Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
mooc-rr
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
8f7726592c23135ae5b65a064228781a
mooc-rr
Commits
e7b73d02
Commit
e7b73d02
authored
Aug 05, 2021
by
8f7726592c23135ae5b65a064228781a
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Update toy_document_fr.Rmd
parent
5822beda
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
5 additions
and
2 deletions
+5
-2
toy_document_fr.Rmd
module2/exo1/toy_document_fr.Rmd
+5
-2
No files found.
module2/exo1/toy_document_fr.Rmd
View file @
e7b73d02
...
...
@@ -15,6 +15,7 @@ Mon ordinateur m'indique que $\pi$ vaut *approximativement*
```{r cars}
pi
```
## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon),
on obtiendrait comme __approximation__ :
...
...
@@ -44,8 +45,10 @@ df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
```
Il est alors aisé d'obtenir une approximation (pas terrible) de $\pi$
en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
```{r}
4*mean(df$Accept)
```
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment