{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Analyse du risque de défaillance des joints toriques de la navette Challenger"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Le 27 Janvier 1986, veille du décollage de la navette *Challenger*, eu\n",
"lieu une télé-conférence de trois heures entre les ingénieurs de la\n",
"Morton Thiokol (constructeur d'un des moteurs) et de la NASA. La\n",
"discussion portait principalement sur les conséquences de la\n",
"température prévue au moment du décollage de 31°F (juste en dessous de\n",
"0°C) sur le succès du vol et en particulier sur la performance des\n",
"joints toriques utilisés dans les moteurs. En effet, aucun test\n",
"n'avait été effectué à cette température.\n",
"\n",
"L'étude qui suit reprend donc une partie des analyses effectuées cette\n",
"nuit là et dont l'objectif était d'évaluer l'influence potentielle de\n",
"la température et de la pression à laquelle sont soumis les joints\n",
"toriques sur leur probabilité de dysfonctionnement. Pour cela, nous\n",
"disposons des résultats des expériences réalisées par les ingénieurs\n",
"de la NASA durant les 6 années précédant le lancement de la navette\n",
"Challenger.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Chargement des données\n",
"Nous commençons donc par charger ces données:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Date \n",
" Count \n",
" Temperature \n",
" Pressure \n",
" Malfunction \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 4/12/81 \n",
" 6 \n",
" 66 \n",
" 50 \n",
" 0 \n",
" \n",
" \n",
" 1 \n",
" 11/12/81 \n",
" 6 \n",
" 70 \n",
" 50 \n",
" 1 \n",
" \n",
" \n",
" 2 \n",
" 3/22/82 \n",
" 6 \n",
" 69 \n",
" 50 \n",
" 0 \n",
" \n",
" \n",
" 3 \n",
" 11/11/82 \n",
" 6 \n",
" 68 \n",
" 50 \n",
" 0 \n",
" \n",
" \n",
" 4 \n",
" 4/04/83 \n",
" 6 \n",
" 67 \n",
" 50 \n",
" 0 \n",
" \n",
" \n",
" 5 \n",
" 6/18/82 \n",
" 6 \n",
" 72 \n",
" 50 \n",
" 0 \n",
" \n",
" \n",
" 6 \n",
" 8/30/83 \n",
" 6 \n",
" 73 \n",
" 100 \n",
" 0 \n",
" \n",
" \n",
" 7 \n",
" 11/28/83 \n",
" 6 \n",
" 70 \n",
" 100 \n",
" 0 \n",
" \n",
" \n",
" 8 \n",
" 2/03/84 \n",
" 6 \n",
" 57 \n",
" 200 \n",
" 1 \n",
" \n",
" \n",
" 9 \n",
" 4/06/84 \n",
" 6 \n",
" 63 \n",
" 200 \n",
" 1 \n",
" \n",
" \n",
" 10 \n",
" 8/30/84 \n",
" 6 \n",
" 70 \n",
" 200 \n",
" 1 \n",
" \n",
" \n",
" 11 \n",
" 10/05/84 \n",
" 6 \n",
" 78 \n",
" 200 \n",
" 0 \n",
" \n",
" \n",
" 12 \n",
" 11/08/84 \n",
" 6 \n",
" 67 \n",
" 200 \n",
" 0 \n",
" \n",
" \n",
" 13 \n",
" 1/24/85 \n",
" 6 \n",
" 53 \n",
" 200 \n",
" 2 \n",
" \n",
" \n",
" 14 \n",
" 4/12/85 \n",
" 6 \n",
" 67 \n",
" 200 \n",
" 0 \n",
" \n",
" \n",
" 15 \n",
" 4/29/85 \n",
" 6 \n",
" 75 \n",
" 200 \n",
" 0 \n",
" \n",
" \n",
" 16 \n",
" 6/17/85 \n",
" 6 \n",
" 70 \n",
" 200 \n",
" 0 \n",
" \n",
" \n",
" 17 \n",
" 7/29/85 \n",
" 6 \n",
" 81 \n",
" 200 \n",
" 0 \n",
" \n",
" \n",
" 18 \n",
" 8/27/85 \n",
" 6 \n",
" 76 \n",
" 200 \n",
" 0 \n",
" \n",
" \n",
" 19 \n",
" 10/03/85 \n",
" 6 \n",
" 79 \n",
" 200 \n",
" 0 \n",
" \n",
" \n",
" 20 \n",
" 10/30/85 \n",
" 6 \n",
" 75 \n",
" 200 \n",
" 2 \n",
" \n",
" \n",
" 21 \n",
" 11/26/85 \n",
" 6 \n",
" 76 \n",
" 200 \n",
" 0 \n",
" \n",
" \n",
" 22 \n",
" 1/12/86 \n",
" 6 \n",
" 58 \n",
" 200 \n",
" 1 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Date Count Temperature Pressure Malfunction\n",
"0 4/12/81 6 66 50 0\n",
"1 11/12/81 6 70 50 1\n",
"2 3/22/82 6 69 50 0\n",
"3 11/11/82 6 68 50 0\n",
"4 4/04/83 6 67 50 0\n",
"5 6/18/82 6 72 50 0\n",
"6 8/30/83 6 73 100 0\n",
"7 11/28/83 6 70 100 0\n",
"8 2/03/84 6 57 200 1\n",
"9 4/06/84 6 63 200 1\n",
"10 8/30/84 6 70 200 1\n",
"11 10/05/84 6 78 200 0\n",
"12 11/08/84 6 67 200 0\n",
"13 1/24/85 6 53 200 2\n",
"14 4/12/85 6 67 200 0\n",
"15 4/29/85 6 75 200 0\n",
"16 6/17/85 6 70 200 0\n",
"17 7/29/85 6 81 200 0\n",
"18 8/27/85 6 76 200 0\n",
"19 10/03/85 6 79 200 0\n",
"20 10/30/85 6 75 200 2\n",
"21 11/26/85 6 76 200 0\n",
"22 1/12/86 6 58 200 1"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"data = pd.read_csv(\"shuttle.csv\")\n",
"data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Le jeu de données nous indique la date de l'essai, le nombre de joints\n",
"toriques mesurés (il y en a 6 sur le lançeur principal), la\n",
"température (en Farenheit) et la pression (en psi), et enfin le\n",
"nombre de dysfonctionnements relevés. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Inspection graphique des données\n",
"Les vols où aucun incident n'est relevé n'apportant aucun information\n",
"sur l'influence de la température ou de la pression sur les\n",
"dysfonctionnements, nous nous concentrons sur les expériences où au\n",
"moins un joint a été défectueux.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**doesn't seem right. If with t1 we laucnh 1000 times and get 500 failures and with t2 we launch 500 times and get 500 failures. t2 should be considered more problematic.**"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Date \n",
" Count \n",
" Temperature \n",
" Pressure \n",
" Malfunction \n",
" celcius \n",
" \n",
" \n",
" \n",
" \n",
" 13 \n",
" 1/24/85 \n",
" 6 \n",
" 53 \n",
" 200 \n",
" 2 \n",
" 11.666667 \n",
" \n",
" \n",
" 8 \n",
" 2/03/84 \n",
" 6 \n",
" 57 \n",
" 200 \n",
" 1 \n",
" 13.888889 \n",
" \n",
" \n",
" 22 \n",
" 1/12/86 \n",
" 6 \n",
" 58 \n",
" 200 \n",
" 1 \n",
" 14.444444 \n",
" \n",
" \n",
" 9 \n",
" 4/06/84 \n",
" 6 \n",
" 63 \n",
" 200 \n",
" 1 \n",
" 17.222222 \n",
" \n",
" \n",
" 0 \n",
" 4/12/81 \n",
" 6 \n",
" 66 \n",
" 50 \n",
" 0 \n",
" 18.888889 \n",
" \n",
" \n",
" 14 \n",
" 4/12/85 \n",
" 6 \n",
" 67 \n",
" 200 \n",
" 0 \n",
" 19.444444 \n",
" \n",
" \n",
" 12 \n",
" 11/08/84 \n",
" 6 \n",
" 67 \n",
" 200 \n",
" 0 \n",
" 19.444444 \n",
" \n",
" \n",
" 4 \n",
" 4/04/83 \n",
" 6 \n",
" 67 \n",
" 50 \n",
" 0 \n",
" 19.444444 \n",
" \n",
" \n",
" 3 \n",
" 11/11/82 \n",
" 6 \n",
" 68 \n",
" 50 \n",
" 0 \n",
" 20.000000 \n",
" \n",
" \n",
" 2 \n",
" 3/22/82 \n",
" 6 \n",
" 69 \n",
" 50 \n",
" 0 \n",
" 20.555556 \n",
" \n",
" \n",
" 1 \n",
" 11/12/81 \n",
" 6 \n",
" 70 \n",
" 50 \n",
" 1 \n",
" 21.111111 \n",
" \n",
" \n",
" 16 \n",
" 6/17/85 \n",
" 6 \n",
" 70 \n",
" 200 \n",
" 0 \n",
" 21.111111 \n",
" \n",
" \n",
" 7 \n",
" 11/28/83 \n",
" 6 \n",
" 70 \n",
" 100 \n",
" 0 \n",
" 21.111111 \n",
" \n",
" \n",
" 10 \n",
" 8/30/84 \n",
" 6 \n",
" 70 \n",
" 200 \n",
" 1 \n",
" 21.111111 \n",
" \n",
" \n",
" 5 \n",
" 6/18/82 \n",
" 6 \n",
" 72 \n",
" 50 \n",
" 0 \n",
" 22.222222 \n",
" \n",
" \n",
" 6 \n",
" 8/30/83 \n",
" 6 \n",
" 73 \n",
" 100 \n",
" 0 \n",
" 22.777778 \n",
" \n",
" \n",
" 15 \n",
" 4/29/85 \n",
" 6 \n",
" 75 \n",
" 200 \n",
" 0 \n",
" 23.888889 \n",
" \n",
" \n",
" 20 \n",
" 10/30/85 \n",
" 6 \n",
" 75 \n",
" 200 \n",
" 2 \n",
" 23.888889 \n",
" \n",
" \n",
" 18 \n",
" 8/27/85 \n",
" 6 \n",
" 76 \n",
" 200 \n",
" 0 \n",
" 24.444444 \n",
" \n",
" \n",
" 21 \n",
" 11/26/85 \n",
" 6 \n",
" 76 \n",
" 200 \n",
" 0 \n",
" 24.444444 \n",
" \n",
" \n",
" 11 \n",
" 10/05/84 \n",
" 6 \n",
" 78 \n",
" 200 \n",
" 0 \n",
" 25.555556 \n",
" \n",
" \n",
" 19 \n",
" 10/03/85 \n",
" 6 \n",
" 79 \n",
" 200 \n",
" 0 \n",
" 26.111111 \n",
" \n",
" \n",
" 17 \n",
" 7/29/85 \n",
" 6 \n",
" 81 \n",
" 200 \n",
" 0 \n",
" 27.222222 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Date Count Temperature Pressure Malfunction celcius\n",
"13 1/24/85 6 53 200 2 11.666667\n",
"8 2/03/84 6 57 200 1 13.888889\n",
"22 1/12/86 6 58 200 1 14.444444\n",
"9 4/06/84 6 63 200 1 17.222222\n",
"0 4/12/81 6 66 50 0 18.888889\n",
"14 4/12/85 6 67 200 0 19.444444\n",
"12 11/08/84 6 67 200 0 19.444444\n",
"4 4/04/83 6 67 50 0 19.444444\n",
"3 11/11/82 6 68 50 0 20.000000\n",
"2 3/22/82 6 69 50 0 20.555556\n",
"1 11/12/81 6 70 50 1 21.111111\n",
"16 6/17/85 6 70 200 0 21.111111\n",
"7 11/28/83 6 70 100 0 21.111111\n",
"10 8/30/84 6 70 200 1 21.111111\n",
"5 6/18/82 6 72 50 0 22.222222\n",
"6 8/30/83 6 73 100 0 22.777778\n",
"15 4/29/85 6 75 200 0 23.888889\n",
"20 10/30/85 6 75 200 2 23.888889\n",
"18 8/27/85 6 76 200 0 24.444444\n",
"21 11/26/85 6 76 200 0 24.444444\n",
"11 10/05/84 6 78 200 0 25.555556\n",
"19 10/03/85 6 79 200 0 26.111111\n",
"17 7/29/85 6 81 200 0 27.222222"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#data = data[data.Malfunction>0]\n",
"data[\"celcius\"] = (5/9)*(data[\"Temperature\"]-32)\n",
"data.sort_values(by='celcius')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Très bien, nous avons une variabilité de température importante mais\n",
"la pression est quasiment toujours égale à 200, ce qui devrait\n",
"simplifier l'analyse.\n",
"\n",
"Comment la fréquence d'échecs varie-t-elle avec la température ?\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**It seems risky to discard a variable just like that. Pressure seems important, why not keep it and decide afterwrads.**"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAF9JJREFUeJzt3X2UXXV97/H3d5IACYlAg02VQAFJsVyBCOFJtDfx6Qa7JPUCBbyCl940ZUlul9y2htvVa6m1a1V8qHpFY+SiQldNVRBom14e1Ii0IASM4UHBuYBhEhogBshASGYy3/vH2bN7Mkxmzhlmz5lzeL/WmpWz9/mdne939pz5zN5nn9+JzESSJICuVhcgSZo8DAVJUslQkCSVDAVJUslQkCSVDAVJUqmyUIiIqyPiqYh4YC/3R0R8PiK6I2JDRJxQVS2SpMZUeaTwNWDxCPefAcwrvpYBX6qwFklSAyoLhcy8HfjlCEOWANdkzV3AgRHxuqrqkSSNbmoL/+9DgCfqlnuKdU8OHRgRy6gdTTB9+vQTDz300AkpsFEDAwN0dXXmyzOd2pt9tZ9O7W2i+nrkkUeeyczXjjaulaEQw6wbds6NzFwFrAJYsGBBrlu3rsq6mrZ27VoWLlzY6jIq0am92Vf76dTeJqqviPhFI+NaGbs9QP2f/HOBzS2qRZJEa0PhJuDC4iqkU4HnMvNlp44kSROnstNHEfENYCFwcET0AH8OTAPIzJXAGuA9QDfwInBRVbVIkhpTWShk5vmj3J/AJVX9/5Kk5nXeS/mSpDEzFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklQyFCRJJUNBklSqNBQiYnFEPBwR3RFx2TD3HxAR/xARP4mIByPioirrkSSNrLJQiIgpwJXAGcAxwPkRccyQYZcAD2Xm8cBC4NMRsU9VNUmSRlblkcLJQHdmPpqZu4DVwJIhYxKYFREBzAR+CfRXWJMkaQSRmdVsOOJsYHFmLi2WLwBOyczldWNmATcBbwRmAedm5j8Ns61lwDKAOXPmnLh69epKah6r3t5eZs6c2eoyKtGpvdlX++nU3iaqr0WLFt2bmQtGGze1whpimHVDE+g/AeuBtwNvAG6NiB9m5vN7PChzFbAKYMGCBblw4cLxr/YVWLt2LZOtpvHSqb3ZV/vp1N4mW19Vnj7qAQ6tW54LbB4y5iLg+qzpBh6jdtQgSWqBKkPhHmBeRBxRvHh8HrVTRfU2Au8AiIg5wNHAoxXWJEkaQWWnjzKzPyKWAzcDU4CrM/PBiLi4uH8l8JfA1yLifmqnm1Zk5jNV1SRJGlmVrymQmWuANUPWray7vRl4d5U1SJIa5zuaJUklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVDIUJEklQ0GSVKo0FCJicUQ8HBHdEXHZXsYsjIj1EfFgRPygynokSSOb2sigiHhTZj7QzIYjYgpwJfAuoAe4JyJuysyH6sYcCHwRWJyZGyPiV5v5PyRJ46vRI4WVEXF3RHyo+EXeiJOB7sx8NDN3AauBJUPGvB+4PjM3AmTmUw1uW5JUgcjMxgZGzAN+DzgHuBv4ambeOsL4s6kdASwtli8ATsnM5XVjPgtMA/4DMAv4XGZeM8y2lgHLAObMmXPi6tWrG+tugvT29jJz5sxWl1GJTu3NvtpPp/Y2UX0tWrTo3sxcMOrAzGz4C5gCnAVsAn4K/Az4z3sZew5wVd3yBcD/HjLmC8BdwP7AwcDPgd8YqYYTTzwxJ5vvf//7rS6hMp3am321n07tbaL6AtZlA7/nG31N4TjgIuC3gVuB92bmfRHxeuBO4PphHtYDHFq3PBfYPMyYZzLzBeCFiLgdOB54pJG6JEnjq9HXFL4A3Accn5mXZOZ9AJm5GfizvTzmHmBeRBwREfsA5wE3DRlzI/C2iJgaETOAU6gdgUiSWqChIwXgPcCOzNwNEBFdwH6Z+WJmXjvcAzKzPyKWAzdTO+10dWY+GBEXF/evzMyfRsT/BTYAA9RONzV1lZMkafw0Ggq3Ae8EeovlGcAtwFtGelBmrgHWDFm3csjyJ4FPNliHJKlCjZ4+2i8zBwOB4vaMakqSJLVKo6HwQkScMLgQEScCO6opSZLUKo2ePvow8K2IGLx66HXAudWUJElqlYZCITPviYg3AkcDAfwsM/sqrUySNOEaPVIAOAk4vHjMmyOCHObdx5Kk9tXom9euBd4ArAd2F6sTMBQkqYM0eqSwADimeKu0JKlDNXr10QPAr1VZiCSp9Ro9UjgYeCgi7gZ2Dq7MzDMrqUqS1BKNhsLlVRYhSZocGr0k9QcR8evAvMy8rZi8bkq1pUmSJlpDrylExO8D3wa+XKw6BLihqqIkSa3R6AvNlwCnA88DZObPAT9PWZI6TKOhsDNrn7MMQERMpfY+BUlSB2k0FH4QEX8KTI+IdwHfAv6hurIkSa3QaChcBjwN3A/8AbXPSNjbJ65JktpUo1cfDQBfKb4kSR2q0bmPHmOY1xAy88hxr0iS1DLNzH00aD/gHOBXxr8cSVIrNfSaQmZurfvalJmfBd5ecW2SpAnW6OmjE+oWu6gdOcyqpCJJUss0evro03W3+4HHgd8d92okSS3V6NVHi6ouRJLUeo2ePvofI92fmZ8Zn3IkSa3UzNVHJwE3FcvvBW4HnqiiKElSazTzITsnZOZ2gIi4HPhWZi6tqjBJ0sRrdJqLw4Bddcu7gMPHvRpJUks1eqRwLXB3RHyH2jub3wdcU1lVkqSWaPTqo7+KiH8G3lasuigzf1xdWZKkVmj09BHADOD5zPwc0BMRR1RUkySpRRr9OM4/B1YA/7NYNQ3426qKkiS1RqNHCu8DzgReAMjMzTjNhSR1nEZDYVdmJsX02RGxf3UlSZJapdFQ+GZEfBk4MCJ+H7gNP3BHkjpOo1cffar4bObngaOBj2bmrZVWJkmacKMeKUTElIi4LTNvzcw/ycw/bjQQImJxRDwcEd0RcdkI406KiN0RcXYzxUuSxteooZCZu4EXI+KAZjYcEVOAK4EzgGOA8yPimL2M+wRwczPblySNv0bf0fwScH9E3EpxBRJAZv7hCI85GejOzEcBImI1sAR4aMi4/w5cR23CPUlSCzUaCv9UfDXjEPacRbUHOKV+QEQcQu1y17czQihExDJgGcCcOXNYu3Ztk6VUq7e3d9LVNF46tTf7aj+d2ttk62vEUIiIwzJzY2Z+fQzbjmHW5ZDlzwIrMnN3xHDDiwdlrgJWASxYsCAXLlw4hnKqs3btWiZbTeOlU3uzr/bTqb1Ntr5Ge03hhsEbEXFdk9vuAQ6tW54LbB4yZgGwOiIeB84GvhgRv9Pk/yNJGiejnT6q//P9yCa3fQ8wr5gjaRNwHvD++gGZWc6fFBFfA/4xM29AktQSo4VC7uX2qDKzPyKWU7uqaApwdWY+GBEXF/evbKpSSVLlRguF4yPieWpHDNOL2xTLmZmvGenBmbkGWDNk3bBhkJn/taGKJUmVGTEUMnPKRBUiSWq9Zj5PQZLU4QwFSVLJUJAklQwFSVLpVRMKW3t38pMnnmVr785WlyKpSVt7d7Kjb7fP3wnwqgiFG9dv4vRPfI8PXPUjTv/E97hp/aZWlySpQYPP38eefsHn7wTo+FDY2ruTFddt4KW+Abbv7OelvgE+ct0G/+KQ2kD983d3ps/fCdDxodCzbQfTuvZsc1pXFz3bdrSoIkmN8vk78To+FOYeNJ2+gYE91vUNDDD3oOktqkhSo3z+TryOD4XZM/flirOOY79pXczadyr7TeviirOOY/bMfVtdmqRR1D9/p0T4/J0AjX7ITls7c/4hnH7UwfRs28Hcg6b7AyW1kcHn79133sG/nPlWn78Ve1WEAtT+4vCHSWpPs2fuy/RpU3wOT4COP30kSWqcoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqSSoSBJKhkKkqRSpaEQEYsj4uGI6I6Iy4a5/79ExIbi618j4vgq65EkjayyUIiIKcCVwBnAMcD5EXHMkGGPAf8xM48D/hJYVVU9kqTRVXmkcDLQnZmPZuYuYDWwpH5AZv5rZm4rFu8C5lZYjyRpFJGZ1Ww44mxgcWYuLZYvAE7JzOV7Gf/HwBsHxw+5bxmwDGDOnDknrl69upKax6q3t5eZM2e2uoxKdGpv9tV+OrW3iepr0aJF92bmgtHGTa2whhhm3bAJFBGLgP8GvHW4+zNzFcWppQULFuTChQvHqcTxsXbtWiZbTeOlU3uzr/bTqb1Ntr6qDIUe4NC65bnA5qGDIuI44CrgjMzcWmE9kqRRVPmawj3AvIg4IiL2Ac4DbqofEBGHAdcDF2TmIxXWIklqQGVHCpnZHxHLgZuBKcDVmflgRFxc3L8S+CgwG/hiRAD0N3LOS5JUjSpPH5GZa4A1Q9atrLu9FHjZC8uCrb076dm2g7kHTWf2zH3HbWw76dS+qtK9ZTvbXuyje8t2jpozq9XlqE1VGgoamxvXb2LFdRuY1tVF38AAV5x1HGfOP+QVj20nndpXVT56w/1cc9dG/ujYfi79m9u58LTD+NiSY1tdltqQ01xMMlt7d7Liug281DfA9p39vNQ3wEeu28DW3p2vaGw76dS+qtK9ZTvX3LVxj3XX3LmR7i3bW1SR2pmhMMn0bNvBtK49d8u0ri56tu14RWPbSaf2VZX1Tzzb1HppJIbCJDP3oOn0DQzssa5vYIC5B01/RWPbSaf2VZX5hx7Y1HppJIbCJDN75r5ccdZx7Deti1n7TmW/aV1ccdZxw77Q2szYdtKpfVXlqDmzuPC0w/ZYd+Fph/lis8bEF5onoTPnH8LpRx3c0JU3zYxtJ53aV1U+tuRYLjz1cO6/9y5uu/RUA0FjZihMUrNn7tvwL8JmxraTTu2rKkfNmUXPjGkGgl4RTx9JkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpZChIkkqGgiSpVGkoRMTiiHg4Iroj4rJh7o+I+Hxx/4aIOKHKeqRmbe3dyU+eeJatvTtHHbvusa185paHWffY1nHbZjNju7dsZ9uLfXRv2T7q2GZUVW+zNezo2z3qdru3bOfb657o2O9BFdsdampVG46IKcCVwLuAHuCeiLgpMx+qG3YGMK/4OgX4UvGv1HI3rt/Eius2MK2ri76BAa446zjOnH/IsGM/cNVd3NFdC4PPf6+btx01m2uXnvqKttnM2I/ecD/X3LWRPzq2n0v/5nYuPO0wPrbk2DF2Xn29Y6nhD3+zj0s/8b29bnfwezCoE78H473d4VR5pHAy0J2Zj2bmLmA1sGTImCXANVlzF3BgRLyuwpqkhmzt3cmK6zbwUt8A23f281LfAB+5bsOwf6Wte2xrGQiDfti99WVHDM1ss5mx3Vu27/HLEOCaOze+4r+Wq6p3rDXsztzrdl8t34Px3O7eRGZWs+GIs4HFmbm0WL4AOCUzl9eN+UfgrzPzjmL5u8CKzFw3ZFvLgGXF4tHAw5UUPXYHA8+0uoiKdGpvI/YV06bPmHrQ634jurqmDK7LgYHd/duefCT7drxYP3bKrINfP2X/A1/2x8zuF559cvf2ZzaPZZvNjO2accDsqa957eEAu198jikzDgCg//mnHx948bmRz2WNoKp6x1rDYG/Dbbf+e1CvTb4H4/azOIpfz8zXjjaostNHQAyzbmgCNTKGzFwFrBqPoqoQEesyc0Gr66hCp/bWyX31P/dUx/UFndvbZPtZrPL0UQ9waN3yXGDzGMZIkiZIlaFwDzAvIo6IiH2A84Cbhoy5CbiwuArpVOC5zHyywpokSSOo7PRRZvZHxHLgZmAKcHVmPhgRFxf3rwTWAO8BuoEXgYuqqqdik/bU1jjo1N7sq/10am+Tqq/KXmiWJLUf39EsSSoZCpKkkqEwBhHxeETcHxHrI2Jdse7yiNhUrFsfEe9pdZ3NiogDI+LbEfGziPhpRJwWEb8SEbdGxM+Lfw9qdZ3N2ktfnbC/jq6rf31EPB8RH273fTZCX52wzy6NiAcj4oGI+EZE7DfZ9pevKYxBRDwOLMjMZ+rWXQ70ZuanWlXXKxURXwd+mJlXFVeMzQD+FPhlZv51MX/VQZm5oqWFNmkvfX2YNt9f9YppZTZRmybmEtp8nw0a0tdFtPE+i4hDgDuAYzJzR0R8k9rFNscwifaXRwoCICJeA/wW8H8AMnNXZj5LbSqSrxfDvg78TmsqHJsR+uo07wD+X2b+gjbfZ0PU99UJpgLTI2IqtT9ONjPJ9pehMDYJ3BIR9xZTcAxaXsz2enWrDwHH4EjgaeCrEfHjiLgqIvYH5gy+d6T491dbWeQY7K0vaO/9NdR5wDeK2+2+z+rV9wVtvM8ycxPwKWAj8CS192XdwiTbX4bC2JyemSdQm+X1koj4LWozvL4BmE9th3+6hfWNxVTgBOBLmflm4AXgZdOdt6G99dXu+6tUnBI7E/hWq2sZT8P01db7rAixJcARwOuB/SPiA62t6uUMhTHIzM3Fv08B3wFOzswtmbk7MweAr1CbJbad9AA9mfmjYvnb1H6Zbhmcubb496kW1TdWw/bVAfur3hnAfZm5pVhu9302aI++OmCfvRN4LDOfzsw+4HrgLUyy/WUoNCki9o+IWYO3gXcDD8SeU36/D3igFfWNVWb+G/BERBxdrHoH8BC1qUg+WKz7IHBjC8obs7311e77a4jz2fMUS1vvszp79NUB+2wjcGpEzIiIoPaz+FMm2f7y6qMmRcSR1I4OoHZq4u8y868i4lpqh7UJPA78QbvN4xQR84GrgH2AR6ld7dEFfBM4jNoP9TmZ+cuWFTkGe+nr87T5/gKIiBnAE8CRmflcsW427b/PhuurE55jfwGcC/QDPwaWAjOZRPvLUJAklTx9JEkqGQqSpJKhIEkqGQqSpJKhIEkqVfbJa9JEKy7F/G6x+GvAbmpTXEDtDYa7WlLYCCLi94A1xfsppJbzklR1pMk0a21ETMnM3Xu57w5geWaub2J7UzOzf9wKlOp4+kivChHxwYi4u5iH/4sR0RURUyPi2Yj4ZETcFxE3R8QpEfGDiHh0cL7+iFgaEd8p7n84Iv6swe1+PCLuBk6OiL+IiHuKefRXRs251N6M9ffF4/eJiJ6IOLDY9qkRcVtx++MR8eWIuJXa5H5TI+Izxf+9ISKWTvx3VZ3IUFDHi4g3UZsW4S2ZOZ/aadPzirsPAG4pJjjcBVxObfqBc4CP1W3m5OIxJwDvj4j5DWz3vsw8OTPvBD6XmScBxxb3Lc7MvwfWA+dm5vwGTm+9GXhvZl4ALAOeysyTgZOoTcx42Fi+P1I9X1PQq8E7qf3iXFebcobp1KZQANiRmbcWt++nNp1xf0TcDxxet42bM3MbQETcALyV2vNnb9vdxb9PhwLwjoj4E2A/4GDgXuCfm+zjxsx8qbj9buA3I6I+hOZRmyZBGjNDQa8GAVydmf9rj5W1Dzqp/+t8ANhZd7v++TH0xbccZbs7snjBrpjH5wvUZmfdFBEfpxYOw+nn34/gh455YUhPH8rM7yKNI08f6dXgNuB3I+JgqF2lNIZTLe+O2mc9z6A2J/6/NLHd6dRC5pliht2z6u7bDsyqW34cOLG4XT9uqJuBDxUBNPi5xtOb7El6GY8U1PEy8/5idsrbIqIL6AMupvZRiI26A/g7ah/ycu3g1UKNbDczt0btc6IfAH4B/Kju7q8CV0XEDmqvW1wOfCUi/g24e4R6vkxtVs31xamrp6iFlfSKeEmqNIriyp43ZeaHW12LVDVPH0mSSh4pSJJKHilIkkqGgiSpZChIkkqGgiSpZChIkkr/HzHofwgP0tIHAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas\n",
"import matplotlib.pyplot as plt\n",
"\n",
"data[\"Frequency\"]=data.Malfunction/data.Count\n",
"data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n",
"plt.grid(True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**No experiment worked below 65 degrees...**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"À première vue, ce n'est pas flagrant mais bon, essayons quand même\n",
"d'estimer l'impact de la température $t$ sur la probabilité de\n",
"dysfonctionnements d'un joint. \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Estimation de l'influence de la température\n",
"\n",
"Supposons que chacun des 6 joints toriques est endommagé avec la même\n",
"probabilité et indépendamment des autres et que cette probabilité ne\n",
"dépend que de la température. Si on note $p(t)$ cette probabilité, le\n",
"nombre de joints $D$ dysfonctionnant lorsque l'on effectue le vol à\n",
"température $t$ suit une loi binomiale de paramètre $n=6$ et\n",
"$p=p(t)$. Pour relier $p(t)$ à $t$, on va donc effectuer une\n",
"régression logistique."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Date \n",
" Count \n",
" Temperature \n",
" Pressure \n",
" Malfunction \n",
" celcius \n",
" Success \n",
" Intercept \n",
" Frequency \n",
" \n",
" \n",
" \n",
" \n",
" 13 \n",
" 1/24/85 \n",
" 6 \n",
" 53 \n",
" 200 \n",
" 2 \n",
" 11.666667 \n",
" 4 \n",
" 1 \n",
" 0.333333 \n",
" \n",
" \n",
" 8 \n",
" 2/03/84 \n",
" 6 \n",
" 57 \n",
" 200 \n",
" 1 \n",
" 13.888889 \n",
" 5 \n",
" 1 \n",
" 0.166667 \n",
" \n",
" \n",
" 22 \n",
" 1/12/86 \n",
" 6 \n",
" 58 \n",
" 200 \n",
" 1 \n",
" 14.444444 \n",
" 5 \n",
" 1 \n",
" 0.166667 \n",
" \n",
" \n",
" 9 \n",
" 4/06/84 \n",
" 6 \n",
" 63 \n",
" 200 \n",
" 1 \n",
" 17.222222 \n",
" 5 \n",
" 1 \n",
" 0.166667 \n",
" \n",
" \n",
" 0 \n",
" 4/12/81 \n",
" 6 \n",
" 66 \n",
" 50 \n",
" 0 \n",
" 18.888889 \n",
" 6 \n",
" 1 \n",
" 0.000000 \n",
" \n",
" \n",
" 14 \n",
" 4/12/85 \n",
" 6 \n",
" 67 \n",
" 200 \n",
" 0 \n",
" 19.444444 \n",
" 6 \n",
" 1 \n",
" 0.000000 \n",
" \n",
" \n",
" 12 \n",
" 11/08/84 \n",
" 6 \n",
" 67 \n",
" 200 \n",
" 0 \n",
" 19.444444 \n",
" 6 \n",
" 1 \n",
" 0.000000 \n",
" \n",
" \n",
" 4 \n",
" 4/04/83 \n",
" 6 \n",
" 67 \n",
" 50 \n",
" 0 \n",
" 19.444444 \n",
" 6 \n",
" 1 \n",
" 0.000000 \n",
" \n",
" \n",
" 3 \n",
" 11/11/82 \n",
" 6 \n",
" 68 \n",
" 50 \n",
" 0 \n",
" 20.000000 \n",
" 6 \n",
" 1 \n",
" 0.000000 \n",
" \n",
" \n",
" 2 \n",
" 3/22/82 \n",
" 6 \n",
" 69 \n",
" 50 \n",
" 0 \n",
" 20.555556 \n",
" 6 \n",
" 1 \n",
" 0.000000 \n",
" \n",
" \n",
" 1 \n",
" 11/12/81 \n",
" 6 \n",
" 70 \n",
" 50 \n",
" 1 \n",
" 21.111111 \n",
" 5 \n",
" 1 \n",
" 0.166667 \n",
" \n",
" \n",
" 16 \n",
" 6/17/85 \n",
" 6 \n",
" 70 \n",
" 200 \n",
" 0 \n",
" 21.111111 \n",
" 6 \n",
" 1 \n",
" 0.000000 \n",
" \n",
" \n",
" 7 \n",
" 11/28/83 \n",
" 6 \n",
" 70 \n",
" 100 \n",
" 0 \n",
" 21.111111 \n",
" 6 \n",
" 1 \n",
" 0.000000 \n",
" \n",
" \n",
" 10 \n",
" 8/30/84 \n",
" 6 \n",
" 70 \n",
" 200 \n",
" 1 \n",
" 21.111111 \n",
" 5 \n",
" 1 \n",
" 0.166667 \n",
" \n",
" \n",
" 5 \n",
" 6/18/82 \n",
" 6 \n",
" 72 \n",
" 50 \n",
" 0 \n",
" 22.222222 \n",
" 6 \n",
" 1 \n",
" 0.000000 \n",
" \n",
" \n",
" 6 \n",
" 8/30/83 \n",
" 6 \n",
" 73 \n",
" 100 \n",
" 0 \n",
" 22.777778 \n",
" 6 \n",
" 1 \n",
" 0.000000 \n",
" \n",
" \n",
" 15 \n",
" 4/29/85 \n",
" 6 \n",
" 75 \n",
" 200 \n",
" 0 \n",
" 23.888889 \n",
" 6 \n",
" 1 \n",
" 0.000000 \n",
" \n",
" \n",
" 20 \n",
" 10/30/85 \n",
" 6 \n",
" 75 \n",
" 200 \n",
" 2 \n",
" 23.888889 \n",
" 4 \n",
" 1 \n",
" 0.333333 \n",
" \n",
" \n",
" 18 \n",
" 8/27/85 \n",
" 6 \n",
" 76 \n",
" 200 \n",
" 0 \n",
" 24.444444 \n",
" 6 \n",
" 1 \n",
" 0.000000 \n",
" \n",
" \n",
" 21 \n",
" 11/26/85 \n",
" 6 \n",
" 76 \n",
" 200 \n",
" 0 \n",
" 24.444444 \n",
" 6 \n",
" 1 \n",
" 0.000000 \n",
" \n",
" \n",
" 11 \n",
" 10/05/84 \n",
" 6 \n",
" 78 \n",
" 200 \n",
" 0 \n",
" 25.555556 \n",
" 6 \n",
" 1 \n",
" 0.000000 \n",
" \n",
" \n",
" 19 \n",
" 10/03/85 \n",
" 6 \n",
" 79 \n",
" 200 \n",
" 0 \n",
" 26.111111 \n",
" 6 \n",
" 1 \n",
" 0.000000 \n",
" \n",
" \n",
" 17 \n",
" 7/29/85 \n",
" 6 \n",
" 81 \n",
" 200 \n",
" 0 \n",
" 27.222222 \n",
" 6 \n",
" 1 \n",
" 0.000000 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Date Count Temperature Pressure Malfunction celcius Success \\\n",
"13 1/24/85 6 53 200 2 11.666667 4 \n",
"8 2/03/84 6 57 200 1 13.888889 5 \n",
"22 1/12/86 6 58 200 1 14.444444 5 \n",
"9 4/06/84 6 63 200 1 17.222222 5 \n",
"0 4/12/81 6 66 50 0 18.888889 6 \n",
"14 4/12/85 6 67 200 0 19.444444 6 \n",
"12 11/08/84 6 67 200 0 19.444444 6 \n",
"4 4/04/83 6 67 50 0 19.444444 6 \n",
"3 11/11/82 6 68 50 0 20.000000 6 \n",
"2 3/22/82 6 69 50 0 20.555556 6 \n",
"1 11/12/81 6 70 50 1 21.111111 5 \n",
"16 6/17/85 6 70 200 0 21.111111 6 \n",
"7 11/28/83 6 70 100 0 21.111111 6 \n",
"10 8/30/84 6 70 200 1 21.111111 5 \n",
"5 6/18/82 6 72 50 0 22.222222 6 \n",
"6 8/30/83 6 73 100 0 22.777778 6 \n",
"15 4/29/85 6 75 200 0 23.888889 6 \n",
"20 10/30/85 6 75 200 2 23.888889 4 \n",
"18 8/27/85 6 76 200 0 24.444444 6 \n",
"21 11/26/85 6 76 200 0 24.444444 6 \n",
"11 10/05/84 6 78 200 0 25.555556 6 \n",
"19 10/03/85 6 79 200 0 26.111111 6 \n",
"17 7/29/85 6 81 200 0 27.222222 6 \n",
"\n",
" Intercept Frequency \n",
"13 1 0.333333 \n",
"8 1 0.166667 \n",
"22 1 0.166667 \n",
"9 1 0.166667 \n",
"0 1 0.000000 \n",
"14 1 0.000000 \n",
"12 1 0.000000 \n",
"4 1 0.000000 \n",
"3 1 0.000000 \n",
"2 1 0.000000 \n",
"1 1 0.166667 \n",
"16 1 0.000000 \n",
"7 1 0.000000 \n",
"10 1 0.166667 \n",
"5 1 0.000000 \n",
"6 1 0.000000 \n",
"15 1 0.000000 \n",
"20 1 0.333333 \n",
"18 1 0.000000 \n",
"21 1 0.000000 \n",
"11 1 0.000000 \n",
"19 1 0.000000 \n",
"17 1 0.000000 "
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import statsmodels.api as sm\n",
"\n",
"data[\"Success\"]=data.Count-data.Malfunction\n",
"data[\"Intercept\"]=1\n",
"data.sort_values(by='celcius')"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"Generalized Linear Model Regression Results \n",
"\n",
" Dep. Variable: Frequency No. Observations: 23 \n",
" \n",
"\n",
" Model: GLM Df Residuals: 21 \n",
" \n",
"\n",
" Model Family: Binomial Df Model: 1 \n",
" \n",
"\n",
" Link Function: logit Scale: 1.0000 \n",
" \n",
"\n",
" Method: IRLS Log-Likelihood: -3.9210 \n",
" \n",
"\n",
" Date: Wed, 04 Jun 2025 Deviance: 3.0144 \n",
" \n",
"\n",
" Time: 15:53:07 Pearson chi2: 5.00 \n",
" \n",
"\n",
" No. Iterations: 6 Covariance Type: nonrobust \n",
" \n",
"
\n",
"\n",
"\n",
" coef std err z P>|z| [0.025 0.975] \n",
" \n",
"\n",
" Intercept 5.0850 7.477 0.680 0.496 -9.570 19.740 \n",
" \n",
"\n",
" Temperature -0.1156 0.115 -1.004 0.316 -0.341 0.110 \n",
" \n",
"
"
],
"text/plain": [
"\n",
"\"\"\"\n",
" Generalized Linear Model Regression Results \n",
"==============================================================================\n",
"Dep. Variable: Frequency No. Observations: 23\n",
"Model: GLM Df Residuals: 21\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -3.9210\n",
"Date: Wed, 04 Jun 2025 Deviance: 3.0144\n",
"Time: 15:53:07 Pearson chi2: 5.00\n",
"No. Iterations: 6 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
"Intercept 5.0850 7.477 0.680 0.496 -9.570 19.740\n",
"Temperature -0.1156 0.115 -1.004 0.316 -0.341 0.110\n",
"===============================================================================\n",
"\"\"\""
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], family=sm.families.Binomial(sm.families.links.logit)).fit()\n",
"\n",
"logmodel.summary()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"L'estimateur le plus probable du paramètre de température est 0.0014\n",
"et l'erreur standard de cet estimateur est de 0.122, autrement dit on\n",
"ne peut pas distinguer d'impact particulier et il faut prendre nos\n",
"estimations avec des pincettes.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Estimation de la probabilité de dysfonctionnant des joints toriques\n",
"La température prévue le jour du décollage est de 31°F. Essayons\n",
"d'estimer la probabilité de dysfonctionnement des joints toriques à\n",
"cette température à partir du modèle que nous venons de construire:\n"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Intercept \n",
" Temperature \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 1 \n",
" 30.0 \n",
" \n",
" \n",
" 1 \n",
" 1 \n",
" 30.5 \n",
" \n",
" \n",
" 2 \n",
" 1 \n",
" 31.0 \n",
" \n",
" \n",
" 3 \n",
" 1 \n",
" 31.5 \n",
" \n",
" \n",
" 4 \n",
" 1 \n",
" 32.0 \n",
" \n",
" \n",
" 5 \n",
" 1 \n",
" 32.5 \n",
" \n",
" \n",
" 6 \n",
" 1 \n",
" 33.0 \n",
" \n",
" \n",
" 7 \n",
" 1 \n",
" 33.5 \n",
" \n",
" \n",
" 8 \n",
" 1 \n",
" 34.0 \n",
" \n",
" \n",
" 9 \n",
" 1 \n",
" 34.5 \n",
" \n",
" \n",
" 10 \n",
" 1 \n",
" 35.0 \n",
" \n",
" \n",
" 11 \n",
" 1 \n",
" 35.5 \n",
" \n",
" \n",
" 12 \n",
" 1 \n",
" 36.0 \n",
" \n",
" \n",
" 13 \n",
" 1 \n",
" 36.5 \n",
" \n",
" \n",
" 14 \n",
" 1 \n",
" 37.0 \n",
" \n",
" \n",
" 15 \n",
" 1 \n",
" 37.5 \n",
" \n",
" \n",
" 16 \n",
" 1 \n",
" 38.0 \n",
" \n",
" \n",
" 17 \n",
" 1 \n",
" 38.5 \n",
" \n",
" \n",
" 18 \n",
" 1 \n",
" 39.0 \n",
" \n",
" \n",
" 19 \n",
" 1 \n",
" 39.5 \n",
" \n",
" \n",
" 20 \n",
" 1 \n",
" 40.0 \n",
" \n",
" \n",
" 21 \n",
" 1 \n",
" 40.5 \n",
" \n",
" \n",
" 22 \n",
" 1 \n",
" 41.0 \n",
" \n",
" \n",
" 23 \n",
" 1 \n",
" 41.5 \n",
" \n",
" \n",
" 24 \n",
" 1 \n",
" 42.0 \n",
" \n",
" \n",
" 25 \n",
" 1 \n",
" 42.5 \n",
" \n",
" \n",
" 26 \n",
" 1 \n",
" 43.0 \n",
" \n",
" \n",
" 27 \n",
" 1 \n",
" 43.5 \n",
" \n",
" \n",
" 28 \n",
" 1 \n",
" 44.0 \n",
" \n",
" \n",
" 29 \n",
" 1 \n",
" 44.5 \n",
" \n",
" \n",
" ... \n",
" ... \n",
" ... \n",
" \n",
" \n",
" 91 \n",
" 1 \n",
" 75.5 \n",
" \n",
" \n",
" 92 \n",
" 1 \n",
" 76.0 \n",
" \n",
" \n",
" 93 \n",
" 1 \n",
" 76.5 \n",
" \n",
" \n",
" 94 \n",
" 1 \n",
" 77.0 \n",
" \n",
" \n",
" 95 \n",
" 1 \n",
" 77.5 \n",
" \n",
" \n",
" 96 \n",
" 1 \n",
" 78.0 \n",
" \n",
" \n",
" 97 \n",
" 1 \n",
" 78.5 \n",
" \n",
" \n",
" 98 \n",
" 1 \n",
" 79.0 \n",
" \n",
" \n",
" 99 \n",
" 1 \n",
" 79.5 \n",
" \n",
" \n",
" 100 \n",
" 1 \n",
" 80.0 \n",
" \n",
" \n",
" 101 \n",
" 1 \n",
" 80.5 \n",
" \n",
" \n",
" 102 \n",
" 1 \n",
" 81.0 \n",
" \n",
" \n",
" 103 \n",
" 1 \n",
" 81.5 \n",
" \n",
" \n",
" 104 \n",
" 1 \n",
" 82.0 \n",
" \n",
" \n",
" 105 \n",
" 1 \n",
" 82.5 \n",
" \n",
" \n",
" 106 \n",
" 1 \n",
" 83.0 \n",
" \n",
" \n",
" 107 \n",
" 1 \n",
" 83.5 \n",
" \n",
" \n",
" 108 \n",
" 1 \n",
" 84.0 \n",
" \n",
" \n",
" 109 \n",
" 1 \n",
" 84.5 \n",
" \n",
" \n",
" 110 \n",
" 1 \n",
" 85.0 \n",
" \n",
" \n",
" 111 \n",
" 1 \n",
" 85.5 \n",
" \n",
" \n",
" 112 \n",
" 1 \n",
" 86.0 \n",
" \n",
" \n",
" 113 \n",
" 1 \n",
" 86.5 \n",
" \n",
" \n",
" 114 \n",
" 1 \n",
" 87.0 \n",
" \n",
" \n",
" 115 \n",
" 1 \n",
" 87.5 \n",
" \n",
" \n",
" 116 \n",
" 1 \n",
" 88.0 \n",
" \n",
" \n",
" 117 \n",
" 1 \n",
" 88.5 \n",
" \n",
" \n",
" 118 \n",
" 1 \n",
" 89.0 \n",
" \n",
" \n",
" 119 \n",
" 1 \n",
" 89.5 \n",
" \n",
" \n",
" 120 \n",
" 1 \n",
" 90.0 \n",
" \n",
" \n",
"
\n",
"
121 rows × 2 columns
\n",
"
"
],
"text/plain": [
" Intercept Temperature\n",
"0 1 30.0\n",
"1 1 30.5\n",
"2 1 31.0\n",
"3 1 31.5\n",
"4 1 32.0\n",
"5 1 32.5\n",
"6 1 33.0\n",
"7 1 33.5\n",
"8 1 34.0\n",
"9 1 34.5\n",
"10 1 35.0\n",
"11 1 35.5\n",
"12 1 36.0\n",
"13 1 36.5\n",
"14 1 37.0\n",
"15 1 37.5\n",
"16 1 38.0\n",
"17 1 38.5\n",
"18 1 39.0\n",
"19 1 39.5\n",
"20 1 40.0\n",
"21 1 40.5\n",
"22 1 41.0\n",
"23 1 41.5\n",
"24 1 42.0\n",
"25 1 42.5\n",
"26 1 43.0\n",
"27 1 43.5\n",
"28 1 44.0\n",
"29 1 44.5\n",
".. ... ...\n",
"91 1 75.5\n",
"92 1 76.0\n",
"93 1 76.5\n",
"94 1 77.0\n",
"95 1 77.5\n",
"96 1 78.0\n",
"97 1 78.5\n",
"98 1 79.0\n",
"99 1 79.5\n",
"100 1 80.0\n",
"101 1 80.5\n",
"102 1 81.0\n",
"103 1 81.5\n",
"104 1 82.0\n",
"105 1 82.5\n",
"106 1 83.0\n",
"107 1 83.5\n",
"108 1 84.0\n",
"109 1 84.5\n",
"110 1 85.0\n",
"111 1 85.5\n",
"112 1 86.0\n",
"113 1 86.5\n",
"114 1 87.0\n",
"115 1 87.5\n",
"116 1 88.0\n",
"117 1 88.5\n",
"118 1 89.0\n",
"119 1 89.5\n",
"120 1 90.0\n",
"\n",
"[121 rows x 2 columns]"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n",
"data_pred"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl4VOXd//H3dyb7QmLYISA7yA5hEXEBrYK2KiriinVBpHWp7SNVn199tE+16oNt1VZxQ3GpgisupYJa44JbQBBkX8UEkJ0kkD33748ZMGAgQzLJLPm8rivXzDlzn3O+dwY+c3LmnPuYcw4REYkunlAXICIiwadwFxGJQgp3EZEopHAXEYlCCncRkSikcBcRiUI1hruZPW1mW83s28O8bmb2sJmtMbPFZjYw+GWKiMjRCGTPfTow+givnwl09f9MBKbWvSwREamLGsPdOfcxsPMITc4FnnM+XwDpZtY6WAWKiMjRiwnCOtoC31eZzvXP23xoQzObiG/vnsTExKx27drVaoOVlZV4PNHxdYH6Ep6ipS/R0g9QX/ZbtWrVdudc85raBSPcrZp51Y5p4Jx7AngCYNCgQW7+/Pm12mB2djYjRoyo1bLhRn0JT9HSl2jpB6gv+5nZd4G0C8bHYC5QdRc8E9gUhPWKiEgtBSPc3wKu8J81czywxzn3k0MyIiLScGo8LGNmLwEjgGZmlgvcCcQCOOceA2YDZwFrgH3AVfVVrIiIBKbGcHfOXVLD6w64PmgViUhEKCsrIzc3l+Li4gbZXlpaGsuXL2+QbdW3QPqSkJBAZmYmsbGxtdpGML5QFZFGKDc3l9TUVDp06IBZdedVBFdBQQGpqan1vp2GUFNfnHPs2LGD3NxcOnbsWKttRMd5RSLS4IqLi2natGmDBHtjY2Y0bdq0Tn8VKdxFpNYU7PWnrr9bhbuISBTSMXcRiVher5c+ffocmJ41axYdOnQIXUFhROEuIhErMTGRRYsWHfb18vJyYmIaZ8zpsIyIRJXp06dz4YUXcvbZZ3PGGWcAMGXKFAYPHkzfvn258847D7S955576N69Oz/72c+45JJLeOCBBwAYMWIE+4dH2b59+4G/BioqKpg8efKBdT3++OPAj8MJjB07lh49enDZZZfhO0sccnJyOOGEE+jXrx9DhgyhoKCAUaNGHfShNHz4cBYvXhzU30Pj/EgTkaD649tLWbYpP6jr7NmmCXee3euIbYqKiujfvz8AHTt25I033gDg888/Z/HixWRkZDB37lxWr17NV199hXOOc845h48//pjk5GRmzJjBwoULKS8vZ+DAgWRlZR1xe9OmTSMtLY2cnBxKSkoYPnz4gQ+QhQsXsnTpUtq0acPw4cOZN28eQ4YM4aKLLmLmzJkMHjyY/Px8EhMTueKKK5g+fToPPvggq1atoqSkhL59+wbht/YjhbuIRKzDHZY5/fTTycjIAGDu3LnMnTuXAQMGAFBYWMjq1aspKCjgvPPOIykpCYBzzjmnxu3NnTuXxYsX8+qrrwKwZ88eVq9eTVxcHEOGDCEzMxOA/v37s2HDBtLS0mjdujWDBw8GoEmTJgCcd955DB8+nClTpvD0009z5ZVX1u0XUQ2Fu4jUWU172A0tOTn5wHPnHLfffjvXXXfdQW0efPDBw55uGBMTQ2VlJcBB55o75/j73//OqFGjDmqfnZ1NfHz8gWmv10t5eTnOuWq3kZSUxOmnn86bb77Jyy+/TG1HyD0SHXMXkag2atQonn76aQoLCwHIy8tj69atnHzyybzxxhsUFRVRUFDA22+/fWCZDh06sGDBAoADe+n71zV16lTKysoAWLVqFXv37j3stnv06MGmTZvIyckBfFemlpeXAzBhwgRuuukmBg8efOCvjGDSnruIRLUzzjiD5cuXM2zYMABSUlJ44YUXGDhwIBdddBH9+/fn2GOP5aSTTjqwzC233MK4ceN4/vnnOfXUUw/MnzBhAhs2bGDgwIE452jevDmzZs067Lbj4uKYOXMmN954I0VFRSQmJvL+++8DkJWVRZMmTbjqqnoaa9E5F5KfrKwsV1sffvhhrZcNN+pLeIqWvtRnP5YtW1Zv665Ofn5+va7/zjvvdFOmTKnXbeyXn5/v8vLyXNeuXV1FRcVh21X3OwbmuwAyVodlREQa2IsvvsjQoUO555576u3WgTosIyIC3HXXXQ22rUsvvfQnX/AGm/bcRaTWnKv2dskSBHX93SrcRaRWEhIS2LFjhwK+Hjj/eO4JCQm1XocOy4hIrWRmZpKbm8u2bdsaZHvFxcV1CrtwEkhf9t+JqbYU7iJSK7GxsbW+S1BtZGdnH7jKNNI1RF90WEZEJAop3EVEopDCXUQkCincRUSikMJdRCQKKdxFRKKQwl1EJAop3EVEopDCXUQkCincRUSiUMSF+77Sct7bUEZ5RWWoSxERCVsRF+7vLN7MP1eUMu7xz/lux+HvXSgi0phFXLiPG9SOSX3jWbO1kDMf+oSZORs15KiIyCEiLtwBjm8Tw7s3n0z/dunc+toSbnhxIXuKykJdlohI2IjIcAdok57IC9cM5dbRPZizdAtnPfQJX2/cFeqyRETCQsSGO4DHY/xqRGde/dUJeDww7rHPefLjdTpMIyKNXkDhbmajzWylma0xs9uqeT3NzN42s2/MbKmZXRX8Ug+vf7t03rnxJE47rgX3zF7OxOcX6DCNiDRqNYa7mXmBR4AzgZ7AJWbW85Bm1wPLnHP9gBHAX8wsLsi1HlFaYiyPXZ7F//yiJx+u2Mq5//iUFVvyG7IEEZGwEcie+xBgjXNunXOuFJgBnHtIGwekmpkBKcBOoDyolQbAzLj6xI7MmHg8+0orGPPIPN76ZlNDlyEiEnJW0/FpMxsLjHbOTfBPjweGOuduqNImFXgL6AGkAhc55/5VzbomAhMBWrZsmTVjxoxaFV1YWEhKSsoR2+wuqeTRRSWs2lXJWR1jGdstFo9ZrbZXnwLpS6RQX8JPtPQD1Jf9Ro4cucA5N6jGhs65I/4AFwJPVZkeD/z9kDZjgb8BBnQB1gNNjrTerKwsV1sffvhhQO1Kyirc/3tjsTv21nfcFdO+dHuKSmu9zfoSaF8igfoSfqKlH86pL/sB810Nue2cC+iwTC7Qrsp0JnDosY6rgNf9217jD/ceAay7XsXFeLh7TB/uPb8P89Zs5/xHP9NVrSLSKAQS7jlAVzPr6P+S9GJ8h2Cq2gicBmBmLYHuwLpgFloXlwxpz/PXDGV7YQnnPjKPL9btCHVJIiL1qsZwd86VAzcAc4DlwMvOuaVmNsnMJvmb/Qk4wcyWAB8AtzrnttdX0bUxrHNT3rx+OE2T4xg/7UveWJgb6pJEROpNTCCNnHOzgdmHzHusyvNNwBnBLS34jm2azOu/Gs6kFxbw25nfsHFHETed1gULwy9aRUTqIqKvUK2NtKRYnr16COcPbMvf3l/Fba8t0fDBIhJ1AtpzjzZxMR7+cmE/MtMTefg/a9hWWMI/Lh1AUlyj/HWISBRqdHvu+5kZvzujO/ec15vslVu59Mkv2bW3NNRliYgERaMN9/0uG3osUy/PYtnmfC58/HM27S4KdUkiInXW6MMdYFSvVjx71RC27Clm7NTPWLetMNQliYjUicLdb1jnpsyYeDzF5ZWMe/xzlm/WoGMiErkU7lX0bpvGy9cNI8bj4aLHP2ehbv4hIhFK4X6ILi1SeGXSMNKT4hg/7StyNuwMdUkiIkdN4V6NdhlJvHzdMFo0ieeKaV/x2ZqwuthWRKRGCvfDaJWWwMyJw2ifkcRV03P4eNW2UJckIhIwhfsRNE+N56WJx9OxWTITnpuvgBeRiKFwr0FGchwvXns8nZunMOG5+XykgBeRCKBwD0BGchwvThhK5+YpTHxuPvN0DF5EwpzCPUDHJMfxzwlD6dA0mWuezdGY8CIS1hTuRyEjOY5/XjuUzGOSuHp6Dgu+02mSIhKeFO5HqVlKPC9eO5SWTRK48ukcvs3bE+qSRER+QuFeCy1SE/jnhKE0SYxl/LQvWbmlINQliYgcROFeS23SE3nx2qHExXi4fNqXuvG2iIQVhXsdHNs0mReuGUp5RSWXPfUlW/YUh7okERFA4V5nXVum8uzVQ9i9r4zLp+mGHyISHhTuQdA3M50nrxjExp37uHJ6DntLykNdkog0cgr3IBnWuSn/uGQAS3J3M+mFBZSW66bbIhI6CvcgOqNXK+47vy+frN7Of73yDZWVLtQliUgjFRPqAqLNuMHt2LG3lPvfXUHzlHju+MVxmFmoyxKRRkbhXg8mndKJrQXFPD1vPS2bxHPdKZ1DXZKINDIK93pgZtzx855sKyjh3n+voEWTeM4bkBnqskSkEVG41xOPx/jLuH7sKCzl968upkVqAsO7NAt1WSLSSOgL1XoUH+PlsfFZdGqWwqTnF7B8c36oSxKRRkLhXs/SEmN55qrBJMfHcNUzOWzeUxTqkkSkEVC4N4A26Yk8c9VgCkvKueqZHAqKy0JdkohEOYV7AzmudRMevWwgq7cWcv2LCymr0EVOIlJ/FO4N6ORuzfnzeb35eNU2/ufNpTini5xEpH7obJkGdtHg9ny3Yx+PZq+lY7MkuoW6IBGJStpzD4FbzujOz/u05t5/r2D+Fg0yJiLBF1C4m9loM1tpZmvM7LbDtBlhZovMbKmZfRTcMqPL/nPg+7dL54nFJSzO3R3qkkQkytQY7mbmBR4BzgR6ApeYWc9D2qQDjwLnOOd6ARfWQ61RJSHWyxPjB5EaZ0x4dr5OkRSRoApkz30IsMY5t845VwrMAM49pM2lwOvOuY0AzrmtwS0zOjVPjee3WQnsK63gmunzNQ68iASN1XTGhpmNBUY75yb4p8cDQ51zN1Rp8yAQC/QCUoGHnHPPVbOuicBEgJYtW2bNmDGjVkUXFhaSkpJSq2XDTWFhIeuKEvjbghL6t/By44B4PBE6imS0vS/R0Jdo6QeoL/uNHDlygXNuUE3tAjlbprqkOfQTIQbIAk4DEoHPzewL59yqgxZy7gngCYBBgwa5ESNGBLD5n8rOzqa2y4ab7OxsbvrFCJq0Wc9dby8jp6Q1t47uEeqyaiXa3pdo6Eu09APUl6MVSLjnAu2qTGcCm6pps905txfYa2YfA/2AVUhAfnlCB1ZvLWRq9lq6NE/hgiyNIikitRfIMfccoKuZdTSzOOBi4K1D2rwJnGRmMWaWBAwFlge31OhmZtx1Ti9O6NyU219fwoLvdoa6JBGJYDWGu3OuHLgBmIMvsF92zi01s0lmNsnfZjnwLrAY+Ap4yjn3bf2VHZ1ivR4evWwgrdMTuO75BeTt1hk0IlI7AZ3n7pyb7Zzr5pzr7Jy7xz/vMefcY1XaTHHO9XTO9XbOPVhfBUe79KQ4pv1yECVllUx4VmfQiEjt6ArVMNSlRSoPXzqAlVvy+a+XdaNtETl6CvcwNbJ7C/77rON4d+kWHv7P6lCXIyIRRgOHhbFrTuzIii0FPPj+arq3TOXMPq1DXZKIRAjtuYcxM+Oe83ozsH06v3v5G5Zt0m36RCQwCvcwt/8+rGmJsVz73Hx2FJaEuiQRiQAK9wjQIjWBJ67IYnthCb/+59e6i5OI1EjhHiH6ZqZz/wV9+XL9Tv749tJQlyMiYU5fqEaQMQPasnxzPo9/vI6erdO4dGj7UJckImFKe+4R5veje3BKt+bc+da3zN+gIQpEpHoK9wjj9RgPXzyAzGOSmPTCAjZpiAIRqYbCPQKlJcXy5BVZFJdVct3zCyguqwh1SSISZhTuEapLi1T+dlF/luTt4fbXl1DTTVdEpHFRuEew03u25Hend+ONhXlM+3R9qMsRkTCicI9wN4zswuherfjz7OV8snpbqMsRkTChcI9wHo/xwLh+dGmRwg0vLmTjjn2hLklEwoDCPQqkxMfw5BW+++Ve+5zGgBcRhXvUOLZpMv+4dACrtxZwyyvf6AtWkUZO4R5FTuranNvO7MG/v93CIx+uCXU5IhJCCvcoc+1JnRjTvw1/eW8V7y/7IdTliEiIKNyjjJlx3wV96dWmCTfPXMSarYWhLklEQkDhHoUSYr08Pn4Q8TEeJj43nz1FZaEuSUQamMI9SrVNT2Tq5Vls3LmP38xYSIVusi3SqCjco9iQjhnceU4vsldu44G5K0Ndjog0II3nHuUuH9qeZZvymZq9lp6tm3B2vzahLklEGoD23KOcmfHHc3ox6NhjmPzqN3ybtyfUJYlIA1C4NwJxMR6mXp7FMUlxTHxuPtt1k22RqKdwbySap8bz5BWD2LG3lF+9sIDSct1kWySaKdwbkd5t0/i/sX3J2bCLO99aqiEKRKKYvlBtZM7t35blmwt47KO19GydyvhhHUJdkojUA+25N0KTR3Xn1B4t+OPby/hs7fZQlyMi9UDh3gh5PcZDF/enQ7Nkrv/n1xoDXiQKKdwbqdSEWJ66YhCVDiY8l0NBsYYoEIkmCvdGrEOzZB69bCBrt+3l5hmLNESBSBRRuDdyw7s0486ze/LBiq1MmaMhCkSihc6WEcYffywrt/jOoOnWMoXzB2aGuiQRqaOA9tzNbLSZrTSzNWZ22xHaDTazCjMbG7wSpb6ZGXed04thnZpy22tLWPDdzlCXJCJ1VGO4m5kXeAQ4E+gJXGJmPQ/T7n5gTrCLlPoX6/Uw9fKBtElPYOJzC8jdpTNoRCJZIHvuQ4A1zrl1zrlSYAZwbjXtbgReA7YGsT5pQOlJcUy7cjClFZVMeHa+zqARiWBW0yXo/kMso51zE/zT44GhzrkbqrRpC7wInApMA95xzr1azbomAhMBWrZsmTVjxoxaFV1YWEhKSkqtlg034diXpdsr+MuCYno383LzwHg8ZgEtF459qa1o6Uu09APUl/1Gjhy5wDk3qKZ2gXyhWt3/7EM/ER4EbnXOVdgRgsA59wTwBMCgQYPciBEjAtj8T2VnZ1PbZcNNOPZlBJCW+R1/mPUtnxS24M6zewW0XDj2pbaipS/R0g9QX45WIOGeC7SrMp0JbDqkzSBghj/YmwFnmVm5c25WUKqUBnf58ceybttenp63nk7NkjUGjUiECSTcc4CuZtYRyAMuBi6t2sA513H/czObju+wjII9wv2/nx/Hdzv2cudbS8nMSGJk9xahLklEAlTjF6rOuXLgBnxnwSwHXnbOLTWzSWY2qb4LlNDxeoyHLxnAca2bcMM/v2bZpvxQlyQiAQroPHfn3GznXDfnXGfn3D3+eY855x6rpu2V1X2ZKpEpOT6Gab8cTGpCLNc8m8OWPcWhLklEAqDhB6RGrdISmHblIPKLyrh6eg6FJeWhLklEaqBwl4D0apPGI5cNZOUPBdzw4teUV+g2fSLhTOEuARvRvQV/Orc32Su3cceb3+o2fSJhTAOHyVG5dGh7cnft49HstbRNT+SGU7uGuiQRqYbCXY7a5FHd2bKnmAfmrqJVWiJjszSKpEi4UbjLUTMz7rugL1sLSrjttcU0T43nlG7Na7WuWQvzmDJnJZt2F9EmPZHJo7ozZkDbIFcs9UXvX/jSMXeplbgY3yiS3Vqm8qsXFvDN97uPeh2zFuZx++tLyNtdhAPydhdx++tLmLUwL/gFS9Dp/QtvCneptdSEWKZfPZimKXFcPT2HLXuP7gyaKXNWUlRWcdC8orIK3REqQuj9C28Kd6mTFqkJPHvVEBzwwPxifsgP/CKnTbuLjmq+hBe9f+FN4S511ql5CtOvGkxhqeOKaV+xZ19g48C3SU88qvkSXvT+hTeFuwRF38x0bhqYwPrte7n62Rz2ldZ8FevkUd1JjPUeNC8x1svkUd3rq0wJIr1/4U3hLkHTs6mXBy/uz8KNu5j0wteUlh/5GPyYAW259/w+tE1PxIC26Ynce34fnW0RIfT+hTedCilBdVaf1tx3fl9+/9pifjtzEQ9fMgCv5/A3cBkzoK3CIILp/QtfCncJunGD25FfXMbd/1pOcryX+87vi+cIAS8iwadwl3ox4aROFBSX89AHq0mM9XLXOb040i0YRSS4FO5Sb27+WVf2lZbz5CfrSYjzctvoHgp4kQaicJd6Y2b891nHsa+0gsc/Wkd8jJffnd4t1GWJNAoKd6lXZsafzu1NaXklD3+wmliPceNpGklSpL4p3KXeeTy+gcYqKh1/eW8VMV4PvxrROdRliUQ1hbs0CK/HmHJhP8orHfe/uwKH49cjuoS6LJGopXCXBuP1GH8d1w8z+L93V+IcXD9SAS9SHxTu0qBivB7+Oq4/hm9UwfIKx02nddFZNCJBpnCXBuf1GH8Z1x+vx8Pf3l9FSXkFk0d1V8CLBJHCXULC6zGmjO1LXIyHR7PXUlxWyR2/OE4BLxIkCncJGY/H+PN5vYmP8fD0vPXsKy3nnvP6HHEsGhEJjMJdQsrMuPPsnqQmxPD3/6yhsKScv47rT1yMBiwVqQuFu4ScmfFfZ3QnJT6Ge/+9goLicqZePpCkOP3zFKkt7R5J2LjulM7cd34fPlm9jUuf/JJde0tDXZJIxFK4S1i5eEh7Hr0si2Wb87nw8c/J0/04RWpF4S5hZ3TvVjx71RB+yC/mvEfmsWxTfqhLEok4CncJS8M6N+WVScPwmDHu8c/5ZPW2UJckElEU7hK2erRqwhvXn0DmMYlc9UwOM3M2hrokkYihcJew1jotkVcmDWNY56bc+toS7n93BZWVLtRliYQ9hbuEvdSEWJ6+cjCXDGnP1Oy1/OqfC9hXWh7qskTCWkDhbmajzWylma0xs9uqef0yM1vs//nMzPoFv1RpzGK9Hv58Xm/u+EVP3lv2A2Onfs4mnUkjclg1hruZeYFHgDOBnsAlZtbzkGbrgVOcc32BPwFPBLtQETPjmhM7Mu3KwXy/cx9n//1Tvlq/M9RliYSlQPbchwBrnHPrnHOlwAzg3KoNnHOfOed2+Se/ADKDW6bIj0Z2b8Eb1w8nLTGWS5/8guc/34BzOg4vUpXV9J/CzMYCo51zE/zT44GhzrkbDtP+FqDH/vaHvDYRmAjQsmXLrBkzZtSq6MLCQlJSUmq1bLhRX2pvX5nj8cUlfLOtguFtYriiVxzx3uAMOhYt70u09APUl/1Gjhy5wDk3qMaGzrkj/gAXAk9VmR4P/P0wbUcCy4GmNa03KyvL1daHH35Y62XDjfpSNxUVle5v7610HW57x43620du/bbCoKw3Wt6XaOmHc+rLfsB8V0O+OucCOiyTC7SrMp0JbDq0kZn1BZ4CznXO7QhgvSJ15vEYN/+sG89cOZjNe4o5+++f8q/Fm0NdlkjIBRLuOUBXM+toZnHAxcBbVRuYWXvgdWC8c25V8MsUObIR3Vvwr5tOpHOLFK5/8WvumPUtxWUVoS5LJGRqDHfnXDlwAzAH3yGXl51zS81skplN8jf7H6Ap8KiZLTKz+fVWschhZB6TxMvXDePakzry/BffMeaReaz+oSDUZYmEREADZjvnZgOzD5n3WJXnE4CffIEq0tBmL9nM7CVbAFj1QwFnPfwJY/q3Zd6a7WzeU0yb9EQmj+rOmAFtg77tWQvzmDJnJZt2F9XrdgLxh1lLeOnL77m5dxnX3D6bS4a24+4xfUJSi4SG7oYgUWPWwjxuf30JRf7DMZUOXIXjlQW5B9rk7S7i9teXAAQ1eA/ddn1tJxB/mLWEF774cRyeCucOTCvgGw8NPyBRY8qclQfCdb/qTvQtKqtgypyV9b7t+thOIF768vujmi/RSeEuUeNohiMI9k1ADrftUAyRUHGYa1cON1+ik8Jdokab9MSA23oM3lyUF7QrWw+37aOpKVi8Vv2FXIebL9FJ4S5RY/Ko7iTGeg+aF+sxYg+5ajU+xkPmMUn8ZsYiJjw7n9xd++pl24mxXiaP6l7ndR+tS4a2O6r5Ep0U7hI1xgxoy73n96FteiIGtE1PZMqF/Zgytt9B8+6/oC8f3jKCP/z8OD5bu4PT//oxT3y8lrKKyqBu+97z+4TkbJm7x/Th8uPbH9hT95px+fHt9WVqI6OzZSSqjBnQttpArW7ehJM6Mbp3K+56ayl/nr2C1xbk8cdze3F8p6ZB3XYo3D2mD3eP6UN2djZrLxsR6nIkBLTnLo1a5jFJPPXLwTwxPovCknIufuILbnppITuLa78XLxIOtOcuApzRqxUndW3O1I/W8thHa3m3spLvvKu47pROJMXpv4lEHu25i/glxnn53end+OB3p9C/hZeHPljNyAeymZmzkQrdt1UijMJd5BDtMpL4df8EXpk0jNZpidz62hLOfOhj3lv2g24KIhFD4S5yGIM7ZPDGr0/g0csGUlbhuPa5+Yx59DM+Xb1dIS9hT+EucgRmxll9WvPeb0/m/gv6sC2/mMunfcm4xz9n3hqFvIQvhbtIAGK8Hi4a3J7/3DKC/z23F9/vLOKyp77kgqmf8Z8VOlwj4UfhLnIUEmK9XDGsA9mTR/Cnc3vxQ34JV0+fz1kPf8obC3PrdCGUSDAp3EVqISHWy3h/yD9wYT/KKir57cxvOPn/PuTxj9ayZ19ZqEuURk4n8IrUQazXw9isTM4f0JbsVVt54uN13PvvFTz4/mouyGrLFcM60K1laqjLlEZI4S4SBB6PcWqPlpzaoyVLN+1h+rwNvDw/lxe+2MjQjhlcfvyxnNGrJfEx3ppXJhIECneRIOvVJo0pF/bj9rOO4+X53/PCF99x40sLyUiO44KBbRk3qB1dtTcv9UzhLlJPMpLjmHRKZyae1IlP12znpa828sy8DTz5yXr6ZaYxNiuTn/dtQ0ZyXKhLlSikcBepZx6PcXK35pzcrTnbC0uYtTCPVxfkcsebS/nj28sY0b05Z/drw8+Oa0lyvP5LSnDoX5JIA2qWEs+Ekzox4aROLN+cz6yFeby5aBPvL99KQqyHU3u04MzerRnZowUpCnqpA/3rEQmR41o34bjWTbh1dA/mf7eLt7/ZxL+/3cLsJVuIi/FwUpdmnN6zJacd15LmqfGhLlcijMJdJMQ8HmNIxwyGdMzgrnN6seC7Xcxespn3lv3AByu2YraEvpnpnNajBSO6N6d3mzQ8Ht0PVY5M4S4SRrxVgv7Os3uyfHMBHyz3hfzf3l/FX99bRUZyHCd2acaJXZtxYpc9/m12AAANA0lEQVRmIbkJt4Q/hbtImDIzerZpQs82TbjxtK5sLyzh09XbyV65lU/XbOetbzYB0LFZMsd3yuD4Tk0Z0jGD1mkKe1G4i0SMZinxB+7T6pxj5Q8FfLp6O5+v3cE732zmpa++B6BdRiKDj81g4LHH4Aoqqah0eHUYp9FRuItEIDOjR6sm9GjVhAkndaK8opLlmwv4asNOvlq/g49Xb+P1hXkA3Jczh76Z6fRrl06/zDT6tkunTVoCZgr8aKZwF4kCMV4PfTLT6JOZxjUndsQ5x8ad+3jh3c8oSWnNwo27mfbpOsoqfEMTH5MUS++2afRs7Tvsc1zrJnRslkysV2MJRguFu0gUMjOObZrM8LaxjBjRG4CS8gpWbC5gce5ulm7K59tNe3hm3gZK/cMUx3k9dGqeTPdWqXRtkULXlql0aZFC+4wkhX4EUriLNBLxMV7foZl26QfmlVVUsm7bXpZvzmfFlgJWbMln/oZdvLlo04E2sV6jfUYSHZul0Kl5Msc2TaJj02TaN02idVqijueHKYW7SCMW6/XQvVUq3VsdPJBZYUk5a7YWsnZrIWu2FbJ+217Wb9/Lx6u3UVpeWWV5o216Iu0yksg8JonMYxJpm55I22MSaZOeSMvUeGK01x8SCncR+YmU+Bj6t0unf5W9fIDKSseW/GI2bN/Lhh37+H7XPjbu2Efurn3M3bSFHXtLD2rvMWiRmkCrtARaNfE9tmgST4vUBFqkxtOiSTzNUuLJSIrThVlBpnAXkYB5PEabdN9e+Qldfvr6vtJyNu0uIndXEZv3FLN5dxGb9hTzQ34xa7YVMm/tdgqKy3+ynNdjZCTH0TQ5jmYp8TRNiSMjOY6MpDgyUuI4JimO73ZU0HJzPsckxZGWGEtCrEdn/ByBwl1EgiYpLoYuLVLp0uLw49XvKy1na34JWwtK2FpQzPaCErYXlrKtoIQde0vZXljCxp372LW3lIKSgz8I7s/55MDzOK+HtKRYmiTEkJYYS5PEWJokxJKaEEPqgccYUuJ//En2//iee0mKi4na7wwCCnczGw08BHiBp5xz9x3yuvlfPwvYB1zpnPs6yLWKRK1ZC/OYMmclm3YX0SY9kcmjuvPK/I3MW7vzQJvhnTO4cFD7n7QDfjJv/nc7eenL77m5dxnX3D6bS4a24+4xfQLa7pgBbQ87P5Dl92+7wjm8Zj/ZdlJcDB2axbDo+9019uXOs3tycrfm7NxXyofzcujQrSe79pXx2drtZK/cxraCEgqKy/B6jLIKx4bte8kvLqeguOzAaZ81iY/xkBTnC/qkOC+JcV4SY70kxXlJiPU9T4jzkhDjJSHWQ0Lsj4/xMR7iY/yPsT8+j9v/4/3xebzXS2yMEev14FxgtdVFjeFuZl7gEeB0IBfIMbO3nHPLqjQ7E+jq/xkKTPU/ikgNZi3M4/bXl1BUVgFA3u4ibp656Cft5q3deVDY5+0uYvKr34CDskp3YN7vZi6isspyFc7xwhcbAQ4K2eq2e/vrS5j/3U5eW5D3k/nAQQFf3fJ12fbkV74B40Ao5+0u4o43l3Lv+X0YM6AtW5p6GdGnNbMW5vHB8q0Hli0uq+T7nUUH2u1XXFZBYUk5hcXlFBSXU1hSzt6ScvaWlrO3pIK9JeXsK61gb2k5+0p9z4tKKw487thbemC6pLyC4rJKisoqqKisezCf2TGWkSPrvJojCmTPfQiwxjm3DsDMZgDnAlXD/VzgOef7OPrCzNLNrLVzbnPQKxaJMlPmrDwQVEerur3TymraAbz05fcHBWx12y0qqziw133o/ClzVh4UntUtX5dtl1UTmoFut7p2vj1sL81SgjtccllFJcVlFZSUV1JS7nte6n/ue6ygpKyS0grf9IHH8krKKnw/nl0bg1pTdaymPw/MbCww2jk3wT89HhjqnLuhSpt3gPucc5/6pz8AbnXOzT9kXROBif7J7sDKWtbdDNhey2XDjfoSnhqsL3GtumTV17or9u3Bm5R2YLp0y5oFddluXZYPwrLNgO1HWrbqNsJcXf59Heuca15To0D23Kv7tuHQT4RA2uCcewJ4IoBtHrkgs/nOuUF1XU84UF/CU7T0xczml+/ZGvH9gOh5T6Bh+hLI1QW5QLsq05nAplq0ERGRBhJIuOcAXc2so5nFARcDbx3S5i3gCvM5Htij4+0iIqFT42EZ51y5md0AzMF3KuTTzrmlZjbJ//pjwGx8p0GuwXcq5FX1VzIQhEM7YUR9CU/R0pdo6QeoL0elxi9URUQk8mhEHxGRKKRwFxGJQmEf7maWYGZfmdk3ZrbUzP7on59hZu+Z2Wr/4zGhrjUQZuY1s4X+awMiuR8bzGyJmS0ys/n+eZHal3Qze9XMVpjZcjMbFol9MbPu/vdj/0++md0coX35rf//+7dm9pI/ByKuHwBm9ht/P5aa2c3+efXel7APd6AEONU51w/oD4z2n5FzG/CBc64r8IF/OhL8BlheZTpS+wEw0jnXv8r5upHal4eAd51zPYB++N6fiOuLc26l//3oD2ThO7nhDSKsL2bWFrgJGOSc643vRI6LibB+AJhZb+BafFf69wN+YWZdaYi+OOci5gdIAr7GN27NSqC1f35rYGWo6wug/kz/G3kq8I5/XsT1w1/rBqDZIfMiri9AE2A9/pMLIrkvh9R/BjAvEvsCtAW+BzLwndH3jr8/EdUPf50X4htscf/0HcDvG6IvkbDnvv9QxiJgK/Cec+5LoKXzn0vvf2wRyhoD9CC+N7bqEByR2A/wXYE818wW+IeVgMjsSydgG/CM/3DZU2aWTGT2paqLgZf8zyOqL865POABYCOwGd91M3OJsH74fQucbGZNzSwJ3ynj7WiAvkREuDvnKpzvT81MYIj/T52IYma/ALY65yJl7IuaDHfODcQ3Iuj1ZnZyqAuqpRhgIDDVOTcA2EsE/Ll/JP6LDc8BXgl1LbXhP/58LtARaAMkm9nloa2qdpxzy4H7gfeAd4FvgJ/eraQeRES47+ec2w1kA6OBH8ysNYD/cWsISwvEcOAcM9sAzABONbMXiLx+AOCc2+R/3IrvuO4QIrMvuUCu/69BgFfxhX0k9mW/M4GvnXM/+KcjrS8/A9Y757Y558qA14ETiLx+AOCcm+acG+icOxnYCaymAfoS9uFuZs3NLN3/PBHfG78C35AHv/Q3+yXwZmgqDIxz7nbnXKZzrgO+P5n/45y7nAjrB4CZJZtZ6v7n+I6HfksE9sU5twX43sy6+2edhm8464jrSxWX8OMhGYi8vmwEjjezJDMzfO/JciKvHwCYWQv/Y3vgfHzvTb33JeyvUDWzvsCz+L4x9wAvO+f+18yaAi8D7fH9Y7jQObfz8GsKH2Y2ArjFOfeLSOyHmXXCt7cOvsMaLzrn7onEvgCYWX/gKSAOWIdv+AwPkdmXJHxfRnZyzu3xz4u498V/yvNF+A5hLAQmAClEWD8AzOwToClQBvzOOfdBQ7wnYR/uIiJy9ML+sIyIiBw9hbuISBRSuIuIRCGFu4hIFFK4i4hEoUBukC3SoPyniX3gn2wFVOAbIgBgiHOuNCSFHYGZXQ3M9p83LxJyOhVSwpqZ3QUUOuceCINavM65isO89ilwg3Nu0VGsL8Y51yCXokvjo8MyElHM7JfmG99/kZk9amYeM4sxs91mNsXMvjazOWY21Mw+MrN1ZnaWf9kJZvaG//WVZvaHANd7t5l9hW9coz+aWY5/fO7HzOcifMNRz/QvH2dmuVWurD7ezN73P7/bzB43s/fwDVYWY2Z/9W97sZlNaPjfqkQjhbtEDP+AcecBJ/gHkovBN5QDQBow1z+YWSlwF77L1i8E/rfKaob4lxkIXGpm/QNY79fOuSHOuc+Bh5xzg4E+/tdGO+dmAouAi5xvPPWaDhsNAM52zo0HJuIbUG4IMBjfIGzta/P7EalKx9wlkvwMXwDO9w05QiK+S+0Bipxz7/mfL8E3TGy5mS0BOlRZxxzn3C4AM5sFnIjv/8Hh1lvKj0MtAJxmZpOBBKAZsAD491H2403nXLH/+RnAcWZW9cOkK75L0kVqTeEukcSAp51zdxw00ywGXwjvV4nvDl77n1f9d37ol0yuhvUWOf8XU/5xW/4BDHTO5ZnZ3fhCvjrl/PiX8aFt9h7Sp1875z5AJIh0WEYiyfvAODNrBr6zampxCOMM890zNQnfmOHzjmK9ifg+LLb7R8W8oMprBUBqlekN+G51xyHtDjUH+LX/g2T/fVATj7JPIj+hPXeJGM65Jf7RAt83Mw++UfYmAZuOYjWfAi8CnYHn95/dEsh6nXM7zOxZfMMbfwd8WeXlZ4CnzKwI33H9u4AnzWwL8NUR6nkc38iAi/yHhLbi+9ARqROdCimNhv9MlN7OuZtDXYtIfdNhGRGRKKQ9dxGRKKQ9dxGRKKRwFxGJQgp3EZEopHAXEYlCCncRkSj0/wHRUJwHFwSFegAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"data_pred['Frequency'] = logmodel.predict(data_pred[['Intercept','Temperature']])\n",
"data_pred.plot(x=\"Temperature\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n",
"plt.scatter(x=data[\"Temperature\"],y=data[\"Frequency\"])\n",
"plt.grid(True)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Intercept \n",
" Temperature \n",
" Frequency \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 1 \n",
" 30.0 \n",
" 0.834373 \n",
" \n",
" \n",
" 1 \n",
" 1 \n",
" 30.5 \n",
" 0.826230 \n",
" \n",
" \n",
" 2 \n",
" 1 \n",
" 31.0 \n",
" 0.817774 \n",
" \n",
" \n",
" 3 \n",
" 1 \n",
" 31.5 \n",
" 0.809002 \n",
" \n",
" \n",
" 4 \n",
" 1 \n",
" 32.0 \n",
" 0.799911 \n",
" \n",
" \n",
" 5 \n",
" 1 \n",
" 32.5 \n",
" 0.790500 \n",
" \n",
" \n",
" 6 \n",
" 1 \n",
" 33.0 \n",
" 0.780766 \n",
" \n",
" \n",
" 7 \n",
" 1 \n",
" 33.5 \n",
" 0.770712 \n",
" \n",
" \n",
" 8 \n",
" 1 \n",
" 34.0 \n",
" 0.760339 \n",
" \n",
" \n",
" 9 \n",
" 1 \n",
" 34.5 \n",
" 0.749648 \n",
" \n",
" \n",
" 10 \n",
" 1 \n",
" 35.0 \n",
" 0.738645 \n",
" \n",
" \n",
" 11 \n",
" 1 \n",
" 35.5 \n",
" 0.727334 \n",
" \n",
" \n",
" 12 \n",
" 1 \n",
" 36.0 \n",
" 0.715721 \n",
" \n",
" \n",
" 13 \n",
" 1 \n",
" 36.5 \n",
" 0.703816 \n",
" \n",
" \n",
" 14 \n",
" 1 \n",
" 37.0 \n",
" 0.691626 \n",
" \n",
" \n",
" 15 \n",
" 1 \n",
" 37.5 \n",
" 0.679164 \n",
" \n",
" \n",
" 16 \n",
" 1 \n",
" 38.0 \n",
" 0.666441 \n",
" \n",
" \n",
" 17 \n",
" 1 \n",
" 38.5 \n",
" 0.653471 \n",
" \n",
" \n",
" 18 \n",
" 1 \n",
" 39.0 \n",
" 0.640269 \n",
" \n",
" \n",
" 19 \n",
" 1 \n",
" 39.5 \n",
" 0.626851 \n",
