Update toy_document_fr.Rmd

parent 3692cfac
...@@ -33,7 +33,6 @@ si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P ...@@ -33,7 +33,6 @@ si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P
[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia] [X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia]
(https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte- (https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-
Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait : Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :
```{r} ```{r}
set.seed(42) set.seed(42)
N = 1000 N = 1000
...@@ -42,7 +41,6 @@ df$Accept = (df$X**2 + df$Y**2 <=1) ...@@ -42,7 +41,6 @@ df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2) library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
``` ```
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant com Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$ en comptant com
bien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 : bien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment