diff --git a/module3/exo2/analyse-syndrome-grippal-jupyter.ipynb b/module3/exo2/analyse-syndrome-grippal-jupyter.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..f91b4a5ab39c2bd81240ffe1037e26afa60f8a85
--- /dev/null
+++ b/module3/exo2/analyse-syndrome-grippal-jupyter.ipynb
@@ -0,0 +1,2511 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Incidence du syndrome grippal"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 63,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%matplotlib inline\n",
+ "import matplotlib.pyplot as plt\n",
+ "import pandas as pd\n",
+ "import isoweek"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Les données de l'incidence du syndrome grippal sont disponibles du site Web du [Réseau Sentinelles](http://www.sentiweb.fr/). Nous les récupérons sous forme d'un fichier en format CSV dont chaque ligne correspond à une semaine de la période demandée. Nous téléchargeons toujours le jeu de données complet, qui commence en 1984 et se termine avec une semaine récente."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 64,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "data_url = \"https://www.sentiweb.fr/datasets/incidence-PAY-3.csv\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici l'explication des colonnes données [sur le site d'origine](https://ns.sentiweb.fr/incidence/csv-schema-v1.json):\n",
+ "\n",
+ "| Nom de colonne | Libellé de colonne |\n",
+ "|----------------|-----------------------------------------------------------------------------------------------------------------------------------|\n",
+ "| week | Semaine calendaire (ISO 8601) |\n",
+ "| indicator | Code de l'indicateur de surveillance |\n",
+ "| inc | Estimation de l'incidence de consultations en nombre de cas |\n",
+ "| inc_low | Estimation de la borne inférieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc_up | Estimation de la borne supérieure de l'IC95% du nombre de cas de consultation |\n",
+ "| inc100 | Estimation du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_low | Estimation de la borne inférieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| inc100_up | Estimation de la borne supérieure de l'IC95% du taux d'incidence du nombre de cas de consultation (en cas pour 100,000 habitants) |\n",
+ "| geo_insee | Code de la zone géographique concernée (Code INSEE) http://www.insee.fr/fr/methodes/nomenclatures/cog/ |\n",
+ "| geo_name | Libellé de la zone géographique (ce libellé peut être modifié sans préavis) |\n",
+ "\n",
+ "La première ligne du fichier CSV est un commentaire, que nous ignorons en précisant `skiprows=1`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202239 \n",
+ " 3 \n",
+ " 51547 \n",
+ " 43092.0 \n",
+ " 60002.0 \n",
+ " 78 \n",
+ " 65.0 \n",
+ " 91.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202238 \n",
+ " 3 \n",
+ " 34384 \n",
+ " 28715.0 \n",
+ " 40053.0 \n",
+ " 52 \n",
+ " 43.0 \n",
+ " 61.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202237 \n",
+ " 3 \n",
+ " 26564 \n",
+ " 21654.0 \n",
+ " 31474.0 \n",
+ " 40 \n",
+ " 33.0 \n",
+ " 47.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202236 \n",
+ " 3 \n",
+ " 19303 \n",
+ " 15018.0 \n",
+ " 23588.0 \n",
+ " 29 \n",
+ " 23.0 \n",
+ " 35.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202235 \n",
+ " 3 \n",
+ " 12914 \n",
+ " 9679.0 \n",
+ " 16149.0 \n",
+ " 19 \n",
+ " 14.0 \n",
+ " 24.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202234 \n",
+ " 3 \n",
+ " 10708 \n",
+ " 7334.0 \n",
+ " 14082.0 \n",
+ " 16 \n",
+ " 11.0 \n",
+ " 21.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202233 \n",
+ " 3 \n",
+ " 12926 \n",
+ " 8869.0 \n",
+ " 16983.0 \n",
+ " 19 \n",
+ " 13.0 \n",
+ " 25.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202232 \n",
+ " 3 \n",
+ " 22257 \n",
+ " 16158.0 \n",
+ " 28356.0 \n",
+ " 34 \n",
+ " 25.0 \n",
+ " 43.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202231 \n",
+ " 3 \n",
+ " 21828 \n",
+ " 16268.0 \n",
+ " 27388.0 \n",
+ " 33 \n",
+ " 25.0 \n",
+ " 41.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202230 \n",
+ " 3 \n",
+ " 19663 \n",
+ " 14779.0 \n",
+ " 24547.0 \n",
+ " 30 \n",
+ " 23.0 \n",
+ " 37.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202229 \n",
+ " 3 \n",
+ " 24268 \n",
+ " 18906.0 \n",
+ " 29630.0 \n",
+ " 37 \n",
+ " 29.0 \n",
+ " 45.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202228 \n",
+ " 3 \n",
+ " 24845 \n",
+ " 19214.0 \n",
+ " 30476.0 \n",
+ " 37 \n",
+ " 29.0 \n",
+ " 45.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202227 \n",
+ " 3 \n",
+ " 40745 \n",
+ " 33994.0 \n",
+ " 47496.0 \n",
+ " 61 \n",
+ " 51.0 \n",
+ " 71.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202226 \n",
+ " 3 \n",
+ " 34010 \n",
+ " 28521.0 \n",
+ " 39499.0 \n",
+ " 51 \n",
+ " 43.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202225 \n",
+ " 3 \n",
+ " 23377 \n",
+ " 19042.0 \n",
+ " 27712.0 \n",
+ " 35 \n",
+ " 28.0 \n",
+ " 42.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202224 \n",
+ " 3 \n",
+ " 26328 \n",
+ " 21829.0 \n",
+ " 30827.0 \n",
+ " 40 \n",
+ " 33.0 \n",
+ " 47.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202223 \n",
+ " 3 \n",
+ " 23430 \n",
+ " 18950.0 \n",
+ " 27910.0 \n",
+ " 35 \n",
+ " 28.0 \n",
+ " 42.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202222 \n",
+ " 3 \n",
+ " 18951 \n",
+ " 15099.0 \n",
+ " 22803.0 \n",
+ " 29 \n",
+ " 23.0 \n",
+ " 35.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202221 \n",
+ " 3 \n",
+ " 13632 \n",
+ " 10251.0 \n",
+ " 17013.0 \n",
+ " 21 \n",
+ " 16.0 \n",
+ " 26.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202220 \n",
+ " 3 \n",
+ " 19787 \n",
+ " 15756.0 \n",
+ " 23818.0 \n",
+ " 30 \n",
+ " 24.0 \n",
+ " 36.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202219 \n",
+ " 3 \n",
+ " 17884 \n",
+ " 14079.0 \n",
+ " 21689.0 \n",
+ " 27 \n",
+ " 21.0 \n",
+ " 33.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202218 \n",
+ " 3 \n",
+ " 30353 \n",
+ " 25089.0 \n",
+ " 35617.0 \n",
+ " 46 \n",
+ " 38.0 \n",
+ " 54.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202217 \n",
+ " 3 \n",
+ " 36006 \n",
+ " 30373.0 \n",
+ " 41639.0 \n",
+ " 54 \n",
+ " 46.0 \n",
+ " 62.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202216 \n",
+ " 3 \n",
+ " 49949 \n",
+ " 42836.0 \n",
+ " 57062.0 \n",
+ " 75 \n",
+ " 64.0 \n",
+ " 86.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202215 \n",
+ " 3 \n",
+ " 100806 \n",
+ " 90824.0 \n",
+ " 110788.0 \n",
+ " 152 \n",
+ " 137.0 \n",
+ " 167.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202214 \n",
+ " 3 \n",
+ " 155441 \n",
+ " 143891.0 \n",
+ " 166991.0 \n",
+ " 234 \n",
+ " 217.0 \n",
+ " 251.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202213 \n",
+ " 3 \n",
+ " 191914 \n",
+ " 179558.0 \n",
+ " 204270.0 \n",
+ " 289 \n",
+ " 270.0 \n",
+ " 308.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202212 \n",
+ " 3 \n",
+ " 166224 \n",
+ " 155035.0 \n",
+ " 177413.0 \n",
+ " 251 \n",
+ " 234.0 \n",
+ " 268.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202211 \n",
+ " 3 \n",
+ " 122849 \n",
+ " 113306.0 \n",
+ " 132392.0 \n",
+ " 185 \n",
+ " 171.0 \n",
+ " 199.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202210 \n",
+ " 3 \n",
+ " 87904 \n",
+ " 79741.0 \n",
+ " 96067.0 \n",
+ " 133 \n",
+ " 121.0 \n",
+ " 145.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1949 \n",
+ " 198521 \n",
+ " 3 \n",
+ " 26096 \n",
+ " 19621.0 \n",
+ " 32571.0 \n",
+ " 47 \n",
+ " 35.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1950 \n",
+ " 198520 \n",
+ " 3 \n",
+ " 27896 \n",
+ " 20885.0 \n",
+ " 34907.0 \n",
+ " 51 \n",
+ " 38.0 \n",
+ " 64.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1951 \n",
+ " 198519 \n",
+ " 3 \n",
+ " 43154 \n",
+ " 32821.0 \n",
+ " 53487.0 \n",
+ " 78 \n",
+ " 59.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1952 \n",
+ " 198518 \n",
+ " 3 \n",
+ " 40555 \n",
+ " 29935.0 \n",
+ " 51175.0 \n",
+ " 74 \n",
+ " 55.0 \n",
+ " 93.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1953 \n",
+ " 198517 \n",
+ " 3 \n",
+ " 34053 \n",
+ " 24366.0 \n",
+ " 43740.0 \n",
+ " 62 \n",
+ " 44.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1954 \n",
+ " 198516 \n",
+ " 3 \n",
+ " 50362 \n",
+ " 36451.0 \n",
+ " 64273.0 \n",
+ " 91 \n",
+ " 66.0 \n",
+ " 116.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1955 \n",
+ " 198515 \n",
+ " 3 \n",
+ " 63881 \n",
+ " 45538.0 \n",
+ " 82224.0 \n",
+ " 116 \n",
+ " 83.0 \n",
+ " 149.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1956 \n",
+ " 198514 \n",
+ " 3 \n",
+ " 134545 \n",
+ " 114400.0 \n",
+ " 154690.0 \n",
+ " 244 \n",
+ " 207.0 \n",
+ " 281.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1957 \n",
+ " 198513 \n",
+ " 3 \n",
+ " 197206 \n",
+ " 176080.0 \n",
+ " 218332.0 \n",
+ " 357 \n",
+ " 319.0 \n",
+ " 395.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1958 \n",
+ " 198512 \n",
+ " 3 \n",
+ " 245240 \n",
+ " 223304.0 \n",
+ " 267176.0 \n",
+ " 445 \n",
+ " 405.0 \n",
+ " 485.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1959 \n",
+ " 198511 \n",
+ " 3 \n",
+ " 276205 \n",
+ " 252399.0 \n",
+ " 300011.0 \n",
+ " 501 \n",
+ " 458.0 \n",
+ " 544.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1960 \n",
+ " 198510 \n",
+ " 3 \n",
+ " 353231 \n",
+ " 326279.0 \n",
+ " 380183.0 \n",
+ " 640 \n",
+ " 591.0 \n",
+ " 689.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1961 \n",
+ " 198509 \n",
+ " 3 \n",
+ " 369895 \n",
+ " 341109.0 \n",
+ " 398681.0 \n",
+ " 670 \n",
+ " 618.0 \n",
+ " 722.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1962 \n",
+ " 198508 \n",
+ " 3 \n",
+ " 389886 \n",
+ " 359529.0 \n",
+ " 420243.0 \n",
+ " 707 \n",
+ " 652.0 \n",
+ " 762.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1963 \n",
+ " 198507 \n",
+ " 3 \n",
+ " 471852 \n",
+ " 432599.0 \n",
+ " 511105.0 \n",
+ " 855 \n",
+ " 784.0 \n",
+ " 926.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1964 \n",
+ " 198506 \n",
+ " 3 \n",
+ " 565825 \n",
+ " 518011.0 \n",
+ " 613639.0 \n",
+ " 1026 \n",
+ " 939.0 \n",
+ " 1113.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1965 \n",
+ " 198505 \n",
+ " 3 \n",
+ " 637302 \n",
+ " 592795.0 \n",
+ " 681809.0 \n",
+ " 1155 \n",
+ " 1074.0 \n",
+ " 1236.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1966 \n",
+ " 198504 \n",
+ " 3 \n",
+ " 424937 \n",
+ " 390794.0 \n",
+ " 459080.0 \n",
+ " 770 \n",
+ " 708.0 \n",
+ " 832.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1967 \n",
+ " 198503 \n",
+ " 3 \n",
+ " 213901 \n",
+ " 174689.0 \n",
+ " 253113.0 \n",
+ " 388 \n",
+ " 317.0 \n",
+ " 459.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1968 \n",
+ " 198502 \n",
+ " 3 \n",
+ " 97586 \n",
+ " 80949.0 \n",
+ " 114223.0 \n",
+ " 177 \n",
+ " 147.0 \n",
+ " 207.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1969 \n",
+ " 198501 \n",
+ " 3 \n",
+ " 85489 \n",
+ " 65918.0 \n",
+ " 105060.0 \n",
+ " 155 \n",
+ " 120.0 \n",
+ " 190.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1970 \n",
+ " 198452 \n",
+ " 3 \n",
+ " 84830 \n",
+ " 60602.0 \n",
+ " 109058.0 \n",
+ " 154 \n",
+ " 110.0 \n",
+ " 198.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1971 \n",
+ " 198451 \n",
+ " 3 \n",
+ " 101726 \n",
+ " 80242.0 \n",
+ " 123210.0 \n",
+ " 185 \n",
+ " 146.0 \n",
+ " 224.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1972 \n",
+ " 198450 \n",
+ " 3 \n",
+ " 123680 \n",
+ " 101401.0 \n",
+ " 145959.0 \n",
+ " 225 \n",
+ " 184.0 \n",
+ " 266.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1973 \n",
+ " 198449 \n",
+ " 3 \n",
+ " 101073 \n",
+ " 81684.0 \n",
+ " 120462.0 \n",
+ " 184 \n",
+ " 149.0 \n",
+ " 219.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1974 \n",
+ " 198448 \n",
+ " 3 \n",
+ " 78620 \n",
+ " 60634.0 \n",
+ " 96606.0 \n",
+ " 143 \n",
+ " 110.0 \n",
+ " 176.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1975 \n",
+ " 198447 \n",
+ " 3 \n",
+ " 72029 \n",
+ " 54274.0 \n",
+ " 89784.0 \n",
+ " 131 \n",
+ " 99.0 \n",
+ " 163.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1976 \n",
+ " 198446 \n",
+ " 3 \n",
+ " 87330 \n",
+ " 67686.0 \n",
+ " 106974.0 \n",
+ " 159 \n",
+ " 123.0 \n",
+ " 195.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1977 \n",
+ " 198445 \n",
+ " 3 \n",
+ " 135223 \n",
+ " 101414.0 \n",
+ " 169032.0 \n",
+ " 246 \n",
+ " 184.0 \n",
+ " 308.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1978 \n",
+ " 198444 \n",
+ " 3 \n",
+ " 68422 \n",
+ " 20056.0 \n",
+ " 116788.0 \n",
+ " 125 \n",
+ " 37.0 \n",
+ " 213.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1979 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202239 3 51547 43092.0 60002.0 78 65.0 \n",
+ "1 202238 3 34384 28715.0 40053.0 52 43.0 \n",
+ "2 202237 3 26564 21654.0 31474.0 40 33.0 \n",
