jp6Q1t47uEeqyaiXa3pdo6Eu09APUl6MVSLjnAu2qTGcCm6pps905txfYa2YfA/2AVUhAfnlCB1ZvLWRq9lq6NE/hgiyNIikitRfIMfccoKuZdTSzOOBi4K1D2rwJnGRmMWaWBAwFlge31OhmZtx1Ti9O6NyU219fwoLvdoa6JBGJYDWGu3OuHLgBmIMvsF92zi01s0lmNsnfZjnwLrAY+Ap4yjn3bf2VHZ1ivR4evWwgrdMTuO75BeTt1hk0IlI7AZ3n7pyb7Zzr5pzr7Jy7xz/vMefcY1XaTHHO9XTO9XbOPVhfBUe79KQ4pv1yECVllUx4VmfQiEjt6ArVMNSlRSoPXzqAlVvy+a+XdaNtETl6CvcwNbJ7C/77rON4d+kWHv7P6lCXIyIRRgOHhbFrTuzIii0FPPj+arq3TOXMPq1DXZKIRAjtuYcxM+Oe83ozsH06v3v5G5Zt0m36RCQwCvcwt/8+rGmJsVz73Hx2FJaEuiQRiQAK9wjQIjWBJ67IYnthCb/+59e6i5OI1EjhHiH6ZqZz/wV9+XL9Tv749tJQlyMiYU5fqEaQMQPasnxzPo9/vI6erdO4dGj7UJckImFKe+4R5veje3BKt+bc+da3zN+gIQpEpHoK9wjj9RgPXzyAzGOSmPTCAjZpiAIRqYbCPQKlJcXy5BVZFJdVct3zCyguqwh1SSISZhTuEapLi1T+dlF/luTt4fbXl1DTTVdEpHFRuEew03u25Hend+ONhXlM+3R9qMsRkTCicI9wN4zswuherfjz7OV8snpbqMsRkTChcI9wHo/xwLh+dGmRwg0vLmTjjn2hLklEwoDCPQqkxMfw5BW+++Ve+5zGgBcRhXvUOLZpMv+4dACrtxZwyyvf6AtWkUZO4R5FTuranNvO7MG/v93CIx+uCXU5IhJCCvcoc+1JnRjTvw1/eW8V7y/7IdTliEiIKNyjjJlx3wV96dWmCTfPXMSarYWhLklEQkDhHoUSYr08Pn4Q8TEeJj43nz1FZaEuSUQamMI9SrVNT2Tq5Vls3LmP38xYSIVusi3SqCjco9iQjhnceU4vsldu44G5K0Ndjog0II3nHuUuH9qeZZvymZq9lp6tm3B2vzahLklEGoD23KOcmfHHc3ox6NhjmPzqN3ybtyfUJYlIA1C4NwJxMR6mXp7FMUlxTHxuPtt1k22RqKdwbySap8bz5BWD2LG3lF+9sIDSct1kWySaKdwbkd5t0/i/sX3J2bCLO99aqiEKRKKYvlBtZM7t35blmwt47KO19GydyvhhHUJdkojUA+25N0KTR3Xn1B4t+OPby/hs7fZQlyMi9UDh3gh5PcZDF/enQ7Nkrv/n1xoDXiQKKdwbqdSEWJ66YhCVDiY8l0NBsYYoEIkmCvdGrEOzZB69bCBrt+3l5hmLNESBSBRRuDdyw7s0486ze/LBiq1MmaMhCkSihc6WEcYffywrt/jOoOnWMoXzB2aGuiQRqaOA9tzNbLSZrTSzNWZ22xHaDTazCjMbG7wSpb6ZGXed04thnZpy22tLWPDdzlCXJCJ1VGO4m5kXeAQ4E+gJXGJmPQ/T7n5gTrCLlPoX6/Uw9fKBtElPYOJzC8jdpTNoRCJZIHvuQ4A1zrl1zrlSYAZwbjXtbgReA7YGsT5pQOlJcUy7cjClFZVMeHa+zqARiWBW0yXo/kMso51zE/zT44GhzrkbqrRpC7wInApMA95xzr1azbomAhMBWrZsmTVjxoxaFV1YWEhKSkqtlg034diXpdsr+MuCYno383LzwHg8ZgEtF459qa1o6Uu09APUl/1Gjhy5wDk3qKZ2gXyhWt3/7EM/ER4EbnXOVdgRgsA59wTwBMCgQYPciBEjAtj8T2VnZ1PbZcNNOPZlBJCW+R1/mPUtnxS24M6zewW0XDj2pbaipS/R0g9QX45WIOGeC7SrMp0JbDqkzSBghj/YmwFnmVm5c25WUKqUBnf58ceybttenp63nk7NkjUGjUiECSTcc4CuZtYRyAMuBi6t2sA513H/czObju+wjII9wv2/nx/Hdzv2cudbS8nMSGJk9xahLklEAlTjF6rOuXLgBnxnwSwHXnbOLTWzSWY2qb4LlNDxeoyHLxnAca2bcMM/v2bZpvxQlyQiAQroPHfn3GznXDfnXGfn3D3+eY855x6rpu2V1X2ZKpEpOT6Gab8cTGpCLNc8m8OWPcWhLklEAqDhB6RGrdISmHblIPKLyrh6eg6FJeWhLklEaqBwl4D0apPGI5cNZOUPBdzw4teUV+g2fSLhTOEuARvRvQV/Orc32Su3cceb3+o2fSJhTAOHyVG5dGh7cnft49HstbRNT+SGU7uGuiQRqYbCXY7a5FHd2bKnmAfmrqJVWiJjszSKpEi4UbjLUTMz7rugL1sLSrjttcU0T43nlG7Na7WuWQvzmDJnJZt2F9EmPZHJo7ozZkDbIFcs9UXvX/jSMXeplbgY3yiS3Vqm8qsXFvDN97uPeh2zFuZx++tLyNtdhAPydhdx++tLmLUwL/gFS9Dp/QtvCneptdSEWKZfPZimKXFcPT2HLXuP7gyaKXNWUlRWcdC8orIK3REqQuj9C28Kd6mTFqkJPHvVEBzwwPxifsgP/CKnTbuLjmq+hBe9f+FN4S511ql5CtOvGkxhqeOKaV+xZ19g48C3SU88qvkSXvT+hTeFuwRF38x0bhqYwPrte7n62Rz2ldZ8FevkUd1JjPUeNC8x1svkUd3rq0wJIr1/4U3hLkHTs6mXBy/uz8KNu5j0wteUlh/5GPyYAW259/w+tE1PxIC26Ynce34fnW0RIfT+hTedCilBdVaf1tx3fl9+/9pifjtzEQ9fMgCv5/A3cBkzoK3CIILp/QtfCncJunGD25FfXMbd/1pOcryX+87vi+cIAS8iwadwl3ox4aROFBSX89AHq0mM9XLXOb040i0YRSS4FO5Sb27+WVf2lZbz5CfrSYjzctvoHgp4kQaicJd6Y2b891nHsa+0gsc/Wkd8jJffnd4t1GWJNAoKd6lXZsafzu1NaXklD3+wmliPceNpGklSpL4p3KXeeTy+gcYqKh1/eW8VMV4PvxrROdRliUQ1hbs0CK/HmHJhP8orHfe/uwKH49cjuoS6LJGopXCXBuP1GH8d1w8z+L93V+IcXD9SAS9SHxTu0qBivB7+Oq4/hm9UwfIKx02nddFZNCJBpnCXBuf1GH8Z1x+vx8Pf3l9FSXkFk0d1V8CLBJHCXULC6zGmjO1LXIyHR7PXUlxWyR2/OE4BLxIkCncJGY/H+PN5vYmP8fD0vPXsKy3nnvP6HHEsGhEJjMJdQsrMuPPsnqQmxPD3/6yhsKScv47rT1yMBiwVqQuFu4ScmfFfZ3QnJT6Ge/+9goLicqZePpCkOP3zFKkt7R5J2LjulM7cd34fPlm9jUuf/JJde0tDXZJIxFK4S1i5eEh7Hr0si2Wb87nw8c/J0/04RWpF4S5hZ3TvVjx71RB+yC/mvEfmsWxTfqhLEok4CncJS8M6N+WVScPwmDHu8c/5ZPW2UJckElEU7hK2erRqwhvXn0DmMYlc9UwOM3M2hrokkYihcJew1jotkVcmDWNY56bc+toS7n93BZWVLtRliYQ9hbuEvdSEWJ6+cjCXDGnP1Oy1/OqfC9hXWh7qskTCWkDhbmajzWylma0xs9uqef0yM1vs//nMzPoFv1RpzGK9Hv58Xm/u+EVP3lv2A2Onfs4mnUkjclg1hruZeYFHgDOBnsAlZtbzkGbrgVOcc32BPwFPBLtQETPjmhM7Mu3KwXy/cx9n//1Tvlq/M9RliYSlQPbchwBrnHPrnHOlwAzg3KoNnHOfOed2+Se/ADKDW6bIj0Z2b8Eb1w8nLTGWS5/8guc/34BzOg4vUpXV9J/CzMYCo51zE/zT44GhzrkbDtP+FqDH/vaHvDYRmAjQsmXLrBkzZtSq6MLCQlJSUmq1bLhRX2pvX5nj8cUlfLOtguFtYriiVxzx3uAMOhYt70u09APUl/1Gjhy5wDk3qMaGzrkj/gAXAk9VmR4P/P0wbUcCy4GmNa03KyvL1daHH35Y62XDjfpSNxUVle5v7610HW57x43620du/bbCoKw3Wt6XaOmHc+rLfsB8V0O+OucCOiyTC7SrMp0JbDq0kZn1BZ4CznXO7QhgvSJ15vEYN/+sG89cOZjNe4o5+++f8q/Fm0NdlkjIBRLuOUBXM+toZnHAxcBbVRuYWXvgdWC8c25V8MsUObIR3Vvwr5tOpHOLFK5/8WvumPUtxWUVoS5LJGRqDHfnXDlwAzAH3yGXl51zS81skplN8jf7H6Ap8KiZLTKz+fVWschhZB6TxMvXDePakzry/BffMeaReaz+oSDUZYmEREADZjvnZgOzD5n3WJXnE4CffIEq0tBmL9nM7CVbAFj1QwFnPfwJY/q3Zd6a7WzeU0yb9EQmj+rOmAFtg77tWQvzmDJnJZt2F9XrdgLxh1lLeOnL77m5dxnX3D6bS4a24+4xfUJSi4SG7oYgUWPWwjxuf30JRf7DMZUOXIXjlQW5B9rk7S7i9teXAAQ1eA/ddn1tJxB/mLWEF774cRyeCucOTCvgGw8NPyBRY8qclQfCdb/qTvQtKqtgypyV9b7t+thOIF768vujmi/RSeEuUeNohiMI9k1ADrftUAyRUHGYa1cON1+ik8Jdokab9MSA23oM3lyUF7QrWw+37aOpKVi8Vv2FXIebL9FJ4S5RY/Ko7iTGeg+aF+sxYg+5ajU+xkPmMUn8ZsYiJjw7n9xd++pl24mxXiaP6l7ndR+tS4a2O6r5Ep0U7hI1xgxoy73n96FteiIGtE1PZMqF/Zgytt9B8+6/oC8f3jKCP/z8OD5bu4PT//oxT3y8lrKKyqBu+97z+4TkbJm7x/Th8uPbH9hT95px+fHt9WVqI6OzZSSqjBnQttpArW7ehJM6Mbp3K+56ayl/nr2C1xbk8cdze3F8p6ZB3XYo3D2mD3eP6UN2djZrLxsR6nIkBLTnLo1a5jFJPPXLwTwxPovCknIufuILbnppITuLa78XLxIOtOcuApzRqxUndW3O1I/W8thHa3m3spLvvKu47pROJMXpv4lEHu25i/glxnn53end+OB3p9C/hZeHPljNyAeymZmzkQrdt1UijMJd5BDtMpL4df8EXpk0jNZpidz62hLOfOhj3lv2g24KIhFD4S5yGIM7ZPDGr0/g0csGUlbhuPa5+Yx59DM+Xb1dIS9hT+EucgRmxll9WvPeb0/m/gv6sC2/mMunfcm4xz9n3hqFvIQvhbtIAGK8Hi4a3J7/3DKC/z23F9/vLOKyp77kgqmf8Z8VOlwj4UfhLnIUEmK9XDGsA9mTR/Cnc3vxQ34JV0+fz1kPf8obC3PrdCGUSDAp3EVqISHWy3h/yD9wYT/KKir57cxvOPn/PuTxj9ayZ19ZqEuURk4n8IrUQazXw9isTM4f0JbsVVt54uN13PvvFTz4/mouyGrLFcM60K1laqjLlEZI4S4SBB6PcWqPlpzaoyVLN+1h+rwNvDw/lxe+2MjQjhlcfvyxnNGrJfEx3ppXJhIECneRIOvVJo0pF/bj9rOO4+X53/PCF99x40sLyUiO44KBbRk3qB1dtTcv9UzhLlJPMpLjmHRKZyae1IlP12znpa828sy8DTz5yXr6ZaYxNiuTn/dtQ0ZyXKhLlSikcBepZx6PcXK35pzcrTnbC0uYtTCPVxfkcsebS/nj28sY0b05Z/drw8+Oa0lyvP5LSnDoX5JIA2qWEs+Ekzox4aROLN+cz6yFeby5aBPvL99KQqyHU3u04MzerRnZowUpCnqpA/3rEQmR41o34bjWTbh1dA/mf7eLt7/ZxL+/3cLsJVuIi/FwUpdmnN6zJacd15LmqfGhLlcijMJdJMQ8HmNIxwyGdMzgrnN6seC7Xcxespn3lv3AByu2YraEvpnpnNajBSO6N6d3mzQ8Ht0PVY5M4S4SRrxVgv7Os3uyfHMBHyz3hfzf3l/FX99bRUZyHCd2acaJXZtxYpc9/m12AAANA0lEQVRmIbkJt4Q/hbtImDIzerZpQs82TbjxtK5sLyzh09XbyV65lU/XbOetbzYB0LFZMsd3yuD4Tk0Z0jGD1mkKe1G4i0SMZinxB+7T6pxj5Q8FfLp6O5+v3cE732zmpa++B6BdRiKDj81g4LHH4Aoqqah0eHUYp9FRuItEIDOjR6sm9GjVhAkndaK8opLlmwv4asNOvlq/g49Xb+P1hXkA3Jczh76Z6fRrl06/zDT6tkunTVoCZgr8aKZwF4kCMV4PfTLT6JOZxjUndsQ5x8ad+3jh3c8oSWnNwo27mfbpOsoqfEMTH5MUS++2afRs7Tvsc1zrJnRslkysV2MJRguFu0gUMjOObZrM8LaxjBjRG4CS8gpWbC5gce5ulm7K59tNe3hm3gZK/cMUx3k9dGqeTPdWqXRtkULXlql0aZFC+4wkhX4EUriLNBLxMV7foZl26QfmlVVUsm7bXpZvzmfFlgJWbMln/oZdvLlo04E2sV6jfUYSHZul0Kl5Msc2TaJj02TaN02idVqijueHKYW7SCMW6/XQvVUq3VsdPJBZYUk5a7YWsnZrIWu2FbJ+217Wb9/Lx6u3UVpeWWV5o216Iu0yksg8JonMYxJpm55I22MSaZOeSMvUeGK01x8SCncR+YmU+Bj6t0unf5W9fIDKSseW/GI2bN/Lhh37+H7XPjbu2Efurn3M3bSFHXtLD2rvMWiRmkCrtARaNfE9tmgST4vUBFqkxtOiSTzNUuLJSIrThVlBpnAXkYB5PEabdN9e+Qldfvr6vtJyNu0uIndXEZv3FLN5dxGb9hTzQ34xa7YVMm/tdgqKy3+ynNdjZCTH0TQ5jmYp8TRNiSMjOY6MpDgyUuI4JimO73ZU0HJzPsckxZGWGEtCrEdn/ByBwl1EgiYpLoYuLVLp0uLw49XvKy1na34JWwtK2FpQzPaCErYXlrKtoIQde0vZXljCxp372LW3lIKSgz8I7s/55MDzOK+HtKRYmiTEkJYYS5PEWJokxJKaEEPqgccYUuJ//En2//iee0mKi4na7wwCCnczGw08BHiBp5xz9x3yuvlfPwvYB1zpnPs6yLWKRK1ZC/OYMmclm3YX0SY9kcmjuvPK/I3MW7vzQJvhnTO4cFD7n7QDfjJv/nc7eenL77m5dxnX3D6bS4a24+4xfQLa7pgBbQ87P5Dl92+7wjm8Zj/ZdlJcDB2axbDo+9019uXOs3tycrfm7NxXyofzcujQrSe79pXx2drtZK/cxraCEgqKy/B6jLIKx4bte8kvLqeguOzAaZ81iY/xkBTnC/qkOC+JcV4SY70kxXlJiPU9T4jzkhDjJSHWQ0Lsj4/xMR7iY/yPsT8+j9v/4/3xebzXS2yMEev14FxgtdVFjeFuZl7gEeB0IBfIMbO3nHPLqjQ7E+jq/xkKTPU/ikgNZi3M4/bXl1BUVgFA3u4ibp656Cft5q3deVDY5+0uYvKr34CDskp3YN7vZi6isspyFc7xwhcbAQ4K2eq2e/vrS5j/3U5eW5D3k/nAQQFf3fJ12fbkV74B40Ao5+0u4o43l3Lv+X0YM6AtW5p6GdGnNbMW5vHB8q0Hli0uq+T7nUUH2u1XXFZBYUk5hcXlFBSXU1hSzt6ScvaWlrO3pIK9JeXsK61gb2k5+0p9z4tKKw487thbemC6pLyC4rJKisoqqKisezCf2TGWkSPrvJojCmTPfQiwxjm3DsDMZgDnAlXD/VzgOef7OPrCzNLNrLVzbnPQKxaJMlPmrDwQVEerur3TymraAbz05fcHBWx12y0qqziw133o/ClzVh4UntUtX5dtl1UTmoFut7p2vj1sL81SgjtccllFJcVlFZSUV1JS7nte6n/ue6ygpKyS0grf9IHH8krKKnw/nl0bg1pTdaymPw/MbCww2jk3wT89HhjqnLuhSpt3gPucc5/6pz8AbnXOzT9kXROBif7J7sDKWtbdDNhey2XDjfoSnhqsL3GtumTV17or9u3Bm5R2YLp0y5oFddluXZYPwrLNgO1HWrbqNsJcXf59Heuca15To0D23Kv7tuHQT4RA2uCcewJ4IoBtHrkgs/nOuUF1XU84UF/CU7T0xczml+/ZGvH9gOh5T6Bh+hLI1QW5QLsq05nAplq0ERGRBhJIuOcAXc2so5nFARcDbx3S5i3gCvM5Htij4+0iIqFT42EZ51y5md0AzMF3KuTTzrmlZjbJ//pjwGx8p0GuwXcq5FX1VzIQhEM7YUR9CU/R0pdo6QeoL0elxi9URUQk8mhEHxGRKKRwFxGJQmEf7maWYGZfmdk3ZrbUzP7on59hZu+Z2Wr/4zGhrjUQZuY1s4X+awMiuR8bzGyJmS0ys/n+eZHal3Qze9XMVpjZcjMbFol9MbPu/vdj/0++md0coX35rf//+7dm9pI/ByKuHwBm9ht/P5aa2c3+efXel7APd6AEONU51w/oD4z2n5FzG/CBc64r8IF/OhL8BlheZTpS+wEw0jnXv8r5upHal4eAd51zPYB++N6fiOuLc26l//3oD2ThO7nhDSKsL2bWFrgJGOSc643vRI6LibB+AJhZb+BafFf69wN+YWZdaYi+OOci5gdIAr7GN27NSqC1f35rYGWo6wug/kz/G3kq8I5/XsT1w1/rBqDZIfMiri9AE2A9/pMLIrkvh9R/BjAvEvsCtAW+BzLwndH3jr8/EdUPf50X4htscf/0HcDvG6IvkbDnvv9QxiJgK/Cec+5LoKXzn0vvf2wRyhoD9CC+N7bqEByR2A/wXYE818wW+IeVgMjsSydgG/CM/3DZU2aWTGT2paqLgZf8zyOqL865POABYCOwGd91M3OJsH74fQucbGZNzSwJ3ynj7WiAvkREuDvnKpzvT81MYIj/T52IYma/ALY65yJl7IuaDHfODcQ3Iuj1ZnZyqAuqpRhgIDDVOTcA2EsE/Ll/JP6LDc8BXgl1LbXhP/58LtARaAMkm9nloa2qdpxzy4H7gfeAd4FvgJ/eraQeRES47+ec2w1kA6OBH8ysNYD/cWsISwvEcOAcM9sAzABONbMXiLx+AOCc2+R/3IrvuO4QIrMvuUCu/69BgFfxhX0k9mW/M4GvnXM/+KcjrS8/A9Y757Y558qA14ETiLx+AOCcm+acG+icOxnYCaymAfoS9uFuZs3NLN3/PBHfG78C35AHv/Q3+yXwZmgqDIxz7nbnXKZzrgO+P5n/45y7nAjrB4CZJZtZ6v7n+I6HfksE9sU5twX43sy6+2edhm8464jrSxWX8OMhGYi8vmwEjjezJDMzfO/JciKvHwCYWQv/Y3vgfHzvTb33JeyvUDWzvsCz+L4x9wAvO+f+18yaAi8D7fH9Y7jQObfz8GsKH2Y2ArjFOfeLSOyHmXXCt7cOvsMaLzrn7onEvgCYWX/gKSAOWIdv+AwPkdmXJHxfRnZyzu3xz4u498V/yvNF+A5hLAQmAClEWD8AzOwToClQBvzOOfdBQ7wnYR/uIiJy9ML+sIyIiBw9hbuISBRSuIuIRCGFu4hIFFK4i4hEoUBukC3SoPyniX3gn2wFVOAbIgBgiHOuNCSFHYGZXQ3M9p83LxJyOhVSwpqZ3QUUOuceCINavM65isO89ilwg3Nu0VGsL8Y51yCXokvjo8MyElHM7JfmG99/kZk9amYeM4sxs91mNsXMvjazOWY21Mw+MrN1ZnaWf9kJZvaG//WVZvaHANd7t5l9hW9coz+aWY5/fO7HzOcifMNRz/QvH2dmuVWurD7ezN73P7/bzB43s/fwDVYWY2Z/9W97sZlNaPjfqkQjhbtEDP+AcecBJ/gHkovBN5QDQBow1z+YWSlwF77L1i8E/rfKaob4lxkIXGpm/QNY79fOuSHOuc+Bh5xzg4E+/tdGO+dmAouAi5xvPPWaDhsNAM52zo0HJuIbUG4IMBjfIGzta/P7EalKx9wlkvwMXwDO9w05QiK+S+0Bipxz7/mfL8E3TGy5mS0BOlRZxxzn3C4AM5sFnIjv/8Hh1lvKj0MtAJxmZpOBBKAZsAD491H2403nXLH/+RnAcWZW9cOkK75L0kVqTeEukcSAp51zdxw00ywGXwjvV4nvDl77n1f9d37ol0yuhvUWOf8XU/5xW/4BDHTO5ZnZ3fhCvjrl/PiX8aFt9h7Sp1875z5AJIh0WEYiyfvAODNrBr6zampxCOMM890zNQnfmOHzjmK9ifg+LLb7R8W8oMprBUBqlekN+G51xyHtDjUH+LX/g2T/fVATj7JPIj+hPXeJGM65Jf7RAt83Mw++UfYmAZuOYjWfAi8CnYHn95/dEsh6nXM7zOxZfMMbfwd8WeXlZ4CnzKwI33H9u4AnzWwL8NUR6nkc38iAi/yHhLbi+9ARqROdCimNhv9MlN7OuZtDXYtIfdNhGRGRKKQ9dxGRKKQ9dxGRKKRwFxGJQgp3EZEopHAXEYlCCncRkSj0/wHRUJwHFwSFegAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n",
"data_pred['Frequency'] = logmodel.predict(data_pred[['Intercept','Temperature']])\n",
"\n",
"\n",
"\n",
"data_pred.plot(x=\"Temperature\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n",
"plt.scatter(x=data[\"Temperature\"],y=data[\"Frequency\"])\n",
"plt.grid(True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**On n'a pas de barres d'erreur sur ce calcul ?! Affichons les intervalles de confiance.**"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"res = logmodel.get_prediction(data_pred[['Intercept','Temperature']])\n",
"conf_interval = res.conf_int()"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8VPW9//HXZ7ZkMtkIhC2ALEKQfUlAxAVxt9Veb7XVLlp/15+1ty5dbKt2Eat2s/1du91ab7Xa9t6q7a22tVpQETcUSNi3EAhbEiAECNmXmXx/f3wnEGJCJmEms32ej8c8MnPmzJnPyfKek+/5nu9XjDEopZRKLI5oF6CUUir8NNyVUioBabgrpVQC0nBXSqkEpOGulFIJSMNdKaUSUK/hLiJPi0iViGzu4XkRkZ+JyE4R2Sgic8JfplJKqb4I5cj9GeDK0zx/FTAxeLsd+NWZl6WUUupM9Bruxpi3gaOnWeVjwO+M9QGQLSIjwlWgUkqpvnOFYRt5wP5Oj8uDyw50XVFEbsce3ePz+eZOnjy5X2/Y3g5+f79eGhKRyK0TyrJQtq2USk7FxcXVxpjc3tYLR7h3F0XdjmlgjHkSeBKgoKDAFBUV9esNy8th1y7wevv1cnoacaG3kRi6e77zso77oQZ/b+8nAi4XOJ325nKdvHk89qvbfXJZ53X0A0KpxCQie0NZLxzhXg6M7vR4FFAZhu2eVmoqZGRE+l2iyxh7a2+3t9ZWaGmx9wOBk8u7O/L3eOz3yOu1t9RUuywlxYa/UiqxhePP/G/AnSLyHDAfOG6M+VCTjOo7EXtz9LHDqjE2/FtboakJ2tpO/S/B7Yb0dMjMBJ/PBn9qanhrV0pFV6/hLiJ/BBYBQ0SkHHgQcAMYY54AXgGuBnYCjcCtkSpWhaajOaenI/RAwIb+8eP2yB9s4A8aZG8dga+Uil+9hrsx5qZenjfAF8NWkYo4p/Nkc00Hvx9qaqCqyh7le70wdChkZ9uw1zZ81VVbWxvl5eU0NzdHu5SElJqayqhRo3C73f16vba+KuDkkb7PZx+3ttoT13v32nb6kSMhJ0eP6NVJ5eXlZGRkMHbsWEQ//cPKGMORI0coLy9n3Lhx/dqGhrvqlsdjb2Db7Pfuhd27bcCPHGnb6/XvObk1NzdrsEeIiDB48GAOHz7c721ouKteud22ecYYaGiAzZtts81ZZ9k2+r6e8FWJQ4M9cs70e6vhrkImYpttfD7bJXP7dhvy48dDVpYeySsVSzTcVb+kpNhbc7M9ks/JgbFjIS0t2pWpZOJ0Opk+ffqJxy+99BJjx46NXkExRMNdnZGOPvL19bBunW2qGTHC9shRKtK8Xi/r16/v8Xm/348rSa/a09ZSFRbp6bZdft8+2LTJts0rFQ3PPPMMN9xwA9dccw2XX345AI899hiFhYXMmDGDBx988MS6jz76KPn5+Vx66aXcdNNN/PjHPwZg0aJFdAyPUl1dfeK/gUAgwNe+9rUT2/r1r38NwIoVK1i0aBHXX389kydP5tOf/jQmeOXgmjVrOO+885g5cybz5s2jrq6OCy644JQPpYULF7Jx48awfh+S8yNNRYTDYU+wNjbChg1w9tm2r7xKfA/9fQtbK2vDus0pIzN58Jqpp12nqamJWbNmATBu3DhefPFFAN5//302btxITk4Oy5Yto7S0lNWrV2OM4dprr+Xtt9/G5/Px3HPPsW7dOvx+P3PmzGHu3Lmnfb+nnnqKrKws1qxZQ0tLCwsXLjzxAbJu3Tq2bNnCyJEjWbhwIe+99x7z5s3jk5/8JM8//zyFhYXU1tbi9Xq57bbbeOaZZ3j88cfZsWMHLS0tzJgxIwzftZM03FXYpaXZbpQ7dkBdnW2L12YaFQk9Nctcdtll5OTkALBs2TKWLVvG7NmzAaivr6e0tJS6ujquu+460oIniq699tpe32/ZsmVs3LiRP//5zwAcP36c0tJSPB4P8+bNY9SoUQDMmjWLPXv2kJWVxYgRIygsLAQgMzMTgBtuuIGHH36Yxx57jKeffprPfe5zZ/aN6IaGu4oIl8ueZD10yA51kJ9vu1SqxNTbEfZA83VcjYe9IOj+++/n85///CnrPP744z12N3S5XLQHx+bofAWuMYaf//znXHHFFaesv2LFClJSUk48djqd+P1+jDHdvkdaWhqXXXYZf/3rX3nhhRfo7wi5p6Nt7ipiRGwzTUODbYfXq9RVNFxxxRU8/fTT1NfXA1BRUUFVVRUXXnghL774Ik1NTdTV1fH3v//9xGvGjh1LcXExwImj9I5t/epXv6KtrQ2AHTt20HCaE0yTJ0+msrKSNWvWAFBXV4c/OBnFbbfdxt13301hYeGJ/zLCSY/cVcRlZtqA37gRpk/v/zj8SvXH5ZdfzrZt21iwYAEA6enp/OEPf2DOnDl88pOfZNasWZx11llccMEFJ15z77338olPfILf//73LF68+MTy2267jT179jBnzhyMMeTm5vLSSy/1+N4ej4fnn3+eu+66i6amJrxeL6+//jrp6enMnTuXzMxMbr01MmMtiultxogIOdPJOioqbGio+NHYaEeknDZN+8Mngm3btnHOOedEu4ywWbJkCenp6dx7770D8n6VlZUsWrSI7du34+jhMu/uvsciUmyMKeht+9osowZMWppti9+82bbDK5Wsfve73zF//nweffTRHoP9TGmzjBpQXq89gt+2DaZOtVe5KhULlixZMmDvdfPNN3PzzTdH9D30yF0NuLQ02zyzfXtkJzpXkRetZt1kcKbfWw13FRXp6bZpprT05GxQKr6kpqZy5MgRDfgI6BjPPfUMJlDQZhkVNVlZcPSoPUE+Zky0q1F9NWrUKMrLy89ozHHVs46ZmPpLw11FVcd4NGlpMGRItKtRfeF2u/s9S5CKPG2WUVHlcNgj+B077IlWpVR4aLirqHO5bK+ZHTv0BKtS4aLhrmJCWpo9ct+/P9qVKJUYNNxVzMjOtlceHzsW7UqUin8a7ipmiEBGhu0eGRyXSSnVTxruKqZ4PLbf+9690a5Eqfim4a5iTmYmHDwINTXRrkSp+KXhrmKOiL2CtbRUe88o1V8a7iompaTYdvfKymhXolR80nBXMSsry3aN1IublOq7uAv3xlY/f9qwm4CONpXwHA57gnXPHtCxqZTqm7gL95c3HuCn72xlyTvvU1nb89yFKjGkp9vBxbTvu1J9E3fh/omC0Tx4+Swq6ur54t/fYWnpPh1yNMFlZNij90Ag2pUoFT/iLtwBLpuUx48WX0j+kGweX7mJ77+1jvpWveolUXk80NwM1dXRrkSp+BGX4Q4wJM3L9y6fz61zJrNy30G++Ld32HZY/3dPVBkZ9sIm7RqpVGjiNtwBHCJ8YvoEfnLVeTgEvvbq+/zvljJtpklALpcN9gMHol2JUvEhpHAXkStFpEREdorIfd08nyUifxeRDSKyRURuDX+pPcvPzebn11zA/NFD+U3RNh5+s1ibaRJQR9fIlpZoV6JU7Os13EXECfwSuAqYAtwkIlO6rPZFYKsxZiawCPiJiHjCXOtppXvcfGvRXD5fOIXV5VXc8/K77D5WO5AlqAhzOOxNj96V6l0oR+7zgJ3GmDJjTCvwHPCxLusYIENEBEgHjgID3joqIvzLlHH88MpzafYH+PI/3mPFbr3EMZFkZNirVpubo12JUrEtlHDPAzpPoVAeXNbZL4BzgEpgE3CPMeZDVxmJyO0iUiQiRZGcVHfq0Bx+fs35nD04ix++vY6nircRaNd2+ETQcfR+8GC0K1EqtoUS7tLNsq5JeQWwHhgJzAJ+ISKZH3qRMU8aYwqMMQW5ubl9LrYvcrypfP/yc/lI/hj+vLmMJcvX0KDt8AlBj96V6l0o4V4OjO70eBT2CL2zW4G/GGsnsBuYHJ4S+8/tdHDnudO5e8F01lVW8+VXVupVrQnA4QCnU4/elTqdUMJ9DTBRRMYFT5LeCPytyzr7gEsARGQYkA+UhbPQM3HVpDF87/L51DS38KVX3mPjwSPRLkmdofR0e/SuPWeU6l6v4W6M8QN3AkuBbcALxpgtInKHiNwRXO1h4DwR2QS8AXzDGBNT1xPOGD6Yx69eSHaqh2++torlu8qjXZI6Aw6HHfe9qiralSgVmyRaF/wUFBSYoqKifr22vNxOpJz5oVb93tW1tPHoimI2HDzCZ2ZN4lMzzsZ28lHxJhCAujooLLQXOSmVDESk2BhT0Nt6cX2Fan9kpLh5+NJ5XDIhjz+s38FP39+kwwfHKafTDgWsR+9KfVhSHu+4nQ6+unAmQ31e/rhxJ8eaWrj/wtmkupPy2xHXMjLsVatDh+rRu1KdJd2RewcR4ebZ+dx17jSKKqq4b9kqaptbo12W6iOXyzbP6HjvSp0qacO9w9X5Z/HNRXMpO1rLvf98n8MNTdEuSfWRz2eP3nW8OKVOSvpwBzhvzHAeuWwe1Y3NfPXVlZQfr492SaoPPB5oaoJaHUpIqRM03INmDB/Mj644lxZ/O1/75/vsPqpJEU9SU20vKqWUpeHeydmDs/jxVQtwOhx8fen7bNfJP+JGWhocPw4NegGyUoCG+4eMzkrnJ1ctIN3j4YHXVrP50NFol6RC5HTCoUPRrkKp2KDh3o1h6Wk8duUCBntT+Nbrq1l/IKYutlU9SE+348206fhwSmm492SIL5UfXbmAEelpPPjGGoorIjdEsQoPR/C3+YgOHaSUhvvpDPKm8IMrziUv08dDy4s04ONAero9saoXHatkp+Hei6xUD9+//FxGZ6VrwMcBtxtaW7VbpFIa7iGwAT+f0VnpfPfNItZpG3xMS0mxA8splcw03EOUmerhe5fPZ2SGj4feWKNjwsewtDSoqbEXNimVrDTc+6DjCH5o8CTr1irtJhmrXC6I4DS9SsU8Dfc+yvam8IMr5jM4LZVvv76GnUeOR7sk1Q2fDw4cAL8/2pUoFR0a7v1gJ9+eT7rHzTdfW8WeY3XRLkl14XTa0SJraqJdiVLRoeHeT7k+L9+/fD5uh4MHXlulE2/HIK/XzrOqVDLScD8DIzN9PHr5fALt7Tzw2iqqG5qjXZLqJDXVTsOn482oZKThfobOys7g4UvnUdvSxgOv6YQfscbp1BOrKjlpuIfBpCHZLFlcwMG6Rr7zxhqa2vQsXqzIyLDjzeiJVZVsNNzDZMbwwdx/0WxKj9TwyIpi2gJ6/XsscDjsUAR6YlUlGw33MFowZjh3L5jB2spqfvLuBtp13reYoCdWVTLS+eLD7IqJozne3Mpv125nkDeF2wvPQUSiXVZSS02Fo0ftiVWfL9rVqGRXVWV/F8eNi+z7aLhHwA3TxnO0qZmXtu1mcFoK10+bEO2Skp7LBdXVGu4qug4dgm3bIDc38u+l4R4BIsLthVM41tTCU8XbyfGmsHjCqGiXldR8PntiNS/PBr1SA+3AAdi50w5LPRC0zT1CHCJ89fyZzBw+mP9YuVFHkoyyjitWdShgFQ2VlbBrFwwaZH8XB4KGewR5nE6+dfFcRmWm88ibxew+qskSTampemJVDbyKCigrG9hgBw33iEv3uPnupYV43S6+/cYaDjfoOLTR4vXC8eM6FLAaOOXlsHu3DXbHAKethvsAyPV5efiSQhrb/Dz4xhoaWnUG52hxOOyJVaUibf9+2LMnOsEOGu4DZlxOJt+8aA57a+r5/lvr8Oskn1GRnm5PbOm3X0XS/v2wd2/0gh003AfU3Lxc7l4wjeLKw/znqi0YvchpwLlc0NamJ1ZV5MRCsIN2hRxwV0wcw4G6Rp7ftIuRGWnaBz4KUlJst8js7GhXohJNrAQ7aLhHxc2z86msbeTp4u2MyEhj4Vkjol1SUklLs1estrTYoFcqHGIp2CHEZhkRuVJESkRkp4jc18M6i0RkvYhsEZG3wltmYunoA5+fm81j76xnR7WOajWQOkaDOKJznKswibVghxDCXUScwC+Bq4ApwE0iMqXLOtnAfwLXGmOmAjdEoNaEkuJy8p2LC8hKTeGh5UXaRXKAdcyxqqc91JmKxWCH0I7c5wE7jTFlxphW4DngY13W+RTwF2PMPgBjTFV4y0xMg7wpPHRJIU3+AEuWF+k48API44HmZqivj3YlKp6Vl8dmsENo4Z4H7O/0uDy4rLNJwCARWSEixSJyc3cbEpHbRaRIRIoO6/Q4AIwdlMEDF81mz7FaHntnvQ4TPIDcbjtCn1L9UVER3X7svQmlpO7Gq+2aQC5gLvAR4Arg2yIy6UMvMuZJY0yBMaYgdyCGRYsTBXlDub1wCu/vP8Sza0uiXU7S8PnsKH06S5Pqq8rK6F15GqpQesuUA6M7PR4FdB2hoxyoNsY0AA0i8jYwE9gRliqTwLWTx7Kvpp4XNu9idHY6l+ookhHX8Ud57NjADMGqEkNl5cmxYmI12CG0I/c1wEQRGSciHuBG4G9d1vkrcIGIuEQkDZgPbAtvqYlNRPjC/KnMHD6Yn67cxNaqo9EuKSmkpelgYip0Bw7ER7BDCOFujPEDdwJLsYH9gjFmi4jcISJ3BNfZBvwT2AisBn5jjNkcubITk8vh4JuL5pDrS+XhN4upqtceNJGWkmJPqjY0RLsSFesOHbLjsWdnx36wQ4j93I0xrxhjJhljJhhjHg0ue8IY80SndR4zxkwxxkwzxjweqYITXUaKhyWLC2gNtPOQ9qAZEE6nDiamTq+qCnbsGPhhe89EHHz+JJ8x2Rncd+Fs9tTU6kTbAyAjw/67rSdWVXeqqqCkxB6xx0uwg4Z7zCocNZR/m3sO7+07yB83lEa7nITmcNhRInUwMdVVdfXJYI+36Rk13GPYdVPGcdmEUfxhQynv7j0Q7XISms7SpLo6cgS2b4/PYAcN95gmIty5YBrn5Gbz43c3UKbT9EVMxyxNjY3RrkTFgqNHYds2yMqKz2AHDfeY1zEPa7rHzUPLi6hpbol2SQnL5dITq8pe97B1K2Rmxm+wg4Z7XMjxpvKdi+dS09zC91as1VmcIqRjMLFAINqVqGipqTkZ7G53tKs5MxrucWLSkGzuOW8Gmw4d5YnVW6JdTkJyOm2wHz8e7UpUNBw/Dlu22KkY4z3YQcM9riwen8f1U8fzj5J9vLJjX7TLSUh6YjU51daeDHaPJ9rVhIeGe5z53JzJFOTl8qtVm9miQxSEnZ5YTT51dTbYfb7ECXbQcI87Tofw9QtmMyw9jUfeLNZJPiJAT6wmj7o62LTJfqgnUrCDhntcykhx852L59ISaOfhN4tp8esZwHDy+WzTjF6xmtjq622wp6Ul5ly6Gu5xakx2Bl8/fxalR47zs/c3YXSIgrBxOu0VqzU6tW3C6gh2rzcxgx003OPauWOG8dlZk1heVsGLW3dHu5yE4vXamXZU4qmvh82b7cnz1NRoVxM5Gu5x7sYZZ7NwzHCeKt7G2kqdujBcUlNtCOgcq4mlI9hTUhI72EHDPe45RPjK+TMZnZXO999ax4E67eYRLm63HcNbJYb6etsrJhmCHTTcE0Ka28V3Li4A4Ls6BnzYdMyx2toa7UrUmWposMHu8SRHsIOGe8IYmenj/otms+94HT95b4OeYA2Djtl2tFtkfGtosE0xbnfyBDtouCeUOSNzuXXOZN7be5DnNu2MdjkJISPDnljV4XziU0ewezz2JHky0XBPMB+fOp6Lx4/k9+t28MF+bTA+Uy4XtLToeDPxqOPkaTI1xXSm4Z5gRIR7FsxgQk4mP3pnPfuPa3ePM5WWBuXl0a5C9UWyBztouCekFJeTb19cgMfp4KHlRdS3tkW7pLjWMd6MdouMD8nU3fF0NNwT1NB0L99aNJeDdY388O11BNr1BOuZ8HjsWO8qtnVceZrswQ4a7glt2rAc7pg3laKKw/xuXUm0y4lr6elQVQXNzdGuRPWkrg42bkz8K09DpeGe4D6SP4arJo3hhc27eGu3DlTeXyJ2zBm9qCk2HT9+chAwDXZLwz3BiQhfmDeVKUMH8R/vbWDnEe320V8ZGXa0yDY9hRFTjh2zbew+X+IOAtYfGu5JwO108K1Fc8lI8fDdN4uoadJJtvvD4QBj4LAO4RMzjh5NvBmUwkXDPUkM8qbw4OICjje38siKYtoCelVOf2RkwP79OtZ7LDh8+ORk1hrsH6bhnkTOHpzFl8+bwZaqY/xq9RYdoqAfXC47ifaRI9GuJLkdOgTbt0NWVmJMZh0JGu5JZtH4PG6YNoFXd+zjHyV7o11OXEpPh337bMirgVdZCaWlMGiQ/bBV3dNwT0K3zM5n3qihPLF6KxsO6KhYfeV225OqevQ+sIyxH6plZTbYnc5oVxTbNNyTkJ1kexYjM3187621OgZ8P/h8sHevHr0PlPZ22L3bhvugQSdH7FQ9029RkvJ53CxZXEC7gYeWr6FBhyjoE4/HHr0fPRrtShJfIAA7d9orhHNyNNhDpd+mJDYy08cDi+aw/3gDP3pnvQ5R0Ed69B55fj+UlNgx9XNy7MVkKjQa7klu9ogh3DFvCqvLq3hWhyjoE4/HztKk/d4jo6XF9mGvrbVNMapvNNwVH80/i6snjeFPm3fxxi4d27YvMjJsO7D2ew+vxkZ71WlLi+3uqPoupHAXkStFpEREdorIfadZr1BEAiJyffhKVJEmInxh/lRmDh/M4ys3sbVKG5JD5XLZYD94MNqVJI7aWjsAmIj98FT902u4i4gT+CVwFTAFuElEpvSw3g+BpeEuUkWey+Hgm4vmMNSXynffLOZQvfagCVVmpr1qtUVHdThj1dV2ALDU1OSbFi/cQjlynwfsNMaUGWNageeAj3Wz3l3A/wJVYaxPDaCMFA8PXVKIP9DOkuVF2oMmRE6n7cGhszX1nzH2+7dtm/2w1AHAzlwo4Z4H7O/0uDy47AQRyQOuA5443YZE5HYRKRKRosN6FiomjcpK55uL5rKvpl4n+eiDjAzbNKOzNfVdIAC7dtl+7Dk5etVpuIQS7t11Pur6F/848A1jzGk7hRljnjTGFBhjCnJzc0OtUQ2w2SOH8O/zp7Km4jD/VbQ12uXEBRHbjFBWZo9CVWhaW+3RelUVDB6sfdjDKZTPyHJgdKfHo4Cusz4UAM+J7YQ6BLhaRPzGmJfCUqUacB/JP4vy4w28tG03ozJ9fHTy2GiXFPO8XjskQXU16LFL7xoa7OBfgYB2dYyEUMJ9DTBRRMYBFcCNwKc6r2CMGddxX0SeAV7WYI9/txWcQ2VdA79avYVh6WkUjhoa7ZJiXmambV7IytJhaE/n6FF7cVJKivaIiZRe/wkyxviBO7G9YLYBLxhjtojIHSJyR6QLVNHjdAj3XTibcYMy+f5bayk7WhvtkmKe222bZfbsiXYlsam93V4XsGWLvcJXe8RETkgtXMaYV4wxk4wxE4wxjwaXPWGM+dAJVGPM54wxfw53oSo6vG4XSxYXkuZx8+Aba6hu0Bmie5ORYa9a1XFnTtXWZo/W9++3J051HPbI0tMXqldDfKk8dEkBDa1tPLh8DY1tejnm6YjYMd937tT5VjvU18P69fYCJR38a2Dot1iFZEJOFg8smsOeY3V8/621BNp1mr7T8XhODlObzL1njLFdRDdssF0cMzOjXVHy0HBXISvIG8oXz51GUcVhfvHBZp2mrxdZWbaLX1WSXtbX1mZnTNq5034vUlOjXVFy0csFVJ9cPWkMVfWNPL9pF0PTvdw0Y2K0S4ppWVk23NLT7QnEZFFba9vX29tt/3U18PTIXfXZLbPzuWR8Hr9bt4PXduo196fjctkeISUlydH+HgjY3jAbN2ozTLTpkbvqMxHhnvNmcLSphZ+u3EiON4W5ef27amd5WQXPri3hcEMTuT4vt8zJZ/H4vN5fGEe8XnskW1oKkycn1snEl9ZV8NjSEiprmhie5eWmKfnMHZKnU+HFAP32q35xO+0okmcNyuCRFcWUVNf0eRvLyyr42cpNVDU0YYCqhiZ+tnITy8sqwl9wlGVmwrFjtv97opyqeGldBff/ZRMVNfbnd+B4E79cvYn1NRUa7DFAfwSq33weNw9fWkh2qocH31hDRW1Dn17/7NoSWrrMUdcSCPDs2sScEWrQIKistLdE8NjSEprakufnF2803NUZyfGm8vCl8zAGvvnaKo40hn6R0+GGpj4tj3ciNuB3747/gPf7obImuX5+8UbDXZ2xUVnpPHxpIbXNrXzrtdXUtYR25jDX1/215z0tTwQOhw34srL4DHhj7MBoa9fC4B7GDkjkn1880XBXYTFpSDbfXlxAeW0DS95YQ3MIV7HeMiefFKfzlGUpTie3zMmPVJkxweGA7Gwb8Pv2xU8bfF2dndd0+3Y74NetBcn584sXGu4qbGaPGMLXL5jF9upjPLJiLW2B01/Funh8HnefN52hPi8CDPV5ufu86QnXW6Y7Tqc9gt+3z/aDD5x2JoToamyEHTts98a2Nttv3eNJ7p9fPJBoXWVYUFBgioqK+vXa8nKoqNA+tLFqael+Hl+5kQvOGsE3LpyN09HdfC8K7FF7TY29yGnixNgaJbGpyf6dHTxowzw93Z43UGemudl+P6dO7d/rRaTYGFPQ23raz12F3RUTR9PY2saTRdvwvu/knvNm4NBU6FbHSdaGBli3Ds4+2070Ec1vV329PR9QVWVHbszJ0VCPRxruKiKumzqehjY//72hlBSXky/Mm4poQvTI57Pt2KWlcOgQjBtnj5QHSiBgL7QqL7dfNdTjn4a7iphPz5xIU5ufv2zdTYrLyf+ZM1kD/jRcLhuojY12eNxhw2DEiMiFvDH2P4YjR2zTi98PaWm2BhX/NNxVxIgItxWcQ7M/wJ83l+FxOvnsrEnRLivmpaXZtvdjx2zTSFaWDfnMzDOf4MLvtx8eNTV22y0t9uRuerr9qhKHhruKKBHhi+dOo629nf/ZUIpLhJtm6kiSvRE5ObdoU5MdeAxs0A8adLIZx+3uPpSNsT1b2tpsgDc02ECvq7PPOxx2G8k0UmWy0XBXEecQ4Z4FM2hvN/xu/Q6cDgefmD4h2mXFDa/X3oyxQb1vn20jdzjsMqfT3jrGc/H77fMdHeGMsU0+Ho/tX68tY8lBw10NCKdD+PLCmQSM4bdrtwOGT0w/O9plxRURO+FF10nypFCIAAAWqklEQVQv2tttgHeEeUqKXVdDPLlpuKsB43QI954/E4Dfri2h3cCNMzTgz5SOwKi6o+GuBpTT4eDe82chAs+uKyFgDJ+acbb2olEqzDTc1YBzOoSvLpyFUxz8Yf0O2gIBbpmdrwGvVBhpuKuosG3wM3A7HTy/aRct/nZuLzxHA16pMNFwV1HjEOGuc6fhcTp4adtumv1+7jx3uo5Fo1QYaLirqBIRPl84hTS3iz9u3Eljm597z5+F26lnCZU6ExruKupEhJtn55PmdvFU8XYa2/x886I5pLr111Op/tLDIxUzrp82gXsWTGdt5WHuW7aK2ubWaJekVNzScFcx5cpJY3jgormUHa3l3n++T1W9zsepVH9ouKuYs/Cs4Txy2TyONjbz5Vfeo+xobbRLUiruaLirmDRj+GAeu2oBIsK9/3yftZWHo12SUnFFw13FrHGDMvmPq89jWLqX77y+hqWl+6JdklJxQ8NdxbRcn5cfX7mAmSMG8/jKTfy2eDvtUZr3V6l4ouGuYp7P4+ahSwq5atIYXti8i0dXFNPc5o92WUrFtJDCXUSuFJESEdkpIvd18/ynRWRj8LZSRGaGv1SVzFwOB3edO43bC6fwwf5DfPWf73O4QXvSKNWTXsNdRJzAL4GrgCnATSIypctqu4GLjDEzgIeBJ8NdqFIiwnVTxrFkcSEH6xq56+V32XzoaLTLUiomhXLkPg/YaYwpM8a0As8BH+u8gjFmpTHmWPDhB8Co8Jap1EmFo4by+EcWku5xc9/SD3h5+x6MtsMrdYpQwj0P2N/pcXlwWU/+DXi1uydE5HYRKRKRosOHtWub6r/RWen89CMLmZuXyy9XbeEn722g2R+IdllKxYxQwr27Ifq6PUwSkYux4f6N7p43xjxpjCkwxhTk5uaGXqVS3fB53Dy4uIDPzJzI8l0VfOWV96isbYh2WUrFhFDCvRwY3enxKKCy60oiMgP4DfAxY8yR8JSn1Ok5RPj0rEl899JCDjc0c9fL7/LOngPRLkupqAsl3NcAE0VknIh4gBuBv3VeQUTGAH8BPmuM2RH+MpU6vYK8ofzimvMZnZXO995ayy8/2ExrQJtpVPLqNdyNMX7gTmApsA14wRizRUTuEJE7gqt9BxgM/KeIrBeRoohVrFQPhqWn8diVC/jXKeN4uWQvX/rHe+ytqYt2WUpFRUgDZhtjXgFe6bLsiU73bwNuC29pSvXdO3sP8O7egwDsOVbHnX9/h4vH57G+sprqxmZyfV5umZPP4vGn6xPQP8vLKnh2bQmHG5oi+j6h+MUHm3h1x37ajcEhwlWTRnPnudOjUouKDp0NQSWM5WUV/GzlJlqCzTEG8LcbXttZfmKdqoYmfrZyE0BYg7fre0fqfULxiw828Y+Sk+PwtBtz4rEGfPLQ4QdUwnh2bcmJcD2dlkCAZ9eWRPy9I/E+oXh1x/4+LVeJScNdJYy+DEdQFeahC3p672gMkdDTwGo64Fpy0XBXCSPX5w15XQFWlFWE7crWnt67LzWFi0O6uzSl5+UqMWm4q4Rxy5x8UpzOU5Y5RXA5Tg01t8PBsPQ0fvjOepYsL+JQfWNE3jvF6eSWOflnvO2+umrS6D4tV4lJT6iqhNFx4rJrj5Xull00diR/27abZ9fv4PN/fZvPzJzIv0wZh8vRv+Odnt47Gr1lOk6aam+Z5CbRGnCpoKDAFBX1rzt8eTlUVEBmZpiLUknnUH0jv1q1hVXlVYzNzuAL86cyY/jgaJelElhzM3g8MHVq/14vIsXGmILe1tNmGZXUhqWnseSSQr5z8Vwa2/x8Y+kH/PDtdTpWvIp72iyjFLBgzHBmj8zlT5t38adNu3h/30GunzaB66eOJ9WtfyYq/uiRu1JBqS4nn501if+67iLmjx7Gf28o5bYXV7C0dB+Bdu1GqOKLhrtSXQxLT+P+i+bw2JULGOLz8vjKTXzx72/zwb5DOimIihsa7kr1YNqwHP7j6vN44KI5+NsND71ZxJdfWcm6ymoNeRXztDFRqdMQES4YO4Lzxgzj9V3l/PeGUh54bRVThw7i07MmMWv4YEQvDlIxSMNdqRA4HQ6umDiGi8fnsbR0P89v2sUDy1ZxTm42N844m8K8oRryKqZouCvVBx6nk2smj+WKiaNZVrqfP20u48E3ihg/KJOPTx3HheNG9vtCKKXCSX8LleoHj9PJRyeP5al/XcRXFs6krb2dx97dwK3/+yZ/3ryLupa2aJeokpweuSt1BlwOB5edPYpLJuRRVFHF/24p46ni7fxhQymXTsjjmvyxnDUoI9plqiSk4a5UGDhEmDdqGPNGDWPX0eP8ddselpWW84+SfUwflsNH8s9iwZhheLoMLqZUpGi4KxVmE3Ky+MrCmfzb3HNYtnM//yjZyw/eXkdmiodLJ+Rx+cTRnJWtR/MqsjTclYqQrFQPN0ybwMenjmddZTWvlu7jr9v28Jetu5k0OIvLzh7FBWNHkpXqiXapKgFpuCsVYQ4R5ublMjcvl5qmFt4sq2DZrnJ+uWoLT6zeSkFeLovGjWT+6GF4dRwbFSb6m6TUAMr2pnDd1PFcN3U8u4/Wsrysgjd3V7KqvIoUp4PCUUM5/6wRFI4aSpoGvToD+tujVJSMy8nk33IyuXXuZLZWHeOt3ZW8t/cg7+49iNvhYPbIISwYPYz5o4cxyJsS7XJVnNFwVyrKHCJMG5bDtGE53DFvKtsOH+PdvQd4f98hVpdXIe9vYtKQbOaNGkpBXi5nD87S+VBVrzTclYohTsfJoP984RR2H6tj1f5DrCqv4g/rd/D79TvITPEwZ+QQZo8YwuyRQ6IyCbeKfRruSsUoEWF8TibjczK5aeZEappaWHugmqKKKtZVVrNidyUAeZk+pg/LYebwwUwdlqNhrwANd6XiRrY3hcXj81g8Pg9jDHtq6lhXWc2Gg0d4e88B/lm6H4Dh6V6mDs3hnKGDmDJ0EGOyMnA6tBkn2Wi4KxWHRIRxgzIZNyiTf506nkB7O2XH6th86CibDx2huPIwb5RVAOB1OZk0JDt4y2LS4Gxyfak6imWC03BXKgE4HQ4mDs5i4uAsrpsyDmMMB+oa2Xb4GCWHa9heXcOLW8vwB6cLzExxMyEniwnBZp/xgzLJy/LpiJYJRMNdqQQkIozM9DEy08clE0YB0BoIsPtYHaXVNew6WsvOI8d5adse/O3tgB0EbXSWj7OyMxiTnW6/ZqUzPCNNQz8OabgrlSQ8Tif5Q7LJH5J9Ypm/vZ3y4w2UHatlz7E6dh+rZWvVsRMnawFcDmFERhp5menkZfoYmZHGyEwfIzLSGJLm1fb8GKXhrlQSczkcjB2UwdguwxI3tvnZX1PP/tp69tfUU1HbQEVtA8UVh2kLHunb1wtDfV6GpacxPCONYelecn1ehgZvg9NScOpRf1RouCulPiTN7SI/N5v83OxTlrcbw5HGZipqG6isa+RQXSMH6ho5VN/Iyn0HOd7cesr6DoFB3lSGpNnb4LRUBqelMMibSo43hZy0FAalppCZ6tELs8JMw13FDWOgvf3k1477Hbeuj409d4iIvd/xtWNZxzY765wvXV/feZ2ur+tY7nDYr06nvd9xczpP3Xa8coiQ67NH57NGfPj55jY/VQ1NVDU0cbihmcMNTVQ3NFPd2My+4/WsP1BNQ5u/2+1mpXrITvWQnZpCVqrH3lLs14wUD5kpbjJT7P30FDcpTof2+DkNDXcVEZ2DtnMQ9/S1p7/RroHsctmgdDrB47HB2bHM5ToZpC6XXb9z4Ha+37G9jlvH4+5094HR3f4FAtDWBn6/vbW22setrfbW9QOmQ0fNXW/xKNXtYkx2BmNOM159c5ufo00twVszx5paqGlq5VhzC8ebWznW1MKBukZqW1pp7OaDoIPL4SAjxU26x0W6x43P4ybd4ybN7cLncePzuEhzn7x5g7c0twuvy4XX7STV5UrYcwYhhbuIXAn8FHACvzHG/KDL8xJ8/mqgEficMWZtmGtVYdLdEW53y7ou76q7I+LOz3UOXY/Hfu0czh2POx/hdr51PQKO94O0QODkze8/+bW1FV7eVMFvVpdwuKGJwV4vnzgnn7f27mPLkaMnXj91cA4Xjx3Dc1tLONLUxJA0LzfPysfhgGfX2dfm+rzcMiefrVVHeXXHftqNwSHCVZNGc+e50z9U0/KyCp5de+prF4/P63F5KK/v7b1T3S5Gul1sr6750GuBU5Z9ft4UCkbmcryllbqWNmpbWqltaWPDgWqKKg5zrKmFxtY2JEPwtxsqaxuob/XT2NZ2ottnbzxOB6kuG/SpLicpLmfwsROPy0mq0y7zOJ2kuBx4nE48TkdwmQN38HHn+26HA3fnr04HbocTt0PwtztwGwEi+wstpru/2s4riDiBHcBlQDmwBrjJGLO10zpXA3dhw30+8FNjzPzTbbegoMAUFRX1q+jycqiogMzMfr08YjqHYHdfe7rfeVl363Vdt6uemh16albofKTYudmgpyPIjlvXZoeOx90ti/cgHkgvravg/r9soqkt0OfXuhyCMRDo9AMWoLtflSvGj+HzBdNP/Ize3lvBL1ZtoiVw8n1TnE4uPTuP13dWfGj53edNPyXgl5dV8LOVp76+p/f+SP6YUwK+u9c6RRDhlFAO9X27W681EKCx1U9jm5+GNj9NbfZ+U5ufJn+ApjY/zSe+2vvN/gAt/gDNbQFaAsH7/gCtgQAtgXZa/AHae8nMUHx8ynh+cvM5/XqtiBQbYwp6Wy+UI/d5wE5jTFlww88BHwO2dlrnY8DvjP2k+EBEskVkhDHmQD9qD0lT08mjyr7orq21uzbVruv0ts2OcO36739HR4HOjzsv67y882u7HsF2BG/H+3UO0M6v7bqt7ratYstjS0v6FexAt0enPf3avrZ7P19dNJ22Nvtfw+/Wl5wSkAAtgcCJo+6uy39bVMKcnLwTfxe/Lfrw63t671d37OeWqSfDvbvXBoz50AZaAgGeKS5hwYiTof1Mcfd1P1NcwnkjO/934SRVnKR6UsgJ42RX/vZ2WgMBWgPttAXs/bb2dloD7fjb22lrD5y8f2LZyfstbe1MHzkofAX1IJQj9+uBK40xtwUffxaYb4y5s9M6LwM/MMa8G3z8BvANY0xRl23dDtwefJgPlPSz7FwR17GOR532oYed+dDibtbraZ1uN/nh38L+GwJUh2tjUab70g+e4WfPjdS2A43HcaZlnXjcenBnca/va+i+xcBA66E964OPxDNs7MyQWxYMtFWVb+7YsHto3rS+vNZ/+MBWY9oGibiPuXJHTOmpPv/hg9tC3GpUtbc3Z4L/YD9ffpYxJre3lUI5cu/h29jndTDGPAk8GcJ7nr4gkaL29tZe/y2JByJSFMq/WPFA9yX2iEiR/3hV3O8HdPzdtyTMvkT69yuUf9LLgdGdHo8CKvuxjlJKqQESSrivASaKyDgR8QA3An/rss7fgJvFOhc4Hsn2dqWUUqfXa7OMMcYvIncCS7FdIZ82xmwRkTuCzz8BvILtKbMT2xXy1siVDIShaSeG6L7EpkTZl0TZD9B96ZNeT6gqpZSKP9oxTimlEpCGu1JKJaCYD3cRSRWR1SKyQUS2iMhDweU5IvKaiJQGv0b+qoAwEBGniKwLXhsQz/uxR0Q2ich6ESkKLovXfckWkT+LyHYR2SYiC+JxX0QkP/jz6LjVisiX4nRfvhz8e98sIn8M5kDc7QeAiNwT3I8tIvKl4LKI70vMhzvQAiw2xswEZgFXBnvk3Ae8YYyZCLwRfBwP7gE6X2gRr/sBcLExZlan/rrxui8/Bf5pjJkMzMT+fOJuX4wxJcGfxyxgLrZzw4vE2b6ISB5wN1BgjJmG7chxI3G2HwAiMg34v9gr/WcCHxWRiQzEvhhj4uYGpAFrsePXlAAjgstHACXRri+E+kcFf5CLgZeDy+JuP4K17gGGdFkWd/sCZAK7CXYuiOd96VL/5cB78bgvQB6wH8jB9uh7Obg/cbUfwTpvwA622PH428DXB2Jf4uHIvaMpYz1QBbxmjFkFDDPBvvTBr0OjWWOIHsf+YNs7LYvH/QB7BfIyESkODisB8bkv44HDwG+DzWW/EREf8bkvnd0I/DF4P672xRhTAfwY2AccwF43s4w424+gzcCFIjJYRNKwXcZHMwD7EhfhbowJGPuv5ihgXvBfnbgiIh8Fqowxxb2uHB8WGmPmAFcBXxSRC6NdUD+5gDnAr4wxs4EG4uDf/dMJXmx4LfCnaNfSH8H2548B44CRgE9EPhPdqvrHGLMN+CHwGvBPYAPQ8yD1YRQX4d7BGFMDrACuBA6JyAiA4NeqKJYWioXAtSKyB3gOWCwifyD+9gMAY0xl8GsVtl13HvG5L+VAefC/QYA/Y8M+Hvelw1XAWmPMoeDjeNuXS4HdxpjDxpg24C/AecTffgBgjHnKGDPHGHMhcBQoZQD2JebDXURyRSQ7eN+L/cFvxw55cEtwtVuAv0anwtAYY+43xowyxozF/su83BjzGeJsPwBExCciGR33se2hm4nDfTHGHAT2i0h+cNEl2OGs425fOrmJk00yEH/7sg84V0TSRESwP5NtxN9+ACAiQ4NfxwD/iv3ZRHxfYv4KVRGZATyLPWPuAF4wxnxXRAYDLwBjsL8MNxhjjva8pdghIouAe40xH43H/RCR8dijdbDNGv9jjHk0HvcFQERmAb8BPEAZdvgMB/G5L2nYk5HjjTHHg8vi7ucS7PL8SWwTxjrgNiCdONsPABF5BxgMtAFfMca8MRA/k5gPd6WUUn0X880ySiml+k7DXSmlEpCGu1JKJSANd6WUSkAa7koplYBCmSBbqQEV7Cb2RvDhcCCAHSIAYJ4xpjUqhZ2GiPwf4JVgv3mlok67QqqYJiJLgHpjzI9joBanMSbQw3PvAncaY9b3YXsuY8yAXIquko82y6i4IiK3iB3ff72I/KeIOETEJSI1IvKYiKwVkaUiMl9E3hKRMhG5Ovja20TkxeDzJSLyrRC3+4iIrMaOa/SQiKwJjs/9hFifxA5H/Xzw9R4RKe90ZfW5IvJ68P4jIvJrEXkNO1iZS0T+X/C9N4rIbQP/XVWJSMNdxY3ggHHXAecFB5JzYYdyAMgClgUHM2sFlmAvW78B+G6nzcwLvmYO8CkRmRXCdtcaY+YZY94HfmqMKQSmB5+70hjzPLAe+KSx46n31mw0G7jGGPNZ4HbsgHLzgELsIGxj+vP9UaozbXNX8eRSbAAW2SFH8GIvtQdoMsa8Fry/CTtMrF9ENgFjO21jqTHmGICIvAScj/076Gm7rZwcagHgEhH5GpAKDAGKgVf7uB9/NcY0B+9fDpwjIp0/TCZiL0lXqt803FU8EeBpY8y3T1ko4sKGcId27AxeHfc7/553PclketlukwmemAqO2/ILYI4xpkJEHsGGfHf8nPzPuOs6DV326d+NMW+gVBhps4yKJ68DnxCRIWB71fSjCeNysXOmpmHHDH+vD9v1Yj8sqoOjYn6803N1QEanx3uwU93RZb2ulgL/Hvwg6ZgH1dvHfVLqQ/TIXcUNY8ym4GiBr4uIAzvK3h1AZR828y7wP8AE4PcdvVtC2a4x5oiIPIsd3ngvsKrT078FfiMiTdh2/SXAf4nIQWD1aer5NXZkwPXBJqEq7IeOUmdEu0KqpBHsiTLNGPOlaNeiVKRps4xSSiUgPXJXSqkEpEfuSimVgDTclVIqAWm4K6VUAtJwV0qpBKThrpRSCej/AynQ2qb1aFJvAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data_pred.plot(x=\"Temperature\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n",
"plt.fill_between(data_pred[\"Temperature\"], conf_interval[:,0], conf_interval[:, 1], color=\"#3333ff33\")\n",
"plt.scatter(x=data[\"Temperature\"],y=data[\"Frequency\"])"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false,
"scrolled": true
},
"source": [
"Comme on pouvait s'attendre au vu des données initiales, la\n",
"température n'a pas d'impact notable sur la probabilité d'échec des\n",
"joints toriques. Elle sera d'environ 0.2, comme dans les essais\n",
"précédents où nous il y a eu défaillance d'au moins un joint. Revenons\n",
"à l'ensemble des données initiales pour estimer la probabilité de\n",
"défaillance d'un joint:\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Pas du tout, une analyse avec barres d'erreur montre qu'on ne peut rien déduire sur la probabilité d'échec à basse température. En fait, l'incertitude est déjà très grande lorsqu'on prend en compte toutes les données aux températures mesurées.**"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.06521739130434782\n"
]
}
],
"source": [
"data = pd.read_csv(\"shuttle.csv\")\n",
"print(np.sum(data.Malfunction)/np.sum(data.Count))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Cette probabilité est donc d'environ $p=0.065$, sachant qu'il existe\n",
"un joint primaire un joint secondaire sur chacune des trois parties du\n",
"lançeur, la probabilité de défaillance des deux joints d'un lançeur\n",
"est de $p^2 \\approx 0.00425$. La probabilité de défaillance d'un des\n",
"lançeur est donc de $1-(1-p^2)^3 \\approx 1.2%$. Ça serait vraiment\n",
"pas de chance... Tout est sous contrôle, le décollage peut donc avoir\n",
"lieu demain comme prévu.\n",
"\n",
"Seulement, le lendemain, la navette Challenger explosera et emportera\n",
"avec elle ses sept membres d'équipages. L'opinion publique est\n",
"fortement touchée et lors de l'enquête qui suivra, la fiabilité des\n",
"joints toriques sera directement mise en cause. Au delà des problèmes\n",
"de communication interne à la NASA qui sont pour beaucoup dans ce\n",
"fiasco, l'analyse précédente comporte (au moins) un petit\n",
"problème... Saurez-vous le trouver ? Vous êtes libre de modifier cette\n",
"analyse et de regarder ce jeu de données sous tous les angles afin\n",
"d'expliquer ce qui ne va pas."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Si on s'intéresse à la prédiction prenant en compte toutes les données, sans même regarder l'intervalle de confiance, on voit que c'est plutôt mauvais signe:**"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"p = float(data_pred[\"Frequency\"][2])"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.963654715320592"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"1 - (1-p**2)**3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Affichons l'intervalle de confiance à 95% de la probabilité de défaillance d'un des lanceurs.**"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGZFJREFUeJzt3X2MXNdZx/HvMzs7OzO76/VLnDbxC3EkN8WqmpAuaaGipAVau1S1QFQkpbREFCtSAi0I0fBHQVDxR1WQStW0lhVCqRC1Sgk0RCZpVVSKqApxmsSx4zje+G3X6/d3r73vD3+cmXoy2d25Ozszd+6d30ca7cyd65nn7Oz+fPfcc88xd0dERNIlE3cBIiLSeAp3EZEUUriLiKSQwl1EJIUU7iIiKaRwFxFJIYW7iEgKKdxFRFJI4S4ikkLZuN74pptu8ttuuy2utxcRSaTnnnvurLuvrrVfbOF+2223sXv37rjeXkQkkczsaJT91C0jIpJCCncRkRRSuIuIpJDCXUQkhRTuIiIpVDPczexxMzttZnvned7M7EtmNmRme8zs7saXKSIiixHlyP1rwOYFnt8CbCzdtgFfXXpZIiKyFDXD3d1/AJxfYJetwNc9+BGw3MxuaVSBIiKyeI24iGkNMFzxeKS07UT1jma2jXB0z/r16+t/xwsX4OTJ+v+9vJHZ3Pert5nduJUfZzKvv3V1hVv5cTYbHmez4TbX64tIQzUi3Of6TZ1z1W133wHsABgcHKx/Ze6xMTh3Dnp7636J1GrmgueVr12+7/7G++Wb2ev/TTnUe3qgrw/6+6FYDLfu7ubVLdKBGhHuI8C6isdrgdEGvO7Curshn2/620iDucP0NFy5Ev6Dnp0NoV8sws03w4oVUCjEXaVI4jUi3J8EHjazncA7gUvu/oYuGREgBHl3d7gVize2T07C0aNw+DAMDMC6dbBsmbpwROpUM9zN7BvAvcBNZjYC/DnQDeDu24FdwAeBIeAa8ECzipUUy+XCDeD6ddi7N3TbbNgQvorIotQMd3e/v8bzDjzUsIpECoVwu34dXnwR1q4Nt2xsk5iKJI6uUJX2VSiEPvjRUdizB8bH465IJDEU7tLeMpkQ8LOzIeCvXo27IpFEULhLMvT2hpOwe/bA5ctxVyPS9hTukhz5fAj5ffvCtQ4iMi+FuyRLLhcugtq3T33wIgtQuEvyFAph/PuBAzAzE3c1Im1J4S7J1NcXumaOH4+7EpG2pHCX5BoYCFe16gSryBso3CW5MplwBH/gQJivRkR+QuEuyZbPh2Afbf5cdSJJonCX5Fu2DIaHw3QFIgIo3CUNMplwgdPwcO19RTqEwl3Sob8fTp/WyVWREoW7pEexGOaDb+ZqVCIJoXCX9CgUwsRiOnoXUbhLyhQK6nsXQeEuaVMowKVLmhpYOp7CXdKnp0fTEkjHU7hL+hSLcPYsXLsWdyUisVG4S/qYQVcXnDkTdyUisVG4Szr198OJE5pzRjqWwl3SKZMJ665evBh3JSKxULhLehUKmlBMOpbCXdIrn4crV7TeqnQkhbukm06sSodSuEu69ffDyZNaa1U6jsJd0i2TCcF+5UrclYi0lMJd0q+nB06dirsKkZZSuEv6FQpw7pzGvEt7GB8PP49NpnCX9MuUfswvXYq3DpHJSdi3L5wHarJI4W5mm83sgJkNmdkjczw/YGb/bmYvmtk+M3ug8aWKLEE+35JfKJF5TU/DK6+0bM6jmuFuZl3Ao8AWYBNwv5ltqtrtIeBld78TuBf4GzPLNbhWkfrl8+HIfWIi7kqkE83OwsGD4ZqLvr6WvGWUI/d7gCF3P+Tuk8BOYGvVPg70m5kBfcB5QB2c0j7Mwlet0iSt5g5Hj8KFC7B8ecveNkq4rwEql7YZKW2r9GXgp4FR4CXgU+4+25AKRRqlUAiLaIu00okTMDLS0mCHaOFuc2yrXoH4A8ALwK3AXcCXzWzZG17IbJuZ7Taz3Wd01aC0Wk9P6JqZnIy7EukU58/Da6/BypU3/npskSjhPgKsq3i8lnCEXukB4AkPhoDDwFurX8jdd7j7oLsPrl69ut6aRepT/uXSBU3SCmNj4QTqwMCNEVstFOUdnwU2mtmG0knS+4Anq/Y5BvwSgJm9CbgDONTIQkUaoqdHc81I801OhmDP56G7O5YSsrV2cPdpM3sYeAboAh53931m9mDp+e3A54CvmdlLhG6cz7j72SbWLVKffD78qTw9DdmaP/4ii1ceGTMzE+Y2ikmkn2533wXsqtq2veL+KPD+xpYm0gSZTBi9cPVqy09wSYc4diwsErNyZaxl6ApV6Ty5XFhAW6TRzpyB48fb4sBB4S6dp1gMv4SaBlga6erV0B2zbFksJ1CrxV+BSKuVu2ZadBm4dICpKXj11XBOp03O5SjcpTNlMlo8WxrDHQ4fDiNkCoW4q/kJhbt0pnLXjMhSnTgRrnweGIi7ktdRuEtn6u4O82qPj8ddiSTZlStw6FBbnECtpnCXzqarVaVeU1Nw4AD09oaF2NuMwl06Vz6vrhmpT7mffXo6/By1IYW7dK58PpxU1fJ7slinT7dlP3slhbt0rvJEYlevxluHJMvYGAwNtXWwg8JdOl02GxZREIliZiZcqNRG49nno3CXzlYohJXovXqJApE5DA+Hi9+KxbgrqUnhLp0tmw0Xn2hIpNRy8WII9zbvjilTuIuUZ4kUmc/kZJheoE3mjYkiGVWKNFOhoCGRMj93OHIkfM3l4q4mMoW7SHltVQ2JlLmcOQOnToWj9gRRuItolkiZz/h4GPbYhtML1KJwFwHNEilvNDsLr70W5iFq82GPc1G4i0AY2qbVmaTSyZPhP/y+vrgrqYvCXQQ0S6S83rVrYe6YhAx7nIvCXaTS2FjcFUjcZmdDP3tPT1vO9hiVwl2kLJeD8+fjrkLidvJkmAq6tzfuSpZE4S5SViiEcJ+djbsSicvYWOiOSeDomGoKd5GyTCaMdb9+Pe5KJA7l0TH5fGKuQl1I8lsg0kiZjFZn6lSjo2EaigRMChaFwl2kUj4fZomUzjI2BkePJnp0TDWFu0glTUXQeVLWHVOWnpaINIJZmIpAQyI7x8mTqeqOKVO4i1TLZsPRu6Rf+WKlhE0KFoXCXaRaoaCpCDpBSi5Wmo/CXaRad3cYDqmpCNItJRcrzSdSuJvZZjM7YGZDZvbIPPvca2YvmNk+M/uvxpYp0mJm6ndPs+vXwwIcKRodU63mPJZm1gU8CvwKMAI8a2ZPuvvLFfssB74CbHb3Y2Z2c7MKFmmJXC4MiVy1Ku5KpNHcw+iYXC6V3TFlUY7c7wGG3P2Qu08CO4GtVft8FHjC3Y8BuPvpxpYp0mKaiiC9Tp8OU/mmtDumLEq4rwGGKx6PlLZVeguwwsy+b2bPmdnH53ohM9tmZrvNbPcZrVkp7SyTgZkZrc6UNuPj4ag9xd0xZVHC3ebY5lWPs8A7gF8FPgB81sze8oZ/5L7D3QfdfXD16tWLLlakpTQVQbq4w6FDYahrAldWWqwo4T4CrKt4vBYYnWOfp919zN3PAj8A7mxMiSIx0VQE6XL2bOhq6++Pu5KWiBLuzwIbzWyDmeWA+4Anq/b5NvALZpY1syLwTmB/Y0sVabGeHrh8WVMRpMHERMd0x5TV/NvE3afN7GHgGaALeNzd95nZg6Xnt7v7fjN7GtgDzAKPufveZhYu0nTlqQiuXk3F/N4d7ejR8Hl2QHdMWaSWuvsuYFfVtu1Vj78AfKFxpYm0ge5uuHBB4Z5k586FETIdNqxVV6iKLKRQCOHg1WMIJBGmpkJ3TIf0s1dSuIssJJuFyUlNRZBUR4+GaxVyubgraTmFu0gt5X53SZaLF8P8MSmc8TEKhbtILYUC6KK7ZJmehoMHoa8vnEjtQAp3kVry+XAUqCGRyXHsWPi8enririQ2CneRWspHfpqKIBkuXQqLXXfQmPa5KNxFoujqCkfv0t6mp8PomN7eju2OKVO4i0ShfvdkGBkJI5vy+bgriZ3CXSSK7u5wCfv163FXIvO5ciWEe4d3x5Qp3EWictcske2qPDqmtzfM5ikKd5HIikV1zbSr0VF1x1RRuItE1dMTRmJoSGR7uXIlDH1Ud8zrKNxFoiqPvtDVqu1D3THz0ndDZDG6u7WARztRd8y8FO4ii1EohBV9tHB2/NQdsyCFu8hidHWFrgBdrRovdcfUpO+KyGJ1dYUFPCQ+ulipJoW7yGKVh0RqAY94XLoEw8PqjqlB4S6yWN3d4ahRV6u23tQUvPpqWFlJ3TEL0ndHpB5mmkgsDkePdvxUvlEp3EXqoYnEWu/8eTh1St0xESncRerR0xMuZtLaqq0xMQFDQx29stJiKdxF6mWmicRawR0OHQr3O3Ch63op3EXqVSiEbgJprlOnwlXB/f1xV5IoCneReuXzYVjexETclaTXtWvhqF397IumcBdZCo2aaZ6ZmTDssacHstm4q0kchbvIUqhrpnmGh8ORe7EYdyWJpHAXWYp8PpxU1aiZxrpwQVehLpHCXWSpMhnNNdNIExNhUrBly3QV6hLoOyeyVMUinDwZdxXpMDsbxrODhj0uUaRwN7PNZnbAzIbM7JEF9vtZM5sxs99oXIkibS6XC/PMaBrgpTt+PJyg1rDHJasZ7mbWBTwKbAE2Afeb2aZ59vs88EyjixRpe5mMVmhaqkuXwtwxy5fHXUkqRDlyvwcYcvdD7j4J7AS2zrHf7wP/ApxuYH0iydDbCydOaIWmek1MwIEDmu2xgaJ8F9cAwxWPR0rbfsLM1gC/BmxvXGkiCZLNhuloL1+Ou5LkmZkJJ1BB/ewNFCXc55qlp3qVgi8Cn3H3mQVfyGybme02s91nNKOepE1Pj8a81+P48dAlo372hopy2dcIsK7i8VpgtGqfQWCnhdnabgI+aGbT7v5vlTu5+w5gB8Dg4KCWsZF0KRZDv/vEhOYbj+rcubDI9YoVcVeSOlHC/Vlgo5ltAI4D9wEfrdzB3TeU75vZ14CnqoNdJPXKU9FeuABvfnO8tSTB2FiYXmBgQP3sTVDzO+ru08DDhFEw+4Fvuvs+M3vQzB5sdoEiidLbC6OjWl+1lqmpcAJV88Y0TaTvqrvvAnZVbZvz5Km7/87SyxJJqFwurBh0+bIunZ9P+UKlqalwFao0hf4WEmm0fD6cJJS5HTsWuq4U7E2lcBdptGIxhNf163FX0n5OnYKREV2o1AIKd5FmyGY1LLLapUthPPvAgNZBbQGFu0gz9PWFE6tTU3FX0h7GxuDll8NYdp1AbQmFu0gzlIf26WK9MO7/5ZfDyBhdgdoyCneRZunvDwtOTE/HXUl8pqfhlVfC0NBCIe5qOorCXaRZstkwb8rpDp1Lr7wG6vXrmlogBgp3kWbq7w+jQzrt6H12Fl57LczNrvH+sVC4izRTNhuC/ezZuCtpHXc4fDi0WXPGxEbhLtJs/f3hwp1OOHp3hyNHwrKDGsseK4W7SLOVj95HqydTTRn3sJLS8ePhiF1j2WOlcBdphYGBMHImrVetlo/YR0YU7G1C4S7SCpkMdHeHI9u0KfexHz8OK1dq+t42oU9BpFX6+8PiFBcvxl1J48zMhFExJ06EYNcRe9tQuIu0Ul9fGPudhmkJpqfDXDGnTqkrpg0p3EVaKZcLR7tJ756ZnIT9+8Pc9Tpib0sKd5FWGxgIR7vnz8ddSX2uXYO9e8PJYY1jb1sKd5FWMwvdMwcPwvh43NUszsWL8OKL4b6mFGhrCneROORy0NUV1hFNwsVN7mGY40svhcVINAlY21O4i8SltzfMc37oUHsvqD01FU4CHzkS+tc1bW8iaNZ8kTitWBFmjcznYd269jsxefnyjSl7V62KuxpZBIW7SNxWrLgxeqZdAr48XcKxY+H8QE9P3BXJIincReKWyYTujnYJ+MuXYWgonOxdsUJXnCaUwl2kHZQD/tixEKq33976tUbHx8P7nz4dzgdomGOiKdxF2kUmE/q1z50LJ1rvuCOMTGm2qakwRe/wcPgPRRclpYLCXaTdLF8eLhR6/nlYvx5uuaU5R/ETE2EB75GRsHLSsmVheKakgsJdpB0Vi2EEzchI6CZZvz50kyw15Gdnw18FJ0+GYDcLFyMp1FNH4S7SrjKZcBQ/ORmuZu3qgltvDSFfLEY/0Tk9HQL94sUw7cH0dPhPYvlydb+kmMJdpN3lcuE2PR3mTB8eDkHf1xeOustBn8mE8egzM6EffWwsjHwZHw/bs9mwb6tP1Eos9CmLJEU2GyYdg9C9MjkZuleqpy9wv7E4SHe3Rr10KIW7SBJlMqFPPp+PuxJpU5E67cxss5kdMLMhM3tkjud/y8z2lG4/NLM7G1+qiIhEVTPczawLeBTYAmwC7jezTVW7HQZ+0d3fDnwO2NHoQkVEJLooR+73AEPufsjdJ4GdwNbKHdz9h+5+ofTwR8DaxpYpIiKLESXc1wDDFY9HStvm87vAf8z1hJltM7PdZrb7zJkz0asUEZFFiRLucw2EnXPyaTN7LyHcPzPX8+6+w90H3X1w9erV0asUEZFFiTJaZgRYV/F4LTBavZOZvR14DNji7ucaU56IiNQjypH7s8BGM9tgZjngPuDJyh3MbD3wBPDb7v5q48sUEZHFqHnk7u7TZvYw8AzQBTzu7vvM7MHS89uBPwNWAV+xcDnztLsPNq9sERFZSKSLmNx9F7Cratv2ivufBD7Z2NJERKReWmJFRCSFFO4iIimkcBcRSSGFu4hICincRURSSOEuIpJCCncRkRRSuIuIpJDCXUQkhRTuIiIppHAXEUkhhbuISAop3EVEUkjhLiKSQgp3EZEUUriLiKSQwl1EJIUU7iIiKaRwFxFJIYW7iEgKKdxFRFJI4S4ikkIKdxGRFFK4i4ikkMJdRCSFFO4iIimkcBcRSSGFu4hICincRURSSOEuIpJCkcLdzDab2QEzGzKzR+Z43szsS6Xn95jZ3Y0vVUREoqoZ7mbWBTwKbAE2Afeb2aaq3bYAG0u3bcBXG1yniIgsQpQj93uAIXc/5O6TwE5ga9U+W4Gve/AjYLmZ3dLgWkVEJKJshH3WAMMVj0eAd0bYZw1wYknVLWR2FmZmGvd67o17rXa2mHbW+z1Z6N9Ffc1a+831fCvaBmC2uOfn2r/WtoXeI+rrNUozX7sTzc625G2ihPtcn2z1b0aUfTCzbYRuG9avXx/hreeRy0F3N4yP1/8ajdaIX4A4fomiBNFC2yufmy90orRrrv3m27bYfRbavpjvefV/CPP9B1HeXvlLXN7mPvfz1f++8jbXc9X3FytqW6Q5+vqa/hZRwn0EWFfxeC0wWsc+uPsOYAfA4OBg/T9NN98cbiIiMqcofe7PAhvNbIOZ5YD7gCer9nkS+Hhp1My7gEvu3rwuGRERWVDNI3d3nzazh4FngC7gcXffZ2YPlp7fDuwCPggMAdeAB5pXsoiI1BKlWwZ330UI8Mpt2yvuO/BQY0sTEZF66QpVEZEUUriLiKSQwl1EJIUU7iIiKaRwFxFJIfOYrkwzszPA0Tr/+U3A2QaWEye1pT2lpS1paQeoLWU/5e6ra+0UW7gvhZntdvfBuOtoBLWlPaWlLWlpB6gti6VuGRGRFFK4i4ikUFLDfUfcBTSQ2tKe0tKWtLQD1JZFSWSfu4iILCypR+4iIrKAtg93M8ub2f+Z2Ytmts/M/qK0faWZfdfMDpa+roi71ijMrMvMnjezp0qPk9qOI2b2kpm9YGa7S9uS2pblZvYtM3vFzPab2c8lsS1mdkfp8yjfLpvZpxPalj8s/b7vNbNvlHIgce0AMLNPldqxz8w+XdrW9La0fbgDE8D73P1O4C5gc2nO+EeA77n7RuB7pcdJ8Clgf8XjpLYD4L3uflfFkK6ktuVvgafd/a3AnYTPJ3FtcfcDpc/jLuAdhOm3/5WEtcXM1gB/AAy6+9sIU43fR8LaAWBmbwN+j7AW9Z3Ah8xsI61oi7sn5gYUgR8T1nA9ANxS2n4LcCDu+iLUv7b0Qb4PeKq0LXHtKNV6BLipalvi2gIsAw5TOv+U5LZU1f9+4H+S2BZurMm8kjAt+VOl9iSqHaU6PwI8VvH4s8CftKItSThyL3dlvACcBr7r7v8LvMlLqz2VviZh3b0vEj7YysUzk9gOCGvkfsfMniutjQvJbMvtwBng70vdZY+ZWS/JbEul+4BvlO4nqi3ufhz4a+AYcIKwstt3SFg7SvYC7zGzVWZWJCxqtI4WtCUR4e7uMx7+1FwL3FP6UydRzOxDwGl3fy7uWhrk3e5+N7AFeMjM3hN3QXXKAncDX3X3nwHGSMCf+wspLYf5YeCf466lHqX+563ABuBWoNfMPhZvVfVx9/3A54HvAk8DLwLTrXjvRIR7mbtfBL4PbAZOmdktAKWvp2MsLYp3Ax82syPATuB9ZvaPJK8dALj7aOnraUK/7j0ksy0jwEjpr0GAbxHCPoltKdsC/NjdT5UeJ60tvwwcdvcz7j4FPAH8PMlrBwDu/nfufre7vwc4DxykBW1p+3A3s9Vmtrx0v0D44F8hLMr9idJunwC+HU+F0bj7n7r7Wne/jfAn83+6+8dIWDsAzKzXzPrL9wn9oXtJYFvc/SQwbGZ3lDb9EvAyCWxLhfu50SUDyWvLMeBdZlY0MyN8JvtJXjsAMLObS1/XA79O+Gya3pa2v4jJzN4O/APhjHkG+Ka7/6WZrQK+Cawn/DB8xN3Px1dpdGZ2L/DH7v6hJLbDzG4nHK1D6Nb4J3f/qyS2BcDM7gIeA3LAIcIC7xmS2ZYi4WTk7e5+qbQtcZ9LacjzbxK6MJ4HPgn0kbB2AJjZfwOrgCngj9z9e634TNo+3EVEZPHavltGREQWT+EuIpJCCncRkRRSuIuIpJDCXUQkhRTuIiIppHAXEUkhhbuISAr9P7JAI/3UMAoqAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"ci_flight_failure = 1 - (1 - conf_interval**2)**3\n",
"\n",
"plt.fill_between(data_pred[\"Temperature\"], ci_flight_failure[:,0], ci_flight_failure[:, 1], color=\"#ff333333\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**On ne peut absolument rien dire sur ce qui se passera à 30°F. C'est plutôt mauvais signe.**"
]
}
],
"metadata": {
"celltoolbar": "Hide code",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}