" \n",
" \n",
" 20 \n",
" 1 \n",
" 40.0 \n",
" 0.613235 \n",
" \n",
" \n",
" 21 \n",
" 1 \n",
" 40.5 \n",
" 0.599439 \n",
" \n",
" \n",
" 22 \n",
" 1 \n",
" 41.0 \n",
" 0.585485 \n",
" \n",
" \n",
" 23 \n",
" 1 \n",
" 41.5 \n",
" 0.571391 \n",
" \n",
" \n",
" 24 \n",
" 1 \n",
" 42.0 \n",
" 0.557181 \n",
" \n",
" \n",
" 25 \n",
" 1 \n",
" 42.5 \n",
" 0.542876 \n",
" \n",
" \n",
" 26 \n",
" 1 \n",
" 43.0 \n",
" 0.528501 \n",
" \n",
" \n",
" 27 \n",
" 1 \n",
" 43.5 \n",
" 0.514078 \n",
" \n",
" \n",
" 28 \n",
" 1 \n",
" 44.0 \n",
" 0.499631 \n",
" \n",
" \n",
" 29 \n",
" 1 \n",
" 44.5 \n",
" 0.485186 \n",
" \n",
" \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" \n",
" \n",
" 91 \n",
" 1 \n",
" 75.5 \n",
" 0.025508 \n",
" \n",
" \n",
" 92 \n",
" 1 \n",
" 76.0 \n",
" 0.024110 \n",
" \n",
" \n",
" 93 \n",
" 1 \n",
" 76.5 \n",
" 0.022787 \n",
" \n",
" \n",
" 94 \n",
" 1 \n",
" 77.0 \n",
" 0.021535 \n",
" \n",
" \n",
" 95 \n",
" 1 \n",
" 77.5 \n",
" 0.020350 \n",
" \n",
" \n",
" 96 \n",
" 1 \n",
" 78.0 \n",
" 0.019229 \n",
" \n",
" \n",
" 97 \n",
" 1 \n",
" 78.5 \n",
" 0.018169 \n",
" \n",
" \n",
" 98 \n",
" 1 \n",
" 79.0 \n",
" 0.017166 \n",
" \n",
" \n",
" 99 \n",
" 1 \n",
" 79.5 \n",
" 0.016217 \n",
" \n",
" \n",
" 100 \n",
" 1 \n",
" 80.0 \n",
" 0.015321 \n",
" \n",
" \n",
" 101 \n",
" 1 \n",
" 80.5 \n",
" 0.014473 \n",
" \n",
" \n",
" 102 \n",
" 1 \n",
" 81.0 \n",
" 0.013671 \n",
" \n",
" \n",
" 103 \n",
" 1 \n",
" 81.5 \n",
" 0.012913 \n",
" \n",
" \n",
" 104 \n",
" 1 \n",
" 82.0 \n",
" 0.012197 \n",
" \n",
" \n",
" 105 \n",
" 1 \n",
" 82.5 \n",
" 0.011520 \n",
" \n",
" \n",
" 106 \n",
" 1 \n",
" 83.0 \n",
" 0.010880 \n",
" \n",
" \n",
" 107 \n",
" 1 \n",
" 83.5 \n",
" 0.010275 \n",
" \n",
" \n",
" 108 \n",
" 1 \n",
" 84.0 \n",
" 0.009703 \n",
" \n",
" \n",
" 109 \n",
" 1 \n",
" 84.5 \n",
" 0.009163 \n",
" \n",
" \n",
" 110 \n",
" 1 \n",
" 85.0 \n",
" 0.008653 \n",
" \n",
" \n",
" 111 \n",
" 1 \n",
" 85.5 \n",
" 0.008171 \n",
" \n",
" \n",
" 112 \n",
" 1 \n",
" 86.0 \n",
" 0.007716 \n",
" \n",
" \n",
" 113 \n",
" 1 \n",
" 86.5 \n",
" 0.007286 \n",
" \n",
" \n",
" 114 \n",
" 1 \n",
" 87.0 \n",
" 0.006879 \n",
" \n",
" \n",
" 115 \n",
" 1 \n",
" 87.5 \n",
" 0.006496 \n",
" \n",
" \n",
" 116 \n",
" 1 \n",
" 88.0 \n",
" 0.006133 \n",
" \n",
" \n",
" 117 \n",
" 1 \n",
" 88.5 \n",
" 0.005791 \n",
" \n",
" \n",
" 118 \n",
" 1 \n",
" 89.0 \n",
" 0.005467 \n",
" \n",
" \n",
" 119 \n",
" 1 \n",
" 89.5 \n",
" 0.005162 \n",
" \n",
" \n",
" 120 \n",
" 1 \n",
" 90.0 \n",
" 0.004873 \n",
" \n",
" \n",
"
\n",
"
121 rows × 3 columns
\n",
"
"
],
"text/plain": [
" Intercept Temperature Frequency\n",
"0 1 30.0 0.834373\n",
"1 1 30.5 0.826230\n",
"2 1 31.0 0.817774\n",
"3 1 31.5 0.809002\n",
"4 1 32.0 0.799911\n",
"5 1 32.5 0.790500\n",
"6 1 33.0 0.780766\n",
"7 1 33.5 0.770712\n",
"8 1 34.0 0.760339\n",
"9 1 34.5 0.749648\n",
"10 1 35.0 0.738645\n",
"11 1 35.5 0.727334\n",
"12 1 36.0 0.715721\n",
"13 1 36.5 0.703816\n",
"14 1 37.0 0.691626\n",
"15 1 37.5 0.679164\n",
"16 1 38.0 0.666441\n",
"17 1 38.5 0.653471\n",
"18 1 39.0 0.640269\n",
"19 1 39.5 0.626851\n",
"20 1 40.0 0.613235\n",
"21 1 40.5 0.599439\n",
"22 1 41.0 0.585485\n",
"23 1 41.5 0.571391\n",
"24 1 42.0 0.557181\n",
"25 1 42.5 0.542876\n",
"26 1 43.0 0.528501\n",
"27 1 43.5 0.514078\n",
"28 1 44.0 0.499631\n",
"29 1 44.5 0.485186\n",
".. ... ... ...\n",
"91 1 75.5 0.025508\n",
"92 1 76.0 0.024110\n",
"93 1 76.5 0.022787\n",
"94 1 77.0 0.021535\n",
"95 1 77.5 0.020350\n",
"96 1 78.0 0.019229\n",
"97 1 78.5 0.018169\n",
"98 1 79.0 0.017166\n",
"99 1 79.5 0.016217\n",
"100 1 80.0 0.015321\n",
"101 1 80.5 0.014473\n",
"102 1 81.0 0.013671\n",
"103 1 81.5 0.012913\n",
"104 1 82.0 0.012197\n",
"105 1 82.5 0.011520\n",
"106 1 83.0 0.010880\n",
"107 1 83.5 0.010275\n",
"108 1 84.0 0.009703\n",
"109 1 84.5 0.009163\n",
"110 1 85.0 0.008653\n",
"111 1 85.5 0.008171\n",
"112 1 86.0 0.007716\n",
"113 1 86.5 0.007286\n",
"114 1 87.0 0.006879\n",
"115 1 87.5 0.006496\n",
"116 1 88.0 0.006133\n",
"117 1 88.5 0.005791\n",
"118 1 89.0 0.005467\n",
"119 1 89.5 0.005162\n",
"120 1 90.0 0.004873\n",
"\n",
"[121 rows x 3 columns]"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data_pred"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 0.81 !"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"P(X <= 2) = 0.9987\n"
]
}
],
"source": [
"from scipy.stats import binom\n",
"\n",
"n = 6\n",
"p = 0.81\n",
"\n",
"prob = 0\n",
"for k in range(2,7):\n",
" prob += binom.pmf(k, n, p)\n",
"print(f\"P(X <= 2) = {prob:.4f}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## je ne comprends pas le raisonnement en bas !"
]
},
{
"cell_type": "markdown",
"metadata": {
"hideCode": false,
"hidePrompt": false,
"scrolled": true
},
"source": [
"Comme on pouvait s'attendre au vu des données initiales, la\n",
"température n'a pas d'impact notable sur la probabilité d'échec des\n",
"joints toriques. Elle sera d'environ 0.2, comme dans les essais\n",
"précédents où nous il y a eu défaillance d'au moins un joint. Revenons\n",
"à l'ensemble des données initiales pour estimer la probabilité de\n",
"défaillance d'un joint:\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.06521739130434782\n"
]
}
],
"source": [
"data = pd.read_csv(\"shuttle.csv\")\n",
"print(np.sum(data.Malfunction)/np.sum(data.Count))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Cette probabilité est donc d'environ $p=0.065$, sachant qu'il existe\n",
"un joint primaire un joint secondaire sur chacune des trois parties du\n",
"lançeur, la probabilité de défaillance des deux joints d'un lançeur\n",
"est de $p^2 \\approx 0.00425$. La probabilité de défaillance d'un des\n",
"lançeur est donc de $1-(1-p^2)^3 \\approx 1.2%$. Ça serait vraiment\n",
"pas de chance... Tout est sous contrôle, le décollage peut donc avoir\n",
"lieu demain comme prévu.\n",
"\n",
"Seulement, le lendemain, la navette Challenger explosera et emportera\n",
"avec elle ses sept membres d'équipages. L'opinion publique est\n",
"fortement touchée et lors de l'enquête qui suivra, la fiabilité des\n",
"joints toriques sera directement mise en cause. Au delà des problèmes\n",
"de communication interne à la NASA qui sont pour beaucoup dans ce\n",
"fiasco, l'analyse précédente comporte (au moins) un petit\n",
"problème... Saurez-vous le trouver ? Vous êtes libre de modifier cette\n",
"analyse et de regarder ce jeu de données sous tous les angles afin\n",
"d'expliquer ce qui ne va pas."
]
}
],
"metadata": {
"celltoolbar": "Hide code",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}