From 2395c0f0b5dc1e4ffa36abbbd87ecd855278bc0d Mon Sep 17 00:00:00 2001 From: 8d8f65243a3005308e219351e328782f <8d8f65243a3005308e219351e328782f@app-learninglab.inria.fr> Date: Thu, 16 Apr 2020 12:12:20 +0000 Subject: [PATCH] =?UTF-8?q?Modification=20du=20lien,=20r=C3=A9f=C3=A9rence?= =?UTF-8?q?=20=C3=A0=20un=20fichier=20local?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../exo1/analyse-syndrome-grippal-save.ipynb | 2519 +++++++++++++++++ 1 file changed, 2519 insertions(+) create mode 100644 module3/exo1/analyse-syndrome-grippal-save.ipynb diff --git a/module3/exo1/analyse-syndrome-grippal-save.ipynb b/module3/exo1/analyse-syndrome-grippal-save.ipynb new file mode 100644 index 0000000..c11cb74 --- /dev/null +++ b/module3/exo1/analyse-syndrome-grippal-save.ipynb @@ -0,0 +1,2519 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Incidence du syndrome grippal" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import isoweek" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'https://app-learninglab.inria.fr/moocrr/gitlab/8d8f65243a3005308e219351e328782f/mooc-rr/raw/master/module3/exo1/incidence-PAY-3.csv?inline=false'" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_url = \"https://app-learninglab.inria.fr/moocrr/gitlab/8d8f65243a3005308e219351e328782f/mooc-rr/raw/master/module3/exo1/incidence-PAY-3.csv?inline=false\"\n", + "data_url" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n", + "\n", + "| Nom de colonne | Libellé de colonne |\n", + "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n", + "| week | Semaine calendaire (ISO 8601) |\n", + "| indicator | Code de l'indicateur de surveillance |\n", + "| inc | Estimation de l'incidence de consultations en nombre de cas |\n", + "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n", + "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n", + "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", + "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", + "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n", + "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n", + "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n", + "\n", + "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202014300.00.000.00.0FRFrance
1202013300.00.000.00.0FRFrance
2202012383215873.010769.0139.017.0FRFrance
3202011310170493652.0109756.0154142.0166.0FRFrance
4202010310497796650.0113304.0159146.0172.0FRFrance
52020093110696102066.0119326.0168155.0181.0FRFrance
62020083143753133984.0153522.0218203.0233.0FRFrance
72020073183610172812.0194408.0279263.0295.0FRFrance
82020063206669195481.0217857.0314297.0331.0FRFrance
92020053187957177445.0198469.0285269.0301.0FRFrance
102020043122331113492.0131170.0186173.0199.0FRFrance
1120200337841371330.085496.0119108.0130.0FRFrance
1220200235361447654.059574.08172.090.0FRFrance
1320200133685031608.042092.05648.064.0FRFrance
1420195232813523220.033050.04336.050.0FRFrance
1520195132978625042.034530.04538.052.0FRFrance
1620195033422329156.039290.05244.060.0FRFrance
1720194932566221414.029910.03933.045.0FRFrance
1820194832236718055.026679.03427.041.0FRFrance
1920194731866914759.022579.02822.034.0FRFrance
2020194631603012567.019493.02419.029.0FRFrance
212019453101387160.013116.01510.020.0FRFrance
22201944378225010.010634.0128.016.0FRFrance
23201943394876448.012526.0149.019.0FRFrance
24201942377475243.010251.0128.016.0FRFrance
25201941371224720.09524.0117.015.0FRFrance
26201940385055784.011226.0139.017.0FRFrance
27201939370914462.09720.0117.015.0FRFrance
28201938348972891.06903.074.010.0FRFrance
29201937331721367.04977.052.08.0FRFrance
.................................
181919852132609619621.032571.04735.059.0FRFrance
182019852032789620885.034907.05138.064.0FRFrance
182119851934315432821.053487.07859.097.0FRFrance
182219851834055529935.051175.07455.093.0FRFrance
182319851733405324366.043740.06244.080.0FRFrance
182419851635036236451.064273.09166.0116.0FRFrance
182519851536388145538.082224.011683.0149.0FRFrance
18261985143134545114400.0154690.0244207.0281.0FRFrance
18271985133197206176080.0218332.0357319.0395.0FRFrance
18281985123245240223304.0267176.0445405.0485.0FRFrance
18291985113276205252399.0300011.0501458.0544.0FRFrance
18301985103353231326279.0380183.0640591.0689.0FRFrance
18311985093369895341109.0398681.0670618.0722.0FRFrance
18321985083389886359529.0420243.0707652.0762.0FRFrance
18331985073471852432599.0511105.0855784.0926.0FRFrance
18341985063565825518011.0613639.01026939.01113.0FRFrance
18351985053637302592795.0681809.011551074.01236.0FRFrance
18361985043424937390794.0459080.0770708.0832.0FRFrance
18371985033213901174689.0253113.0388317.0459.0FRFrance
183819850239758680949.0114223.0177147.0207.0FRFrance
183919850138548965918.0105060.0155120.0190.0FRFrance
184019845238483060602.0109058.0154110.0198.0FRFrance
1841198451310172680242.0123210.0185146.0224.0FRFrance
18421984503123680101401.0145959.0225184.0266.0FRFrance
1843198449310107381684.0120462.0184149.0219.0FRFrance
184419844837862060634.096606.0143110.0176.0FRFrance
184519844737202954274.089784.013199.0163.0FRFrance
184619844638733067686.0106974.0159123.0195.0FRFrance
18471984453135223101414.0169032.0246184.0308.0FRFrance
184819844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1849 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202014 3 0 0.0 0.0 0 0.0 \n", + "1 202013 3 0 0.0 0.0 0 0.0 \n", + "2 202012 3 8321 5873.0 10769.0 13 9.0 \n", + "3 202011 3 101704 93652.0 109756.0 154 142.0 \n", + "4 202010 3 104977 96650.0 113304.0 159 146.0 \n", + "5 202009 3 110696 102066.0 119326.0 168 155.0 \n", + "6 202008 3 143753 133984.0 153522.0 218 203.0 \n", + "7 202007 3 183610 172812.0 194408.0 279 263.0 \n", + "8 202006 3 206669 195481.0 217857.0 314 297.0 \n", + "9 202005 3 187957 177445.0 198469.0 285 269.0 \n", + "10 202004 3 122331 113492.0 131170.0 186 173.0 \n", + "11 202003 3 78413 71330.0 85496.0 119 108.0 \n", + "12 202002 3 53614 47654.0 59574.0 81 72.0 \n", + "13 202001 3 36850 31608.0 42092.0 56 48.0 \n", + "14 201952 3 28135 23220.0 33050.0 43 36.0 \n", + "15 201951 3 29786 25042.0 34530.0 45 38.0 \n", + "16 201950 3 34223 29156.0 39290.0 52 44.0 \n", + "17 201949 3 25662 21414.0 29910.0 39 33.0 \n", + "18 201948 3 22367 18055.0 26679.0 34 27.0 \n", + "19 201947 3 18669 14759.0 22579.0 28 22.0 \n", + "20 201946 3 16030 12567.0 19493.0 24 19.0 \n", + "21 201945 3 10138 7160.0 13116.0 15 10.0 \n", + "22 201944 3 7822 5010.0 10634.0 12 8.0 \n", + "23 201943 3 9487 6448.0 12526.0 14 9.0 \n", + "24 201942 3 7747 5243.0 10251.0 12 8.0 \n", + "25 201941 3 7122 4720.0 9524.0 11 7.0 \n", + "26 201940 3 8505 5784.0 11226.0 13 9.0 \n", + "27 201939 3 7091 4462.0 9720.0 11 7.0 \n", + "28 201938 3 4897 2891.0 6903.0 7 4.0 \n", + "29 201937 3 3172 1367.0 4977.0 5 2.0 \n", + "... ... ... ... ... ... ... ... \n", + "1819 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1820 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1821 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1822 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1823 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1824 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1825 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1826 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1827 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1828 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1829 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1830 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1831 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1832 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1833 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1834 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1835 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1836 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1837 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1838 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1839 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1840 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1841 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1842 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1843 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1844 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1845 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1846 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1847 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1848 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 0.0 FR France \n", + "1 0.0 FR France \n", + "2 17.0 FR France \n", + "3 166.0 FR France \n", + "4 172.0 FR France \n", + "5 181.0 FR France \n", + "6 233.0 FR France \n", + "7 295.0 FR France \n", + "8 331.0 FR France \n", + "9 301.0 FR France \n", + "10 199.0 FR France \n", + "11 130.0 FR France \n", + "12 90.0 FR France \n", + "13 64.0 FR France \n", + "14 50.0 FR France \n", + "15 52.0 FR France \n", + "16 60.0 FR France \n", + "17 45.0 FR France \n", + "18 41.0 FR France \n", + "19 34.0 FR France \n", + "20 29.0 FR France \n", + "21 20.0 FR France \n", + "22 16.0 FR France \n", + "23 19.0 FR France \n", + "24 16.0 FR France \n", + "25 15.0 FR France \n", + "26 17.0 FR France \n", + "27 15.0 FR France \n", + "28 10.0 FR France \n", + "29 8.0 FR France \n", + "... ... ... ... \n", + "1819 59.0 FR France \n", + "1820 64.0 FR France \n", + "1821 97.0 FR France \n", + "1822 93.0 FR France \n", + "1823 80.0 FR France \n", + "1824 116.0 FR France \n", + "1825 149.0 FR France \n", + "1826 281.0 FR France \n", + "1827 395.0 FR France \n", + "1828 485.0 FR France \n", + "1829 544.0 FR France \n", + "1830 689.0 FR France \n", + "1831 722.0 FR France \n", + "1832 762.0 FR France \n", + "1833 926.0 FR France \n", + "1834 1113.0 FR France \n", + "1835 1236.0 FR France \n", + "1836 832.0 FR France \n", + "1837 459.0 FR France \n", + "1838 207.0 FR France \n", + "1839 190.0 FR France \n", + "1840 198.0 FR France \n", + "1841 224.0 FR France \n", + "1842 266.0 FR France \n", + "1843 219.0 FR France \n", + "1844 176.0 FR France \n", + "1845 163.0 FR France \n", + "1846 195.0 FR France \n", + "1847 308.0 FR France \n", + "1848 213.0 FR France \n", + "\n", + "[1849 rows x 10 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data = pd.read_csv(data_url, skiprows=1)\n", + "raw_data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
161219891930NaNNaN0NaNNaNFRFrance
\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", + "1612 198919 3 0 NaN NaN 0 NaN NaN \n", + "\n", + " geo_insee geo_name \n", + "1612 FR France " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data[raw_data.isnull().any(axis=1)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202014300.00.000.00.0FRFrance
1202013300.00.000.00.0FRFrance
2202012383215873.010769.0139.017.0FRFrance
3202011310170493652.0109756.0154142.0166.0FRFrance
4202010310497796650.0113304.0159146.0172.0FRFrance
52020093110696102066.0119326.0168155.0181.0FRFrance
62020083143753133984.0153522.0218203.0233.0FRFrance
72020073183610172812.0194408.0279263.0295.0FRFrance
82020063206669195481.0217857.0314297.0331.0FRFrance
92020053187957177445.0198469.0285269.0301.0FRFrance
102020043122331113492.0131170.0186173.0199.0FRFrance
1120200337841371330.085496.0119108.0130.0FRFrance
1220200235361447654.059574.08172.090.0FRFrance
1320200133685031608.042092.05648.064.0FRFrance
1420195232813523220.033050.04336.050.0FRFrance
1520195132978625042.034530.04538.052.0FRFrance
1620195033422329156.039290.05244.060.0FRFrance
1720194932566221414.029910.03933.045.0FRFrance
1820194832236718055.026679.03427.041.0FRFrance
1920194731866914759.022579.02822.034.0FRFrance
2020194631603012567.019493.02419.029.0FRFrance
212019453101387160.013116.01510.020.0FRFrance
22201944378225010.010634.0128.016.0FRFrance
23201943394876448.012526.0149.019.0FRFrance
24201942377475243.010251.0128.016.0FRFrance
25201941371224720.09524.0117.015.0FRFrance
26201940385055784.011226.0139.017.0FRFrance
27201939370914462.09720.0117.015.0FRFrance
28201938348972891.06903.074.010.0FRFrance
29201937331721367.04977.052.08.0FRFrance
.................................
181919852132609619621.032571.04735.059.0FRFrance
182019852032789620885.034907.05138.064.0FRFrance
182119851934315432821.053487.07859.097.0FRFrance
182219851834055529935.051175.07455.093.0FRFrance
182319851733405324366.043740.06244.080.0FRFrance
182419851635036236451.064273.09166.0116.0FRFrance
182519851536388145538.082224.011683.0149.0FRFrance
18261985143134545114400.0154690.0244207.0281.0FRFrance
18271985133197206176080.0218332.0357319.0395.0FRFrance
18281985123245240223304.0267176.0445405.0485.0FRFrance
18291985113276205252399.0300011.0501458.0544.0FRFrance
18301985103353231326279.0380183.0640591.0689.0FRFrance
18311985093369895341109.0398681.0670618.0722.0FRFrance
18321985083389886359529.0420243.0707652.0762.0FRFrance
18331985073471852432599.0511105.0855784.0926.0FRFrance
18341985063565825518011.0613639.01026939.01113.0FRFrance
18351985053637302592795.0681809.011551074.01236.0FRFrance
18361985043424937390794.0459080.0770708.0832.0FRFrance
18371985033213901174689.0253113.0388317.0459.0FRFrance
183819850239758680949.0114223.0177147.0207.0FRFrance
183919850138548965918.0105060.0155120.0190.0FRFrance
184019845238483060602.0109058.0154110.0198.0FRFrance
1841198451310172680242.0123210.0185146.0224.0FRFrance
18421984503123680101401.0145959.0225184.0266.0FRFrance
1843198449310107381684.0120462.0184149.0219.0FRFrance
184419844837862060634.096606.0143110.0176.0FRFrance
184519844737202954274.089784.013199.0163.0FRFrance
184619844638733067686.0106974.0159123.0195.0FRFrance
18471984453135223101414.0169032.0246184.0308.0FRFrance
184819844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1848 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202014 3 0 0.0 0.0 0 0.0 \n", + "1 202013 3 0 0.0 0.0 0 0.0 \n", + "2 202012 3 8321 5873.0 10769.0 13 9.0 \n", + "3 202011 3 101704 93652.0 109756.0 154 142.0 \n", + "4 202010 3 104977 96650.0 113304.0 159 146.0 \n", + "5 202009 3 110696 102066.0 119326.0 168 155.0 \n", + "6 202008 3 143753 133984.0 153522.0 218 203.0 \n", + "7 202007 3 183610 172812.0 194408.0 279 263.0 \n", + "8 202006 3 206669 195481.0 217857.0 314 297.0 \n", + "9 202005 3 187957 177445.0 198469.0 285 269.0 \n", + "10 202004 3 122331 113492.0 131170.0 186 173.0 \n", + "11 202003 3 78413 71330.0 85496.0 119 108.0 \n", + "12 202002 3 53614 47654.0 59574.0 81 72.0 \n", + "13 202001 3 36850 31608.0 42092.0 56 48.0 \n", + "14 201952 3 28135 23220.0 33050.0 43 36.0 \n", + "15 201951 3 29786 25042.0 34530.0 45 38.0 \n", + "16 201950 3 34223 29156.0 39290.0 52 44.0 \n", + "17 201949 3 25662 21414.0 29910.0 39 33.0 \n", + "18 201948 3 22367 18055.0 26679.0 34 27.0 \n", + "19 201947 3 18669 14759.0 22579.0 28 22.0 \n", + "20 201946 3 16030 12567.0 19493.0 24 19.0 \n", + "21 201945 3 10138 7160.0 13116.0 15 10.0 \n", + "22 201944 3 7822 5010.0 10634.0 12 8.0 \n", + "23 201943 3 9487 6448.0 12526.0 14 9.0 \n", + "24 201942 3 7747 5243.0 10251.0 12 8.0 \n", + "25 201941 3 7122 4720.0 9524.0 11 7.0 \n", + "26 201940 3 8505 5784.0 11226.0 13 9.0 \n", + "27 201939 3 7091 4462.0 9720.0 11 7.0 \n", + "28 201938 3 4897 2891.0 6903.0 7 4.0 \n", + "29 201937 3 3172 1367.0 4977.0 5 2.0 \n", + "... ... ... ... ... ... ... ... \n", + "1819 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1820 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1821 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1822 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1823 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1824 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1825 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1826 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1827 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1828 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1829 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1830 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1831 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1832 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1833 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1834 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1835 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1836 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1837 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1838 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1839 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1840 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1841 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1842 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1843 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1844 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1845 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1846 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1847 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1848 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 0.0 FR France \n", + "1 0.0 FR France \n", + "2 17.0 FR France \n", + "3 166.0 FR France \n", + "4 172.0 FR France \n", + "5 181.0 FR France \n", + "6 233.0 FR France \n", + "7 295.0 FR France \n", + "8 331.0 FR France \n", + "9 301.0 FR France \n", + "10 199.0 FR France \n", + "11 130.0 FR France \n", + "12 90.0 FR France \n", + "13 64.0 FR France \n", + "14 50.0 FR France \n", + "15 52.0 FR France \n", + "16 60.0 FR France \n", + "17 45.0 FR France \n", + "18 41.0 FR France \n", + "19 34.0 FR France \n", + "20 29.0 FR France \n", + "21 20.0 FR France \n", + "22 16.0 FR France \n", + "23 19.0 FR France \n", + "24 16.0 FR France \n", + "25 15.0 FR France \n", + "26 17.0 FR France \n", + "27 15.0 FR France \n", + "28 10.0 FR France \n", + "29 8.0 FR France \n", + "... ... ... ... \n", + "1819 59.0 FR France \n", + "1820 64.0 FR France \n", + "1821 97.0 FR France \n", + "1822 93.0 FR France \n", + "1823 80.0 FR France \n", + "1824 116.0 FR France \n", + "1825 149.0 FR France \n", + "1826 281.0 FR France \n", + "1827 395.0 FR France \n", + "1828 485.0 FR France \n", + "1829 544.0 FR France \n", + "1830 689.0 FR France \n", + "1831 722.0 FR France \n", + "1832 762.0 FR France \n", + "1833 926.0 FR France \n", + "1834 1113.0 FR France \n", + "1835 1236.0 FR France \n", + "1836 832.0 FR France \n", + "1837 459.0 FR France \n", + "1838 207.0 FR France \n", + "1839 190.0 FR France \n", + "1840 198.0 FR France \n", + "1841 224.0 FR France \n", + "1842 266.0 FR France \n", + "1843 219.0 FR France \n", + "1844 176.0 FR France \n", + "1845 163.0 FR France \n", + "1846 195.0 FR France \n", + "1847 308.0 FR France \n", + "1848 213.0 FR France \n", + "\n", + "[1848 rows x 10 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = raw_data.dropna().copy()\n", + "data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Nos données utilisent une convention inhabituelle: le numéro de\n", + "semaine est collé à l'année, donnant l'impression qu'il s'agit\n", + "de nombre entier. C'est comme ça que Pandas les interprète.\n", + " \n", + "Un deuxième problème est que Pandas ne comprend pas les numéros de\n", + "semaine. Il faut lui fournir les dates de début et de fin de\n", + "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n", + "\n", + "Comme la conversion des semaines est devenu assez complexe, nous\n", + "écrivons une petite fonction Python pour cela. Ensuite, nous\n", + "l'appliquons à tous les points de nos donnés. Les résultats vont\n", + "dans une nouvelle colonne 'period'." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "def convert_week(year_and_week_int):\n", + " year_and_week_str = str(year_and_week_int)\n", + " year = int(year_and_week_str[:4])\n", + " week = int(year_and_week_str[4:])\n", + " w = isoweek.Week(year, week)\n", + " return pd.Period(w.day(0), 'W')\n", + "\n", + "data['period'] = [convert_week(yw) for yw in data['week']]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Il restent deux petites modifications à faire.\n", + "\n", + "Premièrement, nous définissons les périodes d'observation\n", + "comme nouvel index de notre jeux de données. Ceci en fait\n", + "une suite chronologique, ce qui sera pratique par la suite.\n", + "\n", + "Deuxièmement, nous trions les points par période, dans\n", + "le sens chronologique." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "sorted_data = data.set_index('period').sort_index()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Nous vérifions la cohérence des données. Entre la fin d'une période et\n", + "le début de la période qui suit, la différence temporelle doit être\n", + "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n", + "d'une seconde.\n", + "\n", + "Ceci s'avère tout à fait juste sauf pour deux périodes consécutives\n", + "entre lesquelles il manque une semaine.\n", + "\n", + "Nous reconnaissons ces dates: c'est la semaine sans observations\n", + "que nous avions supprimées !" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" + ] + } + ], + "source": [ + "periods = sorted_data.index\n", + "for p1, p2 in zip(periods[:-1], periods[1:]):\n", + " delta = p2.to_timestamp() - p1.end_time\n", + " if delta > pd.Timedelta('1s'):\n", + " print(p1, p2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Un premier regard sur les données !" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXm4HUWZ/vud9e43udlJAkkk7KBAZBEEBCHgMjCiM7iBiqIOo+OsP3AZHJEZGWdkRAcclLAqiLiAshk2IxACCWFJCElu9o3cm+3m7vcs9fujq3o5p7q7+nSfc/ok9T7PfW6f6lq+rq6ur76lviLGGDQ0NDQ0NMIiUW8CNDQ0NDQODGiGoqGhoaERCTRD0dDQ0NCIBJqhaGhoaGhEAs1QNDQ0NDQigWYoGhoaGhqRQDMUDQ0NDY1IoBmKhoaGhkYk0AxFQ0NDQyMSpOpNQC0xceJENmvWrHqToaGhodFQWLZs2S7G2CS/fAcVQ5k1axaWLl1abzI0NDQ0GgpEtEkln1Z5aWhoaGhEAs1QNDQ0NDQigWYoGhoaGhqRQDMUDQ0NDY1IoBmKhoaGhkYk8GUoRLSAiHqIaIUtrYuIFhLRWv5/vO3etUTUTUSriWi+Lf1kInqD37uZiIinZ4nolzx9CRHNspW5grexloiusKXP5nnX8rKZ8F2hoaGhoREGKhLKnQAuLEm7BsBTjLG5AJ7iv0FExwC4DMCxvMwtRJTkZW4FcBWAufxP1HklgL2MscMB3ATgRl5XF4DrAJwK4BQA19kY140AbuLt7+V1aGhoaGjUEb4MhTG2CMCekuSLAdzFr+8CcIkt/X7G2ChjbAOAbgCnENE0AB2MscXMOHP47pIyoq4HAZzHpZf5ABYyxvYwxvYCWAjgQn7vXJ63tP0DHmP5Ih5YugX66GYNDY24odKNjVMYYzsAgDG2g4gm8/TpAF605dvK03L8ujRdlNnC68oTUR+ACfb0kjITAOxjjOUldR3w+NHTa/Gjp7vRmknhgydMqzc5GhoaGiaiNsqTJI15pFdSxquucoKIriKipUS0tLe31y1bw2BH3wgAYHA075NTQ0NDo7aolKHs5Gos8P89PH0rgJm2fDMAbOfpMyTpjjJElALQCUPF5lbXLgDjeN7SusrAGLuNMTaPMTZv0iTfUDSxR6Fo8M5UUsZXNTQ0NOqHShnKwwCE19UVAB6ypV/GPbdmwzC+v8TVY/1EdBq3gVxeUkbU9VEAT3M7yxMALiCi8dwYfwGAJ/i9Z3je0vYPeOQ5Q0kmNEPR0NCIF3xtKER0H4BzAEwkoq0wPK++B+ABIroSwGYAHwMAxthKInoAwJsA8gCuZowVeFVfhuEx1gzgMf4HALcDuIeIumFIJpfxuvYQ0fUAXub5vsMYE84B/w/A/UT0XQDLeR0HBfKFIgAgldBbiDQ0NOIFX4bCGPu4y63zXPLfAOAGSfpSAMdJ0kfAGZLk3gIACyTp62G4Eh90yGuVl4aGRkyhl7kNBtOGolVeGhoaMYNmKA0GwVASpBmKhoZGvKAZioaGhoZGJNAMpcEgNF3MfeuNhoaGRl2gGUqDgcfUhI68oqGhETdohtJgEJYTzVA0NDTiBs1QGgzCFl/UHEVDQyNm0Ayl4aC9uzQ0NOIJzVAaDGQa5TU0NDTiBc1QGgzahqKhoRFXaIbSYLD2M2qOoqGhES9ohtJgIC6jFDU/0dDQiBk0Q2kwmDYUzVA0NDRiBs1QGgykd8praGjEFJqhNBiEyqsRJJTbFq3DrGseMc9w0dDQOLChGUqjoYHchm9auBYAMJrXDEVD42CAZigNBsttOP4sRUfY19A4uKAZSoNBn4OioaERV2iG0mBoxFhejUOphoZGGGiG0qAoNoBZQstSGhoHFzRDaTDoSVpDQyOu0AylQdFIaqRGcCDQ0NAID81QGhSNMEmTdiDQ0DiooBmKRtXQCExPQ0MjOmiG0qBopKm6kWjV0NCoHJqhNCoaYJYWKi8tqGhoHBzQDEWj+tAMRUPjoIBmKA2KRog2bIaJaQBaNTQ0wkMzFI2qQ6u8NDQODmiG0qDwmqRvW7QOF9z0p9oR4wPNTzQ0Dg6EYihE9PdEtJKIVhDRfUTURERdRLSQiNby/+Nt+a8lom4iWk1E823pJxPRG/zezcStuUSUJaJf8vQlRDTLVuYK3sZaIroizHM0Irwm6X9/9C2s2TlQM1pcYZ4uqVmKhsbBgIoZChFNB/BVAPMYY8cBSAK4DMA1AJ5ijM0F8BT/DSI6ht8/FsCFAG4hoiSv7lYAVwGYy/8u5OlXAtjLGDscwE0AbuR1dQG4DsCpAE4BcJ2dcWnEC5qdaGgcHAir8koBaCaiFIAWANsBXAzgLn7/LgCX8OuLAdzPGBtljG0A0A3gFCKaBqCDMbaYGUvZu0vKiLoeBHAel17mA1jIGNvDGNsLYCEsJnRQoJEW/Y1Eq4aGRuWomKEwxrYB+C8AmwHsANDHGPsjgCmMsR08zw4Ak3mR6QC22KrYytOm8+vSdEcZxlgeQB+ACR51HfAw93Y0wLpfe3lpaBxcCKPyGg9DgpgN4BAArUT0Ka8ikjTmkV5pmVI6ryKipUS0tLe314M8japB8xMNjYMCYVRe7wewgTHWyxjLAfgNgPcA2MnVWOD/e3j+rQBm2srPgKEi28qvS9MdZbharRPAHo+6ysAYu40xNo8xNm/SpEkVPmr80EhqpAYiVUNDIwTCMJTNAE4johZu1zgPwCoADwMQXldXAHiIXz8M4DLuuTUbhvH9Ja4W6yei03g9l5eUEXV9FMDT3M7yBIALiGg8l5Qu4GkHDRphktahVzQ0Di6kKi3IGFtCRA8CeAVAHsByALcBaAPwABFdCYPpfIznX0lEDwB4k+e/mjFW4NV9GcCdAJoBPMb/AOB2APcQUTcMyeQyXtceIroewMs833cYY3sqfRaN6kLbUDQ0Dg5UzFAAgDF2HQz3XTtGYUgrsvw3ALhBkr4UwHGS9BFwhiS5twDAgoAkHzhooGV/A5GqoaERAnqnfIOiEeZocb5WI9CqoaERHpqhaFQdeqe8hsbBAc1QGhSNNEc3Eq0aGhqVQzMUjapBnyivoXFwQTOUBkUjqZHCkMoYw9/8fBle6N4VHUEaGhpVgWYoDQqVObreTCeKMDEjuSIefeNtfPbOl/0za2ho1BWaoRzAKMZEiImCr5HWn2loxB6aoTQoVCbpeksoAvGgQkNDo9rQDKVBoaTyqjoV3jCjDceEsWloaFQXmqEcwIjLPB6GDB22RUOjcaAZSoNCZdVfjAlHCeflZfwn7YSsoRF7aIbSYGikadUypFfOUcyDcRrpwTU0DlJohtJgCDI1x0RACb0PRUNDozGgGUqDQsnLKyb2h3A2FA0NjUaBZigNhiDntNd/H0r4A7a0gKKh0TjQDOUARv3VRRG0bxrlNTQ04g7NUBoUaiqveCCM6k14qpG2ymtoxB6aoRzAqLuAEoXKKyJKNDQ0qg/NUBoUjRAcUkB7eWloHBzQDKVBoRbLq/p0qCCMyismj6ChoaEAzVAOYNR7MjbPlNdeXhoaBwU0Q2lQqLkNN/5sLFRe2iSvoRF/aIbSoGgolVcURnnNUTQ0Yg/NUA5g1HunfJBNmG6IC1PU0NDwh2YoBzJiMhmHk1Bi8hAaGhq+0AylQaEWvr4GhHjANMqHqEOFGeUKRfTsHwnRioaGRhTQDCUAunv68fvXttebDGXEZXUfZi+JGb7eI8+/PrQCp/z7UxgczVfcjoaGRnik6k1AI+H9P1gEAPjwOw+pMyUNZpQPUbZY9A+98seVOwEAQ2MFtGb1kNbQqBe0hNJoCKBGqjc/oQhCr6hAuEcntCeYhkZdoRlKoyHA5FystxHFRG28vHQASQ2N+kIzlAZFXNRZKqi2l1cDdYWGxgGNUAyFiMYR0YNE9BYRrSKi04moi4gWEtFa/n+8Lf+1RNRNRKuJaL4t/WQieoPfu5n4UpOIskT0S56+hIhm2cpcwdtYS0RXhHmOAxX1ZjpRenl5CR9mnhDtaGhohEdYCeWHAB5njB0F4J0AVgG4BsBTjLG5AJ7iv0FExwC4DMCxAC4EcAsRJXk9twK4CsBc/nchT78SwF7G2OEAbgJwI6+rC8B1AE4FcAqA6+yMq9qIQwRctZV7/ekEwjG2okLolTi8Dw0NjRAMhYg6AJwF4HYAYIyNMcb2AbgYwF08210ALuHXFwO4nzE2yhjbAKAbwClENA1AB2NsMTNmhrtLyoi6HgRwHpde5gNYyBjbwxjbC2AhLCZUddTVNBEg4GJcTChRuA2r5InJ42poHLQII6HMAdAL4A4iWk5EPyOiVgBTGGM7AID/n8zzTwewxVZ+K0+bzq9L0x1lGGN5AH0AJnjUVRMU6jlTB2i63it3K/RK5QjyCPV+Xg2Ngx1hGEoKwEkAbmWMnQhgEFy95QKZ1oJ5pFdaxtko0VVEtJSIlvb29nqQp466MhSORnAbFgg3z6ufdRyD16KhcVAjDEPZCmArY2wJ//0gDAazk6uxwP/32PLPtJWfAWA7T58hSXeUIaIUgE4AezzqKgNj7DbG2DzG2LxJkyZV8JjlKNRxJWy2rEBDXBbs1Q4Oaam8YvLAGhoHKSpmKIyxtwFsIaIjedJ5AN4E8DAA4XV1BYCH+PXDAC7jnluzYRjfX+JqsX4iOo3bRy4vKSPq+iiAp7md5QkAFxDReG6Mv4Cn1QRxkFBUUG8VEEXg5mWKqh5uXuZzNsZr0dA4YBE2TsVXAPyciDIA1gP4LAwm9QARXQlgM4CPAQBjbCURPQCD6eQBXM0YK/B6vgzgTgDNAB7jf4Bh8L+HiLphSCaX8br2ENH1AF7m+b7DGNsT8lmUUc8Ng2LybCiVV4iySl5eEbSjoaERHqEYCmPsVQDzJLfOc8l/A4AbJOlLARwnSR8BZ0iSewsALAhCb1Sop8pLoKFiedXoCOC4PK+GxsEKvVO+AtRT5RWk5bjYFKpuQzGN8vF43rjgjuc3YNY1j2A0X/DPrKERATRDqQB1ZSimuUDhPJRilYlRRPVDr6irAQ8m/OjpbgBA/4gO669RG2iGUgHiYJRX836qt1Fe0FE5goReqbcTQq2wafcgVmzr882nQ9Fo1Br68IgKUE/VSiCVV0zm11A75c2iHl5eZXkPbJz9/WcBABu/98H6EqKhUQItoQSAOG8jFhKKSp76kwkgpISiFVmhUe9xsGtgFC9vrJkTpkYdoRlKACQ5R6mvDUW97XpPxhRB7BWlx62RUX7f0Bi+et9y7B/JVbWdqBCX42H+8pbn8bGfLK43GRo1gGYoASA218Vhp3wjuA0HcSBwrUMpD3O0Vy389M/r8fBr23HX8xur21DEqPfCYsue4bq2r1E7aIYSAPFSeR0cB08Fk8iqi6aUcdrCSMO44UbgFaFRhi/cvRRHfvMx/4wHITRDCYAEl1Dq6o4bYHKo974MChBq3w2Cd9fKy2v3wCgGRuVutk1pzlByMfHHVoTmJ9Fi4Zs7MZpvrDFQK2iGEgCJGKi8TDSAyksgimjDKuaAKB735O8+iXO+/4z0XjZtfC4jucaQUAQTrvfCQuPggWYoAWCpvOq3Ogm2iS8eE0m1z0OxJKFonnfXwJg0PZsyPpexmKxOVZ83BhpaAAfePqF6xvSLKzRDCYCE6eVVPxoaKbYVcbmi2ic2mnmr/LzJhPG5xMGGBvjTIaS6uEx89R6PUSMWmoqYQTOUADBVXjH4QFUm6RiQCaD6Ekqtoten+IIiH7Jjt+0bxsrt/jvd/aBKRlzmvQNN9XagPU8U0AwlABIx0ElbBmiVvPEY8OGiDXMbioIRpdqPm0pGs6A443tP44M3PxeaHr9xGIUNZSRXwG+Xb41kLMVlgRMVYvJ5xQo69EoAUIwkFBXUm0qLCVROienlpWCWr/Z+CyGh5Oqp87RBdRyGUc18/4nVuP25DRjfksE5R06uuB6g/vthooaWUMqhJZQASCowlOe7d+GhV7dVjYYgRvm4jPdqRxs2V+Ih53nVCTqsyisq+DGKKGxYO/ePAAD2RxCxOA7j8eIfP4c7nt8QSV0xGQaxgpZQAkBlY+Mnf7YEAHDxu6ZXhYaGVHlVuXAUO/IBuO4/KW0nLgzFz9huqbwqb0NI5VGMpTgMx9e29uG1rX347BmzQ9elJZRyaAklAOIQeiUI6k2lGcorlIQSIG/IBx4a82YoYmKup9u4HaoSVVwmvrjQERVYPIZBrKAZSgBYqpUYxPJSCb0Sk+83ihMbaxHocNBPQqlRzDBV+A1Dy2248jYSEUQ7EHBjKGt29sfGLhUEBxqDjAKaoQSAcBuOi8rDD/Ue8Ja6pPI6xDMo7ZQP+bi5gncFcZs/VN9vmHFgBYyOQOUlSXvr7f244KZF+N9nukPXX2vU+/uKIzRDCQARvr5h3IarS4oyQu1DCZA37HvxKy/ux2Ue8d3YGAFDF4ikDokQsnLbfgDAhl2D4RuoMRpF9V1LaIYSAKRglI8T4rKCCndio3rZsE9b6+4Ka+iuhQ0lUqYkeUNC1SUiOTcSYvJ5xQqaoQRAPHbKB2i7zgM+CrNHMKN8jSSUiDo27DiqrcorPLwetxH3qMRlwRYnaIYSAPHaKe9PQ1wGfCgyTKO8ysbGcPCb34OoG1UQVmWiLqGEaCRCZwjZmI3iiIN6oUEUFTWFZigBECejvAoFMSATQNgTGwOovEI+rx8DjnrSC0+v9/0oojBHsTlSQEavSgSEuCIuQTfjBM1QAsA6YEvFZbc6g62WKqDQiOKArQDepGGf16+8pfKKBmFfTy3C15tMqfIqTNR7PEbdfr0/rzhCM5QA4NHLlVQN1R5sKvXHZQFVs42NlTcDQEHlFVVDZnshGaDP/UgP2KpyFbUYqlF/D3FRKccJmqEEgHVio3/earkUMnOVrFJ/PAZ8KBNKEC+vsCoknxkn6hVurSakuOxDkdJRQxtKo76/RoJmKAFAAVRe1RpswfZlVIUEZVihV8LYUNTzhPfy8mlHGOUjYtRh34/q44bpliiN5h78pCaIXkKJtr4DAZqhBIDw8lIxysdB5RWXBVQ4CcX4r3QeSoh2jLZ8JJSQ9QdtLyyEwTuchMKN8hHQU+8VfdSuyfW2CcURoRkKESWJaDkR/YH/7iKihUS0lv8fb8t7LRF1E9FqIppvSz+ZiN7g924mLgoQUZaIfsnTlxDRLFuZK3gba4noirDPoQIRvl7lw6iahGKukv1R7w/YRBgbigi94sFQzJhVVbZJRL1TPrSEotixkRjlqyShmPdqoJ6N+nPQEko5opBQ/g7AKtvvawA8xRibC+Ap/htEdAyAywAcC+BCALcQkdgeeyuAqwDM5X8X8vQrAexljB0O4CYAN/K6ugBcB+BUAKcAuM7OuKqFIBsb4zDY6k2Cucs6lNtwtTKXQ9VtOKp+rTbDj8IoH2VQTqnKK0o3Mh9E3d+xWbDFCKEYChHNAPBBAD+zJV8M4C5+fReAS2zp9zPGRhljGwB0AziFiKYB6GCMLWbGcvTukjKirgcBnMell/kAFjLG9jDG9gJYCIsJVQ8BQq9Uaze9ZS9QyBuTAR/Ky0vlOUv+VwplL6+IEFqiUrahhGkn/KJAQPa8tbShRC+hxOP7ihPCSij/A+BfANh3C0xhjO0AAP5fnBs6HcAWW76tPG06vy5Nd5RhjOUB9AGY4FFXTaAykKq2DyVAvd/47YpYbL4KZUOJ1cZG5vgfFuH3oXjfjyJ8fRSHdAnIqohqMaAC+/s9UA4MixsqZihE9CEAPYyxZapFJGnMI73SMs5Gia4ioqVEtLS3t1eJUFfwFlSM8tWfx/0bGBjNo7t3oNqEuCKSA7aEUb4GZ8r7GuUjfqe1mpCicBuuFh3FiJm0F+wtRNFcvSWUsXwRP1i4BsNjhbrSYUcYCeUMAH9BRBsB3A/gXCK6F8BOrsYC/9/D828FMNNWfgaA7Tx9hiTdUYaIUgA6AezxqKsMjLHbGGPzGGPzJk2aVNmTirr4kKyn27BJSwOtjmplQwm/D8XnfsQ75cM7EXiXN93cIzDKRzHgZFXUUi1rD58fxfdZb+H/F0s24ean1uLWZ+NzlkzFDIUxdi1jbAZjbBYMY/vTjLFPAXgYgPC6ugLAQ/z6YQCXcc+t2TCM7y9xtVg/EZ3G7SOXl5QRdX2Ut8EAPAHgAiIaz43xF/C0qkKMQSWjfL1HW4wQTkLx9/ISiOo8FLe2og4OWasVbiSxvKpERy0XRvb+juLzrLeEMpIvOv7HAakq1Pk9AA8Q0ZUANgP4GAAwxlYS0QMA3gSQB3A1Y0zIal8GcCeAZgCP8T8AuB3APUTUDUMyuYzXtYeIrgfwMs/3HcbYnio8iwNi+Kjsgq8WPwk6qVWqstg7OIYX1+/GRcdPq7CGaOJABflmozLKu/WZH8MJiprZUKKwf3jU0TecAxHQ0ZT2rENGh0irxdRsbyMKZhAXp5c4IRKGwhh7FsCz/Ho3gPNc8t0A4AZJ+lIAx0nSR8AZkuTeAgALKqW5EogBVN+d8szxv1r42/tewfPdu/HitedhamdTVdvyQqDnDD1B19aG0hChVxQiFr/z3/4IANj4vQ961iV7l7U8BdNplI+ivvB1HGjQO+UDQIwfNaN8/UZbFCvo7ftGAACDY/nwlYUJveIjNTjyhuQopoTi0oHR72OItLpyRLEPhf+PglSZjaqmNhRbU5HYUGLCUeJ0AIBmKAEgxuCoi87S/nGEcdVUoUFZ5VXhaEsnjYLiiNYwqJnKK6xR3qeCuEWrrU0sr+imKxnDr+WU7Pg+DwCjfBw1bpqhBIB4f4Oj8lV7MeIVkAotMkQxBWRSxtAYi8DgF6YrLLuF/1OF/cDNtnzuR4Varc6jsReEp0NWh1jl16InnN9n+PpiY0OJkYiiGUoQ8AE04MJQ7N5f1Y7lVW2kk8bQCCOhRHHaXzC34WhW/O5eXlEzlJDl/dyG+f+4HLAl34fC66/JPhS7DSV8e9U6oqKRoRlKAIjhM5KTbyRyMpQq0+JRfxRqigxnKG7qvSAI1RU19fKqtcor2vrc24mHR5NUQqnhpGzv7yhCI9Vb5RVHaIYSAGLsuxnl7SuW6h0BXBsvr2RCSBfh6wq1DwXeaiij/mg8hSy34VoZ5atrQzGDc0axDyUSr6j6zsBOG0r4+ur+PHUP/1oOzVACQLxAt9VNwXaUY/VObPTPk0rYJ8TKpJUowpbXeh9KWBnFnCBcusxSz4Rqpry9KiOMX0WUxwjLaog6+oBn+8x+HQ+pLQqohCWqFTRDCQBTQnE5A9jORKrl5WUR435LqKvCIBHg7Bc/hPnwVFaSUYQYAVT2oTClfOrthSzvcz+Kc2Ki3RzpbkOpdfj6SCSUOm9Qjwk/c0AzlAAQL9DtA62JUV4hTyoZ3YolNmK9xyNFr/Jyu88c+cIivMrLxyivsCnRD5FKKHW2oUS+DyWOM3qdoRlKAIjh42pDsaVXe6x5VW83yldqnxcSShSPEcqGEsgoH45a8f7c+qzos6AIikoYUxDmYB0BHLwdsw4h/VXJiG3uq6qBiOKUULRRvhrQDCUAxMfsakOxDdKwNpTB0Tz6R3ISIpy0yBCFSsaKMhu6qlhFG165vQ9fuW+59B2agSh9jPL1lFAcdoAqtiMgeiIKm6CMjprulHe0G0F9MZFQojxVMyw0Q6kAeRflqd0oH3YFdOL1C3H8t/9Ylq4yOUcxzC1+Uh1VR9DCaqFX/HH1z1/B71/bjs17hsruWaFX5GXNTXiR2VAqYCgB8kZ5OJZbHUGeQa7ycr8XNQ60nfJxhGYoASDGYEHBKB920vHboe5Vu73pShcvQuUVzkMovNosmITin3skZzxQNlU+9P13yjvzhUUl1TDHGAteJnB7Po0F2c8hN8qrlf/uH97EZbctVm5Lhqh3ysfFhhIjAUUzlCAQq3UVG0o9w9dHqfKqd9iOomnXUDixUaGd0byxKTWZKK/P751Fr/IKXqaSpsO8Q9H/brSqBEoVkOVUGc8A8LPnNuDF9eFOqKilUX5oLI+Trl+IZ1f3uOY5EKEZSgCYEooKQ3HJwxjDC+t2VVX/GonKK0JjbM1sKAq5xc5/L32+G/Py8/ILikrqcZZRKx/mFYqibrQGYShefV6L1X4tz5Rf3zuIPYNjuPHx1RXV/R+PrsIPn1zr0348JCQ7NEMJAPH6VCQUNyPmr5ZtxSd+ugQPvyY9sViZBs+hFME4iyQOFP9fMy8vhbwiNpn8sCc/lZewoajT5IXQRnnF4qEkFJ+Nh/kAOlGvA7ZUx1ko9Z2taARBtD37NazL9v8tWo+bnlyjlFcb5RsUfl5eKgf47B0cAwCs2NYXigZPL6+KanZCDFI/756d+0fw8sbqHZYpWlcyyis8uHh3MslLXeVVPxtKEFihVyqvw08qy7nYE+V1SSQU+I9nO8Z8OMHjK3Zg5/4R6b1aug3XYvd6DAUUzVCCwJJQ5IM6X/QfsK1Z45DMwTF5gMkoYP84Kw0UmVBUed3+3AZ84e6l0ntRbKwLUlZlkvAyrKuGXqmnyqsit+EQYqbZ/y5V+E3wzrrK0wRpqm7JXgwsVyjiS/e+go/f9qJvPdW2ocQxzlYtoBlKEASxofiMp0rHs4rKK0oJxe/DGx4rYMiHOUaxQlbhi0Ga8dpk59aUdQS0R71Fhi/cvRQvbfCX2iozyqsXikJt6WdDCXJejtcRwKo0ekn24vvbsrfcJdzeFlD9fSiCljhKEdWEZigBEMSGUvXjQT2qj2IQk+k27F1Zvsh89ehhyFGZQFWlKfuxA1IJxae8YCReE8nuwTEsfHMnvnzvMs+63GjwQ71sKG5dI7zmlOqSHgEs/qvR+OzqXtd7fpN41AfgeQ2XKE469YOlDo6PEUUzlACwx4ySTT4qsbzCGtBUvoMoDhJSNajnC0UUmZzxRBGxWKWsuWfGJ/O3frfCVq+7DcXvTHlP3XmACMuVvJsgE6EpzUZgyHarIpiEIqvfSPVbuMwY3wwAmNCacc3j9/5rGb5+LO/dwJNv7sTrW/dVrf16IVVvAhoJ9teXLzJkSvYyqEQzJdse9DA0VFtHqzpJi4kgVygimUhK80ThNuy1CjMdCHxmiVVv7zevZQtI1QMt9pK7AAAgAElEQVS2PL17+H+VSbyS+cBeRDU6cpjJ0++ZgzAUrxMb/fpeHMng5aYsNhy75aiHhCLb7wQAn+d2x43f+2Do9uNkr9ESSgA43Q7LX6KKUT54myHVIhW2qzpJi2f2Ms7WTELxoTWZsIa7154Itz5XmaCtj9wflQWHtF0r5vUaiy+s24WNuwa9avFsI5CE4uEI4dcXlgrWvT1/w354yd0ZqcC9Di+GMuhyhHhQ+G06rQe0hBIA9pWA4enlXJHb1WBR2VCKDHBEo1fYC+FcxVbWrupKW3i8uZ0RU0pPUKisvsRH68dQ7AePeZ5v7lK+6MNwnHk8SXGlwRcBiqhM1p/46RIA7itlMX+7HtkQRAUnyapqQxFvzlNC8Ym1FkXoFUcdHpUIhpKQMJRt+4Yra7wEou+rbq8NAC2hBEAQCcVfn6vWptsk6Vk+gvGluuoXjERmhDRpVHjYwdE8Tv33J/HCul3SOrxsT6rSlH21KHdh9eYoKuoZv0nNjsqCQ9pXyH55BU2VG4hFe27PHGQuk3vWGYl+7856Fv++d20/ggWfvR+8tuAI9+aUhKEMR7RlwJJQNENpSNjfm2yl5Ngpr7D5UQWl+VVKO1f14UQUv+9OPKeX6kOFgrfe7sfO/aP4z5JQFSqTrmB+fmFAVCUU98nTf8VvMhRPSpztBUGQ4SPoDbL50K09d8+pABKK1G3Y+d8Nol9VGIpbDnt6peH4nV52lam8guzd8YLVJ5FUFwk0Q6kQ8p3W/gwlSHRWWX5rEe2hYmLy6yBQPQI4ZzPKu9GhQoObBKJmQzH++606kw6GImvLZ0ISk59HO35SjjSvBCu29eE3r2wtp8FxrSYFh5nA/CZ8VZuCWx0qakR7vlASioNWz6xKdXi9P5OhSAZ2ELuTNy3+dNQa2oYSAPZBL1sN5xUklKAbnkpXUio6+iiGl3mwks9HKtQpsv4wNV4BKCrNqVKyEglF9lx+fWuGbVFReXlSItpzv/ehHz0HAPjISTOkNKpAjNdciAmM2d6iDHZtGmPlCwM78/Vy1fZbZ4l6vN5x3u/bsqVXOgkzRx3u+caEyktyHHd0DEWrvBoaDNZqWDohKXh5BVZ5uUgoXnCsGgO1ZkH1cCZhQ5F9JEHOenffne5fVsCvb502lOqovFRX3Kp5PN+/3yTM74fZZGdJZW5t2BZRkudxnhEkbcHI57dwiURCkV8HgX1x5Cmh5N1VXqOaoWgAxgeRShpd5iehuK2kgoT7Bso/Er/or6X3qq3yEs/jpfIK9MguEpkXRB6/vvVTeflJF2pGeXjWEfSArMExp4upwyjvU1bkDWdD8Z60/PZ2+G329fMis+ox/rvF0SttS4YogkPam/CqwlPlpW0oGoDxgaZNF9Xyt6jiRWJNWmoD2s146KnyUvxWtu0bxhMr35beI0W7hJjE5Sov9RWU2+mOKo8i8vjRmlLch+LWqIrEJd6visSl0i/DuRKPoCASGx+iUdhQ3JmsfcyX37dP8rLHLSj0qVFPsaw+r7ZksDOjSvehOJ/XQ0LxcBsOEvLfmxbjf5zORamYoRDRTCJ6hohWEdFKIvo7nt5FRAuJaC3/P95W5loi6iai1UQ035Z+MhG9we/dTHx2IaIsEf2Spy8holm2MlfwNtYS0RWVPkcQ+Eko9snf1csroIRS+pEGXVl5Ma6Lf/wcvniPPOYUKe+UNwiU6enNFX0YP3kFsV7cCiahhFF5VT6p2e+qdEvp/p5KpM8wOnuTWSuocGV5/Db7qrq+Knl5+TmQ2PqyUk/qoDYUmYQS6JRLj2cqKvRJrRFGQskD+EfG2NEATgNwNREdA+AaAE8xxuYCeIr/Br93GYBjAVwI4BYiEjsDbwVwFYC5/O9Cnn4lgL2MscMB3ATgRl5XF4DrAJwK4BQA19kZV7XAAKQFQ5GoEZz7UOR1BFZ5lQwo66eb5KJe/66BMd88vhKKsKFIVV5isvCnxW31L356fTSqexns37asm/wYhpLKi9/ziwfmV49AGUMJIqEIo3woCcVbRLF3uWxCdxjlJeVN24giQ/He2Oj9nPa+dOv70XwBs655BPcs3ii9zxTf3/0vbXbNE4QBeLqoK3xfyzbtweMrdii3FxYVMxTG2A7G2Cv8uh/AKgDTAVwM4C6e7S4Al/DriwHczxgbZYxtANAN4BQimgaggzG2mBlv6+6SMqKuBwGcx6WX+QAWMsb2MMb2AlgIiwlVDYwxpJPuG/7sH4/b4LbcH9XaLDPKmrSolVfJJ2MaqvYPy4YiqUPUH8AO4pauouLz+1DtE6vcy8v6X2mYkGCuq/79kisZR47yim7DbgxFRXL0s6E4bEKSZuwMwMsRwq8r8gqrcb9vyt4PbtX0jxg2qx8slJ+W6LShuNPS0z/q2k4QlZeXzUhFYr701sX40r2vKLcXFpHYULgq6kQASwBMYYztAAymA2AyzzYdwBZbsa08bTq/Lk13lGGM5QH0AZjgUZeMtquIaCkRLe3tdQ99rYIis0kovm7D8jpUXE9l+S0a/D5w798ySO0fQVeOsgdWWNGbNJiB/Zx5RbVedJhSjE87M8a3mNeeNhTIJwKmMJn4PauqykSglBkEkW8FLWMu4rLKe/F3VLCNeQ8mbFxLyit+DyqOF16TL+DsS7f3R2Zefwaq8v781IB+8AppdEDulCeiNgC/BvA1xth+r6ySNOaRXmkZZyJjtzHG5jHG5k2aNMmDPH8UGTP9yv3O03CNfaQgujvyu+iA3MZZJUNLPrm637NDfKQylVcQt0Y3ZqBSh8n8fLyZ/Dys7G3IJieVaNK+NhQHQ1FntFZ572dw5OX/3fahqOwW99snYu8mv8lTapRXtAOYEornBOtZhVJoJL9gp35ebeX5y/P4jxHrvpeLsajmQLGhgIjSMJjJzxljv+HJO7kaC/x/D0/fCmCmrfgMANt5+gxJuqMMEaUAdALY41FXVcEYkPGwoagY5a0PSE3sLVVLmBOsS/2lKy8VbzKvTX5+ahErfL2EKZl1+ZLguuHTOgPevaz5Yfmucu3Xsme2rmXvV8X+4ddfzn0MnlkBSCQUu5TkU1aMBdfJsVietzyPN0P383oq+NgtVLy8ikWm5HjhJ6HkFVReor/d1FKqEopwAJHlcToHeI/DoTH3yMSqHnK1RBgvLwJwO4BVjLEf2G49DOAKfn0FgIds6Zdxz63ZMIzvL3G1WD8RncbrvLykjKjrowCe5naWJwBcQETjuTH+Ap5WVRQZM1VesknYnuZ6qqOiAbk0v4D45Ro0svS3QjMyWosKH7D9vuc+FIVn9WUoniovtT71Vb8w7/ensjoNwtRUbChBnThkbbl5eRV8nteog6e7SSg+ferY2Cgp72ejKa3DK5+fxGBX/bn1fd7nTBV7ulsdY/mibSEkmyes9+EXE9ArkKSqM4oXrVEjTOiVMwB8GsAbRPQqT/s6gO8BeICIrgSwGcDHAIAxtpKIHgDwJgwPsasZY6K3vgzgTgDNAB7jf4DBsO4hom4YksllvK49RHQ9gJd5vu8wxvwP8Q4JxmAa5WWrIZUjgIO6+rnF8qpkf4ob5EZ5NQkl77GiC6Ly8lsBe/WXqujvp5K0J/k5Xbg9UtTxpDwlFF97jXff2dNzhaK5WHLkEYsC1/djv/aePGX0BglnA/hIKD4qT78joI36vaUcFSl1wHbeiZ8a0Es7AAD7R3KutASxx+aLlkNRNVExQ2GMPQf3/VvnuZS5AcANkvSlAI6TpI+AMyTJvQUAFqjSGwVUJZR0knx1tKorT7d9KK4qrwqsKF4hM3J+DMXUObtP0CqP6rYytD4a97KqKzXH5OfzIcsYpMpKOZhR3r9jSlWJQd6vZf9wW3zYGYr3AsiNVIdR3sdRRVbHsk17eVl5/aV1eKmK/frTvtp3q0b0g/vzyq/tcKrWJH1i62vpuUq2Mt09Azj5sC5pO6IZtXEkXzBEDb1TPgDsDMVNVE2QEbbEVUIJq/KqgoTi5UL7+Ar5TvrSsl57HVRUXmE2EypLKL4qL+vaTxXhbpQ3/rvvlPevw45SxuZQmfmUDSKhuNkMVPfmGO15tyGrYz930/WStpx0ekgoPh06rCChhJVyS+mQMS4/CcWeNjjqr/JSssX5nHEfFTRDCYAig+c+lAJjSCUSSCXI3YaioPJiHqs+VVWUld8/j5fYvWdwDH1D7mK3ecCWR3BIVZHcXqaUNhUvL78JxU9d4bfa9psc3co527CulfaheHh5+cGSEF1oVZBQ/CREx1j1UGl51eFFY2kdYUKvqDCUIJtA3Uj220Bpl7LkqlXrWsUor7I4jSp+mB80QwkC5hN6pciQSBjxe9xesorKy0svLX65lS8dv5V6eanuCBY6Z5lqzFK5+JLgsYr2vu9sx291aS8jeX8OVYT35CjbxKdCg2q/WnR47EPxKS5uu4cBsq7dJlKLRH8G6u827M4cvcZI3seILaNFhtFc0TzCwFVdFXJRYtRhYxiSPHbm7WdDGfQwyquOe6NNzVBihyJjptuwTJdbKDIkiZBMkK9bqdIhTXDf2Oju5WWknzJLrneVwW+VVLpb28rDzEEt9fIKEBzST8/vVoWXNOfVhqw++ypOakOJWEIJYlsScBjlfTiK32ZAp4Ti7QnmruKz9Yl0HLn3uYoTS1k+RUlGhtF8Ac3ppGdev4nXa7Eno0PWjJ+Tgf29eHl5BdnYqBlKDGHYUITKq/x+ociQTBCS5C6hiPnBW0Jx/9D81BgiWYSSUlJ5+ah/3PTW9meQq7y8aXXU5WIM9RPr7flVz9Rwyzuatz5efxuKvC2/88KDSijlE4HCC+Xwcl0tTfdzG3ZTtflNng4JpYT2nI9qSNaGlw3F7/2P5YtoyhgMxc9t2L0N/70sfuFmfL28HDYUD5WX+X7d6RXQDCWGMGwoPhJKwpBQ3FU4/mG47VUH3YciYDIUz1yiPRlDsa7dPrJSt1O3OlQGvN9qT8WrSmWXunVwWHle+34NP48lt6b+5deve9NQQo8fSm0b9m72K29Kswp95xfvS2Xy9I9v57w3VvCfnEvr9bSh+HTIWKHoK6Go7tgH1JisdBz5xJSzP8evlpUfAy3g937tCHMmThDoI4AVsHXvEN7a0Q/AP3x9MpHwYSjeK27Ae5L08+wQyeTqZ1QOr1hegLvKy64rlrsXq4vkplG+hAUG8TJSUXmlEwmMFYpylVfeW1dfUJhM/OBUu6n0S9Hzt3dZ7xWsc0Hg3b9q6h2/1biTkHf+2x8BAK2ZpKd7uvPgusoP2BrN2RiKS1a/lXzex/5h0Gikp5NUkcpLRRVq5POWHu2olYSiGYoCLvrhn80opJ5eXgWGZMJwG3ZbNagYmb32O4if7iogI12cJaUy2PwMg64qL1t6WJWX234HPy8jB/P1aUdIkCjIaRrNGxPOcK6gYEPxbApJl01kQW0opRO9vc+9HpcxK1yJioTi5jbsq0b0YSj2+2479pvSSYx5bOATY8NroaZC61hBQeUVQEJxtysZz5lOJkKpvJrSCYzkisgXiuZC1pHPZy6wQ6u8YgTBTADr1D83UdU0yvuovLxWWs5VkPOev1HeQBAJxWsfCuA+GB02FKlRvrwuN7i7WbvTqFqHSQ+DLbhn+f2xfBGt2aRrXYYEqhYcVHawkkGD9wRcitKJXlVCEf1F5O9BB3gFQ/SWEIMYoEdd2mhKJ328vIyb2VQinJdXvoDmtPv3C/hPvE4bivdCK5NKuKhOi9Jrqw2jzNzJ7QDc96KobPoVGNP7UOIJv/NQkklCKkGuIrwVysK9jbyHn7o1SbtJKMb/IDYUX6O8gr5ZpjIJEnpF1FWa0y/4oN/90rzCbVT2zKP5Ipoz7jr2QpHZ3E7L74/YjPpJydGvQOlOeU9yAZT3vUNC8Sgnnk/Y/Pz6bvu+EXk9LpJjaTv2vA567QwlJ5+ss6mEklE+k0p4vmO/lf9Y3lJ5udqEfGwNKhKiSW9S/lx+bsOiT8XiZignN8wH2eelJZSYwit8/aK1vdg3mEM6mXDfecwHkKqE4qbycl2p8eSEOKNdYdLyOmDLoEfBhuIVHDLAxFk6D/upVOx1+0kohSJDJsVXqBJ6xwpFtKQNLbDseQpFy21c1q/2CdONoagwQHt6qZpIxSgsaAWArHAi8VFH7dwvZyimHaZCA7RD5eVyHkkmlQBj/kbuIBKK7P2N2RYMlcbyUvH0s2woCbnnm49RXvRDW9YYi26egwUfhuIMraMZSixhqbyc6Ywx7BoYQ/9oHukUebjaGgW9xq3XR+oXy0sMMrcJTU6T9+rVzWDrsKF4HQGsouPlE2epqs7PRhJMQoHJUGTPPJoroCXrI6F4LCjsZ1ckXI8Atq7dJkcvI7S9nwe9dlGLSS3lruJRCUIo2lNZ0ctsJPZ35uZF1+QnNZgMJalsQ5Gp8EbzRbMtt3q8zh8BnM4n7vQadWRcJC//0CvGf8FQhtwYiojl5ROXDHC3X0UNzVACIu0yodgHYop7EskgXr7XSsh5VGnJgOM/3Y3+pQzFfzKXh9i27AVutDptKO5SThiR3OlZVX7fIUn5rC4ZsyQMGb1jhSJaMylel7xPTBWSTEKxqbzcV9vemyeNtu15nPXY++Pvf/matDxgjTO38Vpal91O6KBFtO/yCu31jhXKJz7xvETOb8Tev9mU6FPvMZ0JIKHIJlCnyktejyjnsh4IZkNxVXmpeRO2CgklJ2cofiov+zhyk0CjhmYoAZFMyA/YsofGziQTHoZs/30oKhKKn5dXMoDKS8acGPM+TKyUBm+jvAJD4XWV0uKnUgkSbLHAGDIpsUItCWnCmEMl4iahWAxFwpDsK3AfLz9A1dnBWY/qfoK8zdPIaNdbQnGzb5gStcvz2J9BVocYO83pJMZsDNdxHK+EHjvsNgmv78ZPBTuaLyLL37+bNCuYnptThd247aeiS6dIHhyyYC3WvN6Lr8rLRx1pHytvvd0vzRM1NEMJCNMoX/ISR2wfk5fKS0guXh+Gl9HO/PhqoPIS6iG3ic+e7q3y8qdBqLzcGGjptZVmXe8ZHPO0K9hVXmXuuEUjjEwrZyhSGwqzIiXI2hl1qHTkNNgnPbez3u1jZ7jEIKvs5cWsVT0gfwd2eu3SlR1mOHeXduzj3usY6JZMylXldfjkNlca7Xmz6YSy7dFNQsmk+D4xl3EyyheGbhKKeB/ZVMI3goSrhFJkaFJQRfqpvPwWl3YJ2OtclSihGUpApJMJEJVP6PYPMpVwl1DEQFcV3UsHpN/u2FKVl8p61s0DyMveUEqn9xHA6iqv0gnD0ReSLhUT+5SOLPqGc+j3CFXBGEOSjL4pbUe8lxb+Ecs2lBo2FH+V17TOJiUjtp8UCwC7B8Zcy3tBVJHxMMrb35mb7SBv2lDk7Q6N5U01kqwOMXZaMkkHwxFtf+fiYzFnYquR5rOBNpNMeC5OxjwWOIwxjBWKyKYSSJC7NCtcm3MFJl00DI8Z97taMxhxOwnTpqKTS7retpxylZd8TIuibp+XXxj9akAzlIDIpBJGrC7bW/zTml6c/f1nzd/pZMJ19TnmshJ35HF4gTjvmWKuywARZJkMRWH+kTGMfJGhKe0toYgJpC2bcgm94i2S2yH6q8xmYPvpJaF0tWYBeMfSKhQZEnyfUOkzmwwlLd+HIn56qbyEyqezOe27ixrwsKHYHnrPoJOhVKrykq3sxTMnE+TKUIQq0m24Do0VML4lDUDOUEQ/NKeTDpWYnT5hQ3FTu1kSSlJZQimlRfzOpBKe5xXZaZC9QxFOfnxLxqHmdtBhe2bpt1VgJkPxcohpa1KUUBTUkSrhWaKAZigBcfYRk5Ao2bj42Bs7zOsvn/MOZFLkOlmMKjAU+yTiOJObMXNC8ZNQ3LyMZJCpB/IFZq483UR7Ebiusznt6TasMgfmXFSBjlhQUluPkdbOV3NewfTyBcNLK50oV0mK99KSkT+zNQFyI7eHCqk5k1RyCVbxnttdwlDcxlUpcjbbhRu9os/bm1IO+4aAsCvxH9J2hscKGNeSAeDi5SUm1xIJRTxjKkGmXcPNkcXuNlxk7urenEQCEhB1Z1MJpJMJ176XSVF2iAVLV6s7QxH2ueZMUtonuUIRWXODpWwhZvwPa0Nx7pnRDCV2+NAJ03DIuOayaMJ2e8WZh0/kA7Z8oKzY1ocdfYa3hRdDWdtjGdBkEWETfPez9IxuZn2ogPtAsqe7TQTWKkr+oYuzs8e1pD1VXkFiDZWu2FT3oYhNYF4n3OWKxjGoKck+oXte3AgAWMWNl6UfuuU15SGh8Em5NZNScgl2m0BFf49vSWPXwKhreS+I/jSdDDycCNqbUlLpYsHzG81rVwkll8f4ViGhyLy8bCoviZdXKkmmanXUdYK2VEhuzwJ4u8kKySObSqCJh9eRwS6hyFRwQ7kC0klCWzalIKGkpO84X2QmE1Xy8nKTUHy0FU5vUXmeqKEZSgAcNdUIhVBq1EvZGEo2leA2lPI3+JX7lpvXXhPDfz6+2ryW6dy9/PbFIEv4GOUdH59k0Odsel631Zxd/HfbCGjQGYChlB15660HFsEkp3Y2AwC29w27tpEvGDvd08nySAaC0YtuK9uhzhtPeagSxaQ8riWN4VzB1R1bwM/La0pHE/pH8o5T+1QlFDGhCrWljJYxU2WZlqqblm3aY167nb0yNFZAZ3PaUZ8ddobicBsuiP60qbzc7DhCQvHwWAO8nUTEGM+kEmjOJFyZgeMIAxcJpTmdRHMm6XBIcNBhk3ZzhWLZgspQeXkY5W0SWTpJGHKhNefzfdmZpqrtLSw0Q1HA2UdMAgB86ex3ADAmHUfcpoTVjUSETIqkk/SsCS0AgDMOnwBA/pJLPwTHBMRdFr0MeiJJxJJzG0b2MCG+EorLJDbApYFxLekyVZMwYgOKXl5ClRdQQhEf/SGdTQDKbQ7ONowge8kEOU5nBICTDxsPAPiH84+U0mEauT32TPxpTS8AYGKbYc+RbTy0x9jyC7opvJ9WbNtv3bPRJYzZMojx5xWuXeRpz6ak0sWps41xOq2zyfUdDo0W0JpJIZ0kuerUVHk5vbzE+04nyVT/uDEU0dfZAHG4Sr8/If1kUgm0pFOuq/4xCdOzY2gsj5ZMCk3phKuUI9pua0qBsfLFSa5QRFPKwyhv89RsSiddaRXP5NYf9nIqi7oooBmKAv79I8fjT/98junhk0k5je4pW2TZE2Z0uoZeSSYIx0zrwKFdxkTw4LItZXl++bKR9s0PHg3AKXaL63F8RSizF4jBJXb0u42jkTFvhpIvWK6NbtKUaH9qRxP2j+QdZ8+rHp5k5efeNaUMxb5T3oMBj2vNOGiSIV803H5TiUSZOkN8fOO4gbncrdgpocie6TevbANg6NcBSyXoeB7+DE2ppK/KazZnGPZnEu/iouOmunpFAXYJxV/l1eai8hJ9e9iEFk8vr9ZsCtmUfMVuSijpZIlbtZg0E5YNxdXTjKu8PI6OMGgpmDauUonLsqEk0ZRJuq767UxCFo9vaKyAlkySP683UxI2kNJFot3hxc0hBjDsoC0Zd4YivMzchI9hmwt0jfiJZigqmD6uGYdNsFaDbdmU4yMXIu2ps7sMHb2LymtgNI/WbBLLN+8FADz6xtuO+yO5Ar75uxUAgKOndQCwpBLAGpiT2o0VcKnBFrAmuoyHnzvg/HDkel5rk5+bymtwNI9MKoEjuSpw37DNmcBHsiiFm1HesQFOUo2gTTBZ2SQukC8UkUoYagQ3o3x7k3wSsAzD3qE7AIuhyJib6GuhDpFBPFNHE184SFRerdmUq1eUnX5TPerBjN1sKMK7SEyMMgznCmjOJNHRlJLudbAb5e1SkGCGDhuKy14Yu5eX/Xc5vXlM4N5+pXWJST6TTKAlnXQsqOywRwyQHckwPGY8r6HycmcoRJZ0mMuXj2mvcWRXV7ZkUlLmZ3eY8Ds9tC2T0hJKnNHWlHJMXL/mK9MFn3k3AGNjo2yS3jeUw7iWDP5q3kwAwPTxzY77PfstA+zR0zqQTJBj0hErwGMP6QQAvLFtX1kb1grY2+XX7oro5u4pxHI3lVdv/ygmtWUtb5Rc+YQBqBkExUdX6myQyzOz/l8t24JZ1zziUGvlzJVnAs3ppKeEkuM2FNm5GsNjBST4JJBJJcrUVaLv20yG489QfrW0/LS9AT5hdbXK7U6A0a8A0NHM3UZtjgb9o3lkkgm0ZeVMQKCUGXhKKNmU1CA+NFZAhi+QZBPS0FgeuQJDSzqJzpYM9g2VM5R8sYgEGYzN4TYsVF4Jf7dhoZ4Vz+ImyQyOFsy+L13V292GmzNJ1wi+/TamKHNGERJKUyqJXIFJGcJovohMMmExypKQNH42FEFrNpXkKq9yWu3v3s+G0pL1joEWJTRDqQBt2RSeXd1jTnxighNeGR1NaYzli2WDetfAGCa2ZfC5M2djcnvWsQJ6u28EZ33/GfN3U9pYSdsnnff917MAgNPmdCGZIKzrGXTUXywy/Ha5wdzEak4qfRSKuOiHfzZ/y10bmamzdgvFv6NvBFM7m8xDi+xMyi4BqBiSHavwEk+oyR3GqvNHT3cDME7QtOg06k4nE2jNpky7jgz5YtFwG5Z44Y3kDGMrEaE9mzInfoHRkknNK3qrmCD/b9H6snuL1+8GAExoy7jaUL507zIAwMyuFqQShM17rOft3T+KSe1ZZNPuhmUA+OI9Rh3CYO6mLiTi0o5kDIzkCmhKJ5CSSHQAcO1v3gBgSMrdPf14ctVOCaMuoiWTMlyTC0WTZjEmkja3YTcGuX/YmOSndhh2MpntYiRXwJs79puTa2ke8T5buHThpkbqH8m7qj0Bw8urOZNCcyZhtluKUb4j3y1uXN5nY6OoM5tKoD2bksZZEwvabMp9HIg+aM2mtMorznhx/R4UGfD0Wz342Z+NSUOItwBwaJdhfF+5vc9M2zM4hl0Do6ZIPrEt61hp/9X/LXa0kXGXa7AAABx2SURBVE0l+QZJ4yPbYptUJrRl0d6UQt+wc0X4xzffxp0vbOTl3SWU0rMvShkKY8w0PqYS8j01I7kC1uzsx9TOJnMz4IiDoVhl3AIPChSKDGt29jt+C+TyRUxpb3Lkt7tp20OFt2WTniqvkZzxIaeS5Rsbh3MF8yMvlUBFWQDocFGJ3b14o3n9viMnu9LwID8jfFpnM3r7R8s8gOy/O5vTaC9RJe3sH8GUjiw3pBc9mQpg2YRkQSZvfrobjBnS7Gi+3BtJjIHWTEq6ue6pVT0AjBWymDR3l7g5D3I1r2Bswg1a1NeaTZorebdn6RvOoSmdQAevY0iyYl+ywfBIEzGrShnKmzsMx4a5k9vRlklhv8uY7B/Jo4vvqyntM8YY1vUMYOb4ZnOsyJjbhl2DmNrRhHTKGKf270vsJfPa2GhKKOkE2iVjEQDW9QwAMBwmRnJF6XcumGarVnk1BgZG8/juI6sAAJ87c5aZ/u5ZXQCsQZwvFHHS9QsBAHuHDCbS1Zpx2EDsq1DAmDQzSStekH1SnjulDR1NaYd4DsDxkQj9u2ygbdztlGzstg/xXLkCw4TWDDJ8sinFK5v3YvfgGC44Zoppa7FPOkKqmdiWxb7hnOdelGt+/bohEfGJxaGOKxQxhUsoAnbjr3i+VJLQWmLbsuOmhWvQN5xDe1MKyUR51FrBbABDCnGVUFwYyr8+tBKA4ZmVSBC+ePYcc6IsrQMATjx0HHYPjmHn/pIJ2PbsLZmUsaiw9X/P/lFMbm8y7WhCPWaHva+FWrV0Utq213KvdpNmhXqnOZOUeqwdP91QvX74nYeYq/FSw/wAN9ofMcWws7253fgm+keNsdvelMa0ziZkkgms3ikPYLh/OI/O5rS56VQmXezkbt83Xno8iFBmI9m0exCT27PobEnjkHEGMy+1s+QKRQznChjP1WalTg/7h/MYGM1j9sRWUx0sY4L7hsZwyLhmZJLlceFKN9DKNjaOmhJKUrq4AYCn3jKY+Uy+eJUt2sTisiWT1Dvl44xPnXZoWdp4vqoBjLhSTekENu02mMSL6y1//nmzDPfUrtaMp4srYEgZYgUkmMcdn303OprEytU5iOz1dQqxXXL0ZylDEd5JAmJyHN+awYS2TNnmui17hvCJny4BAJw4c7z5cdiNh0KdN7Etg0KRucbYWrZpD37FV+1HcUeEPYNGe8ZqrojJHU4Jxa7vF5OtpfIqb2f/SA4/fGotrxPIJKlsZ7hYSQMGQ7HTu23fMJ5dbbgEt3NG7RZax24IHcsXHczAvulyzkTDJXj9rgFH+b22d9iWTXGPwqL5HGt7BjCSL2Ayl9p6JAxl/S7r/Y5rNsblfps0my8U0d1rTd5u+0CEAbo1m8TQWKFsUXD45DaMa0nj3bO6cPPH3wWgnHHtHRzDuOY0Dhln0Lt3aAz5QtEMvd/elEJTOolDJ7Tgd8ud41Bg/0gOHU1pc+FSKhUwxvAvv34dAHDG4RPRLNm42DecM6W1rraMmWbHai7dzORMuFRCeZuHgJ/SYal5SxnKaL6A17b2IZ0k0+PMPgbE+OgwVZHlz9s3nAOR4c7d3iRXeYlv7sMnHALA+X5Fm1v5oiHrc8RylNAMpQL88wVHgcgagIC1gxow9qIc1tWKTXzi3mCbNC5513QAFkN5fMXbrqJ+Z0vGHPRiUE3gqydjoDkH0dt9lipLMDiZJ9jGXQajO21Ol5kmJosV2/pMO0xXaxqT25sczgIA8PXfvmFeTxvXZK7sn1hpea2JiUWsoPokBlsAuPRWS9X3lfcdbtDMAyIaahjLDiDQa2Nwon/GtaTLvO9MWmwf5L5hwzHCbkD+xZLNeHHDblMd2d7krOfiHz+HHz9j2G9MG4qLvn/bPvERG+NB9MmyTXtMKfWv583E7EmG1+D63hJpkdN14bFTMak9y49CMN7NWr6Cnz2xFYeMMya9P63ucZS/98VNOO+//wQAOH3OBNNrTYwfxhj+4sfP43N3LgUA/OErZ5rvr7TvhvgmvoltWRSKxgFydvTziR4wpCmgfO/N2/sNO9vEtixSCcJbb/ebfQTAVC919wygp3/UdUHQ0Zw21cql6jf77wmtWSlD2TeUM8eRUFvuH3a29YuXNgMA3jvX2HfmlCwKWLxuFwBgameT6VW4t2Rc3/7cBgDAk6t6TAnVLvmJ/hHl5RKOQWsiQWjLpsukZcD4Rsa1pE1pqpTp9PRbc0GSdOiVWKOzJY2TDx2PW55dZ6bNndLmyHPYhBZTQhH/l3/rfBCPsTWxLYOB0Ty+dO8y/Mejq6TtdLWmsXHXIBhjpopAfMDtTemyD1wwlOZ0EkdNM1QMNz7+FpZt2mvmufHxt7Dg+Q04fnon7r/qdHz1vLkALFWF/WOf3N6Eye1ZxwQOAJPaLBVUOmnpth953Ypp9tgK41psvtvRV37Aj92V9er3vcOcJIWkJVaspW6r9klY5O1qyaC9KYWV2/c77Ddj+SKuvGup+fuz75mFSe1ZvPV2P5Zt2oO+oRy+/ts3sG8ohwl85Voq6dj7ucv8gL3DgZ90qCGJPrhsK17o3uVgnH950nRM62hCV2sGSzfucZS74dE3AQB/e67BXA2VlzHpCPXYX82biSP4eLv56W5HPwq3cwD44WXvMseLsMOs6x00VbEAcNz0TnO/S3ePbeHzv89j8frdaM4kMXO8sSjYYnOGWLVjP3736nZzD5ZwSCllSjv7RowVfTqJ46Z3YvXb/Y4Ve2lEhy0lqt/7XtqM57t3o6MpJVV5FYoMx173hPm7OWN4RtmZzOfvehlLNuzBFC7plvYJYEzsv1hiMJR3zhxX1h/3LN6Eb//eeDdTO5rMsWK3GS3fvBcLntsIwFiUCAa2b8im2uZzwfjWjKtXYt9wzmQ4nc1pjBWKZfle3rgHE9uyptS1d8g5F6zYZthvH/ji6UYwTM1Q/EFEFxLRaiLqJqJratn2p08/zLyeNaEF73nHRMf92RNbsbZnAK9v3YdNe4Ywd3KbuZoAgDmTLAa0kuuVv/b+uY465h87FWt7BrC2Z8BcTYkV5/BYARt2DWLWNY+gm8f+env/CE6b04UXrjnX/GgA4E3uHMAYw62cCR7NGY6wTzzCA1yKFf87Z47DkVPbMbk9azI1gR19hmF4+bfOB2B9oPOPnQLA+Dj/9xmjnffOnYRkgvDUqp2OZ/vhk2sx5+uPAgC+eNYc/PP8o0y7wF2LN2IkV8A13IuofySHr543F7MntqK9KeVQ2S3h6sSO5jROn2Ps7LZHfv76b9/AKj6BLvjMPMyd0m4yxEtvXYznuneZecUO91Ibylk8UgIAk+ktXLUTtzzbjUKROVaZIgrCvFldOH3OBOzcP4JP/GyJ49nfPasLiQRh3mHj8btXt+PTty8BYwyzrnnEVI+KvT3pFJkSyp+42m1KR5O5MAFg2vFKMak9a9p8hHrUvnIVEIshwahHcgW8usVwSZ/W2WRKmVttdhfhJSjKtJkMxeqL/SM5DI4VzIl89sRWbNw1iLsWbwQA3MHd7AHg558/FQBMqR4wxqvwJNu2b9hUedmloO8/YYUp+o+PHA/AWKwJ21K+UMST3HlALKyEO/ZHbnkBtzxrSJ5/d78VFunwyW04tKsFL22wmP2TtvE7uSNrjqFe22LjL295wVQP//zzp5qqWiHhj+QK5lg4dXaXYfMrkehueORNPPzadvOdCxuYfaGXLxSNb39Cq+kAVKrGfmXzPmSSCbxr5jgQkev5PFGjYRkKESUB/C+AiwAcA+DjRHRMrdq/mKuuAGt1Zof4CP/ix89j4Zs7y1YYwqAJAEv5QH/HJKeUc+bhBpO64KZFuO5hw64hIrueOttSV73/B4vwiyWb8eqWfZgxvsVkXOIjXdc7iD+t6XXo27/+AWMn/jncI+mffvUa3tjahx6uJ77/C6chnUxg2rhm5IvMlMbG8kW8snkvzjt6ioNBnjCjEyu27cddL2zE61st77b3vGMCTjp0HF5cvxu9/aPm6vLBV6woAV97/xEALHXei+v3OCavkw4bj384/wg880/n4F0zx+HVLfvAGMPdizfica5SSibI3N+zbd+wKWHYJYBZfHOqYFwAcPUvXjGvzz3K6Iv2pjT2DeeQKxSxaE0vFvGQKoC1U/757t34z8dX46v3LzfVVGcdMQl3fvYUM+9pcyZIT8oTXmrCHfrPa3fhnhc3OfIIFWpzOomn3+rBC+t2Ydu+YSQIZrh4gQXPb8BHb33BoYKdf+wUEA/VP6k9i9v/vB6j+QL2Dhq0Hj+9E7+7+gwAlnr07sUbUSwy07UZAK48cw5mdhmT2uJ1u7Bhl3PiuuOzBlMQq/H1vQOGN1TvAObftAiAZaOZM7EV2/tGcO+LhiTQZRs/Jx82HplkAn94fQdGcgU8tWqnYxLt7R/FxLYsOpvTWLrRkrj/b5GlJbjs3cb7nzG+Bdv2DoMxZtq+AODy02cBsOxggBE3b8n63XhipcEwbr9iHgCxIOzHXn5om2D0V5x+GLKpJLpaM0gmyHRueGGdtTD5xgeOxgkzxmEil2IEc3voVctGNK4lg6Z0Ave9tMWU2N7uG8FP/2yozMQemImmJGQwLsYYrnt4JUbzRXzohGmY3G7sA1tnk6ZWbOvDbYvWI5tO8APFaqfyct8CG3+cAqCbMbYeAIjofgAXA3izVgQ88bWzMP9/FuEjJ80ou3fJidMd6odjDulw3J/Z1YJvfvBox+rynTPGYdk332+uTuZMaivbhCcmo6vfdzjW9Azg969tB2DZNcbZ7A1nHD4Rk9qzuPOFjbjzhY14/9GGBPGzy+eZjGn6uGYcM60Db+7Yjw//+DkAhtQiVoOfPPVQ3PXCRnz/idWO1eA5tlU7YEwOr2/tMxkfYKj4EgnC0dM6cPfiTXj3DU+W9dNDV59htpVIED53xmwseH4D/ulXhtH2gS+ejlNszPP8Y6bgXx9aiTNvfMaccP6W214SCcI7JrViXe8gjrvuCUxsy5jqqsntWVMqnGCbyARe+vp55oryHZNaUSgyzP3GY448mVTClGIEHnl9h6nq+8QpMx22tNKNqzPGN+MnnzrZ/D2t07ovHCEA4K3rLzSvTz6sCy9v3Gs6Qbz/6CmmdPL6ty/ACd/+IwBjUTL/f4wJ/NZPnoSLjp9m1iEmtCO/+biZdv9Vp5kLIUHzut5BzP+fRY6xKiQlALjvpS2476UteBdXCf3D+UeYLtJTO5uQIOC/F67Bfy9c43huwejPPnKSea+9KYUTZliLqqZ0EqfO6cIfXt+BP9hUp4DBkG7++IlIJxO46LipuP/lLaadT+D6S44z+2VKRxMeeWMHZl/7qHn/118+HScfZowjocIT+OvbXgRgBH8Vcfvasims2TmAE7ndCzDG0L9dfBwAIMWPI/7Jn9ahOZ3Eb5YbjiUPful0My6c2F9T2ic3XmpIUhcdNxU//fMGfOaOlzCxLYuH+bcMAN/6kLE2Fk4VH//pi/jUaYdiaKxgOtGce/RkEBlj/q7FmzBvVhfam1L4zB0vAzCiowNAJuUeXTlqNKyEAmA6AHswrK08rWY4cmo7ln/rfHzujFll99qyKTz61feav2+89ISyPJ9/7xx85CSD5B9e9i4cOqEFE9qymNppeTW99PXzzOufXT7PvE4kCD/6+Il48h/OwgzbxGWXnACnJCPEdqEjFvjlF0/DeUdZeyeOnGpNKO1NaXyDxxWz4+wjnQzlqrPmOH5nkglTgvnkqYdBhu9cfGwZLV84azaa0gm8umUfpnRkcdx0JyMWTFEwk7OPmIR/mn+kef9XX3qPbc+DwUy+/9ETsMTWj+95x0RcetIMc+U8/9gpDk8yOwMTeOjqM7DmuxehOZPE6u9eiI+cWD7URLgcgXOPcu5H+ccLjsBxNsn0U5J+WfTP7zON5ADw8VNmOu7PnmhNhh1NafziC6eaQSQF3lfSrmC4dpRK1ecfY/Tr2p4BPPTqdkxsy2D9v3/AvC/UiQBMdVipRP2F9zrHAAD88e/PMts6YcY43PnZd+O0OV14+Rvvd6jtAOBWG7MVyKQSWPlv801D+dWSZ7npr9+JT51qeV6edNi4sjzCpgUYdhahOrbj918504zXJyZjgXSS8IevnulIu5QvJG96cg027R7CnImtmDery/Fc11x0lKPMZ94zC3/9boPWvznHeJYX1u02mUlzOolHvnomPsS9t2bbAoDe++Jm/OaVbThqajse/NLppqr5A3zx8JX7lpvM5NqLjsINlxiMa3J7Fpt2D5n2m2qCaiUKRQ0i+hiA+Yyxz/PfnwZwCmPsKyX5rgJwFQAceuihJ2/atKmsrmrihe5dGC0UXTe7FYqGa6x9EgmKkVwBi9b04tyjJpsfhMBovoA7n9+IiW1Z/N+idfiH84/EhcdNldazbNMerH57AB9+5zSHWgDgcbD4DnNx6qEMa3f2Y0pnE9qzqbIJ49E3duC57l1oz6bwN+ccjo7m8jyAYTO5e/EmfPiEQ3DohJay+7sHRvHM6l68vnUfrjprDmaUrDh37h9Bb/8onl3dgxMPHY8zDp9YVgdg2Iue796F84+Z4pAsALFLPIkX1+/GcdM7XeNZ/dcTq/Hkqp346eXzTDWnHaP5Ah55fQde3rgX373kOGm/GW7JPZg1oVVK6+6BUWzbN4ylG/fi0pNnlHm9CWzePYREAmX9IY6/Xb55H17ZvBefPOUw063cjv6RHP7ylhewYdcgnvjaWQ5GxRjDzv2juPfFTfjNK1tx6ckz8NXz5pb123Nrd2HNzn6cOqcLBCqTzP0wmi/grR39yBWK+MPrO/CPFxxRNhb7R3LYtHsIz67uwadPm1X2LMUiw9qeASP0+1jBwcTtfdXTP4JNu4dQZAwXHDO1rJ5CkWF97wCmdjZh72BOOhZHcgWs7x3EYyt24MzDJ+JUG+Mt7ZehsTzef/QUhyPCr5ZuwZqd/ZjYlsUHjp+GtmzKoUoGgDe29uHXr2zF+cdMwe7BMZx71GTHeCwUGX63fBvW9Q4gk0pg9sRWx8JyxbY+/ORP6/DNDx7jWKwGAREtY4zN883XwAzldADfZozN57+vBQDG2H+4lZk3bx5bunSp220NDQ0NDQlUGUojq7xeBjCXiGYTUQbAZQAerjNNGhoaGgctGtYozxjLE9HfAngCQBLAAsbYSp9iGhoaGhpVQsMyFABgjD0K4FHfjBoaGhoaVUcjq7w0NDQ0NGIEzVA0NDQ0NCKBZigaGhoaGpFAMxQNDQ0NjUigGYqGhoaGRiRo2I2NlYCI+gGs9sjSCaDP4z4AHApgc8g6/PJEUQfQOLT60RlVO5rW6rQTF1qj+m40reX3pzLG2j3yGGCMHTR/AJb63L9NoY7eCOrwzBNFHY1Eqx+dmlZNa63o0LTK7/vNneJPq7yc+L1Cnn0R1OGXJ4o6gMah1Y/OqNrRtFannbjQGtV3o2kNTgeAg0/ltZQpxKOpdh21QqPQ2ih0AprWakHTWh1ERatqPQebhHJbTOqoFRqF1kahE9C0Vgua1uogKlqV6jmoJBQNDQ0NjerhYJNQNDQ0NDSqhIOeoRDRAiLqIaIVtrR3EtFiInqDiH5PRB08PU1Ed/H0VeIMFn7vWSJaTUSv8j/5iVq1ozVDRHfw9NeI6BxbmZN5ejcR3UyyU67iQ2tV+5WIZhLRM/x9riSiv+PpXUS0kIjW8v/jbWWu5X23mojm29Kr2q8R0xqrfiWiCTz/ABH9uKSuWPWrD61x69fziWgZ779lRHSura7o+1XFFexA/gNwFoCTAKywpb0M4Gx+/TkA1/PrTwC4n1+3ANgIYBb//SyAeTGi9WoAd/DryQCWAUjw3y8BOB0AAXgMwEUxprWq/QpgGoCT+HU7gDUAjgHwnwCu4enXALiRXx8D4DUAWQCzAawDkKxFv0ZMa9z6tRXAmQC+BODHJXXFrV+9aI1bv54I4BB+fRyAbdXs14NeQmGMLQKwpyT5SACL+PVCAJeK7ABaiSgFoBnAGID9taATCEzrMQCe4uV6YLgPziOiaQA6GGOLmTGq7gZwSRxpjZomGRhjOxhjr/DrfgCrAEwHcDGAu3i2u2D10cUwFhWjjLENALoBnFKLfo2K1ihpiopWxtggY+w5ACP2euLYr2601gIV0LqcMbadp68E0ERE2Wr160HPUFywAsBf8OuPAZjJrx8EMAhgB4zdp//FGLNPmndwMfdb1VAjBaT1NQAXE1GKiGYDOJnfmw5gq638Vp4WR1oFatKvRDQLxopuCYApjLEdgPERw5CcAKOvttiKif6rab+GpFUgTv3qhjj2qx/i2q+XAljOGBtFlfpVMxQ5PgfgaiJaBkOsHOPppwAoADgEhgrhH4loDr/3ScbY8QDey/8+XWdaF8AYJEsB/A+AFwDkYYi3paiVq19QWoEa9SsRtQH4NYCvMca8pE63/qtZv0ZAKxC/fnWtQpJW7371Qiz7lYiOBXAjgC+KJEm20P2qGYoEjLG3GGMXMMZOBnAfDN0zYNhQHmeM5bhq5nlw1QxjbBv/3w/gF6idakFKK2Mszxj7e8bYuxhjFwMYB2AtjIl7hq2KGQC2l9YbE1pr0q9ElIbxcf6cMfYbnryTqwWE2qWHp2+FU3oS/VeTfo2I1jj2qxvi2K+uiGO/EtEMAL8FcDljTMxlVelXzVAkEJ4ZRJQA8E0AP+G3NgM4lwy0AjgNwFtcVTORl0kD+BAM9U7daCWiFk4jiOh8AHnG2JtcHO4notO4OH45gIfiSGst+pX3we0AVjHGfmC79TCAK/j1FbD66GEAl3E99GwAcwG8VIt+jYrWmParFDHtV7d6YtevRDQOwCMArmWMPS8yV61fw1r1G/0Pxkp5B4AcDK59JYC/g+E9sQbA92BtAG0D8CsYxq03Afwzs7w+lgF4nd/7Ibg3TR1pnQUjsvIqAE8COMxWzzwYA30dgB+LMnGjtRb9CsNbh/E2XuV/HwAwAYajwFr+v8tW5hu871bD5hlT7X6NitYY9+tGGI4cA3zMHBPjfi2jNY79CmPhNmjL+yqAydXqV71TXkNDQ0MjEmiVl4aGhoZGJNAMRUNDQ0MjEmiGoqGhoaERCTRD0dDQ0NCIBJqhaGhoaGhEAs1QNDRiAiL6EhFdHiD/LLJFc9bQqDdS9SZAQ0PD2BTHGPuJf04NjfhCMxQNjYjAg/U9DiNY34kwNnBeDuBoAD+AsTF2F4DPMMZ2ENGzMOKWnQHgYSJqBzDAGPsvInoXjEgCLTA2nn2OMbaXiE6GEftsCMBztXs6DQ1/aJWXhka0OBLAbYyxE2AcbXA1gB8B+CgzYpgtAHCDLf84xtjZjLH/LqnnbgD/j9fzBoDrePodAL7KGDu9mg+hoVEJtISioREttjArZtK9AL4O42CjhTySeRJGSBqBX5ZWQESd/7+9O0ZpKAqiMPwf0MY+rStwCboAlxCChGxJG20EsbS1SZnODQQ7t6BBtL0W76aRqBgGkuL/yimG+6rDDI97GYJm0Ut3wMOG+j1wXv8J0nYMFKnW97uM3oHlLxPFxz96Z0N/aW+48pJqHSdZh8cYeAJG61qSw/42xY9aayvgNclZL10Ai9baG7BKctrrk/rjS9tzQpFqPQPTJDcMN79eAXPgsq+sDhgeEVv+0WcKXCc5Al6AWa/PgNskn72vtDe8bVgq0v/yemytnez4KNJOuPKSJJVwQpEklXBCkSSVMFAkSSUMFElSCQNFklTCQJEklTBQJEklvgARK6a+0MI1nwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'].plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXucnGV5//++ZmZn9pzsJpvjJiSQIISoHEJAUatGAbUtWKHGtpB+xdIqttqf31qxX4tfLf1KD9qilRYl5eABkKqgghjBEwiEBAJJCCEJIcnmtJvdTfY8szNz/f547md2djM7O7M7m52Zvd6v17xmcs9z33vPk5nn81yH+7pFVTEMwzCMXAhM9QQMwzCM0sFEwzAMw8gZEw3DMAwjZ0w0DMMwjJwx0TAMwzByxkTDMAzDyBkTDcMwDCNnTDQMwzCMnDHRMAzDMHImNNUTKDSzZ8/WJUuWTPU0DMMwSorNmzcfU9WmsY4rO9FYsmQJmzZtmuppGIZhlBQisi+X48w9ZRiGYeSMiYZhGIaRMzmLhogEReR5Efmx+3ejiGwQkV3uuSHt2BtFZLeI7BSRy9LaLxCRre69W0VEXHtERO5z7c+IyJK0Puvc39glIusK8aENwzCM8ZGPpfEJYEfavz8DPKaqy4HH3L8RkRXAWuAc4HLg6yISdH1uA64HlrvH5a79OqBTVZcBXwFucWM1AjcBFwGrgZvSxckwDMM4teQkGiLSDLwP+GZa8xXAXe71XcCVae33qmpUVfcCu4HVIjIfqFfVp9TbxOPuEX38sR4A1jgr5DJgg6p2qGonsIEhoTEMwzBOMblaGv8GfBpIprXNVdXDAO55jmtfCBxIO67FtS10r0e2D+ujqnHgBDAry1jDEJHrRWSTiGxqa2vL8SMZhmEY+TKmaIjI7wKtqro5xzElQ5tmaR9vn6EG1dtVdZWqrmpqGjPN2DAMwxgnuVgalwC/LyKvAfcC7xSRbwFHncsJ99zqjm8BFqX1bwYOufbmDO3D+ohICJgBdGQZyzCMIqe1a4Cfbjsy1dMwCsyYoqGqN6pqs6ouwQtwP66qfwI8BPjZTOuAB93rh4C1LiNqKV7Ae6NzYXWLyMUuXnHtiD7+WFe5v6HAo8ClItLgAuCXujbDMIqcbz2zn499ezOxeHLsg42SYSIrwr8E3C8i1wH7gasBVHW7iNwPvATEgRtUNeH6fBS4E6gCHnEPgDuAe0RkN56FsdaN1SEiXwSedcd9QVU7JjBnwzBOEe09UZIKA/EE4ZAtCSsX8hINVf0l8Ev3uh1YM8pxNwM3Z2jfBKzM0D6AE50M760H1uczT8Mwpp6O3hgAA4MJ6isrpng2RqEw+TcMY1LwRSM6aO6pcsJEwzCMSaGzz4lGPDHGkUYpYaJhGMak0NE7CMCAWRplhYmGYRgFJ5nUlKUxMGiWRjlhomEYRsHpHoiTSHrrcM3SKC9MNAzDKDgdzsoAszTKDRMNwzAKTkdvNPV6wALhZYWJhmEYBccPgoO5p8oNEw3DMApOZ6+5p8oVEw3DMAqOxTTKFxMNwzAKTkdvjFDA29kgagULywoTDcMwCk5Hb4zZtRECYpZGuWGiYRhGwensjdFYE6ayImiiUWaYaBiGUXDae2PMqvVFw9xT5YSJhmEYBaezL0ZDdZjKUMAsjTLDRMMwjILTke6eskB4WTGmaIhIpYhsFJEXRGS7iPxf1/55ETkoIlvc471pfW4Ukd0islNELktrv0BEtrr3bnXbvuK2hr3PtT8jIkvS+qwTkV3usQ7DMIqaeCJJ90CcmdUVRCymUXbksnNfFHinqvaISAXwhIj427R+RVX/Jf1gEVmBt13rOcAC4Ocicqbb8vU24HrgaeBh4HK8LV+vAzpVdZmIrAVuAT4oIo3ATcAqQIHNIvKQqnZO7GMbhjFZ+Cm2lRVBKivMPVVujGlpqEeP+2eFe2iWLlcA96pqVFX3AruB1SIyH6hX1adUVYG7gSvT+tzlXj8ArHFWyGXABlXtcEKxAU9oDMMoUgYTnmiEgwEqQ0Hbua/MyCmmISJBEdkCtOJdxJ9xb31cRF4UkfUi0uDaFgIH0rq3uLaF7vXI9mF9VDUOnABmZRlr5PyuF5FNIrKpra0tl49kGMYkEXOWRjgU8CwNK1hYVuQkGqqaUNVzgWY8q2ElnqvpDOBc4DDwr+5wyTRElvbx9kmf3+2qukpVVzU1NWX9LIZhTC7RYaJhMY1yI6/sKVU9DvwSuFxVjzoxSQLfAFa7w1qARWndmoFDrr05Q/uwPiISAmYAHVnGMgyjSIk591QkJRrmnioncsmeahKRme51FfAu4GUXo/B5P7DNvX4IWOsyopYCy4GNqnoY6BaRi1284lrgwbQ+fmbUVcDjLu7xKHCpiDQ499elrs0wjCLFd09VBAMWCC9Dcsmemg/cJSJBPJG5X1V/LCL3iMi5eO6i14A/B1DV7SJyP/ASEAducJlTAB8F7gSq8LKm/CysO4B7RGQ3noWx1o3VISJfBJ51x31BVTsm8HkNw5hk0gPhkZC5p8qNMUVDVV8EzsvQfk2WPjcDN2do3wSszNA+AFw9yljrgfVjzdMwjOIgPRAeqQjY4r4yw1aEG4ZRUIZlT4WCxOJJkslsWfpGKWGiYRhGQYkmhmdPge2pUU6YaBiGUVBSloYLhIPtqVFOmGgYhlFQBjNYGrbAr3ww0TAMo6BktjTMPVUumGgYhlFQRgbCwdxT5YSJhmEYBSWWyT1lolE2mGgYhlFQRq7TAHNPlRMmGoZhFJRYeml0C4SXHSYahmEUlGGBcBfTiJp7qmww0TAMo6DE4klCASEQEMueKkNMNAzDKCixeJJwyLu0WCC8/DDRMAyjoMQSJhrljImGYRgFZTCRJBz0RcO5p6z2VNlgomEYRkGJxpNU+KJhi/vKDhMNwzAKSiyeJOLcU4GAEA4GLBBeRuSy3WuliGwUkRdEZLuI/F/X3igiG0Rkl3tuSOtzo4jsFpGdInJZWvsFIrLVvXer2/YVtzXsfa79GRFZktZnnfsbu0RkHYZhFDXpgXDwFvnFzD1VNuRiaUSBd6rqG4FzgctF5GLgM8BjqroceMz9GxFZgbdd6znA5cDX3VaxALcB1+PtG77cvQ9wHdCpqsuArwC3uLEagZuAi4DVwE3p4mQYRvGRHggHqAgK8aSJRrkwpmioR4/7Z4V7KHAFcJdrvwu40r2+ArhXVaOquhfYDawWkflAvao+paoK3D2ijz/WA8AaZ4VcBmxQ1Q5V7QQ2MCQ0hmEUIemBcICKYCBVLt0ofXKKaYhIUES2AK14F/FngLmqehjAPc9xhy8EDqR1b3FtC93rke3D+qhqHDgBzMoylmFMiN5onBu+/RxHuwameiplRywtEA6eaMTitt1ruZCTaKhqQlXPBZrxrIaVWQ6XTENkaR9vn6E/KHK9iGwSkU1tbW1ZpmYYHi8f6eYnWw+z6bXOqZ5K2TEyplERFLM0yoi8sqdU9TjwSzwX0VHncsI9t7rDWoBFad2agUOuvTlD+7A+IhICZgAdWcYaOa/bVXWVqq5qamrK5yMZ05S+WByAXvdsFI7oSaJh7qlyIpfsqSYRmeleVwHvAl4GHgL8bKZ1wIPu9UPAWpcRtRQv4L3RubC6ReRiF6+4dkQff6yrgMdd3ONR4FIRaXAB8Etdm2FMiL6Yt26gL2qiUWhODoQHGEyYe6pcCOVwzHzgLpcBFQDuV9Ufi8hTwP0ich2wH7gaQFW3i8j9wEtAHLhBVf2VPR8F7gSqgEfcA+AO4B4R2Y1nYax1Y3WIyBeBZ91xX1DVjol8YMMA6Hei0RuzRWeFZjCRJJIe0wiZpVFOjCkaqvoicF6G9nZgzSh9bgZuztC+CTgpHqKqAzjRyfDeemD9WPM0jHzwLY1eszQKzknrNCymUVbYinBjWuLHNPrM0ig4I7OnQgGzNMoJEw1jWtJvlsakcVL2VChAzGIaZYOJhjEt6U3FNEw0Cs3IQHg4KMTN0igbTDSMaUm/n3IbNfdUIVFVBhNqK8LLGBMNY1qSSrk1S6OgxJw4WMpt+WKiYUxL+gb9mIZZGoXEr2abbmmEgmJVbssIEw1jWtJvMY1JISUaw2Ia5p4qJ0w0jGmJnzVllkZhGc09FU+ae6pcMNEwpiX9gxbTmAwGXTXbkwLh5p4qG0w0jGnJUCA8QdLuggtGLOGd1+HrNCRlgRilj4lGGXGib5B16zfy8pGuqZ5K0dOfthLcD4obEyeaIaZRYSvCywoTjTLinqdf41evtPHAppaxD57m9MXihALedi1W6bZwZMqeqggGSCokzKIrC0w0yoSBwQR3/nYfAL96xTaiGoveWIJZteHUa6MwZMqeqgh54mzWRnlgolEm/OD5gxzribLmrDnsau3h4PH+qZ5S0ZJIKrF4kqa6CGD1pwqJv4hvZMqt956JRjlgolEG9Ebj/PvPd/GG5hl85j1nAfBrszZGxc+Yaqo10Sg0qUD4CPcUYKvCywQTjTLg1sd2caRrgJt+7xyWzallwYxKfrXTRGM0/CD4bCcaVh69cGRyT4WC5p4qJ3LZ7nWRiPxCRHaIyHYR+YRr/7yIHBSRLe7x3rQ+N4rIbhHZKSKXpbVfICJb3Xu3um1fcVvD3ufanxGRJWl91onILvdYhzGMwyf6ueOJvXxw1SIuOK0BEeHi02fx/IHOqZ5a0eKLxGzfPWVrNQqGnz1VkcHSsFIi5UEu273GgU+p6nMiUgdsFpEN7r2vqOq/pB8sIivwtms9B1gA/FxEznRbvt4GXA88DTwMXI635et1QKeqLhORtcAtwAdFpBG4CVgFqPvbD6mqXREdu472EE8qH7igOdU2szpsK52z0GvuqUnDF4ZIhpiGrQovD8a0NFT1sKo+5153AzuAhVm6XAHcq6pRVd0L7AZWi8h8oF5Vn1JVBe4Grkzrc5d7/QCwxlkhlwEbVLXDCcUGPKExHK3dUQDm1kdSbTWRIL2xON5pNkbiu6eGAuEmsIUiUyC8wgLhZUVeMQ3nNjoPeMY1fVxEXhSR9SLS4NoWAgfSurW4toXu9cj2YX1UNQ6cAGZlGctwtHYPADCnrjLVVhMJoTpUKsMYTt9JMQ2zNApFLJ4pEC7uPRONciBn0RCRWuB/gE+qaheeq+kM4FzgMPCv/qEZumuW9vH2SZ/b9SKySUQ2tbVNrwBwa1eUukiIqnAw1VbjXveY2yUjvmjUV4UIBwO2TqOAjFawEMzSKBdyEg0RqcATjG+r6vcBVPWoqiZUNQl8A1jtDm8BFqV1bwYOufbmDO3D+ohICJgBdGQZaxiqeruqrlLVVU1NTbl8pLKhtXuApjTXFHiWBkCfuV0y0j/oiWlNOER1JGgxjQKScXGfpdyWFblkTwlwB7BDVb+c1j4/7bD3A9vc64eAtS4jaimwHNioqoeBbhG52I15LfBgWh8/M+oq4HEX93gUuFREGpz761LXZjhau6LMqRsuGtVhTzQsKygzfgyjOhykJhyymEYB8UXDL9ECQ+4p2ye8PMgle+oS4Bpgq4hscW2fBT4kIufiuYteA/4cQFW3i8j9wEt4mVc3uMwpgI8CdwJVeFlTj7j2O4B7RGQ3noWx1o3VISJfBJ51x31BVTvG91HLk9buKOcumjmsrdZZGnYxzIwfCK8KB6mJBC2mUUBiCSUcCuCy6QGocFaHVbotD8YUDVV9gsyxhYez9LkZuDlD+yZgZYb2AeDqUcZaD6wfa57TEVWltXvgZEsj4sU0zNLIjB/TqA6HqA6HLKZRQKLxBJHgcAdG2NxTZYWtCC9huqNxBgaTzK2vHNY+ZGmYaGSibzBOJBQgGBAvPdnOU8GIxpNEKoLD2mxFeHlholHCtHZ5azTm1I+MaXg/WguEZ6Y/lkido+pwyESjgEQHk1RWDL+sWPZUeWGiUcL4azSaRrinfEvDUm4z0xtNpJIFZlZVcKJ/cIpnVD4MxBPDVoPDkHvK1mmUByYaJUybWw2evrAPhrKnLMCbmf7BeGpdS2NNmPbemK2eLxDRwSSR0HD3VIWVESkrTDRKmKNdbjX4CPdUOBSwRWtZ6EtzTzXWhInFk3auCkQ0niByknvKYhrlhIlGCdPaFaWyIkBd5OQkOFu0NjoDgwkqK4ZEA6CjJzaVUyobooNJKkMjA+HmnionTDRKmNbuKHPqKoflxPvYorXRicWTKb+7v+Vre290KqdUNmSyNCzltrww0Shh2rqjJwXBfSyVdHSi8SG/e2ONd/46es3SKATRNEH2MfdUeWGiUcJ09MaY7e6UR+ItWjPRyET6hW1WjW9pmGgUgmg8mXL9+QQDgoiVESkXTDRKmPbeaOpOeSS1EVt/MBrRtLTQVEzDRKMgDAyenHIrIlQEA8TMPVUWmGiUKMmk0tk3mLpTHkl1OGh7X49CdDCZ8rtXh4OEQwETjQKR7vpLpyIg5p4qE0w0SpQT/YMkkpq6Ux5JbcTcU6ORfmETEWbVhE00CkQ0g6UBXtFCE43ywESjRPF98LNGi2lEgpY9NQqxEcHaRhONgjGQIaYB3gI/E43ywESjRGnv8VJEZ40S06ixmEZGVJVoPDFskyB/VbgxMeKJJImkZrQ0wsGApdyWCSYaJYp/Zzyae6omHCIaT1rGygjiSSWpDLuwee4pW6cxUaJu8d7IdRrgpd2apVEemGiUKGO5p/wtX608xnBSF7a0YG1jTcRWhBeAgUHvu5bJPRUy91TePP1qe6pUUDGRy3avi0TkFyKyQ0S2i8gnXHujiGwQkV3uuSGtz40isltEdorIZWntF4jIVvferW7bV9zWsPe59mdEZElan3Xub+wSkXUYwJCl0VA9mqXhNmIyF9Uwou7Cln43PKs2TG8skbroGeNjSJAzWRoBYnFzT+VKLJ7k2vUbue2Xe6Z6KieRi6URBz6lqmcDFwM3iMgK4DPAY6q6HHjM/Rv33lrgHOBy4Osi4t963AZcj7dv+HL3PsB1QKeqLgO+AtzixmoEbgIuAlYDN6WL03SmozdGfWVomG8+Hd/SsEq3w8l0YfOF14LhEyOTFecTNvdUXuxr7yUWT7KvvXeqp3ISY4qGqh5W1efc625gB7AQuAK4yx12F3Cle30FcK+qRlV1L7AbWC0i84F6VX1KvTrUd4/o44/1ALDGWSGXARtUtUNVO4ENDAnNtOZYT5RZtZmD4OCVEQHbJ3wkftG8kYFwMNGYKL6lNpqlEU+aaOTK7tYeAPZ39E3xTE4mr5iGcxudBzwDzFXVw+AJCzDHHbYQOJDWrcW1LXSvR7YP66OqceAEMCvLWNOejt7YqEFw8ALhYO6pkWS6Gx4qWmiiMRH8cztqyq25p3JmlxONA539JItsH5KcRUNEaoH/AT6pql3ZDs3Qplnax9snfW7Xi8gmEdnU1taWZWrlw5iiYYHwjETjJ98N+6vqj3VbBtVEiGazNEIBYuaeyhlfNGLxJK1F9r3MSTREpAJPML6tqt93zUedywn33OraW4BFad2bgUOuvTlD+7A+IhICZgAdWcYahqrerqqrVHVVU1NTLh+p5GnPUqwQhvYJN0tjOJksjYUNVQSEovQflxID2VJurYxIXuxu7Un9hovNRZVL9pQAdwA7VPXLaW89BPjZTOuAB9Pa17qMqKV4Ae+NzoXVLSIXuzGvHdHHH+sq4HEX93gUuFREGlwA/FLXNq1JJnVMS8P2Cc9MdPDkC1skFGRxYzV72kw0JsKQpWErwidCIqnsaevhkmWzgeITjZO3fDuZS4BrgK0issW1fRb4EnC/iFwH7AeuBlDV7SJyP/ASXubVDarq+0g+CtwJVAGPuAd4onSPiOzGszDWurE6ROSLwLPuuC+oasc4P2vZ0DXg150aPRAecX7lqO2WNoxYIrML5fSmWva09UzFlMqGoZhGZvdU3FaE58SBjj5i8SS/c2YTP99xlAOlJhqq+gSZYwsAa0bpczNwc4b2TcDKDO0DONHJ8N56YP1Y85xOpBb2ZbE0/Iui78M3PHxLY2Sq8hlNNTy5+xjJpBIIjPZ1N7IxkNXSEItp5IifObViQT0LZlQVnWjYivASZKwSIpAmGoP2Q01ntLUEpzfVEo0nOXi8fyqmVRZkKyMSNvdUzvgW7xlNtSxqrCo695SJRgnSPTAIQH1VxajHiAjhUMDcUyPIlD0F3g8UMBfVBMi2uC8UFCtYmCPH+wcJBYT6yhCLG6tNNIyJ0+MW7NVGTv5xphMJBVKL2QyP0UpdnNFUA8CrFgwfN6MJMvjrNOy7mAt90TjV4SAiwqKGalq7o/QXUeq8iUYJ4qfR+msxRiMSClhMYwRD2VPDBbexJsyMqgqzNCbAwODotafCwQCDtiI8J/piidRve259JeBVgCgWTDRKkNxFI2juqRH4wdhw8OR9rM9oqjFLYwL4e6+7OqTDqLD9NHKmL5ZIrdFocHHL432DUzmlYZholCB+PanqDOUa0olYTOMkooMJRLxsnpGcNb+ezfs7+fUr06OqQKGJDiYzWhngiUYiqSSKrCRGMdIbi6duCBtrvLhlR1/xlLgx0ShBemNxKisChILZ//vCoUBqwZXhEXVbvWa6G/7rd53JGU21XHfXs2ze1zkFsyttovHESW4/n5ATacugGpu+6JClMdNVYO4sorpoJholSE80nlrxnY1IhbmnRuKJRuYLW1NdhHv/7GIAfr7j6KmcVlkQHUxmXNgHQ+5AE42x6Y3FUwVHG33RMEvDmAi90fiY8QyASNCyp0bi+91HY0Z1BWc01fLKke5TOKvyIJsg++5A+z6OTV8sQbX7fddXVSBiloYxQXqjQ3ci2YhUWPbUSKKDyVE3rvI5c24dL5to5M3A4OiCXGllbXLG+3175ysYEGZWVdBpgXBjIvRGE6lNlrJhgfCTiSZGD9b6vG5eHQeP96cWURq54ceLMuGLRr/F2MbEy54auilsqAlbINyYGOnZFdmwlNuT8TJ8sgvumXPrgKE9DYzciMYTGTdggiHRsH3Ys6Oq7vc9dB4bqsPmnjImRk+uMQ1b3HcSXoZP9q/9WfM80dhpLqq8GMiScusHyAesFlpWovEkqlAVHiEa5p4yJkJvNE5tDjGNsJUROYlsLhSfhTOrqA4HTTTyxEsyyG5pWAp4dlILd9N+3401FWZpGBPDi2nkammYaKQTjScJj+GeCgSE5XPreOWoiUY+ROOjp9xWWUwjJ/pcjanqkyyNGN6+dFOPiUaJkcnnORqRiqCVRh9BNEuGTzqvm1trlkaeeNlTY8U07PuYjd7YySWCGmrCROPJohHcXLZ7XS8irSKyLa3t8yJyUES2uMd70967UUR2i8hOEbksrf0CEdnq3rvVbfmK2xb2Ptf+jIgsSeuzTkR2uYe/Hey0pn8wgerYdadgKKZRLHcoxUAsh+wpgOVz6mjvjRWVW6DYicaTo8aLhmIaxXHhK1ZSJYKGWRqulEiRfBdzsTTuBC7P0P4VVT3XPR4GEJEVeFu1nuP6fF1E/E9/G3A93p7hy9PGvA7oVNVlwFeAW9xYjcBNwEXAauAmt0/4tKYnx2KF4IlGUiFu9X5S5JI9BbBsrre/xm6repsz3orw7JZGsdwtFyt9mSyN6uIqWjimaKjqr/H27c6FK4B7VTWqqnuB3cBqEZkP1KvqU+rd9t4NXJnW5y73+gFgjbNCLgM2qGqHqnYCG8gsXtOK3hz30oChLU0trjFEtrvhdJa5TZl2HTXRyAVVZSDLantLuc2NTJaGv0NnKVkao/FxEXnRua98C2AhcCDtmBbXttC9Htk+rI+qxoETwKwsY01rMmVXjIZ/R20ZVENE44mTyqJnYuHMKqoqgqn9mo3sDCYU1cx7acCQe8puYLKTsjTSft8zi6z+1HhF4zbgDOBc4DDwr6795NKhoFnax9tnGCJyvYhsEpFNbW3lXdY61700IG2fcFurkSJXSyMQEE5vqjH3VI4M7dqX2QIOBwOImKUxFr1+9lTkZEujWOJr4xINVT2qqglVTQLfwIs5gGcNLEo7tBk45NqbM7QP6yMiIWAGnjtstLEyzed2VV2lqquamprG85FKhkzZFaPhXxwtg8pDVYllKao3kmVzatljlkZO+LGK0VJuRYTKULCoti0tRvozWBozXNHCjlKJaWTCxSh83g/4mVUPAWtdRtRSvID3RlU9DHSLyMUuXnEt8GBaHz8z6irgcRf3eBS4VEQanPvrUtc2rcl1f3AYuuszl4CHv2tfLtlT4MU1Dh7vT1l3xuj4YlCVxW1aFQ4yYFZvVvyYRlVaQkEwIMyoKp4FfmPerorId4G3A7NFpAUvo+ntInIunrvoNeDPAVR1u4jcD7wExIEbVNX/lnwULxOrCnjEPQDuAO4Rkd14FsZaN1aHiHwReNYd9wVVzTUgX7bk457yfffmnvLwxTNn0ZjjBcO//1wLIsKfXHzapM2t1PEtjfQA7kgqQwFbpzEGfbE41eEggcBw7/ysmjDtvcWxT/iYVx5V/VCG5juyHH8zcHOG9k3AygztA8DVo4y1Hlg/1hynE75oVOdYGh0sEO7ju+nyFY3PPbgdgIuWNrLcFTM0htOXsjSyiEZF0GIaY9A7osKtT1NdhGPdxWFp2IrwEsM3X2uy/Dh9zD01nLGCtSM5bVYNzQ1VvPOsOYjAw1uPTOb0ShrfPZVt3/qIicaY9EUzV3uYXRuhrac4LA0TjRIj1/3BwbKnRpJyT+WQPQXeOpfffPodrP/TC1l1WgOPbDs8mdMraYZqJmWJaVSYe2osemOJYfEMH8/SMNEwxkGu+4ND2uI++6ECQ266XN1T4GX9ALz39fN5+Ug3eywFNyP++gJzT02MvlH2ymmqi9AdjRdF9pmJRomR6/7gkG5pmGhAeiA8N/dUOpevnAfAo9vNRZWJ/gzVWUdSWWHZU2PRG01kPIezayMAHCsCF5WJRonhfalyFI3Uvsz2Q4WhvRzG2iM8E/NnVLFwZpWVFRmFTCW9R1JZESiKO+Vipj+WyFjtoanOE41iiGuYaJQYvdF4Tms0YMjSsOwpj7EWoI1Fc0MV+zv6CjmlsmHo3I7lnrLvYjZ6Y/Fhq8F9mpyl0VYEcQ0TjRIj1/3BwdxTI/HvhnM9fyNZ3FjNARONjPSq8RBlAAAgAElEQVTF4gQke7yosiJoVu8Y9I1laZhoGPnS1T9IfWVFTsdaldvh5FPsMROLGqtp7Y5aMDcDfW59gZ84kInKkFkaY9EbzWxp+PWnLKZh5E33QJy6yhyzp/wV4XaRA3Lzu2djcWM1AC2dZm2MpD+WyJo5BS6mYd/FUYknkkTjyYw3NRXBAI01YbM0jPxQVboGBqmvys3SEBHbJzyNfIo9ZmJRYxUABzr6CzancsGzNLKLRlVFkERSGUzY9zETJ/q9goQzRvl9N9VGTDSM/IjGkwwmNGdLAzDRSKMvmhjT756NRc7SsGD4yfQPZl6Ulo5txJQdXzRmVmcWjdl1YXNPGfnR5b5UucY0wEu7NdHw8IOM2fzu2WiqjVBZEbBgeAb6c7A0hvYJt+9jJo77v+9sloaJhpEPXQOeeyUfSyMcDFjGiqNvlHTGXBERFjVUm6WRAa86a/bvZcQsjayccPtlzBxFNGY795S3c8TUYaJRQnQNZL8TyUSkwtxTPqNVEM2HRY3VHOi0mMZI+nIIhFeZaGTleL9Xxdbf3nUkTXURBgaTqd39pgoTjRKi21ka9XnFNIJWe8rRF42PO3PKx1+rMdV3e8VG/2Au7ilfNOz7mInjY1gazQ1eTO3ZvVO7rZCJRgkxrphGyNxTPr2x+LjXaPgsbqymJxrnWE9x7G1QLOSSPeXHNCztNjMnxohpvGvFHJobqvjnR3eSTE7dTcuYoiEi60WkVUS2pbU1isgGEdnlnhvS3rtRRHaLyE4RuSyt/QIR2ereu9Vt+4rbGvY+1/6MiCxJ67PO/Y1dIuJvCTttGZd7KhSwMiKOvlhiQjENgBUL6gHYduhEIaZUNvTHElRVZBdky57KzvG+QeoqQwQDmRM1IqEgn7r0TF463MWPXjx0imc3RC6Wxp3A5SPaPgM8pqrLgcfcvxGRFXjbtZ7j+nxdRPxf6W3A9Xj7hi9PG/M6oFNVlwFfAW5xYzXibS17EbAauCldnKYj3eMJhFvKbYre6MQtjXMW1CMCW1tMNHxUNbVNaTYsppGdE/2Do6bb+lzxxoWsXFjP3/1gG9sOTs13cEzRUNVf4+3dnc4VwF3u9V3AlWnt96pqVFX3AruB1SIyH6hX1afUcwbfPaKPP9YDwBpnhVwGbFDVDlXtBDZwsnhNK7r6BwkFZMx8+HQiIUu59cnFhTIWdZUVnD67hhdNNFJE40mSmn0vDUhLubXvY0aO98WYWZU5CO4TCAjfuHYVM6oquHb9xlTG1alkvDGNuap6GMA9z3HtC4EDace1uLaF7vXI9mF9VDUOnABmZRlr2uKXEMlnnYGXPWV3duDWaYxzNXg6b2ieydaDxwswo/LAL3c+1s2Mv4/JgJVHz0gulgZ4Zfo/97sr6OiNsbe99xTMbDiFDoRnuppplvbx9hn+R0WuF5FNIrKpra0tp4mWIvmUEPGJhAKWPeXIxYWSC29onsHRrihHuwYKMKvSp28wt5peqZiG3cRk5Hh/7r9vP4NyKurKjVc0jjqXE+651bW3AIvSjmsGDrn25gztw/qISAiYgecOG22sk1DV21V1laquampqGudHKn7yKVboEwkFiVmtH2KuBEuhRAMsruHTn8NWr+nvW0wjMyf6BkdNtx2Jv8/9VLiexysaDwF+NtM64MG09rUuI2opXsB7o3NhdYvIxS5ece2IPv5YVwGPu7jHo8ClItLgAuCXurZpSz5l0X0ioYD9SBnaw3qii/sAVsyfQUDgxRZzUQH0x7wL11jntjJkZURGQ1U5nqN7CtJcfVPw2x7zFyQi3wXeDswWkRa8jKYvAfeLyHXAfuBqAFXdLiL3Ay8BceAGVfU/1UfxMrGqgEfcA+AO4B4R2Y1nYax1Y3WIyBeBZ91xX1DVqV3VMsV0D8RZMrs6rz51lSF6o3ESSR01lW860JvagGnilkZVOMjixmr2tls5EUgX5OznNhQMEAqIrdPIQI/7jY4VCPepnEJLY0zRUNUPjfLWmlGOvxm4OUP7JmBlhvYBnOhkeG89sH6sOU4XugbytzRm10ZIKnT0xlK7f01H+qKFszQA5tZXcvSExTRgKKYxlnsK/C1fTTRGkiqLXgKWhq0ILyG8mEb+ogHFsePXVFJISwNg/oxKDndZDSoYyp7KJV5kopEZv4TIaHtpjKQUYxrGKSaeSNITjVNfld+d8uza4tkmciopZEwDYO6MSo6emPqKo8VAakfEMVaEg7dXxPEpWFtQ7KT20shVNJylYaJhjEpP1F8NnqelUWeWBngbMMH49wcfyfz6SmKJJB29VoMq1+wp8Pa6tnN2MqlihaNUuB1JJJVUYO4pYxTGU+EW0txT3dP7h+pv9TrR2lM+82ZUAnDY4hp57b3eWG2ikYmxdu0biS8aZmkYozJWBczRqK8MEQ4GzNLI48KWC/NmePuF2wK/oXObS3mbhpownX0mGiPx99LINaYhIlNWwdpEo0QYT7FC8L5cs2vDRbFN5FTSW+DsqXn1Zmn49A8mqKwIEMghpbuxpoLOvsEpLe1djHT2xoiEAqlV87kwVdUeTDRKhFRZ9DxjGgCzaiPTfv+HQlsaTXURggHhiIkGfbF4zkU0G2siJJKaugkyPA6dGGDBzKq8+lRWBM3SMEbH9wM31uQWKEtndm2YY93T3NKIxQmHAlQEC/OVDwaEptoIR8w9RUdvjIYcA7iNNd5NT4e5qIbR0tlPc0N+ohGpCEzJ6noTjRKh3bmXxicaEYtpRBPUFMjK8Jk3o9IsDeBgZz8Lc7zg+eLS0Tu9v48jOdjZz8J8LY2QWRpGFo71xKiLhPLyefrMrovQ0Rub1n5kby+NwsQzfObVV5qlARw8nvsFz7/p6ei1tRo+A4MJjvVE8xaNSIXFNIwsdPTGmFWbv5UBnqURT2oqA2s60heLF2w1uI9ZGv4FL5a3aHRa2m2Kg8e9ygLNjXmKRig4JWXmTTRKhPbeKLNqx1c7ylaFe2VECm5pzKikJxqne2D6irF/wcvVPZWyNCymkaKl053DmfkVI600S8PIRntPbFzxDIAmJzbTOe22L1qYDZjSWdzo/cj3tJ363dOKhYOpC15uolFVESQSCpilkYZ/DvMOhE/RVs4mGiXCsZ5YymLIl6FSItP3h3qsJzpu0R2N8xc3ALDptelbsf9QnpaGiNBYE6bdRCNFS2cfoYAw1639yZWp2ivHRKMESCaVzr4Ys2rG657yS4lMT0sjmVQOnRjIO9A4FvNmVNLcUMXmfZ0FHbeUOHi8n2BAUosdc6GxJmyWRhoHj/czf2Zl3vvdeOs0zNIwMnCif5BEUscdCJ9ZVUFFUKate6q9N0Ysnsx78VQuXLikkU37OqdttduDnf3Mq68klMf6l8aasMU00hhPui2UqKUhIq+JyFYR2SIim1xbo4hsEJFd7rkh7fgbRWS3iOwUkcvS2i9w4+wWkVvdlrC4bWPvc+3PiMiSicy3VGl3Oe3jDYQHAsKcusppWyfp8AnPhTIZonHBaQ20dUfZ3zE9d/FrySPd1qeh2iyNdFo6+/MOgoMrI1KilsY7VPVcVV3l/v0Z4DFVXQ485v6NiKzA28r1HOBy4Osi4kcmbwOux9tTfLl7H+A6oFNVlwFfAW4pwHxLDj8WMWsCPvk59RFau6anpeH73efPyM9nnAsXLmkEYNNr09NFlc/CPh8rjz5ELJ7kaPdA3kFwKK8yIlcAd7nXdwFXprXfq6pRVd0L7AZWi8h8oF5Vn1LPxr97RB9/rAeANb4VMp1o90VjnO4pgLnT2NI4eNz73IWOaQAsn1NLfWWITdMwrhFPJDnSlX+sqLEmTNdAnMHEqb9LLjb2HutFFZbMHp+lMTCYPOWu0YmKhgI/E5HNInK9a5urqocB3PMc174QOJDWt8W1LXSvR7YP66OqceAEMGuCcy45/JIL4w2EA8ytj0xb0Th0vJ+qimDOexXkQyAgrFhQz84jXQUfu9g5fGKARFLztjQabIFfipfd9+bs+fV594246hCxUyy+ExWNS1T1fOA9wA0i8rYsx2ayEDRLe7Y+wwcWuV5ENonIpra2trHmXHIc64khAg0TuOjNqa+kayCe2s95OnH4RD8LZlYyWUbqGU217GnrnXbBcD9r7PULZ+TVb+FMz014oHN6xoHSeelwF+FggDOaavPuO1UbMU1INFT1kHtuBX4ArAaOOpcT7rnVHd4CLErr3gwccu3NGdqH9RGREDADOCkpXlVvV9VVqrqqqalpIh+pKGnvjdJQHc4rQ2Ukfg54a/f0szYOHs+/7HQ+nNFUy4n+wWm39uCZve3UVYbyvktePqcOgFeO9kzGtEqKlw93s2xO7biqL/uWxqnOoBr3VUhEakSkzn8NXApsAx4C1rnD1gEPutcPAWtdRtRSvID3RufC6haRi1284toRffyxrgIe1+l2O8fEVoP7zK33XFtHp2Ew/NDxfhbMmDzRWDbHu0vc3Tq9LoLPvNrB6iWNea8vWDiziqqKIK8c7Z6kmZUOOw53cdb8unH1rfQtjVNcSmQixXjmAj9wJn8I+I6q/lREngXuF5HrgP3A1QCqul1E7gdeAuLADarqS+RHgTuBKuAR9wC4A7hHRHbjWRhrJzDfkqW9NzahzCkYsjSmW1wjGk/Q1h2dXEvDicaeth4uPn16hNxauwZ49Vgva1cvGvvgEQQCwvK5teya5pZGe0+U1u4oK8YRz4AhS+NUu6fGLRqq+irwxgzt7cCaUfrcDNycoX0TsDJD+wBOdKYzbRP4YvnMrZueouFXoV0ws/Dptj7z6yupqghOC0sjkVS+s3F/Koh90dLxieTyOXX8Zlf5xR/z4eUjnqV11rxxioazNErGPWWcGqLxBPs7+lg6u2ZC49RXhYiEArROs1IihyYx3dYnEBDOmFMzLQoX/uqVVj73w218ecMr1EZCnLNgfBe8M+fW0tod5UTf9K0QvOOwnzk1TvdUqVkaxqlh77FeEkll+dz8syvSEfEKok03S+Ml98M8fRzZKflwRlPttFjg98SudiKhAJ9413Jm10TGnZxx5lwXDG/tTi2QnG5seq2TefWV4670kMqeMkvDSMfPMPF/ZBNhOq7V2Li3ncWN1cybhNXg6ZzRVMvB4/30xeKT+nemmid3H2P10kY+9vZl/OGF+cczfPyboOkSDD/Q0cfF//gYv9jpJZN2Dwzy+M5WLl85b9xjlmTKrTH57DraTTAgnN40MfcUeGs1plMpEVVl494OVi+d/DvZ5S4YvuNw+V4EW7sH2Hm0mzefMXvCYy2cWUVNODhtguHf29zCka4B/uZ7L9LRG+Nn248Siyf5vTcuGPeYQ+4pszSMNF452s1ps6qJhCa+gdDcuum1p/Xu1h46+wZPiWi86YxZBAPCL15uHfvgEuW3u9sBeMuyiYuGiPCG5pn8ds+xCY9V7KgqD245yLI5tZzoj/Hx7zzHdzbup7mhivMXzxz3uEOBcLM0jDR2tfak7mInSnNDFX2xxLRZ4PfMXm8d6EWnQDRmVodZdVoDP99xdNL/1lTxm13HmFldwYpxBr9HcvnKebxytKfss862HDjOvvY+rn/b6fzDlSt5bn8nm/d18vtvXDChKgURszSMkUTjCfa19xUkngGkfuzl7EJJZ+PeDubWR1Lbsk42714xl5ePdHOgDMukDwwm+NlLR3jH6+bkvZhvNC47x/Pn/3Tb4YKMV6zcu/EA4VCAy1fO44MXLuZXf/MO/vbys/jIW0+f0LiVFtMwRvJqm585VRjRONvlg790qPyL66kqT7/azuqlsyat5tRI1pw9F6AsrY1Htx+heyDO1Rc0j31wjsybUcn5i2fyyLYjBRuz2Ljnqde4b9MB1l64iPpKr3bc3PpKPvr2MyZc5aHkyogYk8vOI93c8tOXAXhdgURjRnUFC2dWpfLDy5k9bT20dke55IxTt0J76ewals+p5cEth8queOH3NrXQ3FBV8BXv71k5n+2HutjdWn7W76Pbj/D3D23nXWfP4XO/u6Lg409VGRETjSLk8Il+PnDbb9n8WiefeveZnDnBNRrpnD2/PrV2oZx5YpcXYL2kAEHbfLj2Taex5cBxnnq1/ZT+3cnih88f5IbvPMeTe45x1QXNBArkmvL5g/MXUhMO8uUNrxR03Klmx+Eu/vq+LbyheSZf+6Pzx1WQcCxCwQDBgDBgMQ3j8w9tJ55M8pO/eit/uWZ5Qd0rKxbU82pbz5TsLXwqeXKPtz5j0SmKZ/hcvWoRTXUR/uMXu0/p350MfvTCIT553xae39fJxUtn8aHViwv+N2bVRvizt53Ow1uP8Pz+8lgc+cKB41xzx0bqKkN845oLUqmxk0EkFDBLYzrzi5dbueE7z/Ho9qN88l1nsnhW4S94K+bXkVTP/VVqbDlwnN7o2Ivn4okkT+9pP+VWBni583/21qU8ubud7YdOnPK/Xyi2HTzBp773AhcuaeAXf/N2vnv9xamil4XmI289ndm1Yf7+we0lfzOz7eAJPnj7U1RWBPj2Ry5iziSdMx9vy1cTjbImFk/yH7/YzXV3Pss1dzzDnU/upTcaZ+eRbj5817M882o7f3LxYq57y9JJ+fsr5nsb5mwuse1Jv/PMfq78jyd5362/4cndx2jLUEMrmVQ+9u3N/MFtv6U7GueSZVNTcfYPzveCxb/cWZoF+WLxJP/7ey/QUF3Bf12zqiBrhLJRGwnxj+9/PVsPnuDvH9xW0vGgW376MtXhED/42CUsm1OYWGQ2vC1fT63QWu2pU0hvNM5ffGszv9l1jDPn1pJU+PyPXuKRbUeoiYSoDYfY8Ne/k9oOczJobqjitFnVfOHHL/GrV9r4+h+fT02keL8GqsoPnj/I5x7cxuqljRzo6OOPv/kMAFecu4BbPvCGlPn/0AuHeHjrEZbPqeX02TUFWYQ2HmbXRjhrXh1P7j7GDe9YNiVzGA8Dgwl+8uJhnth9jJePdPONa1dNOMMnVy49Zx5/+c5lfPXx3bxn5XzecdacsTsVGU+/2s5vdh3j7957Nk1149+aOR8ioYAVLCxXVJVP3LuFJ3cf45+uegN/uMqr2/OD51v46/teAOBT7z5zUgUDvIqsP/zYJXxn437+9Wc7+ewPtvKlP3gDLZ19LJtTe8rSU3OhP5bgw3c+y1OvtnPe4pn8959eSDypPLWnnef3d/Jfv36Vfe193H7tBdRXVvDPj+5k5cJ6HrrhLQUP2ObLW5bN5u6n9tEfS1AVntw79ULxuR9u43ubWwD40OrFvHvF3FP69/9qzXIe2NzCf/16T1GKhqoST2oqqN0Xi3PfsweYU1fJGxfN4KYHtzO3PsI1bzrtlM3Jc0+ZpVGWPLjlED/fcZS/e+/ZKcEAeP95zbR1R/nJi4f58CS5pEbSUBPmhncsQ1X5l5+9wiNbjxBLJFk6u4a//70VvON1xfGDfWDzAZ56tZ3P/e4K/vTNS1KLyi5fOY/LV87jvMUz+eR9W7jya09SGQ5y8Hg//3z1G6ZcMAAuWT6bbz6xl037Onjr8qnbgjgWT/KdZ/bRG0sQDAgdvTF2HO7iYGc/jTVhLj59Fr9/7gJ2HO7ie5tb+PPfOZ2/eufyKbE+K4IBPnzJUm5+eAdbW07w+ub89h6fLFSVH714mK//YjevtvVyxbkLqImEeGTb4dROmMGAUFUR5Gt/dN6kBr5HEqkI0tV/aotkSin4D0XkcuDfgSDwTVX90mjHrlq1Sjdt2pT334jGE/x2TzuxeJJQQFjUWE1zQxWvtvXy1cd3cdk581K+6nx5bMdR/r/7X+D0phoe+Is3F2xF7URJJpUv/uSl1ALC/35iL72xOL/+9DsK6sf23R7dA4MsmFnF285sGvOHlUwqa778K+orQ/zwhktGtYC2HTzBX3xrM011ET7yltN53xvmF2zeE6E3GufcL/yMD79lKTe+5+y8+vZE44SDAcKhiYUcj5wY4IbvPDcsfhUOBlg+t5bTZlXT2hVl8/5O/EvAWfPqeOjjb5nw350I3QODvPn/Pc7KhTP4zz+5gBnVFVM2F4CO3hif/f5Wfrr9CGfOreXcRTN56IVDCMIFpzXwV2uWc6Cjj8d3tvK/L33dhPe9yZd/+PFL3PXUa2z87Lsm7KUQkc2qumrM44pdNEQkCLwCvBtoAZ4FPqSqL2U6fryicawnyqp/+HnG9wICCnz5D9/I+89r5siJAb7/fAt7Wns5c24t17zpNKrD3p1Z98AgP3nxMLFEkpULZ/DVx3bxi51tnNFUwzfXXXjKv1T58JtdbVxzx0Zu+cDr+eCFJ6dXDgwm+NELhzjaNcBFp8/igsUNo97VqyqPbj/Chpdaefzlo3SmbbbTWBPmbctns3R2LUubalg6q4bmhiriSaU/lqBvMM6m1zr5Pz/cxr+vPZcrzl04aZ95Mvnjbz7Nlv3H+bv3raB7YJAZVRV88MJFRONJDnT0UREMsMvVXXrX2XPY39HHvz+2ix+9cIhwMMCqJY2cNa+OS8+ZxwWnNeT8d/ticb7x673816/3oAr/cvUbWXP2HBJJpTocHCbALZ19PP1qBwGBt79uzimLYWTjuxv387kfbqOxJsx7Vs5jzdlzeevy2bx0uIvn9nXSVBehqa6SufURmuoio97gqCqDCR2XCLZ09vFjZ130Dyb4m8tex0fecjqBgDAwmCAUkHHvJVJIXjrUxXtv/Q1fvOIcrnnTkgmNVU6i8Sbg86p6mfv3jQCq+v8yHT9e0Ygnkrx48AThYIBYIklLZz8HOvoQgasuaOYT393CU6+28/qFM9jd2kP/YILZtRGO9USZWV3BG5tn0h9L8ELL8WGBqdpIiE+sWc66Ny+Z0ju4XFBVfu9rT9AbTfC1PzqPnoE4T+5p56k9xzh0fICu/kG601Je39g8gw9euJj2niiHTgzQNTBIZSjI8rm1vHy4ix9uOURjTZg3nTGLP7noNM6cW8v2Q13c9+wBthw4zqET/WT7+i2YUcmvPv2OSVkYdSo4dLyfv/zu88Pu9N+6fDY7j3SftIPiuYtm8vKRLgIifOD8ZpKqbN7XyattvcQSSVad1kBCPVHNREN1mNfN87J1frrtCEe6BnjPynl85j1ncdqs4r1RGY2tLSe45acv89z+TvpiCc5Z4C1KzfR9aaiuYMnsGt73es/K3HG4m2M9UV4+0sWxnhiXnTOXcDDA8weOUxEM0BuN094T4+wF9SydVU1CIZFMMqOqgqWza3hk2xGe338c8P6//s/7VqTObTFy+b/9msqKID+84ZIJjVNOonEVcLmqfsT9+xrgIlX9eKbjxysaY9EfS/Cdjfv5/nMtLJldw99edhaLZ1WzeV8n335mHzsOdxMJBTh/cYPzeQbZuLeTd509Z9JztQvJYzuO8pG7N6V+nAGB1y+cwRlzaqmsCPK7r5/P2fPr+dlLR/jKhl2pUuuzasLMqK6gL5rgSNcAIvDX7zqTG96xbFR33MCgV5Bx77EeWjr7iYQCVIVD1ISDVIWDnDm3jgWTuE3rqSCeSPLE7mMsn1vHj184xJd++jLnL27gj1YvJqHK6bNr2Hm0my89/DKrlzZy8/tfP2zDqL5YnDt/+xoPbz3MzKow1RmC6gq0dg2wq7WHYEA4a14dn778rLLYES8WT3LP0/v41tP7+J0zm7juLUs50T9IW3eUo10DtLrnF1qOs+2gV+lgbn2EOXWVnNFUw4yqCh584RABES4+vRFVqKoIMrM6zNaDxznaFSUUEAIBobVrgK6BOKfPruGDFy5izdlzWVagCtOTye2/3sM/Pvwyy+bUcvb8er76ofPGNU45icbVwGUjRGO1qv5l2jHXA9cDLF68+IJ9+/ZNyVzLhQMdfWw5cJxIKMBFp89iRlVmv/LAYIKjXQPMra8cFqNo644yMJg45auxS4HO3hgzqytOitHEE8micHeUMvvae6kKB5lTN/wmLZn0rnFjJUgkk8rR7gHm1lUWRTJFrhzvi/HFH++gfzDOklk1fPrys8Y1TjmJxilxTxmGYUxnchWNUri1eRZYLiJLRSQMrAUemuI5GYZhTEuKfp2GqsZF5OPAo3gpt+tVdfsUT8swDGNaUvSiAaCqDwMPT/U8DMMwpjul4J4yDMMwigQTDcMwDCNnTDQMwzCMnDHRMAzDMHLGRMMwDMPImaJf3JcvItIPFDIldwZQyH07Cz3ebOBYAccr9s9b6PGgcOewFD7rZIxbyO9gsZ/DYj53MP75zQZqVHXsOv6qWlYPoK3A491e5ONtKvL5FfV4hTyHpfBZJ2meBfsOFvs5LOZzN5H55TOPcnRPHS/weD8q8vEKTbF/3mI+f6XyWe0cFs94hWbS51eO7qlNmkP9lHJhun3eycDO4cSw8zd+iuXc5TOPcrQ0bp/qCZxiptvnnQzsHE4MO3/jp1jOXc7zKDtLwzAMw5g8ytHSMAzDMCYJE40iQ0QWicgvRGSHiGwXkU+49kYR2SAiu9xzg2uf5Y7vEZGvpY1TJyJb0h7HROTfpupznUoKdQ7dex8Ska0i8qKI/FREZk/FZzqVFPj8fdCdu+0i8k9T8XlOJeM4d+8Wkc3uO7ZZRN6ZNtYFrn23iNwqI3fumioKme5lj4KkzM0Hznev64BXgBXAPwGfce2fAW5xr2uAtwB/AXwty7ibgbdN9ecrpXOIVwW6FZjt/v1PeBuCTflnLJHzNwvYDzS5f98FrJnqz1dk5+48YIF7vRI4mDbWRuBNgACPAO+Z6s+nWp4ptyWNqh5W1efc625gB7AQuALvR4d7vtId06uqTwADo40pIsuBOcBvJnHqRUMBz6G4R427y6sHDk3+J5haCnj+TgdeUdU29++fAx+Y5OlPKeM4d8+rqv+d2g5UikhEROYD9ar6lHoKcrffZ6ox0ShiRGQJ3p3IM8BcVT0M3hcTTwRy5UPAfe7LN62YyDlU1UHgo8BWPLFYAdwxidMtOib4HdwNnCUiS0QkhPmx7TMAAANxSURBVHfRWzR5sy0uxnHuPgA8r6pRPKFpSXuvxbVNOSYaRYqI1AL/A3xSVbsmONxa4LsTn1VpMdFzKCIVeKJxHrAAeBG4saCTLGImev5UtRPv/N2HZ+W+BsQLOcdiJd9zJyLnALcAf+43ZTisKG76TDSKEHex+h/g26r6fdd81JmsuOfWHMd6IxBS1c2TMtkipUDn8FwAVd3jrLT7gTdP0pSLikJ9B1X1R6p6kaq+CdgJ7JqsORcL+Z47EWkGfgBcq6p7XHML0Jw2bDNF4ho10SgynO/8DmCHqn457a2HgHXu9TrgwRyH/BDTzMoo4Dk8CKwQEb+I27vxfNRlTSG/gyIyxz03AB8DvlnY2RYX+Z47EZkJ/AS4UVWf9A92LqxuEbnYjXktuf/mJ5epjsTbY/gDLwtF8VwhW9zjvXiZKI/h3ak9BjSm9XkN6AB68O5QVqS99ypw1lR/rlI9h3gZQTvcWD8CZk315yux8/dd4CX3WDvVn63Yzh3wf4DetGO3AHPce6uAbcAe4Gu4xdhT/bAV4YZhGEbOmHvKMAzDyBkTDcMwDCNnTDQMwzCMnDHRMAzDMHLGRMMwDMPIGRMNwzjFiMhfiMi1eRy/RES2TeacDCNXQlM9AcOYTohISFX/c6rnYRjjxUTDMPLEFaL7KV4huvPwyl9fC5wNfBmoBY4Bf6qqh0Xkl8BvgUuAh0SkDuhR1X8RkXOB/wSq8RZxfVhVO0XkAmA90Ac8ceo+nWFkx9xThjE+XgfcrqpvALqAG4CvAlepqn/Bvznt+Jmq+juq+q8jxrkb+Fs3zlbgJtf+38BfqVezyTCKBrM0DGN8HNChWkHfAj6Lt4nOBrfBWhA4nHb8fSMHEJEZeGLyK9d0F/C9DO33AO8p/EcwjPwx0TCM8TGy/k43sD2LZdCbx9iSYXzDKArMPWUY42OxiPgC8SHgaaDJbxORCrdHwqio6gmgU0Te6pquAX6lqseBEyLyFtf+x4WfvmGMD7M0DGN87ADWich/4VUu/SrwKHCrcy+FgH/D28IzG+uA/xSRaryKxP/Ltf8vYL2I9LlxDaMosCq3hpEnLnvqx6q6coqnYhinHHNPGYZhGDljloZhGIaRM2ZpGIZhGDljomEYhmHkjImGYRiGkTMmGoZhGEbOmGgYhmEYOWOiYRiGYeTM/w/Re3KoGZ0tKwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'][-200:].plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Etude de l'incidence annuelle" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n", + "entre deux années civiles, nous définissons la période de référence\n", + "entre deux minima de l'incidence, du 1er août de l'année $N$ au\n", + "1er août de l'année $N+1$.