{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "data = np.array([\n", " 14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2,\n", " 14.9, 18.1, 7.3, 9.8, 10.9, 12.2, 9.9, 2.9, 2.8, 15.4, 15.7,\n", " 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 3.2, 16.2, 12.3,\n", " 18.7, 8.9, 11.9, 12.1, 14.1, 8.8, 3.9, 16.9, 16.8, 11.3, 14.4,\n", " 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9,\n", " 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 9.2, 12.8, 15.5,\n", " 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 16.3, 11.3, 15.1, 10.4,\n", " 13.4, 16.8, 20.4, 4.4, 16.4, 16.4, 18.7, 16.8, 15.8, 20.4,\n", " 15.5, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7,\n", " 10.2, 8.9, 21.0\n", "])\n", "mean = np.mean(data)\n", "std_dev = np.std(data, ddof=1) # ddof=1 for corrected standard deviation\n", "minimum = np.min(data)\n", "median = np.median(data)\n", "maximum = np.max(data)\n", "\n", "print(f\"Mean: {mean}\")\n", "print(f\"Standard Deviation: {std_dev}\")\n", "print(f\"Minimum: {minimum}\")\n", "print(f\"Median: {median}\")\n", "print(f\"Maximum: {maximum}\")\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }