From 5618a8dee987d8b30ba7cbfc9f10f22c02710824 Mon Sep 17 00:00:00 2001 From: 906a4f494f4ba26c398ed74cb4de7b36 <906a4f494f4ba26c398ed74cb4de7b36@app-learninglab.inria.fr> Date: Wed, 11 Nov 2020 14:12:15 +0000 Subject: [PATCH] =?UTF-8?q?demo=20mise=20=C3=A0=20jour?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- module2/exo1/toy_notebook_fr.ipynb | 99 +++++++++++++++++++++++++++++- 1 file changed, 96 insertions(+), 3 deletions(-) diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/toy_notebook_fr.ipynb index 0bbbe37..f34037b 100644 --- a/module2/exo1/toy_notebook_fr.ipynb +++ b/module2/exo1/toy_notebook_fr.ipynb @@ -1,5 +1,99 @@ { - "cells": [], + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Petit exemple de complétion" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "mu, sigma = 100, 15" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + " x = np.random.normal(loc=mu, scale=sigma, size=10000)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + " import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEGVJREFUeJzt3X+s3XV9x/Hna1QZ/iDCWhi2zdqZugxIhtIxNrNFZZEqi8U/TEo26TKWGoKLLu5H0WS6P5qg80dCMlhwMMrmII3iaAJsIjEzJgheGFIKNlSpcKGj15lNtiVM8L0/zod4LOf2/r6H28/zkZyc73l/P9/z/bxz2776/Z7v99xUFZKkPv3MuCcgSRofQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUsVXjnsBMVq9eXRs2bBj3NCRpRbn//vu/X1VrZhr3sg+BDRs2MDExMe5pSNKKkuR7sxnn6SBJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSerYy/6OYWkmG3bePpb9HrrqorHsV1pMHglIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSx/zNYtI8jes3moG/1UyLxyMBSerYjCGQZH2SryZ5NMn+JB9s9Y8neSrJg+3xrqFtrkxyMMmBJBcO1c9Nsq+tuzpJlqYtSdJszOZ00PPAh6vqgSSvBe5Pcldb99mq+tTw4CRnAtuAs4DXA19J8saqegG4FtgBfAO4A9gC3Lk4rUiS5mrGI4GqOlxVD7TlZ4FHgbXH2GQrcEtVPVdVjwMHgfOSnAGcXFX3VFUBNwEXL7gDSdK8zekzgSQbgDcB97bSB5I8lOSGJKe02lrgyaHNJlttbVs+ui5JGpNZh0CS1wBfBD5UVT9kcGrnDcA5wGHg0y8OHbF5HaM+al87kkwkmZiamprtFCVJczSrEEjyCgYB8PmquhWgqp6pqheq6sfA54Dz2vBJYP3Q5uuAp1t93Yj6S1TVdVW1uao2r1mzZi79SJLmYDZXBwW4Hni0qj4zVD9jaNh7gIfb8l5gW5ITk2wENgH3VdVh4Nkk57f3vBS4bZH6kCTNw2yuDnoL8D5gX5IHW+0jwCVJzmFwSucQ8H6AqtqfZA/wCIMri65oVwYBXA7cCJzE4KogrwySpDGaMQSq6uuMPp9/xzG22QXsGlGfAM6eywQlSUvHO4YlqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUsRlDIMn6JF9N8miS/Uk+2OqnJrkryWPt+ZShba5McjDJgSQXDtXPTbKvrbs6SZamLUnSbMzmSOB54MNV9cvA+cAVSc4EdgJ3V9Um4O72mrZuG3AWsAW4JskJ7b2uBXYAm9pjyyL2IkmaoxlDoKoOV9UDbflZ4FFgLbAV2N2G7QYubstbgVuq6rmqehw4CJyX5Azg5Kq6p6oKuGloG0nSGMzpM4EkG4A3AfcCp1fVYRgEBXBaG7YWeHJos8lWW9uWj65LksZk1iGQ5DXAF4EPVdUPjzV0RK2OUR+1rx1JJpJMTE1NzXaKkqQ5mlUIJHkFgwD4fFXd2srPtFM8tOcjrT4JrB/afB3wdKuvG1F/iaq6rqo2V9XmNWvWzLYXSdIczebqoADXA49W1WeGVu0Ftrfl7cBtQ/VtSU5MspHBB8D3tVNGzyY5v73npUPbSJLGYNUsxrwFeB+wL8mDrfYR4CpgT5LLgCeA9wJU1f4ke4BHGFxZdEVVvdC2uxy4ETgJuLM9JEljMmMIVNXXGX0+H+CCabbZBewaUZ8Azp7LBCVJS8c7hiWpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHZnOfgDSjDTtvH/cUJM2DRwKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSerYjCGQ5IYkR5I8PFT7eJKnkjzYHu8aWndlkoNJDiS5cKh+bpJ9bd3VSbL47UiS5mI2RwI3AltG1D9bVee0xx0ASc4EtgFntW2uSXJCG38tsAPY1B6j3lOStIxmDIGq+hrwg1m+31bglqp6rqoeBw4C5yU5Azi5qu6pqgJuAi6e76QlSYtjIZ8JfCDJQ+100SmtthZ4cmjMZKutbctH1yVJYzTfELgWeANwDnAY+HSrjzrPX8eoj5RkR5KJJBNTU1PznKIkaSbzCoGqeqaqXqiqHwOfA85rqyaB9UND1wFPt/q6EfXp3v+6qtpcVZvXrFkznylKkmZhXiHQzvG/6D3Ai1cO7QW2JTkxyUYGHwDfV1WHgWeTnN+uCroUuG0B85YkLYJVMw1IcjPwVmB1kkngY8Bbk5zD4JTOIeD9AFW1P8ke4BHgeeCKqnqhvdXlDK40Ogm4sz0kSWM0YwhU1SUjytcfY/wuYNeI+gRw9pxmJ0laUt4xLEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSerYjDeLSXr52bDz9rHs99BVF41lv1o6HglIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHZsxBJLckORIkoeHaqcmuSvJY+35lKF1VyY5mORAkguH6ucm2dfWXZ0ki9+OJGkuZnMkcCOw5ajaTuDuqtoE3N1ek+RMYBtwVtvmmiQntG2uBXYAm9rj6PeUJC2zGUOgqr4G/OCo8lZgd1veDVw8VL+lqp6rqseBg8B5Sc4ATq6qe6qqgJuGtpEkjcl8PxM4vaoOA7Tn01p9LfDk0LjJVlvblo+uS5LGaLE/GB51nr+OUR/9JsmOJBNJJqamphZtcpKknzbfEHimneKhPR9p9Ulg/dC4dcDTrb5uRH2kqrquqjZX1eY1a9bMc4qSpJnMNwT2Atvb8nbgtqH6tiQnJtnI4APg+9opo2eTnN+uCrp0aBtJ0pismmlAkpuBtwKrk0wCHwOuAvYkuQx4AngvQFXtT7IHeAR4Hriiql5ob3U5gyuNTgLubA9J0hjNGAJVdck0qy6YZvwuYNeI+gRw9pxmJ0laUt4xLEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUsdm/H0CWlk27Lx93FOQtIJ4JCBJHTMEJKljhoAkdcwQkKSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXMEJCkji0oBJIcSrIvyYNJJlrt1CR3JXmsPZ8yNP7KJAeTHEhy4UInL0lamMU4EnhbVZ1TVZvb653A3VW1Cbi7vSbJmcA24CxgC3BNkhMWYf+SpHlaitNBW4HdbXk3cPFQ/Zaqeq6qHgcOAuctwf4lSbO00BAo4MtJ7k+yo9VOr6rDAO35tFZfCzw5tO1kq71Ekh1JJpJMTE1NLXCKkqTpLPSXyrylqp5OchpwV5JvH2NsRtRq1MCqug64DmDz5s0jx0iSFm5BRwJV9XR7PgJ8icHpnWeSnAHQno+04ZPA+qHN1wFPL2T/kqSFmXcIJHl1kte+uAy8A3gY2Atsb8O2A7e15b3AtiQnJtkIbALum+/+JUkLt5DTQacDX0ry4vv8Y1X9c5JvAnuSXAY8AbwXoKr2J9kDPAI8D1xRVS8saPaSpAWZdwhU1XeBXxlR/w/ggmm22QXsmu8+JUmLyzuGJaljC706SFJHNuy8fSz7PXTVRWPZbw88EpCkjhkCktQxQ0CSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI4ZApLUMUNAkjpmCEhSxwwBSeqYISBJHTMEJKlj/j6BJTCu71yXpLnySECSOmYISFLHDAFJ6pghIEkdMwQkqWOGgCR1zBCQpI55n4Ckl71x3ntz6KqLxrbv5eCRgCR1bNlDIMmWJAeSHEyyc7n3L0n6iWUNgSQnAH8NvBM4E7gkyZnLOQdJ0k8s92cC5wEHq+q7AEluAbYCjyzFzvwOH0k6tuUOgbXAk0OvJ4FfW+Y5SNKsjes/k8v1gfRyh0BG1Oolg5IdwI728r+THFjSWS2v1cD3xz2JJXC89gX2thKt+L7yiWlXzba3X5jNfpY7BCaB9UOv1wFPHz2oqq4DrluuSS2nJBNVtXnc81hsx2tfYG8r0fHaFyx+b8t9ddA3gU1JNiZ5JbAN2LvMc5AkNct6JFBVzyf5APAvwAnADVW1fznnIEn6iWW/Y7iq7gDuWO79vowcl6e5OH77AntbiY7XvmCRe0vVSz6XlSR1wq+NkKSOGQJLKMnrknwhybeTPJrk15OcmuSuJI+151PGPc/5SPLHSfYneTjJzUl+diX2luSGJEeSPDxUm7aPJFe2rzw5kOTC8cx6dqbp7a/an8eHknwpyeuG1q3o3obW/UmSSrJ6qLYiepuuryR/1Oa+P8knh+oL76uqfCzRA9gN/GFbfiXwOuCTwM5W2wl8YtzznEdfa4HHgZPa6z3A76/E3oDfAt4MPDxUG9kHg686+RZwIrAR+A5wwrh7mGNv7wBWteVPHE+9tfp6BheefA9YvdJ6m+Zn9jbgK8CJ7fVpi9mXRwJLJMnJDH6g1wNU1f9V1X8y+JqM3W3YbuDi8cxwwVYBJyVZBbyKwf0eK663qvoa8IOjytP1sRW4paqeq6rHgYMMvgrlZWlUb1X15ap6vr38BoN7deA46K35LPBn/PRNqCumt2n6uhy4qqqea2OOtPqi9GUILJ1fBKaAv0vyb0n+NsmrgdOr6jBAez5tnJOcj6p6CvgU8ARwGPivqvoyx0FvzXR9jPrak7XLPLfF9AfAnW15xfeW5N3AU1X1raNWrfTe3gj8ZpJ7k/xrkl9t9UXpyxBYOqsYHNZdW1VvAv6HwamFFa+dI9/K4BD09cCrk/zeeGe1LGb1tScrQZKPAs8Dn3+xNGLYiuktyauAjwJ/MWr1iNqK6Y3BvyWnAOcDfwrsSRIWqS9DYOlMApNVdW97/QUGofBMkjMA2vORabZ/Oftt4PGqmqqqHwG3Ar/B8dEbTN/HrL725OUuyXbgd4DfrXZymZXf2xsY/KfkW0kOMZj/A0l+npXf2yRwaw3cB/yYwfcHLUpfhsASqap/B55M8kutdAGDr8zeC2xvte3AbWOY3kI9AZyf5FXtfyQXAI9yfPQG0/exF9iW5MQkG4FNwH1jmN+8JdkC/Dnw7qr636FVK7q3qtpXVadV1Yaq2sDgH8g3t7+HK7o34J+AtwMkeSODi0y+z2L1Ne5Pw4/nB3AOMAE81H6QpwA/B9wNPNaeTx33POfZ218C3wYeBv6ewRUKK6434GYGn2v8iME/HJcdqw8Gpxy+AxwA3jnu+c+jt4MMziM/2B5/c7z0dtT6Q7Srg1ZSb9P8zF4J/EP7u/YA8PbF7Ms7hiWpY54OkqSOGQKS1DFDQJI6ZghIUscMAUnqmCEgSR0zBCSpY4aAJHXs/wEIDuRUXBiHHAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + " %matplotlib inline\n", + "plt.hist(x)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + " %load_ext rpy2.ipython" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAAC9FBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkbGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7///+WLN6DAAAXMElEQVR4nO2deWAUVbaH4Y0zvPGJqDg4oujgE0d4M+NbTDqk01kIYUsMssqmLLKp7CAYQBYViCKo7AIjghJkkV2RLYAgSAIigRAEJOyEJSGGrH3/eVUdGDrdTXVX1721nP59f9wOVbdOHfPZldruPdUYIE01oxMAYoFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HE0SD4chowAV+VihK8tONsYDy248IEfxL8toAb3bULLs7OzCnzXgzBpkCz4HOta9R58uE/drvquQKCTYFmwbEjrkvtxT6Jnisg2BRoFvxAueuj5CHPFRBsCjQLfibd9bGpkecKCDYFmgWvfyjmtWH9oh/e5LkCgk2B9rPo60snjJy4vMBrOQSbAg6XSZXkeS6AYF24clF5vWbBRxx1O5yVPmt4roBgHchrmdQu5oRSD82CbSkZk+rnQLAxdNrB2NF4pR6aBd9XwdiGBufdBP/wnovEvgEmCYInSm4Sryv00Cy4wU6pWdzo5B3Bpze5SE4KKEWgBZfghCKFHpoFr6i5TG7rVvdcMaCd322BVgbPZmxtB6Ue2s+ic8/I7ZX5nsshWAeKh9vtvZWO0Pwuky54LoBgU8BNsNdZNASbAs2CL98Cgs2JZsHVf1eJV08INgWaBQ8ZW/mJb7A50Sy4LDHT9QnB5kTcwwYINgXcBHsBwaYAgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiSOurA4EmwJxZXUg2BSIK6sDwaZAXFkdCDYF4srqQLApEFdWB4JNgbiyOhBsCnCZRBxcJhEHl0nEEXCZ9FWsi8ejtWUGuIDLJOLgMok4uEwiDsrqEAdldYiDsjrEQVkd4qCsDnFQVoc4KKtDHLxVSRwIJg4EEweCiQPBxIFga3My9b2fFTtAsKXZEr1qQ8vFSj0g2NJEX2OsJMyp0AOCLU3UZwnx09tcVOgBwZbmqf6Fxe/+Gd9gsjSM376nfYNShR4QbGmiDr01fHdrr+cAbkCwpWkp6ctrrNQDgi3NMduocbY9Sj0g2NqUpG8uVOwAwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMjKw+L35Q7PZvCKbFQXvG5U9bub3DA8G0ePmo1PTLuLMAgsVwuKU9cp4B+21SIjVTV91ZAMFCuGE7yUq7r/LfkTfD1ktNi1N3FkCwEDZNkJrz7fXf8XX72wtbT3FbAMFCWJMqNVdfMGDPZRsWZLv/G4KFkBd5g7Hxc41Og0GwKL4Lf8k+TGnEgV5AsCjOlBidgQtM6U8cTOlPHEzpTxxUPvPBbxVGZ8APTOnvxaHYZrYh5UZnwQtM6e9JiS2XsdRUo9PghYAp/X+a7SKmhcbUDGL/IKkpjTM6DV7wuQ6uyHW7TspOc9G8lYa0DCRzIINgN4456nQ6/p9/qJ3uucKqh+jSiBOMTZxmdBq80CzYMfXQuLrL2Mb/9VxhVcHsSLO4iBQy59GaBT/FmPOBys+qWFawdJ5ldAIc0Sz42VNs/z2n2KWnPVdYWDAlNAteWqvhI4ue7FhvkucKCDYF2s+iz2zPZwenfuu1HIJNAR4XCqL8xA2jU3ABwWLYEPZy3OtmOBWHYCFcshcxNnmm0WkwCBbE6vel5lqS0WkwCBbEd+Ol5mxHo9NgECyIQls2u9llndFpMAgWxbHkaPvnRichA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAsKVxLmjaZKpS4TMItjbvD/qtZMobSj0g2NLY5ZdGolG7kCxRcoPahXRplcPY5UilHhCsF1fXbbrJPWiObeTbth+UekCwTmyNmDzOdox72JIdm39T7ADBOhGWz9gvBoyohWB9qJy3Mkr/HUOwPpRES02ZXf8dQ7BODHinMK/nHP33C8E6UT6r2QvLVW5ztE1UwhaN+4Vg83JFOuvOa5rhv6MSEGxevpwhNfsGawsCweZl9hKpyemhLQgEm5cjiRWMpXyhLQgEG0b+kjnKv3w2L3JgwiCNewlM8GlXq3jP0wsIVuZY2CeLm/9Tuc+NDKUHRQERmOBnXXurpSoyBCuTnMNYWXix/47aCETwgjrVa0j8m7rp/SBYGddty/6HRO8moG+wM+myxHV1kSFYmSb5txuhBHaILtrJCidPUTdtDAQr823TA6feGih8N4EJ7jiEdY3tqs4YBPthf79uX4gvvBOY4Ccqbta86qyvKjIEm4LABNd3rnUwZ13ffVBWx8wEJrhT3KPLWYrPKdxRVsfcBCa4ZNlOxqZd8tUDZXXMDcrqeLNt7PTLRufAjUAE179cvxJfPeiV1Rn96tYvns8xOgteBCJ4X9m+Snz1IFdW50KC1BwxwyR1XBBQVmfpcy7qxGhMzSDSU+TWgPcfxRDQIfoWT9y1W56P25hW/Qafk19ePm7R5L0JRHBm5oTOG/euSfrAV4+MLuxwwz/8/n+8Xtq3qmA2eODeNeGHjc6CF4Edov8h31IrfcZXj/9awBwflJdPtXuusKxgtn7oe2eNzoEbgQl+7LzUnHnEV497y1g9563SOlWwrmBSBCZ4Yq1WXRNrjfbVIyrV2X0LY3P/23MFBJuCAM+is2ZOnHHAZ49fGz/m+Pe/13va68k1BJsCDi/dnVi5YMV+7/oTEGwK8FalGMoX9hl7TrlL1vD+a8QnAsFiaJt6ZEPYCaUe22N2HhowSngiECyE/X2kZl8/pS5N5QesMQVKXXgAwUJY9rHU3Gyq1MV1M/S1n0RnAsFCONJBajYNVeqS9CtjFTb+87J4AMGBcPaM2i0G9173kU1xWMLhsH+uSp6tMmzFCbVDHSDYP7lxHV6K/VXlRjumLCpS7pE3Z6ra19732boltlWeVccTCPZP0gHGfm5pdBYS5WGXGFupbjgaBPulLFZu44WPIvLP4b5yq+5RNQT7xemQ25hyo/Ng7FRXqSmPVrUNBPun7wLGPu9ldBYyTXaw8pEfqdoEgv1TNCwqaoi6U5tASO/aeo7Kw8KFbo7ID9QNd4Fgo1iTdDzvvd7CdwPBRhFXKDXNroneDQQbhZkGgAcFBCvTNouxkrAS0buBYD7kpl9QucXJ8Elz4pYJScYdCObCkMSUpuNVblO0eonqW9zqgWAerB4iNd13Gp2GLyCYB0P3Ss037xidhi8gmAfvrpeaxbOMTsMXEMyDk5Gn2NEItadZugDBXDjQOqrjUZXbLEuIHe/nkTEHINgoPnuloHxhB+G7gWCjiJHvcbwgfK4ICDYK163KvsKHqUKwUXSVLq0Kn/cxwRhfIJhlfZWpx26urPm2yinVRfugcRFeM5twB4IHd/yoZ2fvsXO82dw4dYIt231J+d7vhI9rgGC2TR5f8u7nwvcj1y48YcCrmSEvePI6qTnUX/RuzrkuiFC7UH8WyTcY1wq/jVwiv5qJ2oUGkG/bWrrPJn7SlUETCi51nyt8N16EvGB2fmBsH8WBvHwon92i9Urxu/ECgokDwcSBYOJAMHEgWBA/frxc+CuxgQDBYnjr5bTJjYUPWwgADoJRdcWb7DZSs36E0WkwDoJRdcUXrll2ihKMToNxEIyqK77Y95rUZIgfO+gfVF0RgjNpxultNq9J0g1As2B6VVcCINUWlVSlLsuaSEf0FvcFpTM7Dz+lb1K+0SyYXNWVAJg3rIIdbex2FXSgeSG7FvOLcRndHQFVV35Jc9Hc668yGZrJ8zkMcasyNHar1KyYZlA6inC6DnafF3ffey4imgedlNlpIn95R+66s8D189opRuWjhGbBR1zUPnLEcwXhQ/QU6bt62eb2Ct2OTuWsNFH4xKLBoFlwtTrPStzz7LOeKwgLLu/vaBO5133JrLD2zy8xKh1FNAve+vfRNxmr472CsGDpqtCzEmvFefHFvINC+9/g4jENN4WcYOvA4yQrO7pTbe+lEGwK+JxFL0zyXgbBpgCPC31QKGTi0SJDng9DsBcHo1s0HsRd8enmCbGddRiq4gkEe1IivyT94WTeYZseZGz1q7yj+geCPflxMLs9CThHrr0gtxi6YgIODJCakiaco+a77sxDsAkobZzDnOPUzbodAK12Mfb5G7yj+oeY4DV9hqq9I3wluUGzKk9us1tE297mfl/qQnuHvZ/4SXW8oCV49Os/74n/TtUm+Q/0+GZwzarP5sWUZzCm6AMpwUXy37j8OFXbDJAHZQ9oJSQfM0BKcLarcoa6M5kEeZLYVV4vHJGBlODSsDLGcluo2masTWo6dBKTkAkgJZjNb7ViYbi6s6yKx58fE1v7hsodXTnm8Re18Ij6MpMXj4uf+4WYYJY1fa7a6o0VE1uOUHmXuLRLyx7h29yXTIrsHTFTXZAbycmvROxXt00QEBOsD+PnM1ZgK7yz4Lue0v8o7X5UFaT/OunaySb8OwzBQRBXKjUp6XcWjNgtNesnqQriOhfsle2vm1YgOAhayH+yB2bcWTBevvZO+1hVEIf85e0ofPYXCA6CJb1L2P4otxGVWXF57Jz9tKogU9+qYFuacc7MGwgOhrl2R6dc9wXbmjia7b1bb984UyMdPYXPJgzB1IFg4kAwcSCYONQFl2fs8XgIm7P9ijGpGANxwWftr71p2+22oKzDS2Mc8w3LR3+IC26XydgVm9uCqbMYq0gwxdh7fSAu2HU/sLPbHYhk+fg880uD0jEA6oLl+4HN3B4G9pTrk72t7q0eS0Nc8LRBJc753dwW7G52me2OVP/s1rLQElw0PqZplXHYznmxjnFVTqO3trD3Pue+4ES3qA5V3hHIHxHdfK37gvKP4+KmCy9wJAhagjvNLy/srW7e/Cu2AyynsduU787mK51X265265IytqR0ohmmJQwGUoKvy29IlkWr2mbhp1LzjVt59mPdpSbf/cWuSLmxm3QEvz9ICT4uu1H5VuUU+Wh88PU7C3aNlBqn486CUtd7uAkGvLTOA1KCK54vYCzjJVXbfP+K1IxOu7OgIKKEsY0D3brE/8rYGd6j0fSClGC21TZ6kP28YhfnzmVVZ6Qb22pC277uC1ZEvt0vPt9twWHbmyNth7glqS+0BLMbW/cpjxApShj0cVLVGctyv/GoqnNtc2bVP7jFu3YWc0nPAIgJ9stE+SrqBTNMA6sToSY4SZ5mf7Y55ywTQqgJ7ntQakZuNzoN/Qg1wYfsPxeviLXqbakgMLHgWVH2Xp4zBmrnp1eajsn3340M5hU87/VStq2JRe8fmQfzltWJk0eEdc/x2w8oYt6yOg75yztI/PA74pi3rM6QlYxdDzdFeTgrY96yOoXJbfradmqL4YOSZdN/ULvN2blzz3BPRCfMXFbnbFap1hBeXLdPWd5jqLpttkR+tijKq6qMRQi1sjop8pP8l35WtY39GmMFjcXkIxwBZXWWPueiTozG1ISQKJ8xzFmsZpPK58GuUjoWhNt1sNfUGOb8Br+xR2oG7vLbz50I6SKwPFxMPsLRXlbHUbeDPEy9hucKcwo+Ebb51IxW6m6fzOt4OKuLyilWTINmwbaUjEn1c0wi+FzbqIjhymdmuSO7zlR77ra1T+/NwSdlLJoF31fB2IYG580hOF66Apo+Wv/9mhjNghvIl6qLG500g+AL7eW2ykt35ft3W/TsiBOaBa+ouUxu61b3XGGA4NOd5dZd8Bn762+Gf697IiZC+1l0rusmzxWvIZlGHKLt0n/NV+6zbrc7IKVm1RNgLpj3caE3RXNHfqk8M9yxuKS4Lu6HZK/RhSGHhQQXRM7Z9W6Sn7n/rlUdV+Y1ujDksJDgVPlVuZT1qraZNrDY+Wk3//3oYiHBPeWXXVe/r2ob56dxUeMtOuiEDxYSnCqPyx+9jnNU6lhIcEHEpz9MaaV5/t2K6zySsQwWEsx+mzl0sebSJePDkhqH0GvRlhLMg8+HOVl+pPg5QE1DqAnuII89/HCl0WnoR6gJds0CnLrG6DT0I9QEr+pVxs5HXDM6Df0INcFsRnh0k1B62TrkBDMWWqNhQlBwaAHBxIFg4ugluDCr8G4dNVCcFVr3HYNAJ8EfRvaNVPccKBDSbL2bDAitcybV6CN4V2cnc76cfvfOQfGrXGJu3ELOUYmhj2BX6bf0lOCD+WTJHKk5q25iu5BDH8FTV0nNOnXFG/3ztXzQP/oq56jE0EfwiagL7GK08q7Uk2/LYTeSeR/4iaHTSdbuZo4EdSO+AuHoi/bYr7lHpQWug4kDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxDGx4BUJjlGhPLKXD+YVnNYp37nMaw5boBLzCo6Xh/V2DqFa3WIwr2DX9BpD9mkLAswruO8Wxm6Gh/TofB7oJThzSabK7a/G9hvTWN2MHMAbnQT36j6zR3eV7z86M7cV+O8FlNFH8Oo3pSZlRfDBQLDoI3i0PGnCbqtWSbc0+gie9ZnUfPFR8MFAsOgj+Gr49pvp4V6TwgPx6FT57NzAhAFnVSUG+GDeymeACwIqn1360UWHZK25AQ4IqHy2fbiL2B7aMgNcEFf5bOknQaYEeCKu8hkEmwIBlc9uAcGmQNx1MASbAggmDgQTR5zgjX+LVeRPDzwogHvvFxG15n0iot5/r4ioD9Su8mtuoHwDUYNgf4gpdjNmq4ioi+aKiPr9myKiXmyrpjcEu4DgIIBgCA4CCIbgIIDgIIBg4oK7nhERdZyQabOWeNVW5cGeUSKiXm6vprdAwWJeiS3UXDjLFyXFIqI6RUzAq/IXK1AwMAMQTBwIJg4EEweCiQPBxIFg4kAwcUQJLq5Wo0aNNnxjlg2tLtcF3tDwwfjzvKPyzvfrZ+63Z3PPtTKqqlxFCT5fm3/MxDG/k1Rcr/192agXeUflnG/u/TsrRjl453orqqpcRQk+Wp9/zEwmq0iLlyTX4HdrsTIq53xz0xjLeJR3rreiqspVlOA9f3Y8HJvNO6qsYsJr0g91eIaWowrId1I7AbnKUVXlKkrw4V5Hbo7wGu2iFVnFyGHSD0+qnfHFX1T++W58MldArnJUVbmKPIsu/QPvEcOyion9pB8ezuEcVYZrvosb5AjI1RVVJuBcRQk+d1g6M739m+OGHHB5JGNn/uhjQLqmqLzzXdVIPnnmnWtlVFW5ihK8/vGT5W/9H++o8n9VQe3NZX268I7KOd+rdU/KH5xzvRVVVa7CDtHvPvpQ/EmuEfNq1JAuAC+wb//6YAt+s4Hcjso33/nVpUvVGnmcc70dVU2uuJNFHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBbmQKGG9jNBDsBgRbnZJOf3miY9Hehv0d/0hnbE2jv8Rc+tfHO3X/NgGCLc6yOGfF4J2Z1daz9U+zMw8eZKlJtz+yap2r6AjBFmfHo2tvSkfiWoyVVb80O46xG78vvfUxsxVjGyHY6qTZa75cmFlP+une7En31qtXr9a5Wx8TuzK2F4KtT17M5Mz/cLKb1S4vqqzGeOtjRpL01xiCLc60MU5ntymZ96Sxz/7KLvwpm+3tf/vjQK2zZckQbHEuNX/siTY3Mp8a/HSDnYytbfTUczv+9ZHyyDMfPGF0gvwJLcGVULzcvSsQTBwIJk4oCg4pIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4vw/C6hxe08+0jwAAAAASUVORK5CYII=\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%R\n", + "plot(cars)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +110,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - -- 2.18.1