\n", + "\n", + "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n", + "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n", + "de référence: à la place du 1er août de chaque année, nous utilisons le\n", + "premier jour de la semaine qui contient le 1er août.\n", + "\n", + "Comme l'incidence de syndrome grippal est très faible en été, cette\n", + "modification ne risque pas de fausser nos conclusions.\n", + "\n", + "Encore un petit détail: les données commencent an octobre 1984, ce qui\n", + "rend la première année incomplète. Nous commençons donc l'analyse en 1985." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", + " for y in range(1985,\n", + " sorted_data.index[-1].year)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "En partant de cette liste des semaines qui contiennent un 1er août, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n", + "\n", + "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "year = []\n", + "yearly_incidence = []\n", + "for week1, week2 in zip(first_august_week[:-1],\n", + " first_august_week[1:]):\n", + " one_year = sorted_data['inc'][week1:week2-1]\n", + " assert abs(len(one_year)-52) < 2\n", + " yearly_incidence.append(one_year.sum())\n", + " year.append(week2.year)\n", + "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Voici les incidences annuelles." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAD8CAYAAAC7IukgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3X+w1fV95/HnC0GwiSgQMPxQYSPJBE0Xyx10x+5uxC2QHxOwNQ2rVWbqDIniju1mVqTJjqnSmZhpYsu6ISE1FbWK1MSRTaF4jTq1XQJcgr+Q0Hu7UkSIXOaiYmegXnjvH9/Pqd97cjmcc/lyftz7esycOd/7OZ/P53zul8N9n8+P7/ejiMDMzKxIwxrdADMzG3wcXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwjm4mJlZ4YY3ugH19JGPfCSmTp3a6GaYmbWU7du3H4qI8bWUGVLBZerUqXR0dDS6GWZmLUXSP9daxsNiZmZWOAcXMzMrnIOLmZkVrqrgImmPpFckvSipI6V9Q9KbKe1FSZ/N5V8uqUvSbknzcumzUj1dklZKUkofKenxlL5F0tRcmcWSOtNjcS59Wsrbmcqeffqnw8zMilBLz+XqiJgZEW25tPtS2syI2AAgaQawCLgUmA98V9JZKf8qYAkwPT3mp/SbgcMRcQlwH3BvqmsscBdwBTAbuEvSmFTm3vT+04HDqQ4zM2sCZ2JYbAGwNiKORcTrQBcwW9JEYHREbI5sh7KHgIW5MmvS8RPANalXMw9oj4ieiDgMtAPz02tzUl5S2VJdLe/gu0f53e9v5uCRo41uipnZgFQbXAJ4WtJ2SUty6bdJelnSD3M9isnAG7k8+1La5HRcnt6nTET0Au8A4yrUNQ54O+Utr6vlrfxpJ9v29LDymc5GN8XMbECqvc7lqojYL2kC0C7pF2RDXPeQBZ57gG8Dvw+on/JRIZ0BlKlUVx8pGC4BuOiii/rL0jQ+8fWNHOs98W8/P7JlL49s2cvI4cPYveIzDWyZmVltquq5RMT+9HwQeBKYHRFvRcTxiDgB/IBsTgSyXsSFueJTgP0pfUo/6X3KSBoOnAf0VKjrEHB+ylteV3nbV0dEW0S0jR9f0wWmdffCHVfzhZmTGDUi+2cZNWIYC2ZO4oVlVze4ZWZmtTllcJH0IUnnlo6BucCraQ6l5Frg1XS8HliUVoBNI5u43xoRB4Ajkq5McyY3AU/lypRWgl0HPJvmZTYBcyWNScNuc4FN6bXnUl5S2VJdLWvC6FGcO3I4x3pPMHL4MI71nuDckcOZcO6oRjfNzKwm1QyLXQA8mVYNDwcejYi/lfSwpJlkw1F7gC8DRMROSeuA14BeYGlEHE913QI8CJwDbEwPgAeAhyV1kfVYFqW6eiTdA2xL+e6OiJ50vAxYK2kFsCPV0fIOvXeMG664mOtnX8SjW/fS7Ul9M2tByjoBQ0NbW1v43mJmZrWRtL3sMpRT8hX6ZmZWOAcXMzMrnIOLmZkVzsHFzMwK5+BiZmaFc3BpUb7/mJk1MweXFuX7j5lZM6v23mLWJHz/MTNrBe65tBjff8zMWoGDS4vx/cfMrBV4WKwF+f5jZtbsfG+xKhx89yi3PbaD+6+/3D0EMxtyfG+xM8Qrs8zMauNhsQq8MsvMbGDcc6nAK7PMzAbGwaUCr8wyMxuYqoKLpD2SXpH0oqSOlDZWUrukzvQ8Jpd/uaQuSbslzculz0r1dElambY7Jm2J/HhK3yJpaq7M4vQenZIW59KnpbydqezZp386flVpZdaTt17FDVdcTPd7x87E25iZDSpVrRaTtAdoi4hDubRvAT0R8U1JdwJjImKZpBnAY8BsYBLwDPDxiDguaStwO/AzYAOwMiI2SroV+PWI+IqkRcC1EfElSWOBDqCNbDvl7cCsiDictlL+cUSslfQ94KWIWFXp9/BOlGZmtav3arEFwJp0vAZYmEtfGxHHIuJ1oAuYLWkiMDoiNkcW0R4qK1Oq6wngmtSrmQe0R0RPRBwG2oH56bU5KW/5+5uZWYNVG1wCeFrSdklLUtoFEXEAID1PSOmTgTdyZfeltMnpuDy9T5mI6AXeAcZVqGsc8HbKW16XmZk1WLVLka+KiP2SJgDtkn5RIa/6SYsK6QMpU6muvo3JguESgIsuuqi/LGZmVrCqei4RsT89HwSeJJtPeSsNdZGeD6bs+4ALc8WnAPtT+pR+0vuUkTQcOA/oqVDXIeD8lLe8rvK2r46ItohoGz9+fDW/rpmZnaZTBhdJH5J0bukYmAu8CqwHSqu3FgNPpeP1wKK0AmwaMB3YmobOjki6Ms2Z3FRWplTXdcCzaV5mEzBX0pi0Gm0usCm99lzKW/7+ZmbWYNUMi10APJlWDQ8HHo2Iv5W0DVgn6WZgL/BFgIjYmVZyvQb0Aksj4niq6xbgQeAcYGN6ADwAPCypi6zHsijV1SPpHmBbynd3RPSk42XAWkkrgB2pDjMzawK+caWZmVXkG1eamVlTcHAxM7PCObiYmVnhHFzMzKxwDi5mZlY4BxczMyucg4uZmRXOwcXMzArn4GJmZoVzcDEzs8I5uJiZWeEcXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhas6uEg6S9IOST9JP39D0puSXkyPz+byLpfUJWm3pHm59FmSXkmvrVTaO1nSSEmPp/QtkqbmyiyW1Jkei3Pp01LezlT27NM7FWZmVpRaei63A7vK0u6LiJnpsQFA0gxgEXApMB/4rqSzUv5VwBJgenrMT+k3A4cj4hLgPuDeVNdY4C7gCmA2cJekManMven9pwOHUx1mZtYEqgoukqYAnwP+oorsC4C1EXEsIl4HuoDZkiYCoyNic0QE8BCwMFdmTTp+Argm9WrmAe0R0RMRh4F2YH56bU7KSypbqsvMzBqs2p7LnwF3ACfK0m+T9LKkH+Z6FJOBN3J59qW0yem4PL1PmYjoBd4BxlWoaxzwdspbXpeZmTXYKYOLpM8DByNie9lLq4CPATOBA8C3S0X6qSYqpA+kTKW6+pC0RFKHpI7u7u7+spiZWcGq6blcBXxB0h5gLTBH0iMR8VZEHI+IE8APyOZEIOtFXJgrPwXYn9Kn9JPep4yk4cB5QE+Fug4B56e85XX1ERGrI6ItItrGjx9fxa9rZman65TBJSKWR8SUiJhKNlH/bET8XppDKbkWeDUdrwcWpRVg08gm7rdGxAHgiKQr05zJTcBTuTKllWDXpfcIYBMwV9KYNOw2F9iUXnsu5SWVLdVlZmYNNvzUWU7qW5Jmkg1H7QG+DBAROyWtA14DeoGlEXE8lbkFeBA4B9iYHgAPAA9L6iLrsSxKdfVIugfYlvLdHRE96XgZsFbSCmBHqsPMzJqAsk7A0NDW1hYdHR2NboaZWUuRtD0i2mop4yv0zcyscA4uZmZWOAcXMzMrnIOLmZkVzsHFzMwK5+BiZmaFc3AxM7PCObiYmVnhHFzMbMg7+O5Rfvf7mzl45GijmzJoOLiY2ZC38qedbNvTw8pnOhvdlEHjdO4tZmbW0j7x9Y0c6/1gm6pHtuzlkS17GTl8GLtXfKaBLWt97rmY2ZD1wh1X84WZkxg1IvtTOGrEMBbMnMQLy65ucMtan4OLmTWdes2BTBg9inNHDudY7wlGDh/Gsd4TnDtyOBPOHXVG33cocHAxs6ZTzzmQQ+8d44YrLubJW6/ihisupvu9Y2f8PYcC33LfzJpG+RxIiedAGsu33DezluY5kMHDwcXMmobnQAaPqoOLpLMk7ZD0k/TzWEntkjrT85hc3uWSuiTtljQvlz5L0ivptZWSlNJHSno8pW+RNDVXZnF6j05Ji3Pp01LezlT27NM7FWbWDDwHMjhUPeci6b8DbcDoiPi8pG8BPRHxTUl3AmMiYpmkGcBjwGxgEvAM8PGIOC5pK3A78DNgA7AyIjZKuhX49Yj4iqRFwLUR8SVJY4GO9L4BbAdmRcRhSeuAH0fEWknfA16KiFWVfgfPuZiZ1e6MzblImgJ8DviLXPICYE06XgMszKWvjYhjEfE60AXMljSRLDBtjiyiPVRWplTXE8A1qVczD2iPiJ6IOAy0A/PTa3NS3vL3NzOzBqt2WOzPgDuA/DKOCyLiAEB6npDSJwNv5PLtS2mT03F5ep8yEdELvAOMq1DXOODtlLe8rj4kLZHUIamju7u7yl/XzMxOxymDi6TPAwcjYnuVdaqftKiQPpAylerqmxixOiLaIqJt/Pjx/WUxM7OCVdNzuQr4gqQ9wFpgjqRHgLfSUBfp+WDKvw+4MFd+CrA/pU/pJ71PGUnDgfOAngp1HQLOT3nL6zKrie+Ia1a8UwaXiFgeEVMiYiqwCHg2In4PWA+UVm8tBp5Kx+uBRWkF2DRgOrA1DZ0dkXRlmjO5qaxMqa7r0nsEsAmYK2lMWo02F9iUXnsu5S1/f7Oa+I64ZsU7nbsifxNYJ+lmYC/wRYCI2JlWcr0G9AJLI+J4KnML8CBwDrAxPQAeAB6W1EXWY1mU6uqRdA+wLeW7OyJ60vEyYK2kFcCOVIdZ1XxHXLMzx7d/sSHr4LtHWbFhF0/v/CVH3z/BqBHDmHfpR/na5z7pi/bMcnz7F7Ma1HI1eKvOy7Rqu631ObjYkFbt1eCtOi/Tqu221udhMbMKWvUuva3abmtOHhYzK1ir3qW3Vdttg4eDi1kFrXqX3lZttw0ep7MU2WxIKM3LXD/7Ih7dupfuFpkcb9V22+DgORczM6vIcy5mZtYUHFzMzKxwDi5mZgXyhasZBxczswL5wtWMV4tZSzr47lFue2wH919/uZfXWlPwjVD7cs/FWpK/HVqz8YWrfbnnYi3F3w4/4N5bc/GFq32552Itxd8OP+DeW/Op9kaoQ4F7LtZ0Kn0j97dD996a2fdv/OA6wxULL2tgSxrvlD0XSaMkbZX0kqSdkv44pX9D0puSXkyPz+bKLJfUJWm3pHm59FmSXkmvrUzbHZO2RH48pW+RNDVXZrGkzvRYnEuflvJ2prJnF3NKbKCKWoJ5qm/kQ/3boXtv1gqq6bkcA+ZExHuSRgB/L6m0PfF9EfGn+cySZpBtU3wpMAl4RtLH01bHq4AlwM+ADcB8sq2ObwYOR8QlkhYB9wJfkjQWuAtoAwLYLml9RBxOee6LiLWSvpfqWDXwU2GnKx8UVlz7qZrLV/uNfKh/O3TvzVrBKXsukXkv/TgiPSrdkGwBsDYijkXE60AXMFvSRGB0RGyO7IZmDwELc2XWpOMngGtSr2Ye0B4RPSmgtAPz02tzUl5S2VJdVmef+PpGpt75NzyyZS8RWVCYeuff8Imvbzx14Rx/I6/eUO+9WfOras5F0lnAduAS4H9HxBZJnwFuk3QT0AF8NQWAyWQ9k5J9Ke39dFyeTnp+AyAieiW9A4zLp5eVGQe8HRG9/dRldfbCHVefdC/6WvgbefWGeu/Nml9Vq8Ui4nhEzASmkPVCLiMbgvoYMBM4AHw7ZVd/VVRIH0iZSnX1IWmJpA5JHd3d3f1lsdNUZFDwN/LBz7dHGRpqWi0WEW9Leh6Yn59rkfQD4Cfpx33AhbliU4D9KX1KP+n5MvskDQfOA3pS+qfLyjwPHALOlzQ89V7ydZW3eTWwGrJb7tfy+1r1ito7xN/IB7/TnZuz1nDK/VwkjQfeT4HlHOBpssn07RFxIOX5Q+CKiFgk6VLgUWA22YT+T4HpEXFc0jbgvwFbyCb0/1dEbJC0FPhURHwlTej/dkT8bprQ3w78RmrOz4FZEdEj6a+BH+Um9F+OiO9W+l28n4tZ45Qv2CjxEurmN5D9XKrpuUwE1qR5l2HAuoj4iaSHJc0kG47aA3wZICJ2SloHvAb0AkvTSjGAW4AHgXPIVomVZnwfAB6W1EXWY1mU6uqRdA+wLeW7OyJ60vEyYK2kFcCOVIeZNami5uasNZwyuETEy8Dl/aTfWKHMnwB/0k96B/ArYx0RcRT44knq+iHww37S/x9Z78jMWoAXbAwtvkLfzOqmqLk5a36nnHMZTDznYmZWu4HMufjGlWZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwjm4mJlZ4RxczMyscA4uZmZWOAcXszrzfiY2FDi4mNVZfj8Ts8HKN640q5Py/Uwe2bKXR7bs9X4mNii552JWJy/ccTVfmDmJUSOy/3ajRgxjwcxJvLDs6ga3zKx4Di5mdeL9TGwocXCxQa3ZJs9L+5k8eetV3HDFxXS/d6zRTTI7I04ZXCSNkrRV0kuSdkr645Q+VlK7pM70PCZXZrmkLkm7Jc3Lpc+S9Ep6baUkpfSRkh5P6VskTc2VWZzeo1PS4lz6tJS3M5U9u5hTYoNJs02ef//GNlYsvIwZk0azYuFlfP/GmrbIMGsZp9wsLAWAD0XEe5JGAH8P3A78NtATEd+UdCcwJiKWSZoBPEa2BfEk4Bng4xFxXNLWVPZnwAZgZURslHQr8OsR8RVJi4BrI+JLksYCHUAbEMB2YFZEHJa0DvhxRKyV9D3gpYhYVel38WZhQ0f55HmJJ8/NandGNguLzHvpxxHpEcACYE1KXwMsTMcLgLURcSwiXge6gNmSJgKjI2JzZBHtobIypbqeAK5JQW0e0B4RPRFxGGgH5qfX5qS85e9v5snzBmm2YUhrnKrmXCSdJelF4CDZH/stwAURcQAgPU9I2ScDb+SK70tpk9NxeXqfMhHRC7wDjKtQ1zjg7ZS3vK7yti+R1CGpo7u7u5pf1wYBT543RrMNQ1rjVHWdS0QcB2ZKOh94UtJlFbKrvyoqpA+kTKW6+iZGrAZWQzYs1l8eG5xKk+fXz76IR7fupdvfps8YX8Nj5Wq6iDIi3pb0PDAfeEvSxIg4kIa8DqZs+4ALc8WmAPtT+pR+0vNl9kkaDpwH9KT0T5eVeR44BJwvaXjqveTrMgPoM1m+YmGl70N2ul6442pWbNjF0zt/ydH3TzBqxDDmXfpRvva5Tza6adYg1awWG596LEg6B/gvwC+A9UBp9dZi4Kl0vB5YlFaATQOmA1vT0NkRSVemOZObysqU6roOeDbNy2wC5koak1ajzQU2pdeeS3nL39/M6szDkFaump7LRGCNpLPIgtG6iPiJpM3AOkk3A3uBLwJExM60kus1oBdYmobVAG4BHgTOATamB8ADwMOSush6LItSXT2S7gG2pXx3R0RPOl4GrJW0AtiR6jCzBvEwpOWdcinyYHImlyIffPcotz22g/uvv9zf1szqpFX/37Vau8/IUmSrjlfJmNVfq/6/a9V218I9l9Pki/XM6q9V/9+1arvdc2kAX6xnVn+t+v+uVds9EA4up6mWVTK+etlaWTN9flt1dVqrtnsgHFwKUO2dbofCOKsNXs32+W3VO0y3artr5TmXOmjVcVYz8OfXPOfStIbSOKsNPv78Nq9mGqos5+BSB4NhnLWZP8R2Zg2Gz+9g1WxDlXk13VvMBq7Vr17Of4hXXPupRjfH6qzVP7+DTSvcKNRzLlaRx9vNms/Bd4+e9EahZ6JH6TkXK5zH282aTysMVXpYzCpqhQ+x2VDU7EOVDi52Ss3+ITYbipp9vyLPuQxxrXZ3VjOrP8+5WM2aeSmjmbUuD4sNUa2wlLHVuBdo9oFqtjm+UNJzknZJ2inp9pT+DUlvSnoxPT6bK7NcUpek3ZLm5dJnSXolvbYybXdM2hL58ZS+RdLUXJnFkjrTY3EufVrK25nKnl3MKRkavAqseO4Fmn2gmp5LL/DViPi5pHOB7ZLa02v3RcSf5jNLmkG2TfGlwCTgGUkfT1sdrwKWAD8DNgDzybY6vhk4HBGXSFoE3At8SdJY4C6gDYj03usj4nDKc19ErJX0vVTHqoGfiqHFq8CK416g2a86Zc8lIg5ExM/T8RFgFzC5QpEFwNqIOBYRrwNdwGxJE4HREbE5slUEDwELc2XWpOMngGtSr2Ye0B4RPSmgtAPz02tzUl5S2VJdVqWhcnfWM829QLNfVdOcSxquuhzYAlwF3CbpJqCDrHdzmCzw/CxXbF9Kez8dl6eTnt8AiIheSe8A4/LpZWXGAW9HRG8/dVmVmn0pY6twL9DsV1W9WkzSh4EfAX8QEe+SDUF9DJgJHAC+XcraT/GokD6QMpXqKm/3Ekkdkjq6u7v7y2J22twLNOurqp6LpBFkgeWvIuLHABHxVu71HwA/ST/uAy7MFZ8C7E/pU/pJz5fZJ2k4cB7Qk9I/XVbmeeAQcL6k4an3kq+rj4hYDayG7DqXan5fs1q5F2jWVzWrxQQ8AOyKiO/k0ifmsl0LvJqO1wOL0gqwacB0YGtEHACOSLoy1XkT8FSuTGkl2HXAs2leZhMwV9IYSWOAucCm9NpzKS+pbKkuMzNrsGp6LlcBNwKvSHoxpf0R8F8lzSQbjtoDfBkgInZKWge8RrbSbGlaKQZwC/AgcA7ZKrGNKf0B4GFJXWQ9lkWprh5J9wDbUr67I6InHS8D1kpaAexIdZiZWRPw7V/MzKwi3/7FzMyagoOLmVkTavWtxR1czKzl/5ANRq1+OyHfuNLM+vwhW3HtpxrdnCFtsNxOyBP6ZkNY+R+yklb7QzaYHHz3KCs27OLpnb/k6PsnGDViGPMu/Shf+9wnB3TXhyLu1u0JfTOrie+L1nyKvp1Qo4bXPCxm1oTqtTeM74vWnIrYWrzRw2sOLmZNqJ5zIEX8IbNiFXE7oRfuuPqkw2v14OBi1kQa8W3T90UbnBrdK/Wci1kT8RxI8YbyMutG3q3bPRezJtLob5uD0VBeZt3IXqmDi1mT8RxIMRo9oT3U+ToXMxuUir5eZCjzdS5mZomHGBvLw2JmNmh5iLFxPCxmZmYVeVjMzMyawimDi6QLJT0naZeknZJuT+ljJbVL6kzPY3JllkvqkrRb0rxc+ixJr6TXVkpSSh8p6fGUvkXS1FyZxek9OiUtzqVPS3k7U9mzizklZmZ2uqrpufQCX42ITwJXAkslzQDuBH4aEdOBn6afSa8tAi4F5gPflXRWqmsVsASYnh7zU/rNwOGIuAS4D7g31TUWuAu4ApgN3JULYvcC96X3P5zqMDOzJnDK4BIRByLi5+n4CLALmAwsANakbGuAhel4AbA2Io5FxOtAFzBb0kRgdERsjmyi56GyMqW6ngCuSb2aeUB7RPRExGGgHZifXpuT8pa/v5mZNVhNcy5puOpyYAtwQUQcgCwAARNStsnAG7li+1La5HRcnt6nTET0Au8A4yrUNQ54O+Utr8vMzBqs6uAi6cPAj4A/iIh3K2XtJy0qpA+kTKW6+jZGWiKpQ1JHd3d3f1nMzKxgVQUXSSPIAstfRcSPU/JbaaiL9Hwwpe8DLswVnwLsT+lT+knvU0bScOA8oKdCXYeA81Pe8rr6iIjVEdEWEW3jx4+v5tc1M7PTVM1qMQEPALsi4ju5l9YDpdVbi4GncumL0gqwaWQT91vT0NkRSVemOm8qK1Oq6zrg2TQvswmYK2lMmsifC2xKrz2X8pa/v5mZNVg1V+hfBdwIvCLpxZT2R8A3gXWSbgb2Al8EiIidktYBr5GtNFsaEcdTuVuAB4FzgI3pAVnwelhSF1mPZVGqq0fSPcC2lO/uiOhJx8uAtZJWADtSHWZm1gR8hb6ZmVXkK/St6Q3ljZvMhhIHF6ur/MZNZjZ4+a7IVhfeuMlsaHHPxerCe8ObDS0OLlYX3rjJbGjxsJjVjTduMhs6vBTZzMwq8lJkMzNrCg4uZmZWOAeXQcwXLJpZozi4DGK+YNHMGsWrxQYhX7BoZo3mnssg5AsWzYrnYebaOLgMQr5g0ax4HmaujYfFBilfsGhWDA8zD4wvojQzq+Dgu0dZsWEXT+/8JUffP8GoEcOYd+lH+drnPjlkRgPOyEWUkn4o6aCkV3Np35D0pqQX0+OzudeWS+qStFvSvFz6LEmvpNdWpq2OSdshP57St0iamiuzWFJneizOpU9LeTtT2bNr+aXNzKrlYeaBqWbO5UFgfj/p90XEzPTYACBpBtkWxZemMt+VdFbKvwpYAkxPj1KdNwOHI+IS4D7g3lTXWOAu4ApgNnCXpDGpzL3p/acDh1MdZmZnRGmY+clbr+KGKy6m+71jjW5S0zvlnEtE/F2+N3EKC4C1EXEMeF1SFzBb0h5gdERsBpD0ELAQ2JjKfCOVfwK4P/Vq5gHtEdGTyrQD8yWtBeYA16cya1L5VVW20cysJt+/8YMRoRULL2tgS1rH6awWu03Sy2nYrNSjmAy8kcuzL6VNTsfl6X3KREQv8A4wrkJd44C3U97yuszMrAkMNLisAj4GzAQOAN9O6eonb1RIH0iZSnX9CklLJHVI6uju7j5ZNjMzK9CAgktEvBURxyPiBPADsjkRyHoRF+ayTgH2p/Qp/aT3KSNpOHAe0FOhrkPA+SlveV39tXV1RLRFRNv48eNr/VXNzGwABhRcJE3M/XgtUFpJth5YlFaATSObuN8aEQeAI5KuTPMpNwFP5cqUVoJdBzwb2froTcBcSWPSsNtcYFN67bmUl1S2VJeZmTWBU07oS3oM+DTwEUn7yFZwfVrSTLLhqD3AlwEiYqekdcBrQC+wNCKOp6puIVt5dg7ZRP7GlP4A8HCa/O8hW21GRPRIugfYlvLdXZrcB5YBayWtAHakOszMrEn4IkozM6toIBdRDqngIqkb+Od+XvoI2VxOq3G768vtrq9WbTe0bttP1u6LI6KmSeshFVxORlJHrVG5Gbjd9eV211erthtat+1Fttt3RTYzs8I5uJiZWeEcXDKrG92AAXK768vtrq9WbTe0btsLa7fnXMzMrHDuuZiZWeEGZXA5yR40/17S5rSnzP+RNDqlj5C0JqXvkrQ8V+b5tC9Nad+aCU3U7rMl/WVKf0nSp3Nl+t07pwXaXe/zfaGk59K/+05Jt6f0sZLa035B7bkbs9a8X1ELtLtu57zWdksal/K/J+n+srrq/Rkvsu3NfM5/S9L2dG63S5qTq6u2cx4Rg+4B/CfgN4BXc2nbgP+cjn8fuCcdX0+2TQDAr5HdcWBq+vl5oK1J270U+Mt0PAHYDgxLP28F/gPZTT43Ap9pkXbX+3xPBH4jHZ8L/CMwA/jPDIkDAAADj0lEQVQWcGdKvxO4Nx3PAF4CRgLTgH8Czqr3OS+43XU75wNo94eA3wS+AtxfVle9P+NFtr2Zz/nlwKR0fBnw5kDP+aDsuUTE35HdSibvE8DfpeN24HdK2YEPKbsR5jnAvwLv1qOd5Wps9wzgp6ncQeBtoE3Zfd9GR8TmyD4Rpb1zmrrdZ7J9JxMRByLi5+n4CLCLbPuGBWT7BJGeS+fv3/YriojXgdJ+RXU950W1+0y172RqbXdE/EtE/D1wNF9Pgz7jhbS93gbQ7h0RUboR8E5glLJ7RdZ8zgdlcDmJV4EvpOMv8sEdl58A/oVs64C9wJ/GB/cwA/jL1HX9n2e6630SJ2v3S8ACScOV3SR0Vnqt0t459VRru0sacr6VbYh3ObAFuCCym62SnkvDFgPZr+iMOs12l9T9nFfZ7pNp6Gf8NNte0grn/HeAHZFt/ljzOR9KweX3gaWStpN1D/81pc8GjgOTyIYMvirp36XXboiITwH/MT1urG+TgZO3+4dk/8AdwJ8B/5fsZqE17XdzBtXabmjQ+Zb0YeBHwB9ERKVeayF7DBWlgHZDA855De0+aRX9pNXlM15A26EFzrmkS8m2k/9yKamfbBXP+ZAJLhHxi4iYGxGzgMfIxp0hm3P524h4Pw3T/ANpmCYi3kzPR4BHacxQQr/tjojeiPjDiJgZEQuA84FOKu+d08ztbsj5ljSC7D/dX0XEj1PyW2kYoDQEczClD2S/omZud93PeY3tPpmGfMYLanvTn3NJU4AngZsiovR3suZzPmSCS2lFhqRhwNeB76WX9gJzlPkQcCXwizRs85FUZgTweT7Yt6bh7Zb0a6m9SPotoDciXovKe+c0bbsbcb7T+XkA2BUR38m9lN9jKL9f0ED2K2radtf7nA+g3f1qxGe8qLY3+zmXdD7wN8DyiPiHUuYBnfNKs/2t+iD7pnwAeJ8s4t4M3E62UuIfgW/ywQWkHwb+mmzy6jXgf8QHqz22Ay+n1/6ctMKmSdo9FdhNNkH3DNldS0v1tJF9YP8JuL9Uppnb3aDz/ZtkXfuXgRfT47PAOLJFB53peWyuzNfSed1NbrVMPc95Ue2u9zkfYLv3kC0WeS99tmY06DNeSNub/ZyTfRH8l1zeF4EJAznnvkLfzMwKN2SGxczMrH4cXMzMrHAOLmZmVjgHFzMzK5yDi5mZFc7BxczMCufgYmZmhXNwMTOzwv1/q4MdzlEclD8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "yearly_incidence.plot(style='*')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2014 1600941\n", + "1991 1659249\n", + "1995 1840410\n", + "2012 2175217\n", + "2003 2234584\n", + "2019 2254386\n", + "2006 2307352\n", + "2017 2321583\n", + "2001 2529279\n", + "1992 2574578\n", + "1993 2703886\n", + "2018 2705325\n", + "1988 2765617\n", + "2007 2780164\n", + "1987 2855570\n", + "2016 2856393\n", + "2011 2857040\n", + "2008 2973918\n", + "1998 3034904\n", + "2002 3125418\n", + "2009 3444020\n", + "1994 3514763\n", + "1996 3539413\n", + "2004 3567744\n", + "1997 3620066\n", + "2015 3654892\n", + "2000 3826372\n", + "2005 3835025\n", + "1999 3908112\n", + "2010 4111392\n", + "2013 4182691\n", + "1986 5115251\n", + "1990 5235827\n", + "1989 5466192\n", + "dtype: int64" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "yearly_incidence.sort_values()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population\n", + " française, sont assez rares: il y en eu trois au cours des 35 dernières années." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEKCAYAAAAGvn7fAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAGalJREFUeJzt3X2UJXV95/H3h5kBhmkYjAONDsr4QAhIqzgXXWQ13WhcdNCcGE5QQcVIGo0PRCdnM8v6sLrLOj5MsphgkklUiAodw8PZyBjUE2hQNEgPqA2OEBdmlSEMAjLSMAuMfPePX7XctP1wq+69XcXPz+ucPn3vrbpVn/rdut9b9auqexURmJlZPvaqO4CZmfWWC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLzNJ+TnzVqlWxZs2aWYc9+OCDrFixop+zr6zJ2aDZ+Zytuibnc7bqyubbunXrPRFxUFczjYi+/a1duzbmctVVV805rG5NzhbR7HzOVl2T8zlbdWXzARPRZe11V4yZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWWmVGGX9B5JN0u6SdJFkvbtVzAzM6um48IuaTXwbqAVEUcDS4DX9SuYmZlVU7YrZimwXNJSYD/gzt5HMjOzbihK/OappLOAc4DdwFcj4tRZxhkFRgEGBwfXjo2NzTqtqakpBgYGqmTuuyZng97nm9yxq2fTGlwOO3d3Pv7Q6pU9m/dCftVe115yturK5hsZGdkaEa1u5tlxYZf0JOAS4BTgfuAfgIsj4vNzPafVasXExMSsw8bHxxkeHi6bd1E0ORv0Pt+aDVt6Nq31Q3vYNNn5N1Vs37iuZ/NeyK/a69pLzlZd2XySui7sZbpiXg7cHhE/iYhHgUuBF3czczMz670yhf1HwH+QtJ8kAS8DtvUnlpmZVdVxYY+I64CLgRuAyeK5m/uUy8zMKir1tb0R8UHgg33KYmZmPeArT83MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy03Fhl3SEpO+0/f1M0h/1M5yZmZXX8U/jRcQtwPMBJC0BdgCX9SmXmZlVVLUr5mXA/4mI/9vLMGZm1j1FRPknSZ8BboiIv5hl2CgwCjA4OLh2bGxs1mlMTU0xMDBQet6LocnZoPf5Jnfs6tm0BpfDzt2djz+0emXP5r2Q9nbr5TKXMd/yNnm9c7bqyuYbGRnZGhGtbuZZurBL2hu4E3hOROycb9xWqxUTExOzDhsfH2d4eLjUvBdLk7NB7/Ot2bClZ9NaP7SHTZMd9/CxfeO6ns17Ie3t1stlLmO+5W3yeuds1ZXNJ6nrwl6lK+aVpK31eYu6mZnVo0phfz1wUa+DmJlZb5Qq7JL2A34LuLQ/cczMrFudd4YCEfEQ8OQ+ZTEzsx7wladmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmSn703gHSrpY0g8kbZN0XL+CmZlZNaV+Gg84F7giIk6WtDewXx8ymZlZFzou7JIOAF4KnA4QEY8Aj/QnlpmZVaWI6GxE6fnAZuD7wPOArcBZEfHgjPFGgVGAwcHBtWNjY7NOb2pqioGBgerJ+6jJ2aD3+SZ37OrZtAaXw87dnY8/tHplz+a9kPZ26+UylzHf8jZ5vXO26srmGxkZ2RoRrW7mWaawt4B/AY6PiOsknQv8LCLeP9dzWq1WTExMzDpsfHyc4eHh8okXQZOzQe/zrdmwpWfTWj+0h02Tnffwbd+4rmfzXkh7u/VymcuYb3mbvN45W3Vl80nqurCXOXh6B3BHRFxX3L8YeEE3Mzczs97ruLBHxF3AjyUdUTz0MlK3jJmZNUjZs2LeBXyhOCPmNuAtvY9kZmbdKFXYI+I7QFd9P2Zm1l++8tTMLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsM6V+QUnSduAB4OfAnm5/SdvMzHqv7G+eAoxExD09T2JmZj3hrhgzs8woIjofWbod+CkQwF9HxOZZxhkFRgEGBwfXjo2NzTqtqakpBgYGqmTuq8kduxhcDjt3L/68h1av7Gi8Xrfd5I5dPZtW2bbrdJl7ob3dernMZcy3vE19T4CzdaNsvpGRka3ddnOXLexPjYg7JR0MfA14V0RcM9f4rVYrJiYmZh02Pj7O8PBwybj9t2bDFtYP7WHTZJVequ5s37iuo/F63XZrNmzp2bTKtl2ny9wL7e3Wy2UuY77lbep7ApytG2XzSeq6sJfqiomIO4v/dwOXAS/sZuZmZtZ7HRd2SSsk7T99G3gFcFO/gpmZWTVl+hsGgcskTT/vwoi4oi+pzMysso4Le0TcBjyvj1nMzKwHfLqjmVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZKF3ZJSyTdKOnyfgQyM7PuVNliPwvY1usgZmbWG6UKu6RDgXXA3/YnjpmZdUsR0fnI0sXAR4D9gT+OiJNmGWcUGAUYHBxcOzY2Nuu0pqamGBgYqJK5ryZ37GJwOezcXXeSuTU5X9lsQ6tX9i/MDO3r3OSOXYs233bzLW9T3xPgbN0om29kZGRrRLS6mefSTkeUdBJwd0RslTQ813gRsRnYDNBqtWJ4ePZRx8fHmWtYnU7fsIX1Q3vYNNlx0yy6Jucrm237qcP9CzND+zp3+oYtizbfdvMtb1PfE+Bs3agjX5mumOOB10jaDowBJ0j6fF9SmZlZZR0X9oj4LxFxaESsAV4HXBkRp/UtmZmZVeLz2M3MMlOpozYixoHxniYxM7Oe8Ba7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8tMx4Vd0r6Svi3pu5JulvShfgYzM7NqyvyC0sPACRExJWkZ8A1J/xQR/9KnbGZmVkHHhT0iApgq7i4r/qIfoczMrDqlet3hyNISYCvwbOC8iPiTWcYZBUYBBgcH146Njc06rampKQYGBuac1+SOXR3n6rXB5bBzd22zX1CT85XNNrR6Zf/CzNC+ztW1fs23vAu9J+r0RM3WhNe5bNuNjIxsjYhWN/MvVdh/8STpQOAy4F0RcdNc47VarZiYmJh12Pj4OMPDw3POY82GLaVz9cr6oT1smqz0O9+Losn5ymbbvnFdH9P8e+3rXF3r13zLu9B7ok5P1GxNeJ3Ltp2krgt7pbNiIuJ+YBw4sZuZm5lZ75U5K+agYksdScuBlwM/6FcwMzOrpsz+/FOAC4p+9r2AL0bE5f2JZWZmVZU5K+Z7wDF9zGJmZj3gK0/NzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMlPmN0+fJukqSdsk3SzprH4GMzOzasr85ukeYH1E3CBpf2CrpK9FxPf7lM3MzCroeIs9Iv4tIm4obj8AbANW9yuYmZlVo4go/yRpDXANcHRE/GzGsFFgFGBwcHDt2NjYrNOYmppiYGBgznlM7thVOlevDC6Hnbtrm/2CmpzP2arrd76h1SsrP3eh92ud5stWVx1pb+uybTcyMrI1IlrdzL90YZc0AFwNnBMRl843bqvViomJiVmHjY+PMzw8POdz12zYUipXL60f2sOmyTK9VIuryfmcrbp+59u+cV3l5y70fq3TfNnqqiPtbV227SR1XdhLnRUjaRlwCfCFhYq6mZnVo8xZMQI+DWyLiD/tXyQzM+tGmS3244E3AidI+k7x96o+5TIzs4o67tCLiG8A6mMWMzPrAV95amaWGRd2M7PMuLCbmWXGhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpaZMr95+hlJd0u6qZ+BzMysO2W22M8HTuxTDjMz65GOC3tEXAPc18csZmbWA4qIzkeW1gCXR8TR84wzCowCDA4Orh0bG5t1vKmpKQYGBuac1+SOXR3n6rXB5bBzd22zX1CT8zlbdf3ON7R6ZeXnLvR+rdN82eqqI+1tXbbtRkZGtkZEq5v597ywt2u1WjExMTHrsPHxcYaHh+d87poNWzrO1Wvrh/awaXJpbfNfSJPzOVt1/c63feO6ys9d6P1ap/my1VVH2tu6bNtJ6rqw+6wYM7PMuLCbmWWmzOmOFwHfAo6QdIekt/YvlpmZVdVxh15EvL6fQczMrDfcFWNmlhkXdjOzzLiwm5llxoXdzCwzLuxmZplxYTczy4wLu5lZZlzYzcwy48JuZpYZF3Yzs8y4sJuZZcaF3cwsMy7sZmaZcWE3M8uMC7uZWWZc2M3MMuPCbmaWmVKFXdKJkm6R9ENJG/oVyszMqivzm6dLgPOAVwJHAa+XdFS/gpmZWTVltthfCPwwIm6LiEeAMeC3+xPLzMyqUkR0NqJ0MnBiRJxR3H8j8KKIeOeM8UaB0eLuEcAtc0xyFXBPldCLoMnZoNn5nK26JudzturK5jssIg7qZoZLS4yrWR77pU+FiNgMbF5wYtJERLRKzH/RNDkbNDufs1XX5HzOVl0d+cp0xdwBPK3t/qHAnb2NY2Zm3SpT2K8HDpf0DEl7A68D/rE/sczMrKqOu2IiYo+kdwJfAZYAn4mIm7uY94LdNTVqcjZodj5nq67J+ZytukXP1/HBUzMze2LwladmZplxYTczy4wLu5lZZp6QhV3Sakmr684xG0nPlPQeSSfUnWWmJmeDZudztuqanK/J2aB6vidUYZe0RtLVwBXAxyW9pO5M7ST9R+BrpO/SeZukt9cc6ReanA2anc/ZqmtyviZngy7zRUSj/4B9226/FvhEcfvNwD8AQ8V91ZDtBOAZ0/MHPgCcVtx/EfAlYLiOfE3O1vR8zpZnviZn63W+Rm6xSzpA0l9JuhX4hKTDikG/A/youD0G/BA4Y/ppi5jvKEnfA/4b8FlJJ0Rq7aOAQwAi4jrgm8BbFjNfk7M1PZ+z5Zmvydn6la+RhR04EdiXtGCPAB+QtJy0W/JqgIh4GLgYeElx/7F+hZF0qKQD2h46BbgkIl5K+oB5g6TDgQun8xUuA46WtE+/8jU5W9PzOVue+ZqcbbHy1VbYlSyV9FZJX5d0lqRnFYOfDTwSEXuAPwN+CpwGfBV4iqRfK8a7FfixpOP6lPFISV8GvgF8WNL01xT/P2C/4vYXgbuAdaRP1Ce37WHcR/p2y+f9KmVrej5nyzNfk7Mtdr7aCnuxq/GbwJuAjwH7AH9TDL4LuLv4ZPoxaWGeRWqA7/P41wIvA+4tHu8JSSva7j4fuCMi1gBXAp8oHr8PeFjS/hFxH/CvwFOLHN8E3luMtzfwc2B77tmans/Z8szX5Gx15lu0wi7pOEkflXR6cV/AkcAVEfGliPgYcJikFwM7SJ9gRxZP3wYMFI/9BfAqSa8mfSgMAt/tMtuTJJ0v6Xpgo6SDinxDwLWSFBH/CNwvaR1pT2H/YjjF/YOBx0h7GAdL+hvgImBPRNydY7am53O26pqcr8nZmpJvUQq7pOcAfwk8APyepPcW814NPFAsNMD5wBtIhXoP8OLi8RtIR4wfiohrgA3A6cDxwH+PiMfaplHFS4v5vYp0UOJs4ADSl50dUuxdAFxQ5Pt2sSyvBIiIbxXTWBoR24AzgZuB/xkRb6E7Tc7W9HzOlme+JmdrRr65Tpep+kfasj6DtNuxtHjsT4Gzitst4JPAycDLga+0PfdppF0VSIX8RtKvMB0D/G/gKW3jlj4dqWjYM4GrSd05q4rHvwi8u7j9DGBjMfxYUn/YkrZl+0kxndWkPYl3Ap8FPgWs6KLdGput6fmcza+r2+7f//V0i13S80kHOH8b+CDwvmLQDtJvpkL65LkW+F3gn4FDJD1X0rJI/ek7JL0kIq4kfd3lR4FLgYsi4t+m5xVFy5R0EvAa4EPAcaS+fUhn20zvHfwY+Drwyoi4nvSJO1LMcwq4Djg2InYAbyR1Bd0FvC8iHiwbqG1P49VNyzaD266axrUbuO26yfZEaLsyP433SyS9EDgc+GpE/IS0NX5rRJwu6QXAOZJawDjwnyTtFxEPSfou8HukczQvBP4A+KSk3cAkcHsxi78CLoyIXSUyKSJC0rGk3ZyvA1sinR7568BtEXGlpNtJV6++AtgK/I6kVRFxj6R/BR6U9HTgz4HTJB1M+tWoe0m7TkTEBDBRod1apL2aB4CPA3cDz6w7m9uuWrYnQru57fJru/mU2mJXskzSmyTdSOrYPxCYLrw/B7YXW983kHYtjgMe4vFTeAAeJe2CHELaKr+J1L9+NXBPRNwBaau8YlF/KfAZ0lHllwMfKUZ5DLhV0vKIuL3I91zSi3Un6XzS6eVYQmqfS4qMpwJrgc1R8RxXSSslfbaY5u3AuRFxt6S9SJ/kdWZbUrTdb5J2BRvTdsV6NyDpfBrWdsU8Q9IwzVzn9pG0oqFtd0DD225A0r6SLqBhbbegTvprgBXAi4vbBxbBPjnLeGeRLoNdXdw/mdSffhjpKwCuLh7fl9QNs6rtuccAe3eSZ8Y89wPexuNb/suAPwLeUQx/EvC9YvqnkPq71hTDTiqWZVVxexJYSerf/3J7HmCvLrJdRLpibIDUtXRm2zjTxyHeCfyPxcrW9rqeQVrZ1pMO8DSl7aazXVqsVwc1rO32B7aQfkkM4D1NaLcZ+b4M/HVx/2PA2+puO9J74s2k9/8lTWu7tnxXAn9fPNaY9a7TvwW32CWdDdwGbJE0GBH3k/qF7iz6xl+jxy8Q+hbpAOj0hUbXkg6iPhQRFwA/lfQ50kHRW4Bf9CFFxI0R8chCeWZkOwS4HBgGPkc6QPFa0l7CnmK6PyUdeH03qe/rYB4/jfIa0rn0j0TE5cCnSVeznkc6Yv1oW75Sn6ozsv0d8PYi263AEZI2FltRv690wdUVpD2Yvmcr8q0gvblOIF0/8ArScY9jSVtKdbZde7bNpLMFXku6huE36m67wnLStRfPkrSKtM4vKaZZS7vNkm9v0rr2VFIXx9GSPlJX20laRjrGdjLw8Yj43WLQMW3TrK3tZuT7WERMb3FPAkfV2XaldfAJNkzavfhb4D3FY8eSitYdRfALgU3FsHOAD7c9/3rgmOL2PqRTgI7txacSaeV9Udv900lbJm8Gvt32+FOBO4vb7yBdtvuk4vlfAp7eNu6qPmV7E+lI968Df1/8vR74X6Rz+RctW9v0Dmy7/Z9Jb6ZT6267WbL9MemUsWc2qO3eTOprfT/wVtKBtOvrbrdZ8r2PtMezqgltR9oDO3XGY6cA1zWh7ebI9/QiQ+3rXcfL0cGCTp+acwowXtxeRtqaWlncP4y0tX4saRfwYtKW1j+RPqn26Uv41Mcl+MVvt76Ax7t77iWdMzo97tcoCi1p9+mrxTh/skjZjgG+Mb3ito23jHRw+YTi/jn9zjYj5wGk4xs7gQ8X9+8FButqu1my3VXMdwVFN19dbdf2er6F1M32WuALxWP31N1uc+QbKx5rP124lvWO1EVxK7CpmP8HivpxH3BwA9a59nxXkb6Y69C617vSy1FigZ9MulDoOcX9pTOGnw+cPL0CkboezqRPRX2OlfkCHj9f/nPAR4vbv0ba43h62wtzNG1fCbxI2d7R/lhx+5Ci7Z672NnaMvwh6XzbzaR+7W8WbzjV2XYzsp1HOq3s2U1oO9JXRi8h9aFeTdoyvgl4f93r3Cz5/pl0htkLGtJ2XyHtgT2NtBV8FmnDsCnrXHu+L5Au/T+8CW3X6d900emIpE8BP4uIDcX9vUjnXb4DeA5wSpTsJ+8VSYeS+rTeFRG3Kn2h2GiRazXwnejNVWXdZHt7RNxWPHYMqVtqXZHtD+vI1k7pOoQzSW+yI0kr66HU2HZt2Y4mvdn+nHSW1UnU1HaSBkjdHPuQ2uk3SBeenE3aUj6cGtttlnyHk45P/BbpmNfLSO1Xy3qn4rTn4vbzSO/Ta0mX1Ne+zs3IdzTpSvdzSd80W9t6V0bZ89g3A+cWBxmOJK3Ex5NelLPrKuqFYyjOgZd0Bqn//2xSF9IPIp1+WXe2HxXZbietHHtIW/E31pit3b2kg4Dvi4i/k3QacHND8t1P6ie+ifS6LqO+tttDOnviUdKW+s9J6/8k8N4GtNtc+R6W9BpSwa9tvZsumoX7Sced3h8RFzag7Wbme4C08boN+K/Uu951rOwW++tIB0ofJn3j2JURcUufspUi6VrSwbXtpHNIPxQR36s1VGFGtruADQ1qt5WkLbg3kL7/fjNwXkQ8Ou8TF8Es2T4dEZvqTfXLigtPpvuy76o7z0xFvpOBz0Y666TuPPuQfnPhjaQ96r8EPhXpa7prN0u+zRHxZ/WmKqfjwi7puaTzOS8mHSzq2VfldqvYg/ggaUv485GuWmuEJmcDkLSU1P3yMClfk17XxmaDdFEX8FiU2TpaRE3OJ+lM0mm1n2va6wrNz7eQUlvsZmbWfE39aTwzM6vIhd3MLDMu7GZmmXFhNzPLjAu7mVlmXNjNzDLjwm5mlpn/D0QBdzhJVkBDAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "yearly_incidence.hist(xrot=20)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} -- 2.18.1