Update toy_document_fr.Rmd

parent 0e9ec23d
...@@ -23,30 +23,24 @@ Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedi ...@@ -23,30 +23,24 @@ Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedi
set.seed(42) set.seed(42)
N = 100000 N = 100000
x = runif(N) x = runif(N)
theta = pi/2*runif(N) theta = pi/2*runif(N)2/(mean(x+sin(theta)>1))
2/(mean(x+sin(theta)>1))
``` ```
## Avec un argument "fréquentiel" de surface ## Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si
à la fonction sinus se base sur le fait que $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia]
si $X\sim U(0,1)$ et $Y\sim U(0,1)$
alors $P[X^2+Y^2\leq 1] = \pi/4$
(voir [méthode de Monte Carlo sur Wikipedia]
(https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). (https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)).
Le code suivant illustre ce fait : Le code suivant illustre ce fait :
```{r} ```{r}
set.seed(42) set.seed(42)
N = 1000 N = 1000
df = data.frame(X = runif(N), Y = runif(N)) df = data.frame(X = runif(N), Y = runif(N))df$Accept = (df$X**2 + df$Y**2 <=1)
df$Accept = (df$X**2 + df$Y**2 <=1) library(ggplot2)ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
``` ```
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$
en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 : en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1:
```{r} ```{r}
4*mean(df$Accept) 4*mean(df$Accept)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment