diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index 2a90dda03f08f5a91d005986e67c78a78a87cd2a..d096bc386dd9c7c78cd3f57048f5cdb858232893 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -43,7 +43,7 @@ "metadata": {}, "source": [ "## Buffon's needle\n", - "Applying the method of [Buffon’s needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" + "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" ] }, { @@ -76,9 +76,7 @@ "metadata": {}, "source": [ "## Using a surface fraction argument\n", - "A method that is easier to understand and does not make use of the sin function is based on the\n", - "fact that if $X ∼ U(0, 1)$ and $Y ∼ U(0, 1)$, then $P[X^2 + Y^2 ≤ 1] = \\pi/4$ (see [\"Monte Carlo method\"\n", - "on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" + "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim ∼ U(0, 1)$ and $Y\\sim ∼ U(0, 1)$, then $P[X^2 + Y^2 \\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" ] }, {