+ "3 202236 3 19303 15018.0 23588.0 29 23.0 \n",
+ "4 202235 3 12914 9679.0 16149.0 19 14.0 \n",
+ "5 202234 3 10708 7334.0 14082.0 16 11.0 \n",
+ "6 202233 3 12926 8869.0 16983.0 19 13.0 \n",
+ "7 202232 3 22257 16158.0 28356.0 34 25.0 \n",
+ "8 202231 3 21828 16268.0 27388.0 33 25.0 \n",
+ "9 202230 3 19663 14779.0 24547.0 30 23.0 \n",
+ "10 202229 3 24268 18906.0 29630.0 37 29.0 \n",
+ "11 202228 3 24845 19214.0 30476.0 37 29.0 \n",
+ "12 202227 3 40745 33994.0 47496.0 61 51.0 \n",
+ "13 202226 3 34010 28521.0 39499.0 51 43.0 \n",
+ "14 202225 3 23377 19042.0 27712.0 35 28.0 \n",
+ "15 202224 3 26328 21829.0 30827.0 40 33.0 \n",
+ "16 202223 3 23430 18950.0 27910.0 35 28.0 \n",
+ "17 202222 3 18951 15099.0 22803.0 29 23.0 \n",
+ "18 202221 3 13632 10251.0 17013.0 21 16.0 \n",
+ "19 202220 3 19787 15756.0 23818.0 30 24.0 \n",
+ "20 202219 3 17884 14079.0 21689.0 27 21.0 \n",
+ "21 202218 3 30353 25089.0 35617.0 46 38.0 \n",
+ "22 202217 3 36006 30373.0 41639.0 54 46.0 \n",
+ "23 202216 3 49949 42836.0 57062.0 75 64.0 \n",
+ "24 202215 3 100806 90824.0 110788.0 152 137.0 \n",
+ "25 202214 3 155441 143891.0 166991.0 234 217.0 \n",
+ "26 202213 3 191914 179558.0 204270.0 289 270.0 \n",
+ "27 202212 3 166224 155035.0 177413.0 251 234.0 \n",
+ "28 202211 3 122849 113306.0 132392.0 185 171.0 \n",
+ "29 202210 3 87904 79741.0 96067.0 133 121.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1949 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "1950 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "1951 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "1952 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "1953 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "1954 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "1955 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "1956 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "1957 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "1958 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "1959 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "1960 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "1961 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "1962 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "1963 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "1964 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "1965 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "1966 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "1967 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "1968 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "1969 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "1970 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "1971 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "1972 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "1973 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "1974 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "1975 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "1976 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "1977 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "1978 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 91.0 FR France \n",
+ "1 61.0 FR France \n",
+ "2 47.0 FR France \n",
+ "3 35.0 FR France \n",
+ "4 24.0 FR France \n",
+ "5 21.0 FR France \n",
+ "6 25.0 FR France \n",
+ "7 43.0 FR France \n",
+ "8 41.0 FR France \n",
+ "9 37.0 FR France \n",
+ "10 45.0 FR France \n",
+ "11 45.0 FR France \n",
+ "12 71.0 FR France \n",
+ "13 59.0 FR France \n",
+ "14 42.0 FR France \n",
+ "15 47.0 FR France \n",
+ "16 42.0 FR France \n",
+ "17 35.0 FR France \n",
+ "18 26.0 FR France \n",
+ "19 36.0 FR France \n",
+ "20 33.0 FR France \n",
+ "21 54.0 FR France \n",
+ "22 62.0 FR France \n",
+ "23 86.0 FR France \n",
+ "24 167.0 FR France \n",
+ "25 251.0 FR France \n",
+ "26 308.0 FR France \n",
+ "27 268.0 FR France \n",
+ "28 199.0 FR France \n",
+ "29 145.0 FR France \n",
+ "... ... ... ... \n",
+ "1949 59.0 FR France \n",
+ "1950 64.0 FR France \n",
+ "1951 97.0 FR France \n",
+ "1952 93.0 FR France \n",
+ "1953 80.0 FR France \n",
+ "1954 116.0 FR France \n",
+ "1955 149.0 FR France \n",
+ "1956 281.0 FR France \n",
+ "1957 395.0 FR France \n",
+ "1958 485.0 FR France \n",
+ "1959 544.0 FR France \n",
+ "1960 689.0 FR France \n",
+ "1961 722.0 FR France \n",
+ "1962 762.0 FR France \n",
+ "1963 926.0 FR France \n",
+ "1964 1113.0 FR France \n",
+ "1965 1236.0 FR France \n",
+ "1966 832.0 FR France \n",
+ "1967 459.0 FR France \n",
+ "1968 207.0 FR France \n",
+ "1969 190.0 FR France \n",
+ "1970 198.0 FR France \n",
+ "1971 224.0 FR France \n",
+ "1972 266.0 FR France \n",
+ "1973 219.0 FR France \n",
+ "1974 176.0 FR France \n",
+ "1975 163.0 FR France \n",
+ "1976 195.0 FR France \n",
+ "1977 308.0 FR France \n",
+ "1978 213.0 FR France \n",
+ "\n",
+ "[1979 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 65,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data = pd.read_csv(data_url, encoding = 'iso-8859-1', skiprows=1)\n",
+ "raw_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Y a-t-il des points manquants dans ce jeux de données ? Oui, la semaine 19 de l'année 1989 n'a pas de valeurs associées."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1742 \n",
+ " 198919 \n",
+ " 3 \n",
+ " 0 \n",
+ " NaN \n",
+ " NaN \n",
+ " 0 \n",
+ " NaN \n",
+ " NaN \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n",
+ "1742 198919 3 0 NaN NaN 0 NaN NaN \n",
+ "\n",
+ " geo_insee geo_name \n",
+ "1742 FR France "
+ ]
+ },
+ "execution_count": 66,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "raw_data[raw_data.isnull().any(axis=1)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous éliminons ce point, ce qui n'a pas d'impact fort sur notre analyse qui est assez simple."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " week \n",
+ " indicator \n",
+ " inc \n",
+ " inc_low \n",
+ " inc_up \n",
+ " inc100 \n",
+ " inc100_low \n",
+ " inc100_up \n",
+ " geo_insee \n",
+ " geo_name \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 202239 \n",
+ " 3 \n",
+ " 51547 \n",
+ " 43092.0 \n",
+ " 60002.0 \n",
+ " 78 \n",
+ " 65.0 \n",
+ " 91.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 202238 \n",
+ " 3 \n",
+ " 34384 \n",
+ " 28715.0 \n",
+ " 40053.0 \n",
+ " 52 \n",
+ " 43.0 \n",
+ " 61.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 202237 \n",
+ " 3 \n",
+ " 26564 \n",
+ " 21654.0 \n",
+ " 31474.0 \n",
+ " 40 \n",
+ " 33.0 \n",
+ " 47.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 202236 \n",
+ " 3 \n",
+ " 19303 \n",
+ " 15018.0 \n",
+ " 23588.0 \n",
+ " 29 \n",
+ " 23.0 \n",
+ " 35.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 202235 \n",
+ " 3 \n",
+ " 12914 \n",
+ " 9679.0 \n",
+ " 16149.0 \n",
+ " 19 \n",
+ " 14.0 \n",
+ " 24.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 202234 \n",
+ " 3 \n",
+ " 10708 \n",
+ " 7334.0 \n",
+ " 14082.0 \n",
+ " 16 \n",
+ " 11.0 \n",
+ " 21.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 6 \n",
+ " 202233 \n",
+ " 3 \n",
+ " 12926 \n",
+ " 8869.0 \n",
+ " 16983.0 \n",
+ " 19 \n",
+ " 13.0 \n",
+ " 25.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 202232 \n",
+ " 3 \n",
+ " 22257 \n",
+ " 16158.0 \n",
+ " 28356.0 \n",
+ " 34 \n",
+ " 25.0 \n",
+ " 43.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 8 \n",
+ " 202231 \n",
+ " 3 \n",
+ " 21828 \n",
+ " 16268.0 \n",
+ " 27388.0 \n",
+ " 33 \n",
+ " 25.0 \n",
+ " 41.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 9 \n",
+ " 202230 \n",
+ " 3 \n",
+ " 19663 \n",
+ " 14779.0 \n",
+ " 24547.0 \n",
+ " 30 \n",
+ " 23.0 \n",
+ " 37.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 202229 \n",
+ " 3 \n",
+ " 24268 \n",
+ " 18906.0 \n",
+ " 29630.0 \n",
+ " 37 \n",
+ " 29.0 \n",
+ " 45.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 11 \n",
+ " 202228 \n",
+ " 3 \n",
+ " 24845 \n",
+ " 19214.0 \n",
+ " 30476.0 \n",
+ " 37 \n",
+ " 29.0 \n",
+ " 45.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 12 \n",
+ " 202227 \n",
+ " 3 \n",
+ " 40745 \n",
+ " 33994.0 \n",
+ " 47496.0 \n",
+ " 61 \n",
+ " 51.0 \n",
+ " 71.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 202226 \n",
+ " 3 \n",
+ " 34010 \n",
+ " 28521.0 \n",
+ " 39499.0 \n",
+ " 51 \n",
+ " 43.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 14 \n",
+ " 202225 \n",
+ " 3 \n",
+ " 23377 \n",
+ " 19042.0 \n",
+ " 27712.0 \n",
+ " 35 \n",
+ " 28.0 \n",
+ " 42.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 15 \n",
+ " 202224 \n",
+ " 3 \n",
+ " 26328 \n",
+ " 21829.0 \n",
+ " 30827.0 \n",
+ " 40 \n",
+ " 33.0 \n",
+ " 47.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 16 \n",
+ " 202223 \n",
+ " 3 \n",
+ " 23430 \n",
+ " 18950.0 \n",
+ " 27910.0 \n",
+ " 35 \n",
+ " 28.0 \n",
+ " 42.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 17 \n",
+ " 202222 \n",
+ " 3 \n",
+ " 18951 \n",
+ " 15099.0 \n",
+ " 22803.0 \n",
+ " 29 \n",
+ " 23.0 \n",
+ " 35.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 202221 \n",
+ " 3 \n",
+ " 13632 \n",
+ " 10251.0 \n",
+ " 17013.0 \n",
+ " 21 \n",
+ " 16.0 \n",
+ " 26.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 19 \n",
+ " 202220 \n",
+ " 3 \n",
+ " 19787 \n",
+ " 15756.0 \n",
+ " 23818.0 \n",
+ " 30 \n",
+ " 24.0 \n",
+ " 36.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 202219 \n",
+ " 3 \n",
+ " 17884 \n",
+ " 14079.0 \n",
+ " 21689.0 \n",
+ " 27 \n",
+ " 21.0 \n",
+ " 33.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 21 \n",
+ " 202218 \n",
+ " 3 \n",
+ " 30353 \n",
+ " 25089.0 \n",
+ " 35617.0 \n",
+ " 46 \n",
+ " 38.0 \n",
+ " 54.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 22 \n",
+ " 202217 \n",
+ " 3 \n",
+ " 36006 \n",
+ " 30373.0 \n",
+ " 41639.0 \n",
+ " 54 \n",
+ " 46.0 \n",
+ " 62.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 202216 \n",
+ " 3 \n",
+ " 49949 \n",
+ " 42836.0 \n",
+ " 57062.0 \n",
+ " 75 \n",
+ " 64.0 \n",
+ " 86.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 202215 \n",
+ " 3 \n",
+ " 100806 \n",
+ " 90824.0 \n",
+ " 110788.0 \n",
+ " 152 \n",
+ " 137.0 \n",
+ " 167.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 25 \n",
+ " 202214 \n",
+ " 3 \n",
+ " 155441 \n",
+ " 143891.0 \n",
+ " 166991.0 \n",
+ " 234 \n",
+ " 217.0 \n",
+ " 251.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 26 \n",
+ " 202213 \n",
+ " 3 \n",
+ " 191914 \n",
+ " 179558.0 \n",
+ " 204270.0 \n",
+ " 289 \n",
+ " 270.0 \n",
+ " 308.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 27 \n",
+ " 202212 \n",
+ " 3 \n",
+ " 166224 \n",
+ " 155035.0 \n",
+ " 177413.0 \n",
+ " 251 \n",
+ " 234.0 \n",
+ " 268.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 28 \n",
+ " 202211 \n",
+ " 3 \n",
+ " 122849 \n",
+ " 113306.0 \n",
+ " 132392.0 \n",
+ " 185 \n",
+ " 171.0 \n",
+ " 199.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 29 \n",
+ " 202210 \n",
+ " 3 \n",
+ " 87904 \n",
+ " 79741.0 \n",
+ " 96067.0 \n",
+ " 133 \n",
+ " 121.0 \n",
+ " 145.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 1949 \n",
+ " 198521 \n",
+ " 3 \n",
+ " 26096 \n",
+ " 19621.0 \n",
+ " 32571.0 \n",
+ " 47 \n",
+ " 35.0 \n",
+ " 59.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1950 \n",
+ " 198520 \n",
+ " 3 \n",
+ " 27896 \n",
+ " 20885.0 \n",
+ " 34907.0 \n",
+ " 51 \n",
+ " 38.0 \n",
+ " 64.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1951 \n",
+ " 198519 \n",
+ " 3 \n",
+ " 43154 \n",
+ " 32821.0 \n",
+ " 53487.0 \n",
+ " 78 \n",
+ " 59.0 \n",
+ " 97.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1952 \n",
+ " 198518 \n",
+ " 3 \n",
+ " 40555 \n",
+ " 29935.0 \n",
+ " 51175.0 \n",
+ " 74 \n",
+ " 55.0 \n",
+ " 93.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1953 \n",
+ " 198517 \n",
+ " 3 \n",
+ " 34053 \n",
+ " 24366.0 \n",
+ " 43740.0 \n",
+ " 62 \n",
+ " 44.0 \n",
+ " 80.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1954 \n",
+ " 198516 \n",
+ " 3 \n",
+ " 50362 \n",
+ " 36451.0 \n",
+ " 64273.0 \n",
+ " 91 \n",
+ " 66.0 \n",
+ " 116.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1955 \n",
+ " 198515 \n",
+ " 3 \n",
+ " 63881 \n",
+ " 45538.0 \n",
+ " 82224.0 \n",
+ " 116 \n",
+ " 83.0 \n",
+ " 149.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1956 \n",
+ " 198514 \n",
+ " 3 \n",
+ " 134545 \n",
+ " 114400.0 \n",
+ " 154690.0 \n",
+ " 244 \n",
+ " 207.0 \n",
+ " 281.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1957 \n",
+ " 198513 \n",
+ " 3 \n",
+ " 197206 \n",
+ " 176080.0 \n",
+ " 218332.0 \n",
+ " 357 \n",
+ " 319.0 \n",
+ " 395.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1958 \n",
+ " 198512 \n",
+ " 3 \n",
+ " 245240 \n",
+ " 223304.0 \n",
+ " 267176.0 \n",
+ " 445 \n",
+ " 405.0 \n",
+ " 485.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1959 \n",
+ " 198511 \n",
+ " 3 \n",
+ " 276205 \n",
+ " 252399.0 \n",
+ " 300011.0 \n",
+ " 501 \n",
+ " 458.0 \n",
+ " 544.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1960 \n",
+ " 198510 \n",
+ " 3 \n",
+ " 353231 \n",
+ " 326279.0 \n",
+ " 380183.0 \n",
+ " 640 \n",
+ " 591.0 \n",
+ " 689.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1961 \n",
+ " 198509 \n",
+ " 3 \n",
+ " 369895 \n",
+ " 341109.0 \n",
+ " 398681.0 \n",
+ " 670 \n",
+ " 618.0 \n",
+ " 722.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1962 \n",
+ " 198508 \n",
+ " 3 \n",
+ " 389886 \n",
+ " 359529.0 \n",
+ " 420243.0 \n",
+ " 707 \n",
+ " 652.0 \n",
+ " 762.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1963 \n",
+ " 198507 \n",
+ " 3 \n",
+ " 471852 \n",
+ " 432599.0 \n",
+ " 511105.0 \n",
+ " 855 \n",
+ " 784.0 \n",
+ " 926.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1964 \n",
+ " 198506 \n",
+ " 3 \n",
+ " 565825 \n",
+ " 518011.0 \n",
+ " 613639.0 \n",
+ " 1026 \n",
+ " 939.0 \n",
+ " 1113.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1965 \n",
+ " 198505 \n",
+ " 3 \n",
+ " 637302 \n",
+ " 592795.0 \n",
+ " 681809.0 \n",
+ " 1155 \n",
+ " 1074.0 \n",
+ " 1236.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1966 \n",
+ " 198504 \n",
+ " 3 \n",
+ " 424937 \n",
+ " 390794.0 \n",
+ " 459080.0 \n",
+ " 770 \n",
+ " 708.0 \n",
+ " 832.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1967 \n",
+ " 198503 \n",
+ " 3 \n",
+ " 213901 \n",
+ " 174689.0 \n",
+ " 253113.0 \n",
+ " 388 \n",
+ " 317.0 \n",
+ " 459.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1968 \n",
+ " 198502 \n",
+ " 3 \n",
+ " 97586 \n",
+ " 80949.0 \n",
+ " 114223.0 \n",
+ " 177 \n",
+ " 147.0 \n",
+ " 207.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1969 \n",
+ " 198501 \n",
+ " 3 \n",
+ " 85489 \n",
+ " 65918.0 \n",
+ " 105060.0 \n",
+ " 155 \n",
+ " 120.0 \n",
+ " 190.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1970 \n",
+ " 198452 \n",
+ " 3 \n",
+ " 84830 \n",
+ " 60602.0 \n",
+ " 109058.0 \n",
+ " 154 \n",
+ " 110.0 \n",
+ " 198.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1971 \n",
+ " 198451 \n",
+ " 3 \n",
+ " 101726 \n",
+ " 80242.0 \n",
+ " 123210.0 \n",
+ " 185 \n",
+ " 146.0 \n",
+ " 224.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1972 \n",
+ " 198450 \n",
+ " 3 \n",
+ " 123680 \n",
+ " 101401.0 \n",
+ " 145959.0 \n",
+ " 225 \n",
+ " 184.0 \n",
+ " 266.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1973 \n",
+ " 198449 \n",
+ " 3 \n",
+ " 101073 \n",
+ " 81684.0 \n",
+ " 120462.0 \n",
+ " 184 \n",
+ " 149.0 \n",
+ " 219.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1974 \n",
+ " 198448 \n",
+ " 3 \n",
+ " 78620 \n",
+ " 60634.0 \n",
+ " 96606.0 \n",
+ " 143 \n",
+ " 110.0 \n",
+ " 176.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1975 \n",
+ " 198447 \n",
+ " 3 \n",
+ " 72029 \n",
+ " 54274.0 \n",
+ " 89784.0 \n",
+ " 131 \n",
+ " 99.0 \n",
+ " 163.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1976 \n",
+ " 198446 \n",
+ " 3 \n",
+ " 87330 \n",
+ " 67686.0 \n",
+ " 106974.0 \n",
+ " 159 \n",
+ " 123.0 \n",
+ " 195.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1977 \n",
+ " 198445 \n",
+ " 3 \n",
+ " 135223 \n",
+ " 101414.0 \n",
+ " 169032.0 \n",
+ " 246 \n",
+ " 184.0 \n",
+ " 308.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ " 1978 \n",
+ " 198444 \n",
+ " 3 \n",
+ " 68422 \n",
+ " 20056.0 \n",
+ " 116788.0 \n",
+ " 125 \n",
+ " 37.0 \n",
+ " 213.0 \n",
+ " FR \n",
+ " France \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1978 rows × 10 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " week indicator inc inc_low inc_up inc100 inc100_low \\\n",
+ "0 202239 3 51547 43092.0 60002.0 78 65.0 \n",
+ "1 202238 3 34384 28715.0 40053.0 52 43.0 \n",
+ "2 202237 3 26564 21654.0 31474.0 40 33.0 \n",
+ "3 202236 3 19303 15018.0 23588.0 29 23.0 \n",
+ "4 202235 3 12914 9679.0 16149.0 19 14.0 \n",
+ "5 202234 3 10708 7334.0 14082.0 16 11.0 \n",
+ "6 202233 3 12926 8869.0 16983.0 19 13.0 \n",
+ "7 202232 3 22257 16158.0 28356.0 34 25.0 \n",
+ "8 202231 3 21828 16268.0 27388.0 33 25.0 \n",
+ "9 202230 3 19663 14779.0 24547.0 30 23.0 \n",
+ "10 202229 3 24268 18906.0 29630.0 37 29.0 \n",
+ "11 202228 3 24845 19214.0 30476.0 37 29.0 \n",
+ "12 202227 3 40745 33994.0 47496.0 61 51.0 \n",
+ "13 202226 3 34010 28521.0 39499.0 51 43.0 \n",
+ "14 202225 3 23377 19042.0 27712.0 35 28.0 \n",
+ "15 202224 3 26328 21829.0 30827.0 40 33.0 \n",
+ "16 202223 3 23430 18950.0 27910.0 35 28.0 \n",
+ "17 202222 3 18951 15099.0 22803.0 29 23.0 \n",
+ "18 202221 3 13632 10251.0 17013.0 21 16.0 \n",
+ "19 202220 3 19787 15756.0 23818.0 30 24.0 \n",
+ "20 202219 3 17884 14079.0 21689.0 27 21.0 \n",
+ "21 202218 3 30353 25089.0 35617.0 46 38.0 \n",
+ "22 202217 3 36006 30373.0 41639.0 54 46.0 \n",
+ "23 202216 3 49949 42836.0 57062.0 75 64.0 \n",
+ "24 202215 3 100806 90824.0 110788.0 152 137.0 \n",
+ "25 202214 3 155441 143891.0 166991.0 234 217.0 \n",
+ "26 202213 3 191914 179558.0 204270.0 289 270.0 \n",
+ "27 202212 3 166224 155035.0 177413.0 251 234.0 \n",
+ "28 202211 3 122849 113306.0 132392.0 185 171.0 \n",
+ "29 202210 3 87904 79741.0 96067.0 133 121.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "1949 198521 3 26096 19621.0 32571.0 47 35.0 \n",
+ "1950 198520 3 27896 20885.0 34907.0 51 38.0 \n",
+ "1951 198519 3 43154 32821.0 53487.0 78 59.0 \n",
+ "1952 198518 3 40555 29935.0 51175.0 74 55.0 \n",
+ "1953 198517 3 34053 24366.0 43740.0 62 44.0 \n",
+ "1954 198516 3 50362 36451.0 64273.0 91 66.0 \n",
+ "1955 198515 3 63881 45538.0 82224.0 116 83.0 \n",
+ "1956 198514 3 134545 114400.0 154690.0 244 207.0 \n",
+ "1957 198513 3 197206 176080.0 218332.0 357 319.0 \n",
+ "1958 198512 3 245240 223304.0 267176.0 445 405.0 \n",
+ "1959 198511 3 276205 252399.0 300011.0 501 458.0 \n",
+ "1960 198510 3 353231 326279.0 380183.0 640 591.0 \n",
+ "1961 198509 3 369895 341109.0 398681.0 670 618.0 \n",
+ "1962 198508 3 389886 359529.0 420243.0 707 652.0 \n",
+ "1963 198507 3 471852 432599.0 511105.0 855 784.0 \n",
+ "1964 198506 3 565825 518011.0 613639.0 1026 939.0 \n",
+ "1965 198505 3 637302 592795.0 681809.0 1155 1074.0 \n",
+ "1966 198504 3 424937 390794.0 459080.0 770 708.0 \n",
+ "1967 198503 3 213901 174689.0 253113.0 388 317.0 \n",
+ "1968 198502 3 97586 80949.0 114223.0 177 147.0 \n",
+ "1969 198501 3 85489 65918.0 105060.0 155 120.0 \n",
+ "1970 198452 3 84830 60602.0 109058.0 154 110.0 \n",
+ "1971 198451 3 101726 80242.0 123210.0 185 146.0 \n",
+ "1972 198450 3 123680 101401.0 145959.0 225 184.0 \n",
+ "1973 198449 3 101073 81684.0 120462.0 184 149.0 \n",
+ "1974 198448 3 78620 60634.0 96606.0 143 110.0 \n",
+ "1975 198447 3 72029 54274.0 89784.0 131 99.0 \n",
+ "1976 198446 3 87330 67686.0 106974.0 159 123.0 \n",
+ "1977 198445 3 135223 101414.0 169032.0 246 184.0 \n",
+ "1978 198444 3 68422 20056.0 116788.0 125 37.0 \n",
+ "\n",
+ " inc100_up geo_insee geo_name \n",
+ "0 91.0 FR France \n",
+ "1 61.0 FR France \n",
+ "2 47.0 FR France \n",
+ "3 35.0 FR France \n",
+ "4 24.0 FR France \n",
+ "5 21.0 FR France \n",
+ "6 25.0 FR France \n",
+ "7 43.0 FR France \n",
+ "8 41.0 FR France \n",
+ "9 37.0 FR France \n",
+ "10 45.0 FR France \n",
+ "11 45.0 FR France \n",
+ "12 71.0 FR France \n",
+ "13 59.0 FR France \n",
+ "14 42.0 FR France \n",
+ "15 47.0 FR France \n",
+ "16 42.0 FR France \n",
+ "17 35.0 FR France \n",
+ "18 26.0 FR France \n",
+ "19 36.0 FR France \n",
+ "20 33.0 FR France \n",
+ "21 54.0 FR France \n",
+ "22 62.0 FR France \n",
+ "23 86.0 FR France \n",
+ "24 167.0 FR France \n",
+ "25 251.0 FR France \n",
+ "26 308.0 FR France \n",
+ "27 268.0 FR France \n",
+ "28 199.0 FR France \n",
+ "29 145.0 FR France \n",
+ "... ... ... ... \n",
+ "1949 59.0 FR France \n",
+ "1950 64.0 FR France \n",
+ "1951 97.0 FR France \n",
+ "1952 93.0 FR France \n",
+ "1953 80.0 FR France \n",
+ "1954 116.0 FR France \n",
+ "1955 149.0 FR France \n",
+ "1956 281.0 FR France \n",
+ "1957 395.0 FR France \n",
+ "1958 485.0 FR France \n",
+ "1959 544.0 FR France \n",
+ "1960 689.0 FR France \n",
+ "1961 722.0 FR France \n",
+ "1962 762.0 FR France \n",
+ "1963 926.0 FR France \n",
+ "1964 1113.0 FR France \n",
+ "1965 1236.0 FR France \n",
+ "1966 832.0 FR France \n",
+ "1967 459.0 FR France \n",
+ "1968 207.0 FR France \n",
+ "1969 190.0 FR France \n",
+ "1970 198.0 FR France \n",
+ "1971 224.0 FR France \n",
+ "1972 266.0 FR France \n",
+ "1973 219.0 FR France \n",
+ "1974 176.0 FR France \n",
+ "1975 163.0 FR France \n",
+ "1976 195.0 FR France \n",
+ "1977 308.0 FR France \n",
+ "1978 213.0 FR France \n",
+ "\n",
+ "[1978 rows x 10 columns]"
+ ]
+ },
+ "execution_count": 67,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = raw_data.dropna().copy()\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nos données utilisent une convention inhabituelle: le numéro de\n",
+ "semaine est collé à l'année, donnant l'impression qu'il s'agit\n",
+ "de nombre entier. C'est comme ça que Pandas les interprète.\n",
+ " \n",
+ "Un deuxième problème est que Pandas ne comprend pas les numéros de\n",
+ "semaine. Il faut lui fournir les dates de début et de fin de\n",
+ "semaine. Nous utilisons pour cela la bibliothèque `isoweek`.\n",
+ "\n",
+ "Comme la conversion des semaines est devenu assez complexe, nous\n",
+ "écrivons une petite fonction Python pour cela. Ensuite, nous\n",
+ "l'appliquons à tous les points de nos donnés. Les résultats vont\n",
+ "dans une nouvelle colonne 'period'."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 68,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def convert_week(year_and_week_int):\n",
+ " year_and_week_str = str(year_and_week_int)\n",
+ " year = int(year_and_week_str[:4])\n",
+ " week = int(year_and_week_str[4:])\n",
+ " w = isoweek.Week(year, week)\n",
+ " return pd.Period(w.day(0), 'W')\n",
+ "\n",
+ "data['period'] = [convert_week(yw) for yw in data['week']]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Il restent deux petites modifications à faire.\n",
+ "\n",
+ "Premièrement, nous définissons les périodes d'observation\n",
+ "comme nouvel index de notre jeux de données. Ceci en fait\n",
+ "une suite chronologique, ce qui sera pratique par la suite.\n",
+ "\n",
+ "Deuxièmement, nous trions les points par période, dans\n",
+ "le sens chronologique."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 69,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "sorted_data = data.set_index('period').sort_index()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Nous vérifions la cohérence des données. Entre la fin d'une période et\n",
+ "le début de la période qui suit, la différence temporelle doit être\n",
+ "zéro, ou au moins très faible. Nous laissons une \"marge d'erreur\"\n",
+ "d'une seconde.\n",
+ "\n",
+ "Ceci s'avère tout à fait juste sauf pour deux périodes consécutives\n",
+ "entre lesquelles il manque une semaine.\n",
+ "\n",
+ "Nous reconnaissons ces dates: c'est la semaine sans observations\n",
+ "que nous avions supprimées !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 70,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n"
+ ]
+ }
+ ],
+ "source": [
+ "periods = sorted_data.index\n",
+ "for p1, p2 in zip(periods[:-1], periods[1:]):\n",
+ " delta = p2.to_timestamp() - p1.end_time\n",
+ " if delta > pd.Timedelta('1s'):\n",
+ " print(p1, p2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un premier regard sur les données !"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 71,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 71,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXm8HUWZ93/PWe65W272hJAEEiCAgCiQibjgICCg6AszgoMzgxnFYXSYcZkZFXSUd0Qc1HFDRYdXQEAUEBdQBAz7FpaELYQkJIGELJfkJrlJbu5+zqn3j67qU92nqrtP9zn3nHPzfD+ffO5JdVd1dXd1PfUsVUVCCDAMwzBMUlL1rgDDMAwzPmCBwjAMw1QFFigMwzBMVWCBwjAMw1QFFigMwzBMVWCBwjAMw1QFFigMwzBMVWCBwjAMw1QFFigMwzBMVcjUuwJjybRp08S8efPqXQ2GYZimYvny5TuEENPDztuvBMq8efOwbNmyeleDYRimqSCijVHOY5MXwzAMUxVYoDAMwzBVgQUKwzAMUxVYoDAMwzBVgQUKwzAMUxVCBQoRXUdE24noJS1tChEtIaK18u9k7dilRLSOiNYQ0Rla+glEtEIeu4qISKbniOhWmf4UEc3T8iyW11hLRIu19Pny3LUyb0vyR8EwDMMkIYqG8nMAZ/rSLgFwvxBiAYD75f9BREcBOB/A0TLP1USUlnl+AuAiAAvkP1XmhQB6hRCHAfgegG/KsqYAuAzA2wAsAnCZJri+CeB78vq9sgyGYRimjoQKFCHEIwB2+ZLPBnCD/H0DgHO09FuEEMNCiNcArAOwiIhmAegSQiwVzp7DN/ryqLJuB3Cq1F7OALBECLFLCNELYAmAM+WxU+S5/uuPW9b37MMT63fUuxoMwzBW4k5snCmE6AYAIUQ3Ec2Q6bMBPKmdt1mmjcrf/nSVZ5MsK09EewBM1dN9eaYC2C2EyBvKGrec+p2HAQAbrjyrzjVhGIYxU22nPBnSREB6nDxBZZVXiOgiIlpGRMt6enpspzEMwzAJiStQtkkzFuTf7TJ9M4C52nlzAGyV6XMM6Z48RJQBMBGOic1W1g4Ak+S5/rLKEEJcI4RYKIRYOH166FI0DMMwTEziCpQ7Aaioq8UA7tDSz5eRW/PhON+fluaxPiI6UfpAPurLo8o6F8AD0s9yL4DTiWiydMafDuBeeexBea7/+gzDMEydCPWhENGvAJwMYBoRbYYTeXUlgNuI6EIArwM4DwCEECuJ6DYALwPIA7hYCFGQRX0KTsRYG4C75T8AuBbATUS0Do5mcr4saxcRXQ7gGXne14QQKjjgiwBuIaKvA3hOlsEwDMPUEXIG/PsHCxcuFM262vC8S+4CwE55hmHGHiJaLoRYGHYez5RnGIZhqgILFIZhGKYqsEBhGIZhqgILFIZhGKYqsEBhGIZhqgILFIZhGKYqsEBhGIZhqgILFIZhGKYqsEBhGIZhqgILFIZhGKYqsEBhGIZhqgILFIZhGKYqsEBhGIZhqgILFIZhGKYqsEBhqsK/3/YCjrns3npXg2GYOhK6wRbTWAgh4Gx62Vj85tnN9a4CwzB1hjWUJqO4/+yHxjBMk8ECpcnYn3bYZBimuWCB0mSwhsIwTKPCAqXJKLKGwjBMg8IChWEYhqkKLFAYhmGYqsAChWEYhqkKLFCaDHahMAzTqLBAaTIEWKIwDNOYsEBhGIZhqgILlCaDTV4MwzQqLFAYhmGYqsACpclgBYVhmEaFBUqTYVvL6/fPbcEJly9BvlAc4xoxDMM4JBIoRPQ5IlpJRC8R0a+IqJWIphDREiJaK/9O1s6/lIjWEdEaIjpDSz+BiFbIY1eRXJ+diHJEdKtMf4qI5ml5FstrrCWixUnuYzzwld+/hJ39IxgYLdS7KgzD7KfEFihENBvApwEsFEIcAyAN4HwAlwC4XwixAMD98v8goqPk8aMBnAngaiJKy+J+AuAiAAvkvzNl+oUAeoUQhwH4HoBvyrKmALgMwNsALAJwmS64xjNhJi922jMMUy+SmrwyANqIKAOgHcBWAGcDuEEevwHAOfL32QBuEUIMCyFeA7AOwCIimgWgSwixVDj2nBt9eVRZtwM4VWovZwBYIoTYJYToBbAEJSG0f9J4e24xDLOfEVugCCG2APgfAK8D6AawRwjxZwAzhRDd8pxuADNkltkANmlFbJZps+Vvf7onjxAiD2APgKkBZY17WANhGKZRSWLymgxHg5gP4EAAHUT090FZDGkiID1uHn89LyKiZUS0rKenJ6B6TUKozWtMasEwDFNGEpPXaQBeE0L0CCFGAfwWwDsAbJNmLMi/2+X5mwHM1fLPgWMi2yx/+9M9eaRZbSKAXQFllSGEuEYIsVAIsXD69Okxb7XxYYsXwzD1JolAeR3AiUTULv0apwJYBeBOACrqajGAO+TvOwGcLyO35sNxvj8tzWJ9RHSiLOejvjyqrHMBPCD9LPcCOJ2IJktN6XSZNu7htbwYhmlUMnEzCiGeIqLbATwLIA/gOQDXAOgEcBsRXQhH6Jwnz19JRLcBeFmef7EQQsW4fgrAzwG0Abhb/gOAawHcRETr4Ggm58uydhHR5QCeked9TQixK+69jCdY4DAMUy9iCxQAEEJcBid8V2cYjrZiOv8KAFcY0pcBOMaQPgQpkAzHrgNwXYVVbnpsTnk5dYdhGKZu8Ez5cQZHgTEMUy9YoDQZNnmhFJQiSxSGYeoEC5Qmw7aWl3t8jOrBMAzjhwXKOIMVFIZh6gULlCYjfF5jc0qUzb0DOP+apdg7NFrvqjAMExMWKOON5pQn+MF9a/Hkq7tw94rueleFYZiYsEBpMqxhw+r4mNWkNhDP+WeYpoUFSpNhM2mpeSgc5cUwTL1ggTLOYHnCMEy9YIHSbIQIjGaVJ81ab4ZhSrBAGWeEzVNp+OuzC4VhmhYWKE1Go28BXO/rMwxTP1igNBmhUV71Fij1vTzDMHWEBco4Qa3lVe+JjXFNXvUWhAzDJIcFSpMRJjDq3THHvby6L3ahMEzzwgJlnFHvgX5inzzv68IwTQsLlCYjrMOue5RX3UUawzD1ggXKuEHNlK9vLWLLM5ZDDNP0sEBpMsL73ebumdngxTDNCwuUJsNm0nKjvJpbnjAM08SwQBln1FuesEBjmP0XFihNRrhTfmzqYb1+TJHGcohhmh8WKOOMekdZJQ8brk49GIYZe1igjBNUP1ws1rUarGkwzH4MC5QmI9TkVXcNJe7SKyyKGKbZYYEyzqh3v5z08jaTlxACW3cPJiydYZhawgKlApZt2IVH1/bUtQ72LYDHuCIW4gq0sGy/Xr4Z77jyASzf2BvvAgzD1BwWKBVw7k+X4oJrn653NQKpt4aSVEUhy9TGZ17bBQBYt70v2QUYhqkZLFCaDPt+KGrplXpLlNqg7somcBiGqT8sUJqM0B0bx6QWQdevTQ1ESaIwDNOgsEAZZ9Q7Wiq2DyVi9BrLE4ZpXBIJFCKaRES3E9FqIlpFRG8noilEtISI1sq/k7XzLyWidUS0hojO0NJPIKIV8thVJDfFIKIcEd0q058ionlansXyGmuJaHGS+2gmwgRG/TWUZIQFF/B+KQzTuCTVUH4A4B4hxJEA3gJgFYBLANwvhFgA4H75fxDRUQDOB3A0gDMBXE1EaVnOTwBcBGCB/HemTL8QQK8Q4jAA3wPwTVnWFACXAXgbgEUALtMF1/5MvV0oNdOQ6i0pGYYJJbZAIaIuAO8GcC0ACCFGhBC7AZwN4AZ52g0AzpG/zwZwixBiWAjxGoB1ABYR0SwAXUKIpcLpjW705VFl3Q7gVKm9nAFgiRBilxCiF8ASlITQuMbWr5YG7vXeYKu25bJ+wjCNSxIN5RAAPQCuJ6LniOhnRNQBYKYQohsA5N8Z8vzZADZp+TfLtNnytz/dk0cIkQewB8DUgLLGPfYoL4dm3WAraja2eDFM45JEoGQAHA/gJ0KI4wD0Q5q3LJi6AhGQHjeP96JEFxHRMiJa1tNT30mJY0HdTV5xVxuWFbf5SOodbMAwTDhJBMpmAJuFEE/J/98OR8Bsk2YsyL/btfPnavnnANgq0+cY0j15iCgDYCKAXQFllSGEuEYIsVAIsXD69OkxbrPRCHHK17vjrbELhTUUhmlcYgsUIcQbADYR0REy6VQALwO4E4CKuloM4A75+04A58vIrflwnO9PS7NYHxGdKP0jH/XlUWWdC+AB6We5F8DpRDRZOuNPl2n7PfUex9fMhyIL5omNDNO4ZBLm/1cANxNRC4BXAXwMjpC6jYguBPA6gPMAQAixkohugyN08gAuFkIUZDmfAvBzAG0A7pb/AMfhfxMRrYOjmZwvy9pFRJcDeEae9zUhxK6E99IUNPoGW3GJOmGTNRSGaVwSCRQhxPMAFhoOnWo5/woAVxjSlwE4xpA+BCmQDMeuA3BdJfUdzyjfQ71NXok32LKW26SSkmH2I3imfJOxvy69otjfJzYe/p9340u/W1HvajCMERYoTUajm7x4XmNtGckX8cunXq93NRjGCAuUcUbdd2ysccbxqp/sHRqt+147DJMUFihNRpjAqL+GkqwCVovWOFdRLr75WVxw7dPo7R+pd1UYJjYsUMYJqiOu934o8WfKhy16qSY+xiu/0VnzhrNx2HC+WOea2BFCYMnL21Co93IMTMPCAiUGxTp+UOHLvDc3tnkmYzEP5WePvoq7XuyuWflBKEFZb5NlEHet6MY/3rgM1z/+Wr2rwjQoSeeh7JcUhECqTtZ861peqjp1N3nVttxaaihfv2sVAOCsY8+q3UUspOSN5QuNK1C29A4CALbtHapzTZhGhTWUGDSyyl/vEW78tbyqXJEmQ8nJ0ULjmrxGpDmuJdO83cZZVz2K9/zPQ/WuxriFNZQY1NNP0ehO+aTU2kfS0zeMzlwGbS3p8JPHEDW/ZrSBNRQl7LLp5hUoK7furXcVxjXN2zLqSENrKOPU5FUt/uKK+/A31yytdzWsjDSwU3640PwaClNbuGXEoFjHb96+H4ozwq17lFfS/CEFVEOBeXHzniqUUhvy9WxcIRSk9pRJjdNQOyYxLFBiUGjgYXi9axZ3HkoDP9IxQT23BlZ+x23INlM9WKDEgE1eAddPnL92N1DrBSaHRgt45JV4s92VD6XeGmYUmqCKTJ1ggRKDujrlw8KG6x3llfDytXy0tXZ4f+2PL+Oj1z2Nl2M4ft2JqTUerDyxbgde3zkQK+/+vjAnEw5HecWANZTAGsTMJQJzV0NzGalxSO6rPfsAALsHKl8+Rc1DqbU59W9/5mywuuHK+HNt6t7EmIaFNZQY2ATKG3uG8L0lr9TUtGLrWNXYsd6yLvbSK1EXh0wwSK51BFU6FV8ouDPlG7i3dufO1rGO51+zFD9+cF39KsAEwgIlBjaT16dveQ4/uH9tXWPd6z+xMWH+kN4qSWc2MJKPnzkCrpYRQ6qrzrqRtV80wPIwT766C9++d03drs8EwwIlBraPfmjU2dE4X8NOYX/dD8UtP0HegRHn/bRlazOpUWkocZ5BFKd8vXetrOU6asz4gAVKDGwf/Vhsw9voOzYmJezRJQmIcAVKjWbJJ9JQIqwW3SjKi6mKQohYwQjM+IIFSgxsvt16+jEaZk/52E75YNToOMnt5eWLS9doYl4qQehvSRjZz6n3uw3yX/3iyY14/1WPYun6nWNXIabhYIESA9sINDUGobu2TqURHKbVuL5NIIVFgUVBvbZaGW7UEldxBEppMNL4GoqJh+X8mz2Do3WuCVNPWKDEwPbRl0aoY1kbL/WeGFfreShJRunq2dRqOoUb5RUjmMxtOwGNp94BF0GPTc3xyfE6X/s1/PZjYNdQwjuFpFhLbpCw06SdXi3rH7XsuEKLEswlKflQ7OfU+92WQpvLK9IMG4Tp1Nt8OF5hgRIDa4cRoVNISqPv2FjreShJ+oGonUjc91cyO8YRKOHCqN59YJAfq1FMrlFplno2GyxQYmDTQKLYweMQpYOq1bXHjmg+kiQj4JIPJdjmVY9nGEUYNcro31SLZluWpXm/k8aGBUoMbCYvlVrbttrYKkpyH4rl2Yrk5Uf1ocTtbJJ0qs0QNhx0e82modT7WY5XWKDEwGqWkMnV11DCz2mU1WoT+1DCjldDoNTwGkkJunaj2P2NJi/Xh9Ic1Ps7Ga+wQImBbQ8k1ZnWsrGGuG/q/kHX2oeS5NmOxTXiEuWS9R5VR9G/GkXohdEk1Ww6WKDEwKahVMMsYyzX8juoDk2LTWBWYQRcMnmF+VASXCQmkcyl9X63avKs2YsijzUHrKHUBhYoMbA55VVqXZy6EWzwY0HSq4eazBKZvCLWoS4aSvg16/1ug/wkTeaTbxrB12wkFihElCai54joj/L/U4hoCRGtlX8na+deSkTriGgNEZ2hpZ9ARCvksatIDiGJKEdEt8r0p4honpZnsbzGWiJanPQ+KsHmlFcffLVHuHpn0/hhw7Wdh5LERzNWYcNJaGQFRWHXT5rH5FVv4TxeqYaG8hkAq7T/XwLgfiHEAgD3y/+DiI4CcD6AowGcCeBqIlKr9P0EwEUAFsh/Z8r0CwH0CiEOA/A9AN+UZU0BcBmAtwFYBOAyXXDVmjCTV9Wd8hHOKc0RaHYNxZJelSiviHWosVCMS9J2lfS+AqO8xmAOVjURtd0aZ78lkUAhojkAzgLwMy35bAA3yN83ADhHS79FCDEshHgNwDoAi4hoFoAuIcRS4bT4G315VFm3AzhVai9nAFgihNglhOgFsAQlIVRzwkxeNV1t2LrSsTpes0tHIrZTvsrnGfNGDhtOcJGEBM5DSRySnSx/lILGaj+XpN8Yayi1IamG8n0AXwCgy/uZQohuAJB/Z8j02QA2aedtlmmz5W9/uiePECIPYA+AqQFljQn2sOFamby03yHnXnbnSndV3fpQY5NXFTSUWs1DSUKUS9Y6JDuMoAmh6lhtIxxLZSf9xlig1IbYAoWIPgBguxBiedQshjQRkB43j/eiRBcR0TIiWtbT0xOpomGETWysd2NdsWVP3a4dP2zYyRjWaSabKS81lBrNlK/GelaBPpTEGkp12qXRhzIGQSF60UmvUy8t9KUte3D78s3hJzYpSTSUdwL4P0S0AcAtAE4hol8A2CbNWJB/t8vzNwOYq+WfA2CrTJ9jSPfkIaIMgIkAdgWUVYYQ4hohxEIhxMLp06fHu1Mftsaskqut9usdVKMPrBL7UGqqoUTLnPQZ2+YpBV4zwpNLXK+E+YPMqq5AqaFyrF+23v6kuHzgh4/hP379Ql2uPRbEFihCiEuFEHOEEPPgONsfEEL8PYA7Aaioq8UA7pC/7wRwvozcmg/H+f60NIv1EdGJ0j/yUV8eVda58hoCwL0ATieiydIZf7pMGxNsFiV3z446tNVGWUup5j6UKkxsrLXJK1H+gKyJO9GE4r40eba8HKX1xVlpOSr6/ddbuDJmMjUo80oAtxHRhQBeB3AeAAghVhLRbQBeBpAHcLEQoiDzfArAzwG0Abhb/gOAawHcRETr4Ggm58uydhHR5QCeked9TQixqwb3YsTqlK9VlJfHhxJedhzhsmPfMJZv7MUZRx9Qcd5qEnZ3SZ5s1P3aE5uWEuUNqGOCcoFo97Vz3zDaWzLGbZIDm1XA0vbVoromL5YotaAqAkUI8RCAh+TvnQBOtZx3BYArDOnLABxjSB+CFEiGY9cBuC5unZMQHjY8hpWRJNVPLrxhGV7YtBsvXHY6JrZlY5eTuEMJyZ9o8B84+td/x/ShuNepPH+kpVcSNqwo1zjh6/fhTbO6cPdnTopVTi3bvv5e2CnfmPBM+RjU1SlvKVofPcYRLlt6BwAAw/lCyJnBJB5Fhx1P8GyDFoespoYSp7NTWWrbdKIVvqp7rzE9SPNVR8YqbDi5D6VKFWE8sECpgBa5afhw3uxEcSOVamryMqN/63GunpX3prZyjUutF4dMZE5yfSjlHWM1NJQk+cdi6ZVq9fXmKK/aT6z1+FASOv9ZoNQGFigVoOzKgyP5wPOa0eGXSTsdwqhFWEal1lsAVyPKyzTOrqY5pUY++cYJGw4oppYaCvtQGh8WKBWQSTldUf+I2SxUu6VXKjPHxDF5KQ0lnzTus0adnvD9jUPU/drrEZIaJUfyKK/qYI7ychg7HwoLlEaEBUoFqCY4aBEotVocMgphk/XCyKaqZPJKlHtsfCimR+UNSY3plHc3OYuVXV474Fj8Yp38NZwjMiYTG7XfyZ3yyfIzZligVIBwBUbIKLruYcOVXyMlta+kJotaz0NJghgjk1esTjVCluThzFXSvAzFlDSUGgoUTSAmX8CzvhKl3tevFSxQKkA1gbx1HooUOGNkR9ZJJYwbTlVphBm30yoFNJiPV6PDKq3lVVunfDIfij1zrVdBDmu3QfnVM63lMnL6s2l2DWWsouHGGhYoFeAurWIxC6nUqi8OWd3ijFRr+fFaTwqs1dIr1Q0bro0PJWk7CKtX2Cz3ID/WWGgo9Y7EqybjVJ6wQKkE1enYNBT1pY2VHTlKeqXUe+QUNgqvhlPebPLSf8f0oci/tZt8WVv/Vti7H4vJl8HXHz9O+Xpfv1awQKmAkgYS5kOp8nUjFJj0mtXaoKtWn0k1nm3QfijVXScqfgFBOWu8CEHkwYSxjYzBBlt62bV+FrWGBQrjfu02DaUU5RW/sQyNFrBnYNR0Wee3VZiV0uNEfFXP5FXbDyWKj+aLt7+IJ1/dWZ434ui/HhMIx2JiY9g1rJq3yh9h8dPaaufjSUOp6+VrBguUClBtoGCZq+H6WBI01g/+8DG85Wt/Dq2D7dpxKTlV66uhJJ3YWCgK3LpsE86/5smyY8E+FP284GuEEScwwc0RsY5xCMse1SlvPGsszL0J31E1N+hKSr0FWq1ggVIBqkFWw9ZsY+32fbHK08+JEzacZGFDb0WSZk9WwKgMM8oYwt5KPhTTsSqMfhNsw1zpO45D2H2Fayj2eoSZgwHg989twcKv32edxxVG0smn1XTqJ6WWvqZ6wgKlAkoaSrDZqaaNpUZFKyGUdD+L2i+9EnzCiBQoaaNACfKhRL9GGEnef6APpcbPNlQ7VaHdhnoU3cGWPfuPH1yHHfuGsXXPYPB1LCSdfBo1ku+fblqGy//4csXlV8I4lScsUCpBNUL7PBTnr62x9PaPYOXWGNvzRhm9Vl6qh2otnRF7YmPEfGHnqbXITBpKUCekC4F6zHGIIiySm+KCiRw2bDhN1S3oGSthPxpzsopecpxnEXXQcO/Kbbj2sdcqLv/PK9/ABdc+FbEu41Oi1GKDrXGL+uitGkqIHfkj/+9JrH6jD6/99/tj77Bo63iSjqrdZUPqNlNejX6DCaueWjrGrKEEXF83hyT2IyXQUALrWFvNyTa/Kko9opiD1TsZzce7D6/Qj2Pyqq0P5aKbljtlF4W78kSUuownWEOpANfpbmmNKt324a9+ow8AsG84eLVifxlJTR1RiDIxTQiBu1d0B3ZMSWsaavIKuYLrQ0mXN+2SySvYhxL7HkI01MCsY6CFhhG2MGiQBh6mnQNAWj73kQANZVf/CO58YWtgPQAk3ru+lh16FLNx0vo3KixQKkA1E5vJSzUk20el9lPpGwoXKGFmtajpUXF9KAE9wm+e3YJP3fwsbly6wXpO8nksIWaXkOKDfShB19XPi3cPJZNQEg0lWKBHOc+eP/h42H2r40E+lKAyXA0lQKB88qbl+PSvnsO2vUOB9YszyKpmaHgQUSIlWUNhXGwNRo3crY0lQqdtuoZenFWgJBy/qsinoKr19A0DALoNH3tSooYLh91lUJRX0AZoUSY29vaP4MM/XYpui1M5yTykSqO84vkQgjOFRXkFDZjCzL069728zXpsy27n2Y4Y9uWJ8h0EkTR/GGpQFvYcARYoDOD2ZlaTV4iGoojSmCo1wSRun27Iq70gihAWWzuTl3y2IQ/3xc1O0ENQlJcx7DXC6PX25Zvx9IZd+Nmjr5lrKLx/4xCUNWnYa1iOsIFOsWh/fqUoL3sZE1odl+2fAwRK4PUTahi11lBSai5XBF8Um7yYUKd8mA9FEWUEE7ZvfRBJ5qEE2X+jzFWp1cDL9V+FXOALt78IIHgeitlkY/6tEyZQq7EfTlSnfC22GQ4TKPmA9q1Sgoo4fOYEAMCi+VMCr2PDa5Yc+/wAcMvTr1s1VNXiomxSxxoKExo2HGbyIt95QRQr3PshsYISYemVKBpK0prY7tXtrCP2BJVqKJWMXq2RdupvjTqLpGtZhT26sIFOkIYSZE4sXT9ciwlqY4kFqvZNxcn/xp4hXPLbFfiXXz5nPB7FD5nk+s0AC5QKcEdhlgaTdwVKcDlRokBs51jX8koaNozwsGF3AcmAcmKHDYfkU4ejaHcAkEmVN+0gO38UAa6iw+yBEcEDiiDcDjnoHO2o7RKPr9uBjTv7rSUEESas8wEDJpU1qDNVzziKQDFdw+sDSWbyivMdbdk9AADYMzhqPK7ax/7sQ+F5KBVQWr7erNKGjcBcp10EG6vHKa/XwVa30BKDibKFaz19KCJCh6Vj1FDUCNtwvkdDsVgswiyJSXwoUbJ4nfLmHH/3M2di3YYrzyo7llhDCRB6JWFqz18I+T7C6hLFLBmEx+RlecdBW2Bv2e0EoyhfkB/XbBxJoISe0pSwhlIBqg2E+VCihl8GXqvSXkk7Pclqw8GjRxUJZj8nPFpL4LTvPozfPbfZmx4ysdHVDiM+l2zaEOVV9kOvl+E8HxQSuFAdH0q0ZxtVU7PlNxHWEQa1b5U16P1EMnnBvkipZ7XhGPcfxawZFNI8NOqsQdZimOMEcJQXwAKlIoJ8KEKISGq/Lb8f3eQVJdwxsYaCYHOOc044YeHLRQGs274Pn7v1BXP+EHNSIg0lYIQdpbNxgxIs16wkdNaWNwi93HyM5UvC3k3kdms4LUrIdJgPEtA75fL7K3p8IIFVDbw+YH+HQdYDFcpsaluALgzD3029N7KrFSxQYmAaHVUS0hlldOU1edVAo/ERZXHIVMgI3TkWfJ2wZWvCyo36IVbsQ4lgXw/zoURZz+p3z23GS1tirOcGbycYZJqxEdbPRQ0bDmrfQWVE0eCDzEZeH1Kf7QssAAAgAElEQVQcoR2eP2gW/2jApFmg9H1EGTCOUwWFfShR0RugqcHoH0BU00EQXiexpyaheZMQ7EMJn/wYVrv4EVRV1FCMI2zzbx3X5BVimAuqotLM/D6OaItDls6Js8Bi2DXCOkI3bDigbkGvV50TpcM1WwH0skKLKM/vqYvtuuECJWWJy3ed8lHmoYxTicIaSkTCHKJegWIuI8g+XFbeWJu8IgiL8A41fOQYuueG1eTl/I26vH7G4EMJWjokSkhq2J7xQfNcohJ4e9qxWALF046C27CJIB9RlAiuKKHfQRu9RQlKCCKSDyVg4cpQk1eEwJbS9UNPaUpYoEREf/9GDSVCYzWdaz2nYpOX9jtGhxZljkxp4ma0egSVUZbP99dWbuDClNrFg9byiquhqB7DXsdwDcVGlP5Rf69xTF5hA5OomrV5YmN0c1iQFuBODjTcX/KZ8ubfOqMBdRuRdbL5EksTGyv7vscTLFAion9EpqUVKjF5RbOxWjQU2/kR5igAjg2/t3+kLD3K6KpkA7eXH9t/5EqUYJNX0LPTswav5WWoVwT7usLWoUTxoYQRNBjQ+7qkJi/TVcIGOkEDClW34PbjLSfKtXT0dx/nEUfxoQQ9V+Vst92jWrI+yv3VavJrvYktUIhoLhE9SESriGglEX1Gpk8hoiVEtFb+nazluZSI1hHRGiI6Q0s/gYhWyGNXkdR7iShHRLfK9KeIaJ6WZ7G8xloiWhz3PqKiv37Th6d3lLYP0+20KzR5RQszDj0FG3f243O3voBP31I+0zdKDH3pgw4yawTXwTphU/lIbMeVhhIhLBUAsqbl64uqrOqPfvV8cdZpinJF/Zwg57E1f4jJKCw6yRUogasNB+UvesoxEhDlpUe2JY2ks+UP8n/kXQ3L8n1HKKN0/dBTmpIkGkoewL8LId4E4EQAFxPRUQAuAXC/EGIBgPvl/yGPnQ/gaABnAriaiNKyrJ8AuAjAAvnvTJl+IYBeIcRhAL4H4JuyrCkALgPwNgCLAFymC65aoLe/UJNXFZzyFa82HKGBDso4etPS4GERTHqdgvqduBpKSWCY80WJ8iqGPKegTs/T2djuL2InlmQTtChObaC0M2Ul5YetqBzWEeYD3n9pYdQADSXCOwwa2Ojfna2I//rDShz11XuMx6K845e791rrpiwTVh9bgP+nrCzLOS9v3Vs2R6uZiC1QhBDdQohn5e8+AKsAzAZwNoAb5Gk3ADhH/j4bwC1CiGEhxGsA1gFYRESzAHQJIZYK54u40ZdHlXU7gFOl9nIGgCVCiF1CiF4AS1ASQjVB34/c1Bg8GkqVo7x0quHwNU18VBaiILOH6nCCzTIh924pP2weQ5QorzAtI2jyXRSzYhhho/RIps6gY9pBkw8l3Kmu/w7W0sz5AzSUYvj7cTWUCILV9KxGI2go1z++AQMjBeOxKFqoWlw0qE42wZsK0K782IT/+6961DpHqxmoig9FmqKOA/AUgJlCiG7AEToAZsjTZgPYpGXbLNNmy9/+dE8eIUQewB4AUwPKMtXtIiJaRkTLenp64t2gRjadQqEoyhqEd/QUrBJXupZXlL06dMK0GHPUY/gs+JLJwn7tsD7T9jGq5DANJqjD8po0TMftnV4kk1fIMs5hZrmodbefo2kopol/IWUk3g8lwIcWFPDgzx+kCQWN8vV8seah6L9jjBryIT4U9Q2xySsBRNQJ4DcAPiuEsOuLZl+mCEiPm8ebKMQ1QoiFQoiF06dPD6heMKoRZVPm8Npqz0OxmbysI/go5pQKo8X8qA4nyHEZd9mZsAgplRz0rXpDre1Cw7xOVITOKuoI3nJasCM9OG/pDFmWweRVibkxLPTdRJBTvhBJQwnWQoHgSCl95B/2CZmedZRBw+xJbdYyS1Fq5rwt6fAtjt2yQt5VEqd9T98w/usPK2OtppCURAKFiLJwhMnNQojfyuRt0owF+Xe7TN8MYK6WfQ6ArTJ9jiHdk4eIMgAmAtgVUFbNUG1I7VXu/3D0Bho2QKk0CkQ/O8o+KXYbvvPXtKd6lLW8ooR9xt1zI6yziTKHIarJK3yOg618569NUVFl2J5BUg3FO7GxcoEQ5mNKEjYcZemVsA4Z0NtheRvT7zlMeCp/oY7tm9I58ZCpAMxRgkrzsLXBlozTNwxaTG46YfUfNgwYovLVO17C9Y9vwENrkltkKiVJlBcBuBbAKiHEd7VDdwJYLH8vBnCHln6+jNyaD8f5/rQ0i/UR0YmyzI/68qiyzgXwgPSz3AvgdCKaLJ3xp8u0muFqKBaBov+/+k75cO0niuNeYeoPo8TQlzSUoE49+Nph5qAwk1egMAtZ60klGdeJijB6DXtvYYEF0Xwo0YTOSKG806pEO0ykoQSUHcUpHyXK0WQ2qkhDCdlC2FbPfcOj1uNhAjGXcWKMTMKsvC7BNzAUoQwbagJmfB0nPkmWXnkngAsArCCi52XalwBcCeA2IroQwOsAzgMAIcRKIroNwMtwIsQuFkKop/YpAD8H0AbgbvkPcATWTUS0Do5mcr4saxcRXQ7gGXne14QQuxLcSyjq/atVbJ3GnXaPFyN0+lGPA34fCrTfNg0lvEw9sMB6TgQNJYnJy5Y1zKHtmsQiRpgFOZ1Nz98zILBqKCECJWRyX5BtPcrH721jhuO+PV38mqjHrGeqXzG4fQRFckWZo6S0jkANJWA1iaHR0g3GWZHB+x2Z8+0bzluPqzJt328u6ww29w6Z90sRIe9PJ87EVYX7nccuIT6xBYoQ4jHY63yqJc8VAK4wpC8DcIwhfQhSIBmOXQfguqj1TYpqDEpD8XdsegOxz0OhwOM63vLDG2KUKKWgDkP4zjHnlx1CQGOPK0yDIrD0+gU9u7DghdJ+NnZho5/nJ6pJyVbFaNE/oac41zIJRd+gxr/8jEfrNYX+FoM7IjfKz1DH9T39ZdcoL7+8HjZM70g3JcUJMIiyuKTHrFYU7mRFINxP1JZ1Bpiv9Zg3OPMOWoLrH2fiqkKVbFgftebwTPmIlHwouoZSwqOOh3U8FWooetuLupaViby7dIR9FvlDa7aXHXOvLesd5HQMq55VoET0oQR2WGEaijuxsfwd6Ldkez9hr62062LlAqnSOSrGybUhPhbvoMOuZZh8bHr5/me7S1t5Ieg+Ik1s9NVFZyivCZSQ/tbkkC5GeMdBnX4+JOxZnW8PWy79DtWwEmgorq+0DjoKC5SIuBpKyuKUj6KhyL+RNuCxmGCsPgZDXf2oD8K0tp3KsvqNPmudVCcVFD0Sdx0z15xiM4lFGN2G2cj1NP87iGKfD/dReOvqJ4kZw399s8DUBIqhEmFmvTANxfbsvfNDLJkRPsIHgjepGtI66rCBlelZe5+fOV/Q5Mmw+qtkmw8lyvUVcVZCULhF18HmxQIlIqoBZDNms1W1Z8p77d1eU4aJKCYvN69hBBplKQubU1JU8KGERXnZl2YJzu9cO1qHaSonzL+g57GN/FS+WPNQrEe0c0IGFnpS2OKKQasNhwZOCP/7Lz8nKH80k2/5OXrkU9g3FmZetN+jffJk2MRGdX8DI/nQa4av95dAoMjr2JbZryUsUCKiXpLauMnfqFQDyaQo8gSxqOdEiU4BRGAMPaD5UIy5td9WDcdJH/FF0ESrX/DxMJNXaZ5KkEApP19HH/X5P1h9QBjmQwlbWsU++g13KgeZQsI6JL2jNpp8hPl3qX7B9Vfl+6sYZQa7nt+0uKqtLjq6QAnduyVUoIbn899LmMBV784WNhwluEYRtIx+GKroeixAyQIlIurVqCgvf4PQw4qtAiPC8ib+8oBoI0AhSk44W/FBH3KUa9iidCJNCgwpO8yhrdIDNZQQk44uCMvDvsM7RTXytNWxNLExXEOxdYhBjy9srpPX5BXSoQYs8OjUwyCwLGtZRRYohXANpTRTvlwgjhSKkeZL+evkXj+CUzxIy1XCxvbu1H3ZfCi2QaKJoGX0w3BX5k5oYo0DC5SI+Oeh+BuVaizZNIWP0iNpKOXXBoJNQmFOuKAoryD/gptu8aHoZ4eZfq3O0BCnexSnfJiPwauh+N+fXk552UII/L9HX7OW7Zwj/1rqp9v1/R97xW0iRGCYNZTgDk2vU5AG5D/knXBYXq4/f3DYMKznjOSLaJeRVHGsAFEWlwxaQsldesU64HL+rt2+zyiQo8wnU5jm0URFXSaKr7basECJwKZdA7h/lRP9ZJspr/7fkklHsI9G6DxCTEN+hBCas90iEOQHEWZZtY7AZLrf4VmJyctWduQor4gmr4o1lBBhNByQ13/NKD6UcpOb1G6MOcvraHoOevlhM+lNVSyEBCaoDtPfBs/4/iMAgFwmFWkeU5RBgemc0UIRbS1pYx3KzzUIlAgz7YNCq8OWr9cFRvee8hW9KzF5JREGJYEy9kuv8J7yETjj+4+4amzGsomO+n8ukwqYnOf8jTIaLVo+/iANwBbu6a+jyVkXNroF7Gt5RYnvd+tg+5At9vnSNeR5ETUUow8lwAZve94K7xwISx0r8KH4NZTKI/9CNBRDZxIm+MOEqhI4tgik1mw62OSlCRTTxEv9HJuGogRKqA8lJMrN6ieM4kMJGXABTij1gT6fZiUmr2RRXuGCu1awhhIB3SZqFSiuSYxCI5kidR6WjzvY5CV/2zo0NQ8lIGwYsIe32mbKezsq87Xd4yEaSlgUW9QtgMNMXn5/ksfUYbjGwGgh8Lhexyidld9GXlony5jVc46tDnpSqFM6rPwADcim6eUyqeDtDyKYnIJMn47JKyOPB3e4YUu3WP2M2nX99xLmQykKgakdLQCAvqHySC8R4Tv2XysOqnrsQ2kC3Jnyfqe860OxO+XdjyWCU94zmjFcx48QJUFhKz0o7DVKSKNtpnwlJq/YM+Uj2N/1Q6YB3mi+iBbXB+Y9IcyhPxhhDoQaGUbprGJpKJ53FFy+yeQSJjTzIb4Qk0DRn2MumwpeGqcY3sbUOabOcKQQXUMJd8qb8wX5UMLCnosCaM859TOtxVXJLqxJZsqrDqAeJi8WKBWiZsr7P4gNOwcAOB+V7UW6foIKO48oIxubCUHH/VhCNRRz/V0NpWg3eYXdWph/xpY/TOD4j9mihFSHFORDMUVADefDTV4q3S6QzQLFY24L8KIEjZ79x7f3GQRKyIjV46Mx+WDkcZs/KZcJMXlFGrQoDaX8/Q3ni8hlUtZN7kzl2NKC5qEoK4T/FNXugwJHOlocDco0uTHMx6ejt7dKcaO82OTV+KQt+6Fc/seXAQCtmbTdZBQyyvaO4LT0CBpAUcD6ISgCV+r1nBf8sQc55cN8KFZh5fof7B8rENyRuIER6ZR1HkO7ZYQbNnodiTCpLqyOum9KF8p6R7tt77Axr/88Ux30R7fPYHIJC43W622y4avs+jvU24LjPwx+P0pDDAs6sflQWjIpZFJ2s3KpXvF8KIWisFohlEBWPiBT3o6cFCiG0GGPFhxS/yS7NrLJq4nIpMzzUBTtuYyxMQshQv0A+kfk/eDCG2JRiNCZsaqBmZde0UfPwRqK/4MShnNs2IRt+MTG8PLVOS0Zs9lRd+ragiqccsx5TefqqHuwzSGwaSj67189/boxr14+EO5UV6vm6ujP3hzlFSxQ8ganvN+HEvT6C0Xh7hlimxMV5kPJZVJIRxAoccOGHYESHHhjyy8ESgLFqKGEa0je8uIJhCjm4VrBAqVCbGHDio6WtHFkEGau8J9TaZRXoShc7SlsYp15ccjS77B5KIC/cwr/UEtlWMyBIRFSQdv3+svIpsn4DkYLRXdFWJuGkk6Z5xHpnah1efoA+7+/7vqgI6qtW2XJpinU5GXaoCnM6a7Xu3w1BOG+G6sPJZMODGsvitImVLZvIMjxPVJQGopZA/UOigzvPx/tHbbIfU3KTF4WQaqndbTYfShRTF5Kg3auF1OguPVhH0rD424BbGkRnRYNxTaq08lbTBL62UEjeLXUtq0ZRp7YWGGHGMUkZ8qn0DursMUv+0cKVvuyytqSKfdj5QtFx2nqaig+p7wQIALSRMaPfXg0vDNyNZSQsGvA2+FEDe9UnXAmZZ7voV/XLxAAr+ZkuqK+mq8/v0d70QWK1lZmdOVC53fYgiLcOhbsforRghNUkbL4UPTna9IS9fsLisRssayG4bEgGPIXRbDJKyxKD3CepxoYxg0dVkUnXYw0DixQKqSrLQvAPsLqyGWQN9hYo5hMCpYGGyU6piAE0iEzFlUnGrQfChBksrHMo9B/hgoU04eo/7Z01qI0cXNL76D1HMCJtPMLRfVxtkmnqSnKKpMiEAWHHAeZW2zzdNzjWnrvQGkTpqgffrHoPAOnDuXH9esaNRSLVqnQO8EygSJKAiFfFGVh3t8691hMbm8JfTauhhJyns2Hkk2nkLFEUtoEnf/+iMzPRwiBfFEga6mj/v5s2wcoH0/YFsR2Dank5zMNCqJQ2oyOBUrDM1EKFP1dHfalP7m/bWGNQZPq3HMsZpUo5rKiEO7ClbY+Pajj8jhMLfXTP0K9rpVFecVdYwmYMaEVALDX4HAGSh+QySmvnr9ausN/j05nTUgRGZ+fyt+ZywREeSmBEtxZAkCvtodIVA3FEXrOCN30nLwCpbxD09f3Mt3j4GjBFdr+LYbVa2uVuxKq95/Xnrnt2QGl+oYKFNfxbdDypVM+bVmAVf/GTEJdCZTJ7S2BJqnWjPkbzmtmZWMUXFEgTYS2bNooUGy7sLppRUdTV5FicQWKetbsQ2kCjjygC4BX+usvTgkcf4P2CAvLi96tjVr17GF5lcM/bIc229IpgPMhqy1MbSPswZGCG5RgmyQWbvIyj+zc35ZvSAhgUrvzbPcOmrdYVe+hNVu+/I0rUAKivNJKQzE8Y9VBtwXMBi/5UIKDGgBg10BJoET1oeQLRWTTZNWSRrQVak2d0TZtboqpCQ6OFDCp3ZmY5x/Bqzq2q85OCRRNc0tRgG/EZ/KyCRSlHZvq743yCjYrG3d8HHXab2cuYxQo6h5doel/BgWBXIAPqCicgJfWlrRZYHkiNw0DAvWM5VyWuKHDejTaWMMCpQLOO2EOutrUTN3yl3XOWw90O1x/x3nT0o3ub5uisGnXgPvb5tMw226dv65T3rqWl90kUygK5NTIzFLB/pG8KzD1c/Sz4/hQokS/CCFcc6Ntz25Vp1w2VXadXy/fDAB4btNuAOZ5KE6naPah6AIpzMdkWukX8N67vsth1PDO0UIR2UxK1tGuoWTTZDTp3Lpsk/vb1EYGRgru+/V3pqozbPOZY1SbUoIuzL8UpKE40YPOb9MIf1g65VMUrqGYyh8cLaAtm0Yuk/LsT++/x1apxfrbUL5YdAWKaRCgtgxuy6bNYcMhYd+qHSTRUP688g13kzzWUBqcI2d1uaG5phGKQGkmvb8x/u8jr7q/bdEXF96wTDtH14CCbbfq3PCwYfvoL18suiMz28c+NFosdTiWIIOwwfaoQduKYvISACbJa++xaChqhNdqWKBz217vRL8gDcU8sdEpe2J71rojn21pGv/xiW1Zz0z2qB/+SMGZI5GydNzqup25TGhnZHpPQ6N2gVIavfsEiuwE06kUiMj6/qP4UPTn5l8CXgjhhA2nU8hYljfSR/SmdzA0WkBrSxqt2bRx9F/ys5VrscocpQZdNqd8kMkrbGdLpdWod2AaFIRx0U3L3d8c5dWgvPvw6QCAj71jXmlio6EzvOP5raXl7S2jzmmdLZ6IIRueSXCWWdVumlAfdfDaKyrKxaah2EZmQGkvkC5Dh2OLTjPhmX8h78W7fbI532ihiCkB6yQBJbt2azZVFhjx5tkTAQCfP+MI51zDWlrpAB/KvSvfAABMaW8xzvFQZfjvUUfd76HTO/CKttVyVNOEinJKk7lDdQVKa7hAMQnNQV2g+NqAGsi0+cxB6t1nUoR0KnzCYpDJSG93/hG++gZaAuahDEdwyre3pNGaNWso6voqUksPM1aDlVzQoEtIDaUljUFD+Z7JsaagCClQlBUkyQKRAGsoDct///Wb8fDnT0YqRe6kJ/Wy9ZHOTRcucpdm8XfKsye14UPHz8GOfSO4f/X2suNbdzuRS2ccPROt2ZTn41DntmXT6A9Qpd2Z8pb7UB+RWUMRmjpvNocAwIGTHMf4azv6S3kj7ocBmDUbz7InAfMTJrRmkElRgA/FO8LUP/ohec9KyzFtEpaSfgDTx/7Mhl4AwOSOFvSHCBRbR6Ce09wp7R6hpN7vsXMmyvPM+Uc9PpTy46XAgaxxBN7RksbBU9sBlDvlhRAYHC24fir/oMdv8vKH92bS5K5jZxr06FFizj2aO3yFX0NRz1T5UEz5dSFhilRUJq/WbNoTQuxeQz2/lvIOveAXiBYtPiU1FJMPZThEoKj627TESmEfSoMye1IbDp7aAaA0elENXv8ITlow3RU4foHRP5L3TFrq1ZyyAPCOKx8AAEzpaEEukzaOtqZNaMFuXz7AO/8CsI9MVCO37ZXRGrB5keoAj5rlBCXoS3vo54eFDZtW3M0Xgj805xpFZNIpdLVl7T4U5ZQ3ROkMy3vvbJWjT799vCDkKDt4C+fOXMaooRSLIoJTvmSSGjTMQ1Htw2bqGC04zyCVsoU2C1l+ukyoKYGhnOr+7MP5IoQApnfmAJTPtHeFtVztV9Vx1DV5kdv+jLPsNQ0DCB6ht2ZTZQJFaQst6RRaLSYlXdCbBM7ASAGtAT4U1SaUU1z/TkZd7dceJTgqnfZtFqd8uECRGkprPIHygvQPKkrropmFfC1ggVIhSqCoDvUNaZv/xLvmAzDv6FgsCuwdHHVHf4A3okvn9KMPQC6T8oww1e8jD+jCy1v3ljWO0uhJfgiWGHvVYE0d1mhBuD4UU4e4o89ZY2ruFGeEq3/QUQSCe67uDyqUj+gHRwp42zfuw7/+6jlP3UcLAtkUYUJrxmry0p3yzrU0DWW0FDIKAP3D3g9+OF9EazbtzMIOMDWMForoG8pjy27vXJh+aRJUYcWm0eGrO/qRIkdwKBOiUxfn96Q2c4SVYkCabMJMXh25TJmGMeKb2Ol/TypI4ICJjgbq91Op11YSes7zczWUVMptfyaTrjq/M2d3OCshMrUjh8ER7zsuaShpTGg1C/V9HoFi9qG0ZdPIWXwoug9K/79enk1DUfXLZVNoy6aN2wCHLTCqvqmJ7fEEytrt+zz/V/3E3S9145Av/Qlrt/WZslUVFigVoiIwntvkmECufnA9gJJgUY1RN8vsGRxFUTjax82feBsAb5TPB3/4mPu7NZNGLptyP8qh0QK+csdKAMCJh0xF/0gBPfu8Cwg+sHobAARGoFz90HrcJ3edNPtQiqWRvWF0t10KFKWp6SMw7wzlYIGif2gqnx5BtWcwj217h/GHF7ZqdVNmlRS6WrNWk9eo+9HLUWRBFyjOfuSTO5RA8XZIw/kCWtIpZDNmc4riifU7AQDvlBqlYsMOJ0JP+Xn8z7h7zyD++GI3igI4YGIbhkaL2Cnfo3qfcya3uXXx09M3jIfW9OCVbX32KC9troxfSxga8ZpT/ELrs7c+D6D0Tr675BXPcdXZzZjgaDBKqCstM50it/2Z6q/mDs3ocvKbNIRH1/YAAKZPyGFgtODRdtX7as2mHC3RMKiwac2KgZEC2lrSaM2kLUJPtcNygeIftPl9QCpvLpNGe0vaaBYd0AYxpuv7nfL6O7znpTdcP54Nv/VCmcfVdds0C0mtYIFSIcrx/acVb2D3wAjuWtENAPjcew8HUBrBr9Kcrs9vdlTRKR0t7ghZvfxNuwawYsse99xcNuUxeX373jXuMfUx6x3q4EjBXZk055ocyj8mvRzTOk39IwVMkOYg08e4qnsvAOBgo4ZSOt/0oeus7i53RitzwvQJOaNJTx3PpAldbRnrxMahvHeEqQvWodECWjNpd2JjuUApIpdNIZtKlXXG1z/+mvv71otOBAC849CpnnM++CNnUHBAlzPC39nvvY83tKiuKR0q/NmpQ48U1vOmOcLapIE9uGa7vI8iMpa1yr4jhUB7S7rsHav3NbOrvA0BwNOv7QJgnxSrNDClwagB0ZDstNpb0q45yyQs1D2pyakmk9U3/rQaADC1owVCeIXeRrk9xEFT2jGhNYs+g9mzT77Ttmx5aLcQAht29GP2pDbplC+//uvyGkqweyZK+nwoZSsxKJNcJoXOVrPAe/gVR2A6ZtPy+ivzuTJ56YL5k79Yjn/SIrj8CCHw9btWedJe7dmHM7//CFZudfoXJShrCQuUBNyozS1RHe2h0zvR1ZrBmjecDnhotICPXf8MAGfkoUawu/qdBrWpd0AvErlMymPy0rcRVfb/Pq0z1Pe9UMdN6v5Bsn5A+cc8NFrESL6ImbIzNI0wH1zTg+MPmoTJHS1oyaS8AkXruG0hvQDw5Ks7sUZTuwddn46Tf8aEnFGYqVFwNpXChJy5M9ncO4Cv/P4lAKURnsfklS+gNeuE3Ha0pLHPb/IadeYYZNPlc1j+6w/O1gRvP2QqZnS14k2zulzTpx/lWNejuADvc/GHlvfsG0ZLJoVDpjsCRZkXdXQzZ0cu43bwCt2v5PfBAbpAaS07HwCOPGACAOCkBdOM96VGuUce0IVsmtz3qNpiZy7jtrF1PeWmFSXA1KDIJFAOlff/dimsdW1WtfMDJraiM5fxfAMK1S4mtWfLnPJ7h/LoHyng4KntyGXMPg61HI66D92Honxw7fK9+zVEVV4uIzWokXyZP1ENPmd25YyDBnXc75TX26PNR+m3WgDAyq17sfqNPtwg+6l21lAaG73DUqsQA8BBU9uxaZdjY7/npZKaetCUdtePopzyX5XmLEUu43Uaqga0/D9PwwTZmPXGuF3rfGyz9IFyIbFic0kr+ta9q916p8hrjgOAH9y3Fqu69+IYGXrblk27I1Pnek4dJ7XbzVHb9g7hi7950ZOmnsGIK1BajXmVKSerNNp3ZlUAABkpSURBVJTB8o/xW/eUNDA37FLrVAeGSw7pjlzGo6E8/EoPtu4ZRC6Tto7+gVIn2GExaQDAYTM6AQAbdvZ70k0CRdXvfx9+FSP5otvZmjqH3z23BQBw/EGTnA5VawPFosCrPaXrtWRSZRqK8tkogeIX/G+dOwnTOnM4ZvZEXPiu+a6Wp1DvavqEHKZ0tGB3/yiKRYEv3O680wmtGbd9PPLKjrL69/lMXn4fyX0vb8N6eQ9KU9aFjtLipnXm0CV9KH5f4qruvZjW2YJcpnwttx4pkKZPyDkaSr5Y1jn/SXbo6hs1zYuxafFKQHe1ZtGZy0CI8ki14w+ahCMPmICutqzRB3TH846Zd5bUAtU77NG+8X3DeTy4ejs+/vNnPPd/9wqnn/mbhXPLygVKA9VawwIlBt/98FsAADsMHz4AzJ3c7moe+uz3Q6Z3ojWbRls2jRc378azr/dinc+R5rz4ktNQNbxJ7S2YIFVhXZ3WJ+wpp67SfhSFoigTEkoN7t4ziOsf3wDAMTVM6ciV3df37nNMKfOlSWbP4Kg76gFK5pBZE9usGsp//WGla7b4+jnHACitZ6VGd6qz8aPKnNiedXwoBg1F1xjU8iEq310vduPPL29ztcNObYRfKAosvu5pbNw54GootrDf52UUza7+ETyxfqc7Iv7EDc+453x44Vx05jLuvfrv4YcfOU5bcdfbKc2Qnf1Da3o86V+4/QU8JU1S1//DInT5TD6fv/1FnPPjx53jH/sLtGYdDdITNu0zefmDQvqG8+iSnWVHSxr9vhG2GrjMmJDDzK5WrN3e5xF8E9uy7tLtP39iA/yo+romL19nu3LrXve3WsBTFzrb+4bR1ZpBazaNzlbZYWsCZzhfwL0rt+HYOZOQSXtXm84Xinh83U73+hPbsigURVkI/mPrdrj3AngHJIM+/4bfB+K20basaynwC43dA6M4dEYnJrRmy8y2+rOeLgcWJrP3P920HB/7+TN4YPV2d9CSLxRx2Z3OwPRvFs3F5eccg786bran/FkTW0N3dK0GLFBicOqRMwEAv3zKvBnS3Cnt2LxrEMWiwGa5Mu7K/zrDPT6lowX3rtyGv776CZz2JqcsFW6cy6bQ3pLG9r5hCCGwbyiPjpY00ilyG6q+DpS+w99b5k4CAHzzntV4RZok9gyO4tAv/QmjBYFvnXssnrz0VAClzky37Xe1ZTGts8UzItqjdTyHz5xgvN/fy9HzvKnt6B0YMZrM9BG0Mqv0DoxCCIFfPOkIpzmT2z15VDm75cc6qa0Fna0ZDIwUPB/ris173I2ppna0YFqnIzhufmojhBC4+JfPYt9w3hUouoaiR1sVhLA6VHWUGXLZxl786IG1brDDcQdNQipFOGxGJ17S/GLFonA10fcdc4DH5JUvOMECnz7lMNd2/rvntrgdVL5QxG3LNrtlTWzPekKXhRD4zbOl4ycdNg0HT+lAoSjcwczabX340E+WAnDmqMya2IqNmga1bvs+3PVit7sKdVuL02HrvpDtfUNoSacwqT2Lt86dhLXb9nnMRkRk7bA27RrAf98t/SPy3egT/3r7R9xByxfPPNL1c6kR/rWPvYYbl250AyrUwEoXqpfJ5ztrYiumdLR42ttdK7rdDndGV65kdt7nfEeFosAP71/rnt/VmkU6RZ7BkRsF16V8QD6T46Ca+Jtx66fnHy0U8eqOfkztaEFXawZ7fL5C1U9c9sGj0JnLoCWTcgeLSjsFSkEhAPDC5t1Yu60P3/L5WS848WB05LzmLZuJtto0tUAhojOJaA0RrSOiS8bquhPbs65pAwAev+QUz/GDp7ZjpFDE75/fgk29AzjuoEmeF6qHnE5ozTiOQhk9ksuk8Z4jZ2DjzgG8sm0f+obybt4pcuT9ld+/hB8/uA7D+QK29w0hmyYs+8/TcMQBpQ7/1R5H81mpdWzvPGyaq85//z7nA1IjpQO6WnH8QZMxfUIOr2ta1Wuy47n4PYfinYc5guAdh051zW+DIwVXVX/34dNRFMDj60omj3Xb9+Hor96D1W/04eCp7Xj1G+/HVDnX4YYnNuDl7r34k1TXT1owDdMn5Fwbtlqmfr3U4ia1Z92JeR+46lH3GsohDgDLv/JeTO1wyv/V05vwowfWucemugIl7YYN6+HDD63pwcyuVjz7+m789OH12N435PFHnfPWAwEAV33kOADAl3+7Av/z51I01HwZAbfw4MlYtrEX5/30CQznCzhEW406I5cOARxT3ivb9jnzP7q85r4v/W4FAK9JU9GphU77zSqZdAqHznDqoSaf3vJMaQ2vmV05zJ3c7kYlAsBp330YAFyTk+qMdGG7fEMvcllneZWDprSjbziP6x5zghWu/rvj3fOUyUUXNl+54yX3t2rnuvbx7m8/6P6+4O0Hu7Z+dW9qe22l9Skt4e3//QCWvLwNe4dG3Xt8+6FT8e4F07D6jT53YPDc66X5GQd0tbpCbWe/82wfXL3dDWg44eDJSKUIUzpaXE1933DedYgff9BkmVa6v6Xrd+KTv1ju1u1AabLaqn3nKvBm3tQOzJ3Sji27Bz1t60Vpgl548BRk0im8aVaXm2bjgdU9eO/3HsE1clmnN83qwoETncGOfxO9MVBOADSxQCGiNIAfA3gfgKMAfISIjhqr69/16Xe5v1UDUhxzoGNL/rfbXsAT63d6wgUBYIEmjH733BYcMr3D7axzmZTrlDzj+4/g1mWbXHu2Hvb37XvX4D3ffgi/Wb4Z0ztzmCY7afVxv7h5D5au3+kKBAAywiWNFDnmuj+t6MZ22bHc+k8nojWbxsyuVryybR8eklFFz250wqM/rNlmD53eib7hPL7z5zVYtnGXm/5Xx81GOkV4cHUPBkbyGBot4MXNu13Twpfe/yak5GqvgPORbd1d6thmTmjFM18+zTUprtiyB917BvF5aaef1N6Cs9/iqPIbdg44ZguDNjFtQsl09h0t/PVUqQ125rLYNTACIQQ+c8tznrxL5QjwyrtXY9EV97ujzBMPmYLvfPitABwN89DpHdi6x7s+mPIhKNPdMxt68e+3lfYGf/shzntVu0b+5OH1eOo153qHSnOistHf9WI3zv3JE66ZDQC+9aFjATga0sBIAc9s2OX6Nia1Z/Gzjy4EAEyUps+7VnRDCIFnX+91yzh4agemT8hh484BTzoAXP8PfwGgFGW0qXcQvf0juOP5LVi2sdcVYvOk4FRmT32wdMqbZgBw/FIvbdmDjTv7PeatVIpwyPQOLH21NNJW5Z5w8GR05jKu43vfUN6jic6WmqGKlASAnzy0Dp/Q1sD7wLEHuqHt6v6UCe5Dx89BRy7jfitKO//mPY721JJO4Zf/6IT1T+1owQ6pwfxW0wBVBNgP7iu1q3++uRR9Na0z5w6YXB9hvohPy3lVpx89E/OmtmO0INy23zc0iot/+SwAYMFMp284bu4kvLh5D655xJmW8NfHO+1+wYxOPP2lU3HkARM8ofUAcPdnTnI32fv8mUcgkyL888mHAgAOmdaJsWBs9KDasAjAOiHEqwBARLcAOBvAy2Nx8VwmjTmT27C5d7BM1T/6wC7P/4/y/f/GCxfhjO894moHRx84EZ89bQG27B5EazaNQ6d7X/6r2jInj19yijsHQnVoHZqgef+bZwFw5p1c/dB6HH/QJLSkU1h1+ZnuOVf+9bH4wm9exD/f7DTiFJXMOJ977+G4fflm/MP1Jb8A4I0SUyaDH2qj/xcuOx2t2TS6WjO46cmNuOnJjZ78Xz/nGLxXduiAMxH0Z4+9hq/K0evTXzrVndB13EGT0dWawWdued71NwCOSY2IMK3T8fMcqo38AeCS9x1Z9jwUf/7cu12T3fQJOdy3ahvmX+rN/2/vPRwzu3L44m9WuGknfP0+AMBHFh1UWisN8AhCAPjUyYfiH94xD0DJ8Q0Af3yx2/1904WLAJQ6jUfX7sCja3e49wwAz3z5NBz5lXsAOCa1ZVKgP37JKW6HqtrXeT9d6pZ99d8dj3cc6gxKlC/k9uWbkcuk3BH6F890ns+kdmdxyr+++gk3/8ffOR/vOdIRBicc7NRF+WUUl0vf11/Mm+JJP+mwUmTYiYdMRTpFxhDXi9/jdG4fXjgXV969GvMuuctz/DvnOQMJ1dY+cWNJUJx17Cz8+G+dwdLhM0vfx7Oa9qEEqsp/wbVPe8uXAxX1fX3q5mdx+dlHY+32fZjS0YKHP3+yO88kkybct2qbp44/+tvjMLmjBe0taazv6ce37lmNR9fucKPD3jp3ElqzaVeD+tytL2DZhl682tOPzb2DmNbZgjmT2zFfdu5f/v0KfODYWbhrRSlwR83EP+Hgyfj5ExvcUOpTj5yJb/zVm5HLOFriv5xyGP7ll6XB0E//vqQlAs6gYN033o9iUWD6hBw++JYDMRY0rYYCYDaATdr/N8u0MePB/zgZL/7f08vSM+kUHvqPk93/f+UDXsVp1sQ23PPZdwNwRjz//J5DywTJY198j/v7ns+e5P6ePakN67/xfnzyLw910y774NGe8lWHDzgf3NGzuzyd4XkL5+BrZ5fyzJvW4dr1Z09qcztGxVnHzvIIzXNPmOM5TlQyQ/zb6UfAxN+feLA7egKAj79rPtIpQveeIRw7Z6LriAScuT4fkB+AcpCvvvxMtw53/ss7kfKp8I9fcor7TIgIXzjzCFcjALz+n1Nkx6mz4cqz8OlTF+Bv/uIgfPvcY8uOL5jh9R/966mHef7/H6cf4d7f+46ZVZZ/xf893Y0EbG/J4JjZ3kGG0j5bs2nc/Im3uZqKYrYWPv6mWd68QEk7AoCpnTlXEN8s/Xz//t7D8Sk5Wv1LudipznwZsguURuE6xx80CReceDAAx+R716ffhbfOnYRnvnya571ObMviV/94Yln+uz79Lnz+DEegfej4OWXHb73oRHcejt5+Fd/4qzd77s/PWcfOwmlHOQMWk6/vN596h/tb16jUpOFL33ek6/sAgH89ZYEn/wUnHowPHOu0yf88y/mer35ovWvK+seT5rv3rdaLA5znv/TVnVg0fwpuuejtABzBAzgDii/+ZgUeeaUHi+ZPwWpt0PfuBdPdlSvOPPoAnH70TLRm0+438IFjD8R3znsLPrJoLjZceRbONLQ5wNEIP/bO+a5WVmsobO2lRoWIzgNwhhDiE/L/FwBYJIT4V995FwG4CAAOOuigEzZu3FhWVq14Yv0ODOeLeM8R5R0Y4Niok0w2emL9Dhw2vdONDlL0DY3ihic2YLQg8NArPfjOeW/x+HwUm3sH8KcV3fir4+Z4OnTAcQanU4SRQtEdtfnZuLMfE1qzmNye9QicodECrrhrFXYNjOCct87GXx4+3Z30prOrfwS/evp1nLdwTlnIcLEo8Nym3fj1sk1471EzXXOVXvctvYN4YM12/P3bDnYnlPrLuGtFN04+YrqnswAch78QwLINvXjnYVONDuVfPvU6vnnPatx04SIcO2dS2fH+4Tz+7bbnsfgd81ztQKd7zyDueekNvHn2RCz0jepHC0W8tqMfKzbvwYyuHE5aUN7JA8DqN/Zi5oRW1yGtGBotYNveIfzxxW6cftRMLDB0ouu278Np330Yi+ZPwU0XLvK8x56+YTywehu+f99anHzEDHz1A0d5TKqjhSJueGIDDpjYisntLXjL3EllocRBrOrei85cBtc/vgHvPWqma8ZV7BvO45VtfXjq1V1Y/I6Dy76Dnr5hbO8bQqEocPjMCe7IXbHmjT7sHhjBK9v3YWpHC953zAGed1goCmzdPYiJ7Vls3zuEw2aUP59d/SNYvrEXL2zajU+dfKjRcf3Qmu3YN5zH+4+Z5QrO/uE8/vfh9dg7lMd7jpyBeVPbcdCUds/1X9nWh188uRGnHDkD/cMFnHbUDM/zX9+zD/e9vA0bdg5gwYxOfOiEOe6gTKGWHDJ9O2MNES0XQiwMPa+JBcrbAfxfIcQZ8v+XAoAQ4r9teRYuXCiWLVtmO8wwDMMYiCpQ6i/64vMMgAVENJ+IWgCcD+DOOteJYRhmv6VpnfJCiDwR/QuAewGkAVwnhFgZko1hGIapEU0rUABACPEnAH8KPZFhGIapOc1s8mIYhmEaCBYoDMMwTFVggcIwDMNUBRYoDMMwTFVggcIwDMNUhaad2BgHIhoEEBRaPBFA0BKfBwEwr1kfLX+tjwONX0euH9eP62en3vUznTMNQIcQwrycg44QYr/5B6An5Pg1Nc5f0+PNUEeuH9eP69e49TOdA2BZWB71b38zee0OOf6HGuev9XGg8evI9Ut2nOuX7DjXL5wo5xjZ30xey0SE9WhqlX8saPQ6cv2SwfVLBtevciqp0/6moVxT5/xjQaPXkeuXDK5fMrh+lRO5TvuVhsIwDMPUjv1NQ2EYhmFqxH4vUIjoOiLaTkQvaWlvIaKlRLSCiP5ARF0yPUtEN8j0VWoPFnnsISJaQ0TPy3/mXbVqW78WIrpepr9ARCdreU6Q6euI6Coy7ShV3/rV6vnNJaIH5ftaSUSfkelTiGgJEa2VfydreS6Vz2kNEZ2hpVf9GVa5flV/hpXWj4imyvP3EdGPfGXV/fmF1K8Rnt97iWi5fE7LiegUrayafMNVJWo42Hj9B+DdAI4H8JKW9gyAv5S/Pw7gcvn7bwHcIn+3A9gAYJ78/0MAFta5fhcDuF7+ngFgOYCU/P/TAN4OgADcDeB9DVa/Wj2/WQCOl78nAHgFwFEAvgXgEpl+CYBvyt9HAXgBQA7AfADrAaRr9QyrXL+qP8MY9esA8C4AnwTwI19ZjfD8gurXCM/vOAAHyt/HANhSy+dX7X/7vYYihHgEwC5f8hEAHpG/lwD4kDodQAcRZQC0ARgBsLeB6ncUgPtlvu1wQhAXEtEsAF1CiKXCaZk3AjinUepXjXoE1K9bCPGs/N0HYBWA2QDOBnCDPO0GlJ7H2XAGDcNCiNcArAOwqFbPsFr1S1qPatVPCNEvhHgMwJBeTqM8P1v9akWM+j0nhNgq01cCaCWiXC2/4Wqy3wsUCy8B+D/y93kA5srftwPoB9ANZzbr/wgh9M70eqkqf6XG6qitfi8AOJuIMkQ0H8AJ8thsAJu1/JtlWqPUT1HT50dE8+CMAJ8CMFMI0Q04Hz0cjQlwnssmLZt6VjV/hgnrp6jZM4xYPxuN8vzCaKTn9yEAzwkhhjH233AsWKCY+TiAi4loORw1dUSmLwJQAHAgHHPDvxPRIfLY3wkh3gzgJPnvgjrU7zo4DW0ZgO8DeAJAHo6K7KeW4X2V1g+o8fMjok4AvwHwWSFEkFZpe1Y1fYZVqB9Qw2dYQf2sRRjS6vH8gmiY50dERwP4JoB/UkmG0xouRJcFigEhxGohxOlCiBMA/AqOnRpwfCj3CCFGpcnmcUiTjRBii/zbB+CXqK0Zwlg/IUReCPE5IcRbhRBnA5gEYC2cTnyOVsQcAFv95daxfjV9fkSUhfMx3yyE+K1M3ibNCMocs12mb4ZXa1LPqmbPsEr1q9kzrLB+Nhrl+VlplOdHRHMA/A7AR4UQqu8Z0284LixQDKjoDiJKAfhPAD+Vh14HcAo5dAA4EcBqacKZJvNkAXwAjtlnTOtHRO2yXiCi9wLICyFelip1HxGdKNX4jwK4o1HqV8vnJ+/3WgCrhBDf1Q7dCWCx/L0YpedxJ4Dzpd16PoAFAJ6u1TOsVv1q9Qxj1M9IAz0/WzkN8fyIaBKAuwBcKoR4XJ081t9wbKrt5W+2f3BG0N0ARuGMAi4E8Bk40RivALgSpQmgnQB+DcdZ9jKAz8v0DjgRSy/KYz+AjLwZ4/rNA7AGjuPvPgAHa+UshPOBrAfwI5WnEepX4+f3LjimgRcBPC//vR/AVDgBAmvl3ylani/L57QGWiRNLZ5htepXq2cYs34b4ARq7JNt4qgGe35l9WuU5wdnANavnfs8gBm1/Iar+Y9nyjMMwzBVgU1eDMMwTFVggcIwDMNUBRYoDMMwTFVggcIwDMNUBRYoDMMwTFVggcIwDQIRfZKIPlrB+fNIW+WZYepNpt4VYBjGmVgnhPhp+JkM07iwQGGYKiEX/7sHzuJ/x8GZ2PlRAG8C8F04E2N3APgHIUQ3ET0EZz2zdwK4k4gmANgnhPgfInornBUG2uFMZPu4EKKXiE6AsybaAIDHxu7uGCYcNnkxTHU5AsA1Qohj4WxtcDGAHwI4Vzhrm10H4Art/ElCiL8UQnzHV86NAL4oy1kB4DKZfj2ATwsh3l7Lm2CYOLCGwjDVZZMorcH0CwBfgrNR0hK5GnoazlI1ilv9BRDRRDiC5mGZdAOAXxvSbwLwvurfAsPEgwUKw1QX/1pGfQBWBmgU/RWUTYbyGaZhYJMXw1SXg4hICY+PAHgSwHSVRkRZudeFFSHEHgC9RHSSTLoAwMNCiN0A9hDRu2T631W/+gwTH9ZQGKa6rAKwmIj+F85Ksj8EcC+Aq6TJKgNnc7GVIeUsBvBTImoH8CqAj8n0jwG4jogGZLkM0zDwasMMUyVklNcfhRDH1LkqDFMX2OTFMAzDVAXWUBiGYZiqwBoKwzAMUxVYoDAMwzBVgQUKwzAMUxVYoDAMwzBVgQUKwzAMUxVYoDAMwzBV4f8D5tlyl+QW5K0AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Un zoom sur les dernières années montre mieux la situation des pics en hiver. Le creux des incidences se trouve en été."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 72,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 72,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl83HWd+PHXe2ZyH22SJj2Slpa29KBgoaWci0KhxRNYQeuq1F3cKou7uuuugP52cUVUdBXFA0WoHLJyKQtyFwpyCC0pV2+SttCmV+47mcnMvH9/fL+TTtJJZjJJc837+Xjkkclnvt9PvvNtOu95f05RVYwxxphEeEb6AowxxowdFjSMMcYkzIKGMcaYhFnQMMYYkzALGsYYYxJmQcMYY0zCLGgYY4xJmAUNY4wxCbOgYYwxJmG+kb6AoTZp0iSdOXPmSF+GMcaMKZs2bapV1eJ4x427oDFz5kzKy8tH+jKMMWZMEZH3EznOmqeMMcYkzIKGMcaYhCUcNETEKyJvishj7s+FIrJORCrc7wVRx14nIpUislNEVkaVLxGRze5zt4iIuOUZInK/W75BRGZGnbPa/R0VIrJ6KF60McaY5Awk0/gqsD3q52uB51R1LvCc+zMishBYBZwIXAT8SkS87jm3AmuAue7XRW75lUCDqs4BbgZucusqBK4HTgeWAddHBydjjDHDK6GgISJlwEeB26OKLwbuch/fBVwSVX6fqvpVdQ9QCSwTkalAvqq+qs4mHnf3OidS10PAcjcLWQmsU9V6VW0A1nEk0BhjjBlmiWYaPwW+AYSjyiar6kEA93uJW14K7Is6rsotK3Uf9y7vcY6qBoEmoKifunoQkTUiUi4i5TU1NQm+JGOMMQMVN2iIyMeAalXdlGCdEqNM+ylP9pwjBaq3qepSVV1aXBx3mLExxpgkJZJpnA18QkTeA+4DzheR3wOH3SYn3O/V7vFVwPSo88uAA255WYzyHueIiA+YANT3U9eo0dkV4oHyfdi2ucaYVBA3aKjqdapapqozcTq416vq54BHgchoptXAI+7jR4FV7oioWTgd3hvdJqwWETnD7a+4otc5kbouc3+HAk8DK0SkwO0AX+GWjRrPba/mGw+9w45DLSN9KcYYc8wNZkb4D4AHRORKYC9wOYCqbhWRB4BtQBC4WlVD7jlXAXcCWcCT7hfAHcA9IlKJk2GscuuqF5EbgNfd476jqvWDuOYhV9fmB6A9EBzhKzHGmGNvQEFDVV8AXnAf1wHL+zjuRuDGGOXlwKIY5Z24QSfGc2uBtQO5zuFU1xoAoLMrHOdIY4wZ+2xG+CA1tEeCRijOkcYYM/ZZ0Bik+jbLNIwxqcOCxiBZpmGMSSUWNAapvq0LgM6gBQ1jzPhnQWOQ6t3RU9Y8ZYxJBRY0BkFVaYhkGtY8ZYxJARY0BqEtECIQcjIMvwUNY0wKsKAxCA3uyCmAzqA1Txljxj8LGoNQFx00LNMwxqQACxqD0GBBwxiTYixoDEJkYp/XIzZ6yhiTEixoDEJkYt+U/EzLNIwxKcGCxiDUtQVI8wqT8jKsI9wYkxIsaAxCQ1uAgux0Mn0eyzSMMSnBgsYg1LcFKMxJJzPNa/M0jDEpwYLGIDS0u5lGmsc6wo0xKSFu0BCRTBHZKCJvi8hWEflvt/zbIrJfRN5yvz4Sdc51IlIpIjtFZGVU+RIR2ew+d4u77Svu1rD3u+UbRGRm1DmrRaTC/VrNKNLQ3kVBThqZaV5bsNAYkxIS2bnPD5yvqq0ikga8LCKRbVpvVtX/iT5YRBbibNd6IjANeFZETnC3fL0VWAO8BjwBXISz5euVQIOqzhGRVcBNwKdFpBC4HlgKKLBJRB5V1YbBveyh0dkVIjPNS5rHg98yDWNMCoibaaij1f0xzf3Sfk65GLhPVf2qugeoBJaJyFQgX1VfVVUF7gYuiTrnLvfxQ8ByNwtZCaxT1Xo3UKzDCTSjQiAYJsPncZqnLNMwxqSAhPo0RMQrIm8B1Thv4hvcp74iIu+IyFoRKXDLSoF9UadXuWWl7uPe5T3OUdUg0AQU9VNX7+tbIyLlIlJeU1OTyEsaEoFQmHSvx2meso5wY0wKSChoqGpIVRcDZThZwyKcpqbZwGLgIPBj93CJVUU/5cmeE319t6nqUlVdWlxc3O9rGUqBYJg0r4cMn9MR7iRQxhgzfg1o9JSqNgIvABep6mE3mISB3wLL3MOqgOlRp5UBB9zyshjlPc4RER8wAajvp65RIRAMk+7zkJHmBcBvE/yMMeNcIqOnikVkovs4C7gA2OH2UURcCmxxHz8KrHJHRM0C5gIbVfUg0CIiZ7j9FVcAj0SdExkZdRmw3u33eBpYISIFbvPXCrdsxIXDSjCspPuc5inAOsONMeNeIqOnpgJ3iYgXJ8g8oKqPicg9IrIYp7noPeBLAKq6VUQeALYBQeBqd+QUwFXAnUAWzqipyCisO4B7RKQSJ8NY5dZVLyI3AK+7x31HVesH8XqHTGTzpXS3IxycfcInkDaSl2WMMcdU3KChqu8Ap8Qo/3w/59wI3BijvBxYFKO8E7i8j7rWAmvjXedw6w4aXg+ZPifTsM5wY8x4ZzPCkxQIRmcakaBhzVPGmPHNgkaSuoOGN6p5yjINY8w4Z0EjSV2hWJmGBQ1jzPhmQSNJPZunIh3h1jxljBnfLGgkKTInw5ncZ5mGMSY1WNBIUsCap4wxKciCRpIizVMZUR3hNrnPGDPeWdBIUsyOcFvp1hgzzlnQSFLseRoWNIwx45sFjSQFojrCM32ReRrWPGWMGd8saCQpuiPc5/Xg84hlGsaYcc+CRpL8UTPCAXcjJss0jDHjmwWNJEU6wjN8kaDhwW8d4caYcc6CRpKiO8IBMnyWaRhjxj8LGkmK7ggHJ9OwIbfGmPHOgkaSemcamWle/NYRbowZ5xLZ7jVTRDaKyNsislVE/tstLxSRdSJS4X4viDrnOhGpFJGdIrIyqnyJiGx2n7vF3fYVd2vY+93yDSIyM+qc1e7vqBCR1YwSgVAYEfB5BHD6NmyPcGPMeJdIpuEHzlfVDwCLgYtE5AzgWuA5VZ0LPOf+jIgsxNmu9UTgIuBX7laxALcCa3D2DZ/rPg9wJdCgqnOAm4Gb3LoKgeuB04FlwPXRwWkkBUJh0r0e3LiHz+vp7hw3xpjxKm7QUEer+2Oa+6XAxcBdbvldwCXu44uB+1TVr6p7gEpgmYhMBfJV9VVVVeDuXudE6noIWO5mISuBdapar6oNwDqOBJoRFQiGu4fbgjP0tiukI3hFxhhz7CXUpyEiXhF5C6jGeRPfAExW1YMA7vcS9/BSYF/U6VVuWan7uHd5j3NUNQg0AUX91DXiAsFwd38GQJpXCFqmYYwZ5xIKGqoaUtXFQBlO1rCon8MlVhX9lCd7zpFfKLJGRMpFpLympqafSxs6RwcNDwHLNIwx49yARk+paiPwAk4T0WG3yQn3e7V7WBUwPeq0MuCAW14Wo7zHOSLiAyYA9f3U1fu6blPVpaq6tLi4eCAvKWmB0NFBw/o0jDHjXSKjp4pFZKL7OAu4ANgBPApERjOtBh5xHz8KrHJHRM3C6fDe6DZhtYjIGW5/xRW9zonUdRmw3u33eBpYISIFbgf4CrdsxHWFevZppHnFgoYxZtzzJXDMVOAudwSUB3hAVR8TkVeBB0TkSmAvcDmAqm4VkQeAbUAQuFpVIxMYrgLuBLKAJ90vgDuAe0SkEifDWOXWVS8iNwCvu8d9R1XrB/OCh0ogGO6e2AdupmFDbo0x41zcoKGq7wCnxCivA5b3cc6NwI0xysuBo/pDVLUTN+jEeG4tsDbedQ43f+8+DZ+HrrD1aRhjxjebEZ6k3h3h6danYYxJARY0khQIhbtXuAVnZrg1TxljxjsLGkk6qiPcZ5P7jDHjnwWNJMXqCA+EwjiDvowxZnyyoJGko/s0nHmIIesMN8aMYxY0ktQ7aPjcrMOaqIwx45kFjSTFmhEeKTfGmPHKgkaSjl7l1mmesmG3xpjxzIJGkvrKNILWPGWMGccsaCSpd6aR1t2nYZmGMWb8sqCRhGAoTFjp1RHuNE9Zn4YxZjyzoJGESGDovYwIWKZhjBnfLGgkoSvo9Fv0ntwX/ZwxxoxHFjSS4A85K733XuUWoCtsmYYxZvyyoJGEgLswYUZ0puFxh9zaooXGmHHMgkYSIkEjZqZhQ26NMeNYItu9TheR50Vku4hsFZGvuuXfFpH9IvKW+/WRqHOuE5FKEdkpIiujypeIyGb3uVvcbV9xt4a93y3fICIzo85ZLSIV7tdqRoFYHeE25NYYkwoS2e41CHxdVd8QkTxgk4isc5+7WVX/J/pgEVmIs13ricA04FkROcHd8vVWYA3wGvAEcBHOlq9XAg2qOkdEVgE3AZ8WkULgemApoO7vflRVGwb3sgcndke4Dbk1xox/cTMNVT2oqm+4j1uA7UBpP6dcDNynqn5V3QNUAstEZCqQr6qvqrN++N3AJVHn3OU+fghY7mYhK4F1qlrvBop1OIFmRAVidYTbjHBjTAoYUJ+G22x0CrDBLfqKiLwjImtFpMAtKwX2RZ1W5ZaVuo97l/c4R1WDQBNQ1E9dI8of6dOwGeHGmBSTcNAQkVzgj8DXVLUZp6lpNrAYOAj8OHJojNO1n/Jkz4m+tjUiUi4i5TU1Nf2+jqEQsyPcmqeMMSkgoaAhImk4AeNeVf0TgKoeVtWQqoaB3wLL3MOrgOlRp5cBB9zyshjlPc4RER8wAajvp64eVPU2VV2qqkuLi4sTeUmDEoiRadiMcGNMKkhk9JQAdwDbVfUnUeVTow67FNjiPn4UWOWOiJoFzAU2qupBoEVEznDrvAJ4JOqcyMioy4D1br/H08AKESlwm79WuGUjKjKsNuboKZunYYwZxxIZPXU28Hlgs4i85ZZ9E/iMiCzGaS56D/gSgKpuFZEHgG04I6+udkdOAVwF3Alk4YyaetItvwO4R0QqcTKMVW5d9SJyA/C6e9x3VLU+uZc6dGJ1hEcWLAzadq/GmHEsbtBQ1ZeJ3bfwRD/n3AjcGKO8HFgUo7wTuLyPutYCa+Nd53CK3adhO/cZY8Y/mxGehMjoqcyYzVOWaRhjxi8LGkno7HKapzLSvN1lXo/g9Yh1hBtjxjULGknwd7kLFvp63j6fR2yVW2PMuGZBIwn+YBivR3osIwLOsFtrnjLGjGcWNJLQ2RU6KssAZ6Vba54yxoxnFjSS4A+GYwcNr/VpGGPGNwsaSfAHQ2RGdYJHpHk9NuTWGDOuWdBIQmdXX5mGx1a5NcaMaxY0kuAPhsjwxco0rHnKGDO+WdBIgj8YJiMtdqZhQcMYM55Z0EiCvytMZsxMw0PAmqeMMeOYBY0kdAZDfWQaYqvcGmPGNQsaSfD31xFuM8KNMeOYBY0k+IOhHutORVjzlDFmvLOgkYT+htxa85QxZjyzoJEEZ0b40ZlGus+G3A5UY3uA5s6ukb4MY0yCEtnudbqIPC8i20Vkq4h81S0vFJF1IlLhfi+IOuc6EakUkZ0isjKqfImIbHafu8Xd9hV3a9j73fINIjIz6pzV7u+oEJHVjALOjPCjb53PY0NuB+pL92ziGw++M9KXYYxJUCKZRhD4uqouAM4ArhaRhcC1wHOqOhd4zv0Z97lVwInARcCvRCTysfxWYA3OvuFz3ecBrgQaVHUOcDNwk1tXIXA9cDqwDLg+OjiNFKcjPHafRpf1aSQsHFY2729i5+GWkb4UY0yC4gYNVT2oqm+4j1uA7UApcDFwl3vYXcAl7uOLgftU1a+qe4BKYJmITAXyVfVVVVXg7l7nROp6CFjuZiErgXWqWq+qDcA6jgSaEREOK4FQ7D4Na54amIPNnbQHQlQ1tBOyvdWNGRMG1KfhNhudAmwAJqvqQXACC1DiHlYK7Is6rcotK3Uf9y7vcY6qBoEmoKifukZMZEFCmxE+eBVuhtEVUg41d47w1RhjEpFw0BCRXOCPwNdUtbm/Q2OUaT/lyZ4TfW1rRKRcRMpramr6ubTBi+zaF2tGuNOnYZ+YE1VZ3dr9eG9d+wheiTEmUQkFDRFJwwkY96rqn9ziw26TE+73are8CpgedXoZcMAtL4tR3uMcEfEBE4D6furqQVVvU9Wlqrq0uLg4kZeUtM5gZH/wWJswWfPUQFQcbsXrcT4X7GuwoGHMWJDI6CkB7gC2q+pPop56FIiMZloNPBJVvsodETULp8N7o9uE1SIiZ7h1XtHrnEhdlwHr3X6Pp4EVIlLgdoCvcMtGzJH9wWMMubXmqQGprGll8fSJeAT21VvQMGYsSCTTOBv4PHC+iLzlfn0E+AFwoYhUABe6P6OqW4EHgG3AU8DVqhpy67oKuB2nc3wX8KRbfgdQJCKVwL/hjsRS1XrgBuB19+s7btmI8buZRqwht2leD2HFOnUToKpUHG5hwdQ8pk3MYq8FDTPKbdhdx7898BbO59nU5Yt3gKq+TOy+BYDlfZxzI3BjjPJyYFGM8k7g8j7qWgusjXedw6Wzn0wjzesEkq5QGK/n6OfNETUtfpo7g8wpzmV3TZsFDTPqPbX1EH96Yz/Xf/xEJmSljfTljBibET5AkUyjrz3CAdvyNQGRTvA5JXnMKMxmX33HCF+RMf070Oj8jda1+kf4SkaWBY0B8gcjmUbs5inAtnxNQG1bAIApEzKYXphNbauf9kBwhK/KmL4daHSGhde7f7upyoLGAHV2Rfo0+m+eMv1r9zsBIjvdx4zCbADLNsyott/NNGpbLWiYAejONPrYhAkgYCvdxtUWcIJvTrqPaRMzATjYZEHDjE4dgVB3hmGZhhmQI30almkMRiTTyEr3MjE7HYDGdlvt1oxOB6I+0NS3WZ+GGYDuGeF9DLkFbFZ4Atq7QqR7PaT7PBS6QaOhPbU/wZnRa3/DkaBhzVNmQCJ9GrEzDad5yjKN+Nr9QbIznHuYn5WGCDSkeNpvRq/IyKkMn8eap0b6AsaafkdP+ax5KlFtgRA56c40Ia9HmJiVRoM1T5lR6kBjBx6BeVPyLGiM9AWMNf0FjXS3eco6wuNrDwTJTj+SrRVkp1NvzVNmlKpq7GByfiYleZnU2jwNMxCdXSF8HsHnPfrWRQKJ34JGXG3+UM+gkZNOowUNM0odaOxg2sQsinLSLdMY6QsYa5z9wWPftsjcjUi/h+mbk2kcWcWmIDuN+jZrnjKj04HGTkonZlGU6wSNVF5/yoLGAPmDITJiTOyDIyOqOixoxNXmD5GT0bN5yjrCzWgUDisHmzqYOjGTwpx0gmGluSN1Vy+woDFAnV1hMuNkGpFhuaZvR2UaOek0tKf2JzgzOrV0BukKKcW5GUzKzQCgLoXnaljQGCB/MNxPpuE2TwUt04inLXB0puEPhi1LM6NOY4eTAU/MTqcwx5lTVJfCWbEFjQHyd4WsT2MIdARCPTKNwhxnqWkbdmtGm8hKBROz0o4EjRSe4GdBY4D6zTTcYNIRsOap/qgqbYEgOVGjpyJLiVi/hhltmjrcoJGd1t08lcojqBLZ7nWtiFSLyJaosm+LyP5eO/lFnrtORCpFZKeIrIwqXyIim93nbnG3fMXdFvZ+t3yDiMyMOme1iFS4X5HtYEdUZz+Zhs/rIc0r1jwVR2dXGFXIzojONGwpETM6NUYFjQI3I07lPTUSyTTuBC6KUX6zqi52v54AEJGFwCrgRPecX4lI5OPkrcAanD3D50bVeSXQoKpzgJuBm9y6CoHrgdOBZcD17j7hI6q/IbcAmT6vNU/F0RaILIse3afh/GdM5U9wZnRqcj/ITMhKJ8PnJTfDl9LNqHGDhqq+CCS6L/fFwH2q6lfVPTh7gS8TkalAvqq+qs7wmLuBS6LOuct9/BCw3M1CVgLrVLVeVRuAdcQOXsPKHwzH3EsjIiPN270lrImt3e8E1Z7zNGylWzM6Rf4mI1u85mX6aOlM3b/TwfRpfEVE3nGbryIZQCmwL+qYKres1H3cu7zHOaoaBJqAon7qGlH9dYQDZKV7LNOII5JpRPdpRP5DWqZhRpvGji5y0r2ku//vnaBh8zQG6lZgNrAYOAj82C2XGMdqP+XJntODiKwRkXIRKa+pqenvugfNaZ7qO9Ow5qn4Itu6Rvdp+LweJmSlWZ+GGXUa27u6B2oA5Gb4aPFbpjEgqnpYVUOqGgZ+i9PnAE42MD3q0DLggFteFqO8xzki4gMm4DSH9VVXrOu5TVWXqurS4uLiZF5Swjq7QjF37YvITLOgEU+bP7JrX8/gW5BtK92a0aepI9CdCQPkZabRapnGwLh9FBGXApGRVY8Cq9wRUbNwOrw3qupBoEVEznD7K64AHok6JzIy6jJgvdvv8TSwQkQK3OavFW7ZiGoPhMjup08jM81jfRpxdGcaUX0a4M4Kt+YpM8o4mUZ00Ejt5ilfvANE5A/Ah4BJIlKFM6LpQyKyGKe56D3gSwCqulVEHgC2AUHgalWNfOy+CmckVhbwpPsFcAdwj4hU4mQYq9y66kXkBuB197jvqGqiHfLHhKrS0dVzddbeMtO8tPpT9w8qEd2ZRkbP+1iUk05Vg+0TbkaXxo4uTpic2/1zXmYazRY0+qaqn4lRfEc/x98I3BijvBxYFKO8E7i8j7rWAmvjXeNwiWQQWel937bMNC81Lak7hjsR7W7zXVav4DspN4O39jWNxCUZ06fG9i4mZB3p07DRUyZh7THmF/SWmea1/TTiaPdHRk/1DL7FeRnUt/kJhW3RQjM6qCpNHYGezVMZPvzBcMputmZBYwDaA7E/IUfL9NmQ23jaIvcx7ehMI6w27NaMHu2BEF0hZWJWzz4NIGWboS1oDEBkBdb+Mo2sdBs9FU+739nq1ePpOaq6OM9Z1yfVt9M0o0f0EiIReZnO41RtorKgMQDtfXxCjpaZ5rXlveNo67XCbUQkaFifkBktGqOWEImIZBqpOoLKgsYARPo04jdPhW0zoX60B4JHjZwCulcQtUzDjBZN7UdnGrlu0Gi2TMPE0xE4es2k3iLLpltneN/a/JZpmLGhKUbzVL7bPJWqE/wsaAxAeyCBPg3b8jWu9l57aUTkpHvJTPNYpmFGje4+DWue6mZBYwAifRXx+jSijzVHawuEYjbxiQjFeRmWaZhRozFG85R1hJuEdSSQaWS661LZCKq+dQSCfd7D4twMalN4K00zujS2B0j3eXpsh5CbYZmGSVB7An0a3fuE2+59fWruCHa3C/c2KdcyDTN61LUFmJST3qMs3echw+exeRomvo5AEJEj2UQskaYrW7Swb429ZthGK87LsD4NM2rUtvqZ5A7QiJbK609Z0BiA9kCIrDQv7vbmMUWWTY80ZZmeOrtCdHaFe+xPEG1Sbgb17QGCIQu6ZuTVtQYoyjn6bzU/hdefsqAxAO1xVrgFa56Kp7mj59aZvRXnZaBRS4mk6lh4MzrUtfopyj0608hN4eXRLWgMQEcg1O/+4ODs3AfOtrDmaI0JBA2A6hY/u2taWXrDs9z/+t5huz5jIlSV2tZA96TTaHmZPuvTMPG19zPqJyIylNT6NGKLNYQxWiRo7Klt477X9xEIhfnR0+/SlqL/Qc3IafEHCYTCTMo9unkqLyMtZZun4u6nYY5oD4T63UsDjnSS2zyN2CJr+URPloq2aNoEZhRm88vnK6lp8TO3JJeK6lb+85EtzC7O5VNLp3cHFmOOpTp36HdRrKBhzVN9E5G1IlItIluiygpFZJ2IVLjfC6Keu05EKkVkp4isjCpfIiKb3educbd9xd0a9n63fIOIzIw6Z7X7OypEJLIl7Ijp7Op/q1c40jxl8zRii7UsQ7R0n4f/WDmPHYdaqGsL8M2PLuCiE6fwpzf286Ond/LIW/uH83JNCouM4ivKiT16yoJG3+4ELupVdi3wnKrOBZ5zf0ZEFuJs13qie86vRCTyLnsrsAZn3/C5UXVeCTSo6hzgZuAmt65CnK1lTweWAddHB6eR0B4YQEe4NU/FFAka+X30aQB87OSpLJ4+kdKJWZw7t5ifrlrM+q9/kHSvxyb+mWFT5waNWH0auW6fRjgFNwyLGzRU9UWcvbujXQzc5T6+C7gkqvw+VfWr6h6gElgmIlOBfFV9VZ3lX+/udU6kroeA5W4WshJYp6r1qtoArOPo4DWsOvpY/iJahs9mhPensb0Ljzi7n/VFRLjz70/joavOxOsRMtO8HF+cS2FOOvVtNofDDI/IB5RYfRr5kY2YAqmXbSTbET5ZVQ8CuN9L3PJSYF/UcVVuWan7uHd5j3NUNQg0AUX91DViEsk0PB4hw3bv61NjR4AJWWlHbcDU28TsdKZOyOpRVpiT3t3ObMyxFmmeKogxTyOVFy0c6tFTsd4JtJ/yZM/p+UtF1ohIuYiU19TUJHShyXBGT8UfO5CZZrv39aWpI9jnxL54inLTqbWtYM0wqWt1Vi5I8x79NpnKixYmGzQOu01OuN+r3fIqYHrUcWXAAbe8LEZ5j3NExAdMwGkO66uuo6jqbaq6VFWXFhcXJ/mS4uvoit88Bc4IKuvTiK2xPdBvf0Z/JuVmWPOUGTZ1bf6Y/RmQ2osWJhs0HgUio5lWA49Ela9yR0TNwunw3ug2YbWIyBluf8UVvc6J1HUZsN7t93gaWCEiBW4H+Aq3bER0hcJ0hTTu6Clw1p+yGeGxNXV0MTHJoGHNU2Y41bbEXkIEjjRPpeJGTHHbWkTkD8CHgEkiUoUzoukHwAMiciWwF7gcQFW3isgDwDYgCFytqpF3z6twRmJlAU+6XwB3APeISCVOhrHKrateRG4AXneP+46q9u6QHzbd+4MnlGl4be2pPjS2dzFrUk5S5xblptMeCCU0IMGYwapt87NgSn7M5yLNU6m4zE3coKGqn+njqeV9HH8jcGOM8nJgUYzyTtygE+O5tcDaeNc4HDoGEDQy0rx02navMQ0m04h86qtr81OWnj2Ul2XMUepaAzEn9sGR0VPWPGX6FJnhHW/0FECmjZ6KKRRWmju7+lx3Kp7IJCtrojLHWiAYpqmjq88+jSMd4RY0TB/a3fHYWWnxR0+l8mzR/rR0dqEKEwYxegqOrIBrzLES+Rsr7KNPIzPNg9cjtPpTr3nKgkaCEtnqNaLIJqHF1L3JyMurAAAgAElEQVRY4SAzDdukyRxrkaDRV0e4iKTs+lMWNBLUPoCgUZCTTkNbF84gMBMRb92peCKZRp1lGuYYi5dpQOouWmhBI0EDGT1VmJNGIBSmzUZQ9RBvL414stO9ZPg81jxljrk6t6Wg36CRosujW9BIUEeX84kikRnhBW6bfYO9ufXQvSx6kpmGiDAp1/YQN8deQwKZRqru3mdBI0EDaZ6K/KHZJ+KeqpudN/vi3Myk67AJfmY41LcFEKHfJW/yLWiY/kT+OHL6WZ01osCCRkz7GzvIy/CRn5X83l9Fuel2X03SfrLuXb7x0Ntxt2qtawswMSsNbz8La+ZlptFio6dMXw40dpCX6etec6Y/RRY0YqpqaKe0IAt3/62kFOVkdO9zYMxA3f/6Xh4or+KSX77S3VwaS0N7oN+mKbCOcBPH/oYOSidmxT+QI5lGQz9/lKmoagD3sC+TctOpbQ3YyDQzYM2dXRxu9nP+/BIqq1t5+M2+d4Gsaw3E3LEvWiRopNrfogWNBO1v7KCsILE3vLwMHz6PWKbRy/6GxO9hX4rzMgiEwt3Dd41JVGV1KwB/t2wG86fk8eTmQ30e29AeoCCn/wEbuRlphMKacitaW9BI0P7GxD8li4gzV8MyjW5NHV20+IOUDjJolOQ7nejVLdZEZQam8rATNOaU5PLhRVN5/f16qps7Yx5b3xagMIFMA1JvTw0LGglo7uyipXNgb3iF2TbKJ9r+hg4AygoGt9Dg5DznP/LhPv6zG9OXiuoW0n0ephdm85GTpqAKT209OtsIh5WG9q4+Z4NHRIJGc4r1a1jQSEDkDW/aANrjC3LSLNOIUtXQDjDoPo3uTKPZMg0zMJXVrcwuzsXrEeZOzmNOSS5PxwgazZ1dhMIac5vXaPkpunufBY0ERILGQN7wCnNsaGi0/Y2RTGOQQcPNNKx5ygxURXUrc0pyu38+fVYh71Q1HdWRXRdn3amI3MhGTHGG7443FjQSEHnDG1DzVE46De2p9QmkP1UNHWSmeeIOY4wnJ8MZ9mzNUyZROw+1sP1gM1UNHcyNChoLp+XT0hns/v8dEfmwFy/TyEvRPTWSn2WVQvY3dpDu8zApTsdYtMLsdBrbA4TC2u8EoVQRGbI8mDkaESX5GdRYpmESsGF3HVes3Yjf3RQtOmgsmOrsyrftQHOPvrZ4K9xG5Fnz1MCJyHsisllE3hKRcresUETWiUiF+70g6vjrRKRSRHaKyMqo8iVuPZUicou7jzjuXuP3u+UbRGTmYK43WZGRU54BvPkX5KQTVmxoqKuqsX3QneARJXkZlmmYuHbXtPLFu8opK8jiM8tmMCU/k1NmdL8dMX9KHiKw7WBzj/MSWeEWLNMYjPNUtTbq52uB51T1ByJyrfvzNSKyEGf/7xOBacCzInKCu4f4rcAa4DXgCeAinD3ErwQaVHWOiKwCbgI+PQTXPCD7GzqYNnFg6yVFrz812CaZsU5V2VvXzgfKJg5JfZPzM3lzb+OQ1GXGr0feOkBbIMjdV54bsz8yO93HrEk5bDuQXNDITR9dQWPT+/V4PR4WTx+a/2d9ORZ9GhcDd7mP7wIuiSq/T1X9qroHqASWichUIF9VX1WnR+ruXudE6noIWC5D0b4xQAOZoxHRvdKtjaDiYFMnzZ1B5k/JG5L6IplGqs3ENQOzcU89C6bm9/t/d+HUfLYfOjpoZKd7yUzrf3FSj0fIzRg9S4n8+Jl3uf7Rrcf89ww2aCjwjIhsEpE1btlkVT0I4H4vcctLgX1R51a5ZaXu497lPc5R1SDQBBT1vggRWSMi5SJSXlNTM8iX1FN1cyc1LX5mF+fGPzhKsTvK51CTNaNsd9P/SBvyYE3Oz8QfDKfc+HiTuEAwzBt7G1g2q7Df4xZMzWdffUePZuQDjR1Mzk+sZaE4L4MDvTrSR4KqsuNQC/MnD80Hs/4MNmicraqnAh8GrhaRc/s5NlaGoP2U93dOzwLV21R1qaouLS4ujnfNA7LxvXoATj/+qFjVr1mTcvCIM8wv1e041ALAvCHKNCIBuabFArKJbfP+JvzBMMtm9h80Fk5zPshsj+rX2FXTmvCHxJPLJvDWvpFvKq1p9VPfFmD+1FEeNFT1gPu9GngYWAYcdpuccL9Xu4dXAdOjTi8DDrjlZTHKe5wjIj5gAlA/mGseqA2768lJ97Jo2sA+JWemeZlRmE1ldcsxurKxY9vBZqYXZnWPNhmsyKfAw2Nggp+q8sdNVVx97xtc96d3bIXeYbJxj/M2cVqcTGOx289W7n44DIbC7KltY3ZJTkK/55TpEznU3MnBppHNNnYcHNoPZv1JOmiISI6I5EUeAyuALcCjwGr3sNXAI+7jR4FV7oioWcBcYKPbhNUiIme4/RVX9DonUtdlwHod5obsDXvqWDKzEJ934Ldq7uQ83j1smcaOg83MnzI0TVMQPcFv9Gcaz++s5usPvs0bext4aFMVK25+kd019jcxlOrbAjyz9RDB0JGFAzfuqWN2cQ6TcvsfJl+Qk87Cqfm8UlkHwL6GDrpCypwEM43IaKyRHpix083mh/L/WV8Gk2lMBl4WkbeBjcDjqvoU8APgQhGpAC50f0ZVtwIPANuAp4Cr3ZFTAFcBt+N0ju/CGTkFcAdQJCKVwL/hjMQaFp1dIWpb/bx7uJXT43xa6cvcklzeq20jEEytVTCjdXaF2FPbNmT9GXAk0zg4BvqLHn7zAAXZabz4jfN4+J/Opq4twDPbDo/0ZY0r//7g26y5ZxMf/tlLvFJZy4bddbxcWcvZcyYldP5Zs4vYtLeBzq5Q90q4s0sSCxoLpuaT7vMk3UTV5g/y+Ts28Pp7g2tA2X6omZK8jGEZqZn0kFtV3Q18IEZ5HbC8j3NuBG6MUV4OLIpR3glcnuw1Jqs9EOTsH6zvnoh2xvHJBY0TJucRDCt7atuGJW0cjd493EJYYeEQtrXmZPiYnJ/R/R98tGrzB1m37RCfPLWMNK+HRaUTmJKfybuHrMlyqDy/s5r1O6q59JRS3tjbwGdv30BWmpfphdl8/cJ5CdVx1pwibn95D2+839D9NzUnwaCR7vNwUukE3tzbkNT1P1i+j5cqaplbksdpcfpf+rPzUMuwvcfYMiIxbNxTT0N7FzkZXqZNyOSk0uTGPc+d7PzhvXs4dd8ktrpj4Ic6bZ4/Jb+7HXe0WrftMJ1dYS45pbS77IQpeexM4b+HoRQMhbnhsW3MmpTDTZ88mae+ei5XnjOLsoIsfveF05iQnVgf2rJZRXg9wiu7atlV00pJXkb3YoSJOGX6RN6paqIrNLAWhWAozB2v7AFg64GmAZ3bu56K6tYhzeb7Y8uIxPBKZS3pPg/r/vWDccdq92d2ca4zgipF3iRUlTte3sOH5hUzp8T51PP01kOUTsxiRuHQzAaPmD81j1d31dEVCpOWRH/TcPjTm/spnZjFkqhZyPMm53LX7jpbXmYIPLHlELtr2rj1s6eS7nP+Bv7zYwsHXE9uho8PlE1g3bbDZPi8Ax5ef+ZsJ1P589sH+NtTy+Kf4Hp662H21XcwvTCLbQebUdWkltl5r85pAp83DMNtwTKNmF6prGPJjIJBBQxwRlAdV5STMp3hWw80893Ht/OlezbR2RWirtXPSxW1fOwDUwe0BEsiFk7NJxAKs7umbUjrHSrv17Xx4rs1XL60rMdrP2FyHoFgmPfrRud1jxWqyq9f2MXxxTmsPHHKoOu78pzjefdwK5v3NyXcNBVx3rwSFpXm8+Nn3sUfDMU/wfXHN6oonZjFl86dTUtnkH31yY3AemqLs7z70pkFcY4cGhY0eqlr9bPtYDPnzE2sEy2eeZPz2Lz/6OWXx6NH3tqP1yPsqmnje09s54nNBwmFlYs/UBr/5AGKNHft6DWbd7S4d8NevB7hM8tm9CiPtDsPd5Plc9sPc+0f3xlwE8po9VJFLdsONvPlc2cPyQeSj548lS+cNROA2cWJDbeN8HiEay9awP7GDu59bW9C53R2hfjrrlouWFDCSaUTgOSaqEJh5Q8b93HW7CKOKxrYdSfLgkYvf93lDL1LdORFPOfNL2Z/Y0d32/54FQorj759gPPmFfOFs2Zy96vv899/3sbcklwWHIMJR8cX55DmFbaPwn6Nzq4QD5TvY8XCyUfNLJ5TkosI7Dw0fNlnqz/INX/czH2v7+Onz747bL93KDy15RA/WffuUbOu7y/fx6TcdC4+ZdqQ/a5vfmQB//mxhXxi8cA/5JwzdxIfmD6RR98+EP9gnH7Tzq4wH5pXwrwpeXg9ktR7xIsVNexv7OCzpx834HOTZUGjl2e3H2ZCVlp39B+sCxdOwesRntxycEjqG6027KnjcLOfixeX8p8fW8iPLjuZ44qy+fuzZw3Jcui9pXk9zCnJGxWZRk2Lv8fy2I+/c5DG9i4+f8bR/5Gz033MKMwedKaxp7aNffXtCR372xd3U9vq54zjC/nVC7vYsLtuUL/7WHtm6yF+85ddPLSpiqv/9w1uea6Cv/nh87xS6ayL6g+GeGFHNRcunEKGb3BNyNHSfR6uPGdW0sNWz5lTxJb9TbT1synTum2HuefV93h+ZzXpPg9nHF9EZpqXuSW5SWUa9762l0m56Vy4cHJS15wMCxpRmjq6eGrLIT7xgWlD1klZmJPO6bMKeXLLoXHbRNXc2cWNj28nL9PHBQsm4/UIly+dznNf/xB/d/qM+BUkacGUvB7LP4yErlCYS375Cmvu3tT973vPa+9zfHEOZ86OvfTMCZPz2HIg+SbLffXtXPyLl/n4L16msroVVSUcjl1XdXMnv31pNx89aSp3rD6N0olZ/NcjW3tMhBtNtuxv4iv/+ybff3IH//7g2ywqncC6fz2Xopx0fueONPprZR1tgRArThy+N8pELJtVRDCsvNHH8Nt7N7zPmnvK+c9HtvL7197nzOOLyEp3gt7Cafm8uruOr973ZsJDyQ82dbB+x2EuXzq9eyDAcLCgEeWxdw7gD4a5fGniIyAS8eGTprK7pm1crkPlD4b4x7vK2XmohVs+c0r3f4LhsGRmAYeb/bw2gp+cn956iP2NHby6u44XK2rZsr+Jt/Y18vkzjuszw1qxcDLv17Xz+ObY2efh5s7uvodAMMyW/U28UlmLquIPhvine99AAZ9H+NRvXmXxd9bxge88w5q7y3m5orZHMLr52QoCwTD/sXIeORk+vvWRBew83ML95fti/u6R1OYP8s9/eJPCnHT+eNVZfOsjC7jzC6cxd3Iel55ayvM7a6hu6eSZbYfIzfBxVh9BeaQsOa4Ar0e6lzCJtn7HYb718BbOm1fCFWceR1dIWb6gpPv5vz9rFufMKWb99mqu+v0m/MEQr+6q45fPV3LrC7tifsC4//V9KPCZ047dB7NYbMhtlAfLq5g3OW/ImqYiLjpxCjf8eRu3v7SbH1521HzIMUtV+dbDW9iwp56frVrMefNK4p80hD55ahk/fbaCnz1bwRlrRuYN5M5X3mNGYTZhVb772DYmZqeRlebtd+jl355axh0v7+GHT+3kwoWTezSxvFfbxkU/e5HlCybzo8tO5uM/f5ld7gixn61azLYDzWze38Rtn1/CtIlZfP/J7ZRNzEYE1u+o5pltGzh/fgm/+uypVDW0c//re7nizJnMnOR0kl60aArLZhXygyd3kObxcNmSsiEf2Zase157nz21bfzhH89gyXEFLDnuyGigy5dM5zd/2c0v11fyzNbDfGhe8ZA2TQ2F3Awfi6bls2F3PbtrWslK9zJ1QhYNbQGu+eNm5k/J49bPnUq618MnPjCtx4ZQJ5VN4PbVS3lhZzVf+N3rfOLnr/SYz3P68YWcGnV8MBTmvo37+Ju5xcwoGtrh7PFYpuF6v66Nt/Y1ctmSsiFvgy/Oy+CKM4/joU1V42ain6pyy3OVPLSpin9ZPpeLk+g8HKzMNC9f/uBsXt1dx/odw780x5b9TZS/38Dqs2byHyvnUVHdyo6DLfzrhXOZkNX35DCvR/jmRxawt76de159v7tcVfnmw5vp7Arz+DsH+ce7y52RaJeexKkzJvKth7dw20u7+cyyGaw4cQqLSidw7xfP4KbLTuYHnzyZl645j29+ZD7rd1TzD3e+zufv2EhOuo9/Pn9O9+8QEX502cmcMDmPb/zxHdbcU05nV+LDRAfiqS0HuWLtRmoTWKTRHwyx9uU9nD2nKGaz3pySXE6ZMZG7Xn2f9kAoZn/RaHD68c6SJBf85C987vYNhMLKDY9to6EtwI8/9QEyfF5EhKUzC2M2gX9oXgmfWlrGu9UtfOW8Obx63fmkeYUne2Wlz24/zKHmTv5u2fBmGWBBo9txRTk8+dW/4bIlQ9s0FXH1eXPISffx/Se2j/m+jXBY+db/beHmZ9/l0lNK+dryuSN2LZ89fQYzCrP5hzvL+fcH3x7Wtvr7Xt9LZprzaf3ixaVs/NZy3r5+BWvOnR333HNPKObcE4r5+fpKmtqdTvQ/bNzHX3fV8V8fW0hZQRavVNbx2dNn8Henz+DHn1pMMBymdGIW3/rogph1Zvi8rDl3Nv/1sYX8dVcd+Zlp/P6Lp1PUa9G+44pyeOjLZ3L9xxfy3I5qdw/toQ0cta1+rvnjZl58t4bVazfSHGcf7Yff2E91i5+rPjinz2NuuHgR1398Ia9ed/6AtyoYLsvnl6CqnDm7iF01bXz38W386c39fOmDx3PitMRaML536Um8fM35/PvKeUydkMU5cyb16BNVVW59YRfHFWVzwYLhze67L2A8fS1ZskRHq9++uEuPu+Yx/e2Lu0b6Ugblz2/v1+OueUy/9/g2DYXCI3052twR0Bsf36bHXfOY/vqFymH5nR2BoJ50/VP61T+8kXQd2w406cxrH9Nv/ukdLX+vTud+6wn97G9f01AorK9U1OiVd27Upo5A9/Fb9jdqVUN7QnVvP9ik/q5Q3OMefqNKj7vmMf3Bk9uTfh3R/F0hfX7HYb3yzo0655uP6x0v7dY533xc//l/Y9+nUCisv31xl87/f0/qx3/+kobDI//3NFidXUENhcJ6wY9f0OOueUxP++46be3sSrq++zfu1eOueUzf2deoqqovvVujx13zmP7vhveH6pJVVRUo1wTeY61PYxhdec4syt9r4PtP7uCUGRNZclzyC5SNlGAozE/WvcsJk3P5xkXzR0V7eF5mGtd9eD7v1bbxk3XvsuLEKcyadGwnOq3bdpjmziCXL50e/+A+LJiaz6rTZnDvhr3cu2Ev0yZk8rNVi/F4hLPmTOKsXnOFEv2kComv9XXJKaW8truO3/xlFz6PUJyXwarTZiQ9GudfH3iLx99xmlL+Y+U8/uGcWTS2B7hlfSXnzS/mzr++T22LnxOn5fOtjy7g9pf2cM9r77N8fgnfvXTRMRmePdwifS1fu+AErv7fN7j2w/PJyUj+rfbChZPxPiz84vkKrrloPjc+sZ3J+Rn87anD3yQMIDrGm0p6W7p0qZaXl4/0ZfSp1R/kvP95gflT8rjnytNH+nIS4g+GUHX6EP6wcS/X/Wkzv/7cqVy0aOpIX1oPh5s7ueAnfyEvw8evPreExdOTW2iyP63+IP/35n5+/9r7NHd08fI15w8qcAZDYV6qrOW13XVcsrh02Badi9bqD3LZrX/t3mHx9FmFrFo2nUNNfv5u2Yy4C/89tKmKjXvqOH1WEV9/8G2+/MHZfOGsmUyZ4Exs7AiEWP7jFzjQ1El+po8PzSvhhZ3VdAbDBIJhvnTu8Vz74fnjImD0dqCxg2n97FGeqF+sr+B/nnEmZmane/nZqlOGfG6GiGxS1aVxj7OgMfx++XwlP3p6J09+9W9G5E2iL+Gwsm77YV6qqOHDi6YypySXZ7Ye4uZnKwiGwlywYDL/99Z+TplRwENfPnNU/iffXNXEl3+/iZoWP7evXsq5J8Tf/tcfDPHL53ex7UAzoXCYE6bkceXZsyjpNZs7GArzhd+9zsuVteSke/n2J04cVKYxmoTCSlcozNNbD/EfD75DwO0bmlmUzVcvmEumz8tZcyZ1d/AfaOygorqVjkCQf7r3DSLTRI4vdvoGe49semFnNb98vpLvXXoScyfnsa++nX9/8G3mTs7lO59YNCoy1tHupYoa/vTGfv5l+dxjkklb0BjFGtsDnPn99Vy0aAo3f3rxSF8O4KzE+7X732LrgWa8HiEUNVns9FmFZKd7eX5nDRcvnsb3Lj1pUOn2sdbQFuCzt29gd20rv/vCsj4n2UV874nt3PbibuZNzsPjESqrnb0JHvjSmWzYXc+h5k4CwTBv7m3g/946wPf/9iRWnTZ9VAbNobCvvp2mji7aA86ckMjopwyfh08uKeNjJ0/l6nvfoMHtwD9xWj7fu/QkbntpN188Z1aPoaRm7BhXQUNELgJ+BniB21X1B30dOxaCBsB3H9vG7S/v4ZLF07jqQ3OYW5Lb/WlLk1wiORmdXSHueHkPP19fQXa6j//62EIuXDiZJ7ccormji1NmTGTx9ImICIebOynJyxgTb5a1rX5W3fYae+vaufbD80nzeSjITuOCBZPJTPNS0+Lnue2HOdjUyc+eq+BzZ8zgu5ecBDiL+115Vzn5mT6aO3suCfEPZ8/ivz4+8OW3x6o2f5CDTR00dXTx0Kb9PFi+j2BYmTohk//62EIqq1v51GnTj1pjy4w94yZoiIgXeBdn69gq4HXgM6q6LdbxYyVodIXC/PL5Sn6xvpJgWCnOy+Cry+fy+nv1PLn5EBOz0yjJz2ByXiYl+RmU5GVSWpDF8vklTMhKY09tGzUtfiqqW9lV08q5c4uZOSmne3Z0MBTmYHMns4pymD8131lqQtVd5yaPDXvqePjN/byws4b6tgArFk7mu5csOqpJZixrbA/wT/e+0b0IJUBmmofivAwONnYSdLOpRaX5PPils3rMZv/NX3bx6NsHWHPu8Zw2s5B0n4cMn4e8AWzOMx7tPNTC7197nyvPmdU9YdCMD+MpaJwJfFtVV7o/Xwegqt+PdfxYCRoRVQ3tbNhdz70b3ueNvY2k+5xx/6GQUt3SyeFmP9Utfura/Kg6S0ekeT10RE3ISvd5Yu5D3ruZKcIjEFaYmJ3GB08o5tOnTees2UOzqu9o0xUK89a+RqZOyGRvfTvrt1dT2+pnyoQs/vbUUibnZZKb6bMNkUzKSzRojN6G6SNKgeiFcqqAHsOORGQNsAZgxozhnyE5GGUF2ZQtyebSU0p5dXcd0wuyYy4L0BUKU3G4lUffPoA/GOLksglMnZDF9MJsSvIyeG77YeraApwzZxJZac6s06KcdHbXtvFebRter+AVoamji60Hmpk3JZePnDR11C3FMNTSvJ7uvZfLCrLHbXA0ZriMhUzjcmClqn7R/fnzwDJV/edYx4+1TMMYY0aDRDONsbCMSBUQPa6xDEhspxNjjDFDaiwEjdeBuSIyS0TSgVXAoyN8TcYYk5JGfZ+GqgZF5CvA0zhDbteq6tYRvixjjElJoz5oAKjqE8ATI30dxhiT6sZC85QxxphRwoKGMcaYhFnQMMYYkzALGsYYYxI26if3DZSItAA7gQlA0xBWPQmoHcL6hvr6hrI+u3ejq75Uun9270amvklAjqrG30sgke39xtIX7paFwG3Hot4hrG+or2/I6rN7N+rqS5n7Z/duZOobyH0az81Tfx7pC4hjqK9vKOuzeze66htqo/n12r0bXfUdZTw2T5VrAuunjJZ6U4Hdu8Gx+5c8u3eJGch9Go+Zxm1jrN5UYPducOz+Jc/uXWISvk/jLtMwxhhz7IzHTMMYY8wxkrJBQ0Smi8jzIrJdRLaKyFfd8kIRWSciFe73Are8yD2+VUR+0auuT4vIO249PxyJ1zOckrh3F4rIJhHZ7H4/P6quJW55pYjcImNhA/JBGuL7d6OI7BOR1pF6PcNpqO6diGSLyOMissOt5wcj+brGlKEc7jWWvoCpwKnu4zycfcgXAj8ErnXLrwVuch/nAOcAXwZ+EVVPEbAXKHZ/vgtYPtKvb5Tdu1OAae7jRcD+qLo2AmcCAjwJfHikX98Yu39nuPW1jvTrGkv3DsgGznMfpwMvpcLf3pD8G4z0BYyWL+AR4EKciYFT3bKpwM5ex32hV9A4DXg26ufPA78a6dczGu+dWy5AHZDhHrMj6rnPAL8Z6dczVu5fr/KUCBrH4t65z/0M+MeRfj1j4Stlm6eiichMnE8kG4DJqnoQwP1eEuf0SmC+iMwUER9wCT13GhzXkrh3nwTeVFU/zv7vVVHPVbllKWOQ9y+lDdW9E5GJwMeB547l9Y4XY2I/jWNJRHKBPwJfU9XmgTapq2qDiFwF3A+Egb8Cxw/5hY5CA713InIicBOwIlIU47CUGc43BPcvZQ3VvXM/6P0BuEVVdx+jyx1XUjrTEJE0nD+8e1X1T27xYRGZ6j4/FaiOV4+q/llVT1fVM3HS5Ipjdc2jxUDvnYiUAQ8DV6jqLre4CmfP94iU2f99iO5fShrie3cbUKGqPz32Vz4+pGzQcEfp3AFsV9WfRD31KLDafbwap800Xl0l7vcC4J+A24f2akeXgd47N/1/HLhOVV+JHOw2I7SIyBlunVeQwP0e64bq/qWiobx3IvJdnAX+vnasr3tcGelOlZH6whkJpcA7wFvu10dwRkM9h5MtPAcURp3zHlAPtOJ8Sl7olv8B2OZ+rRrp1zba7h3w/4C2qGPfAkrc55YCW4BdwC9wJ5yO568hvn8/dP8Ww+73b4/06xsL9w4nq1Vge1T5F0f69Y2FL5sRbowxJmEp2zxljDFm4CxoGGOMSZgFDWOMMQmzoGGMMSZhFjSMMcYkzIKGMcNMRL4sIlcM4PiZIrLlWF6TMYlK+WVEjBlOIuJT1V+P9HUYkywLGsYMkLtQ3lM4C+WdgrM89xXAAuAnQC5QC3xBVQ+KyAs4a5KdDTwqInk4q9L+j4gsBn6Ns1T3Lj2DGJcAAAFMSURBVOAf1FnPbAmwFmgHXh6+V2dM/6x5ypjkzANuU9WTgWbgauDnwGWqGnnDvzHq+Imq+kFV/XGveu4GrnHr2Qxc75b/DvgXddYzM2bUsEzDmOTs0yNrGf0e+CbOJj/r3BVXvcDBqOPv712BiEzACSZ/cYvuAh6MUX4P8OGhfwnGDJwFDWOS03v9nRZgaz+ZQdsA6pYY9RszKljzlDHJmSEikQDxGeA1oDhSJiJp7h4OfVLVJqBBRP7GLfo88BdVbQSaROQct/yzQ3/5xiTHMg1jkrMdWC0iv8FZWfXnwNPALW7zkg/4KbA1Tj2rgV+LSDawG/h7t/zvgbUi0u7Wa8yoYKvcGjNA7uipx1R10QhfijHDzpqnjDHGJMwyDWOMMQmzTMMYY0zCLGgYY4xJmAUNY4wxCbOgYYwxJmEWNIwxxiTMgoYxxpiE/X9MZ7H/Im0/UwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "sorted_data['inc'][-200:].plot()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Etude de l'incidence annuelle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Etant donné que le pic de l'épidémie se situe en hiver, à cheval\n",
+ "entre deux années civiles, nous définissons la période de référence\n",
+ "entre deux minima de l'incidence, du 1er août de l'année $N$ au\n",
+ "1er août de l'année $N+1$.\n",
+ "\n",
+ "Notre tâche est un peu compliquée par le fait que l'année ne comporte\n",
+ "pas un nombre entier de semaines. Nous modifions donc un peu nos périodes\n",
+ "de référence: à la place du 1er août de chaque année, nous utilisons le\n",
+ "premier jour de la semaine qui contient le 1er août.\n",
+ "\n",
+ "Comme l'incidence de syndrome grippal est très faible en été, cette\n",
+ "modification ne risque pas de fausser nos conclusions.\n",
+ "\n",
+ "Encore un petit détail: les données commencent an octobre 1984, ce qui\n",
+ "rend la première année incomplète. Nous commençons donc l'analyse en 1985."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 73,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n",
+ " for y in range(1985,\n",
+ " sorted_data.index[-1].year)]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "En partant de cette liste des semaines qui contiennent un 1er september, nous obtenons nos intervalles d'environ un an comme les périodes entre deux semaines adjacentes dans cette liste. Nous calculons les sommes des incidences hebdomadaires pour toutes ces périodes.\n",
+ "\n",
+ "Nous vérifions également que ces périodes contiennent entre 51 et 52 semaines, pour nous protéger contre des éventuelles erreurs dans notre code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 74,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "year = []\n",
+ "yearly_incidence = []\n",
+ "for week1, week2 in zip(first_september_week[:-1],\n",
+ " first_september_week[1:]):\n",
+ " one_year = sorted_data['inc'][week1:week2-1]\n",
+ " assert abs(len(one_year)-52) < 2\n",
+ " yearly_incidence.append(one_year.sum())\n",
+ " year.append(week2.year)\n",
+ "yearly_incidence = pd.Series(data=yearly_incidence, index=year) \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Voici les incidences annuelles."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 75,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 75,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG5RJREFUeJzt3X+MXeV95/H3x4zx0MQG29gUMGYcYVkBsoV6ZFiluxugtc0mwq4KkQUFa0Eim6WrZNVdMMW71iaOFK9WdddioaANiYEQoLQI71KXOAYUtnVsxoWEX3HHKdS4uIxZG2yiesrg7/5xnwvHl/lxZ+bce8+59/OSru6Z5z7Pc5459j3feX6ccxQRmJmZTdaUVjfAzMzagwOKmZnlwgHFzMxy4YBiZma5cEAxM7NcOKCYmVkuHFDMzCwXDihmZpYLBxQzM8tFV6sb0Eynn3569PT0tLoZZmalsnv37nciYs5Y+ToqoPT09NDX19fqZpiZlYqkv6snn4e8zMwsFw4oZmaWCwcUMzPLhQOKmZnlwgHFzMxy4YBSIANHjvHle3YwcPRYq5tiZjZuDigFsml7P8+/cYhNP+pvdVPMzMato65DKapFa7cyOHT8o58f3LmPB3fuY1rXFPasv7KFLTMzq597KAXw3K2XcdVFZ9E9tfLP0T11CisuOovnbrusxS0zM6ufA0oBzJ3RzfRpXQwOHWda1xQGh44zfVoXc6d3t7ppZmZ185BXQbzz/iDXXXIu1y6Zz0O79nHQE/NmVjKKiFa3oWl6e3vD9/IyMxsfSbsjonesfB7yMjOzXDigmJlZLhxQzMwsFw4oZmaWCweUkvHtWcysqBxQSsa3ZzGzovJ1KCXh27OYWdG5h1ISvj2LmRWdA0pJ+PYsZlZ0HvIqEd+excyKzLdeMTOzUfnWKznyUl0zs7E5oNTBS3XNzMZWV0CR9IaklyS9KKkvpc2StE1Sf3qfmcl/u6S9kvZIWpZJX5zq2StpkySl9GmSHknpOyX1ZMqsTvvol7Q6k74g5e1PZU+e/OE40aK1W+lZ8yQP7txHRGWpbs+aJ1m0dmveuzIzK73x9FAui4iLMuNoa4DtEbEQ2J5+RtL5wCrgAmA5cJekk1KZu4GbgYXptTyl3wQcjojzgI3AhlTXLGAdcAmwBFiXCVwbgI1p/4dTHbnyUl0zs/pNZshrBbA5bW8GVmbSH46IwYh4HdgLLJF0JjAjInZEZSXA/TVlqnU9BlyRei/LgG0RcSgiDgPbgOXps8tT3tr958ZLdc3M6lfvsuEAfigpgHsi4l7gjIg4ABARByTNTXnPBn6SKbs/pX2QtmvTq2XeTHUNSXoPmJ1NrykzG3g3IoaGqStXXqprZlafegPK5yPirRQ0tkn6+Sh5NUxajJI+kTKj1XViY6SbqQyzMX/+/OGyjOqe6z9eKbd+5YXjLm9m1inqGvKKiLfS+wDwOJX5jLfTMBbpfSBl3w+ckyk+D3grpc8bJv2EMpK6gFOBQ6PU9Q5wWspbW1dt2++NiN6I6J0zZ049v66ZmU3AmAFF0qckTa9uA0uBl4EtQHXV1WrgibS9BViVVm4toDL5visNjx2VdGmaA7mhpky1rquBp9M8y1PAUkkz02T8UuCp9NkzKW/t/s3MrAXqGfI6A3g8rfDtAh6KiL+Q9DzwqKSbgH3ANQAR8YqkR4FXgSHgloj4MNX1VeB7wCnA1vQC+A7wgKS9VHomq1JdhyR9E3g+5ftGRBxK27cBD0taD7yQ6jAzsxbxrVfMzGxUvvWKmZk1lQOKmZnlwgHFzMxy4YBiZma5cEAxM7NcOKCYmVkuHFDMzCwXDihmZpYLBxQzM8uFA4qZmeXCAcXMzHLhgGJmZrlwQDEzs1w4oJiZWS4cUMzMLBcOKGZmlgsHFDMzy4UDipmZ5cIBxczMcuGAYmZmuXBAMTOzXDigmJlZLhxQzMwsFw4oZmaWCwcUMzPLhQOKmZnlwgHFzMxy4YBiZma5cEAxs7YxcOQYX75nBwNHj7W6KR3JAcXM2sam7f08/8YhNv2ov9VN6UhdrW6AmdlkLVq7lcGh4x/9/ODOfTy4cx/TuqawZ/2VLWxZZ3EPxcxK77lbL+Oqi86ie2rllNY9dQorLjqL5267rMUt6ywOKGZWenNndDN9WheDQ8eZ1jWFwaHjTJ/Wxdzp3a1uWkfxkJeZtYV33h/kukvO5dol83lo1z4OemK+6RQRrW5D0/T29kZfX1+rm2FmViqSdkdE71j56h7yknSSpBck/Z/08yxJ2yT1p/eZmby3S9oraY+kZZn0xZJeSp9tkqSUPk3SIyl9p6SeTJnVaR/9klZn0hekvP2p7Mn1/i5mZpa/8cyhfA14LfPzGmB7RCwEtqefkXQ+sAq4AFgO3CXppFTmbuBmYGF6LU/pNwGHI+I8YCOwIdU1C1gHXAIsAdZlAtcGYGPa/+FUh5kVkK8P6Qx1BRRJ84AvAv8rk7wC2Jy2NwMrM+kPR8RgRLwO7AWWSDoTmBERO6IyznZ/TZlqXY8BV6TeyzJgW0QciojDwDZgefrs8pS3dv9mVjC+PqQz1Dsp/0fArcD0TNoZEXEAICIOSJqb0s8GfpLJtz+lfZC2a9OrZd5MdQ1Jeg+YnU2vKTMbeDcihoapy8wKwteHdJYxeyiSvgQMRMTuOuvUMGkxSvpEyoxW14mNkW6W1Cep7+DBg8NlsQ7gIZfW8PUhnaWeIa/PA1dJegN4GLhc0oPA22kYi/Q+kPLvB87JlJ8HvJXS5w2TfkIZSV3AqcChUep6Bzgt5a2t6wQRcW9E9EZE75w5c+r4da0decilNXx9SGcZM6BExO0RMS8ieqhMtj8dEb8LbAGqq65WA0+k7S3AqrRyawGVyfddaXjsqKRL0xzIDTVlqnVdnfYRwFPAUkkz02T8UuCp9NkzKW/t/s0+smjtVnrWPMmDO/cRURly6VnzJIvWbm110zpG9fqQx//d57nuknM5+P5gq5tkDTKu61AkfQH4jxHxJUmzgUeB+cA+4JqIOJTy3QHcCAwBX4+IrSm9F/gecAqwFfj3ERGSuoEHgIup9ExWRcTfpjI3An+QmvCtiPhuSv8MlR7TLOAF4HcjYtT/qb4OpfMMHDnG+j9/jR++8g8c++A43VOnsOyCX+WOL37WfyWb1ane61DGdaV8RDwLPJu2/x9wxQj5vgV8a5j0PuDCYdKPAdeMUNd9wH3DpP8tlaXEZiNq1yGXgSPH+L0fvMCd115c+t/F2ofv5WVtr94hlzJN3HtOyIrIt14xS9Y+/hLf37WP65bMZ/1vf67VzRlW7TLcKi/DtUaqd8jLAcU6XplO0p4TslbI/V5eZu2qTNdKtOuckLUH377eOl7ZTtK+TbsVlQOKGeU6Sd9z/ccjD+tXfmLRpFnLeA7FzMxG5TkUM7MJKNPy8aJxQLHC8xfcmsnX+Eyc51Cs8LJf8KJeH2Ll51vtT57nUKywynR9iJWfr/EZmedQrPTKdH1I3so0zFemto6mbMvHi8gBxVpqtJNRJ3/ByzSOX6a2jsW32p8cD3nZhOVxx9ux7p/1lQf6mDO9+4TrQ7LXYbSbMg3zlamtNjm+l9cwHFDyNZmbKfpkNLwyjeOXqa02OQ15HooZ5LMa5rlbLxvxZNTJyjTMV6a2WnN4DsXGLY/Jcp+MRlamcfwytdUazz0UG7e8gkGZ7p/VTGW6V1eZ2mqN54BiE5JHMPDJyKy9eFLezMxG5QsbzcysqRxQzMwsFw4oZmaWCwcUMzPLhQOKmZnlwgHFzMxy4YBiZma5cEAxM7NcOKCYmVkuHFDMzCwXDihmZpYLBxSzHLXL89XNJsIBxSxH7fR8dbPx8u3rzXKQx1MszcrOPRQrvSIMM+XxFEuzshszoEjqlrRL0k8lvSLpv6b0WZK2SepP7zMzZW6XtFfSHknLMumLJb2UPtskSSl9mqRHUvpOST2ZMqvTPvolrc6kL0h5+1PZk/M5JFY2RRhm8iONzerroQwCl0fErwEXAcslXQqsAbZHxEJge/oZSecDq4ALgOXAXZJOSnXdDdwMLEyv5Sn9JuBwRJwHbAQ2pLpmAeuAS4AlwLpM4NoAbEz7P5zqsA6yaO1WetY8yYM79xFRGWbqWfMki9ZubUl72vH56kXo/Vl5jBlQouL99OPU9ApgBbA5pW8GVqbtFcDDETEYEa8De4Elks4EZkTEjqg8JvL+mjLVuh4Drki9l2XAtog4FBGHgW1UApqAy1Pe2v1bhyjaMNM91/eyfuWFnH/WDNavvPCERxyXVRF6f1YedU3Kpx7GbuA84H9GxE5JZ0TEAYCIOCBpbsp+NvCTTPH9Ke2DtF2bXi3zZqprSNJ7wOxsek2Z2cC7ETE0TF3WITzM1DheZGATUdekfER8GBEXAfOo9DYuHCW7hqtilPSJlBmtrhMbI90sqU9S38GDB4fLYiXWjsNMRVC03p+Vw7iWDUfEu5KepTL38bakM1Pv5ExgIGXbD5yTKTYPeCulzxsmPVtmv6Qu4FTgUEr/Qk2ZZ4F3gNMkdaVeSrau2jbfC9wL0NvbO2zQsfLKDiutXzna3zk2Hu792UTUs8prjqTT0vYpwG8CPwe2ANVVV6uBJ9L2FmBVWrm1gMrk+640PHZU0qVpDuSGmjLVuq4Gnk7zLE8BSyXNTJPxS4Gn0mfPpLy1+zezHLj3Z+MWEaO+gH8GvAD8DHgZ+C8pfTaV1V396X1WpswdwC+APcCVmfTeVMcvgDsBpfRu4E+oTODvAj6TKXNjSt8L/JtM+mdS3r2p7LSxfpfFixdHo7z93j/GNX/8V/H2kX9s2D7M2lXZvj9la+9kAX0xxvk1Ij46oXeE3t7e6Ovra0jdax9/ie/v2sd1S+az/rc/15B9mLWrsn1/ytbeyZK0OyLGXLbogDJJtathqrwaxmxsZfv+lK29eak3oPjWK5Pk1TBWZq2+cLFs35+ytbfZHFAmqd7VMK3+4poNp9UXLpZtNVnZ2ttsvttwDqqrYa5dMp+Hdu3j4DBBI/vF7YQxVyu2Il24WM/3p0jK1t5m8hxKg3XqmKsV28CRY6z/89f44Sv/wLEPjtM9dQrLLvhV7vjiZ/3Xtn2C51AKoqxjrh6ia28eumm9dvyOOaA0WFm/uK0eW7fG84WLrdWO3zEPeTXBVx7oY8707hPGXIt6J1oP0Zk1Vhm/Y74OZRitCihl4rF1s8Yq43fMcyg2IWUdojMri3b+jjmgdKCxJgM9tm7WWO36HfOQVwfqtPsQmdnk1Dvk5QsbO0iRLmYro4Ejx/i9H7zAndde3BbDE2Z585BXBynrNTFF0Y7LPM3y5B5KB2nnycBGcs/OrD7uoXSYdp0MbCT37Mzq4x5Kh/Ez2MfPPTuz+jigmNXBd5g1G5uXDZuZ2ah8pbyZmTWVA4qZmeXCAcXMzHLhgGJm1gDt+ACtsTigmLWpTjyhFUkn3lnBy4bN2lT2hOabgDZPJ99ZwcuGzdpMGZ8I2E7yfIBWUW5I6mXDZgXV6KEo3yqmtfK8s0LZhs085GXWZI0eivKtYlpvsndWKOuwmYe8zJqkmUNRX3mgjznTu084oWXv41ZGRRn+aYaiPXfeD9gyK5jnbr1sxJNE3trxJqCdtMigrL1MBxSzJinrSaLVyjr8M1llvCGpA4pZE5XxJNFqzezZFUkZe5kOKGZNVMaTRKu5Zze6Is0tedmwmRWenzQ6siItLfYqLzOzEmrmqsHcLmyUdI6kZyS9JukVSV9L6bMkbZPUn95nZsrcLmmvpD2SlmXSF0t6KX22SZJS+jRJj6T0nZJ6MmVWp330S1qdSV+Q8vansifXe3DMzMquiBew1jPkNQT8fkR8FrgUuEXS+cAaYHtELAS2p59Jn60CLgCWA3dJOinVdTdwM7AwvZan9JuAwxFxHrAR2JDqmgWsAy4BlgDrMoFrA7Ax7f9wqsPMrCMUcW5pzIASEQci4q/T9lHgNeBsYAWwOWXbDKxM2yuAhyNiMCJeB/YCSySdCcyIiB1RGWe7v6ZMta7HgCtS72UZsC0iDkXEYWAbsDx9dnnKW7t/M7OOULS5pXGt8kpDURcDO4EzIuIAVIKOpLkp29nATzLF9qe0D9J2bXq1zJupriFJ7wGzs+k1ZWYD70bE0DB1mZl1hKKtGqx7lZekTwN/Cnw9Io6MlnWYtBglfSJlRqvrxMZIN0vqk9R38ODB4bKYmVkO6gookqZSCSbfj4g/S8lvp2Es0vtASt8PnJMpPg94K6XPGyb9hDKSuoBTgUOj1PUOcFrKW1vXCSLi3ojojYjeOXPm1PPrmpnZBNSzykvAd4DXIuIPMx9tAaqrrlYDT2TSV6WVWwuoTL7vSsNjRyVdmuq8oaZMta6rgafTPMtTwFJJM9Nk/FLgqfTZMylv7f7NzKwF6plD+TxwPfCSpBdT2h8A3wYelXQTsA+4BiAiXpH0KPAqlRVit0TEh6ncV4HvAacAW9MLKgHrAUl7qfRMVqW6Dkn6JvB8yveNiDiUtm8DHpa0Hngh1WFmZi3iCxutYYp0Swgzmzg/sdFarki3hDCzxvPNIS13nXq7cbNO5x6K5a6It4Qws8ZzQLHcFfGWEGbWeB7ysobwg6TMOo9XeZmZ2ai8ysvMzJrKAaUNDRw5xpfv2cGAh5nMrIkcUNqQr/8ws1bwpHwb8fUfZmPzHRwaxz2UNuLrP8zG5h5847iH0kZ8/YfZyNyDbzz3UNpM0R4JalYU7sE3nnsobaZojwQ1Kwr34BvPAcXMOobv4NBYvlLezMxG5SvlzcysqRxQzMwsFw4oZmaWCwcUMzPLhQOKmZnlwgHFzMxy4YBiZma5cEAxM7NcOKCYmVkuHFDMzCwXDihmZpYLBxQzM8uFA4qZmeXCAcXMzHLhgGJmZrlwQDEzs1w4oJiZWS4cUMzMLBcOKGZmlosxA4qk+yQNSHo5kzZL0jZJ/el9Zuaz2yXtlbRH0rJM+mJJL6XPNklSSp8m6ZGUvlNST6bM6rSPfkmrM+kLUt7+VPbkyR8KMzObjHp6KN8DltekrQG2R8RCYHv6GUnnA6uAC1KZuySdlMrcDdwMLEyvap03AYcj4jxgI7Ah1TULWAdcAiwB1mUC1wZgY9r/4VSHmZm10JgBJSJ+DByqSV4BbE7bm4GVmfSHI2IwIl4H9gJLJJ0JzIiIHRERwP01Zap1PQZckXovy4BtEXEoIg4D24Dl6bPLU97a/ZuZWcbAkWN8+Z4dDBw91vB9TXQO5YyIOACQ3uem9LOBNzP59qe0s9N2bfoJZSJiCHgPmD1KXbOBd1Pe2rrMzCxj0/Z+nn/jEJt+1N/wfXXlXJ+GSYtR0idSZrS6Ptkg6WYqQ23Mnz9/pGxmZm1l0dqtDA4d/+jnB3fu48Gd+5jWNYU9669syD4n2kN5Ow1jkd4HUvp+4JxMvnnAWyl93jDpJ5SR1AWcSmWIbaS63gFOS3lr6/qEiLg3InojonfOnDnj/DXNzMrpuVsv46qLzqJ7auU03z11CisuOovnbrusYfucaEDZAlRXXa0Gnsikr0ortxZQmXzflYbFjkq6NM2B3FBTplrX1cDTaZ7lKWCppJlpMn4p8FT67JmUt3b/ZmYGzJ3RzfRpXQwOHWda1xQGh44zfVoXc6d3N2yfYw55SfoB8AXgdEn7qay8+jbwqKSbgH3ANQAR8YqkR4FXgSHgloj4MFX1VSorxk4BtqYXwHeAByTtpdIzWZXqOiTpm8DzKd83IqK6OOA24GFJ64EXUh1mZpbxzvuDXHfJuVy7ZD4P7drHwQZPzKvyB39n6O3tjb6+vlY3w8ysVCTtjojesfL5SnkzM8uFA4qZmeXCAcXMzHLhgGJmZrlwQDEzs1w4oJiZWS46atmwpIPA3w3z0elUrsAvizK1t0xthXK1t0xthXK1t0xthca399yIGPNWIx0VUEYiqa+eNdZFUab2lqmtUK72lqmtUK72lqmtUJz2esjLzMxy4YBiZma5cECpuLfVDRinMrW3TG2FcrW3TG2FcrW3TG2FgrTXcyhmZpYL91DMzCwXbRtQJN0naUDSy5m0X5O0Q9JLkv63pBkpfaqkzSn9NUm3Z8o8K2mPpBfTa+5w+2tiW0+W9N2U/lNJX8iUWZzS90ralJ49k7sc29uMY3uOpGfSv+srkr6W0mdJ2iapP73PzJS5PR3DPZKWZdIbenxzbmvhjq2k2Sn/+5LurKmrUMd2jLYW8dj+lqTd6RjulnR5pq6mnBcAiIi2fAH/Evh14OVM2vPAv0rbNwLfTNvXAg+n7V8B3gB60s/PAr0FaustwHfT9lxgNzAl/bwL+OdUHpO8Fbiy4O1txrE9E/j1tD0d+BvgfOC/AWtS+hpgQ9o+H/gpMA1YAPwCOKkZxzfnthbx2H4K+A3g3wJ31tRVtGM7WluLeGwvBs5K2xcCf9+sY5t9tW0PJSJ+TOWBXVmLgB+n7W3A71SzA59S5bHCpwD/BBxpRjth3G09H9ieyg0A7wK9qjyKeUZE7IjK/6L7gZVFbW8j2jWciDgQEX+dto8CrwFnAyuAzSnbZj4+Viuo/HExGBGvA3uBJc04vnm1Nc825dneiPhlRPxf4ISnPBXx2I7U1maZQHtfiIjqo9BfAbpVeXJu084L0MZDXiN4GbgqbV/Dx8+sfwz4JXCAyhMo/3t8/HRIgO+mru1/bmh3sb62/hRYIalLlccsL06fnQ3sz5Tfn9KaZbztrWrasZXUQ+UvuZ3AGVF5NDXpvTpscTbwZqZY9Tg29fhOsq1VRTu2IynisR1LkY/t7wAvRMQgTT62nRZQbgRukbSbSjfyn1L6EuBD4CwqQwe/L+kz6bPrIuJzwL9Ir+tb3Nb7qPyn6AP+CPgrKo9bHu4/dTOX8I23vdDEYyvp08CfAl+PiNF6nyMdx6Yd3xzaCsU8tiNWMUxaq4/taAp7bCVdAGwAvlJNGiZbw84LHRVQIuLnEbE0IhYDP6Ay5gyVOZS/iIgP0rDMX5KGZSLi79P7UeAhmjSkMFJbI2IoIv5DRFwUESuA04B+KifteZkq5gFv1dZboPY27dhKmkrlS/n9iPizlPx2Gg6oDrkMpPT9nNiDqh7HphzfnNpa1GM7kiIe2xEV9dhKmgc8DtwQEdVzW1PPCx0VUKqrMSRNAdYCf5w+2gdcropPAZcCP0/DNKenMlOBL1EZ2mlZWyX9Smojkn4LGIqIV1P396ikS1MX/AbgiWa0dSLtbdaxTcfiO8BrEfGHmY+2AKvT9mo+PlZbgFVp/HkBsBDY1Yzjm1dbC3xsh1XQYztSPYU8tpJOA54Ebo+Iv6xmbvp5Ie9Z/qK8qPyVfAD4gEqUvgn4GpXVEn8DfJuPL+z8NPAnVCazXgX+U3y80mM38LP02f8graJpYVt7gD1UJul+ROUuoNV6eqn85/4FcGe1TBHb28Rj+xtUuvg/A15Mr38NzKayWKA/vc/KlLkjHcM9ZFbENPr45tXWgh/bN6gs6Hg//d85v8DH9hNtLeqxpfJH3C8zeV8E5jbj2GZfvlLezMxy0VFDXmZm1jgOKGZmlgsHFDMzy4UDipmZ5cIBxczMcuGAYmZmuXBAMTOzXDigmJlZLv4/11Hh5Uo1eLMAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.plot(style='*')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Une liste triée permet de plus facilement répérer les valeurs les plus élevées (à la fin)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 76,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2021 978259\n",
+ "2014 1601698\n",
+ "1991 1663610\n",
+ "1995 1828304\n",
+ "2020 2078964\n",
+ "2012 2183912\n",
+ "2003 2234514\n",
+ "2019 2254363\n",
+ "2006 2297262\n",
+ "2017 2322818\n",
+ "2001 2540826\n",
+ "1992 2590314\n",
+ "1993 2699482\n",
+ "2018 2701716\n",
+ "1988 2759663\n",
+ "2007 2786458\n",
+ "2011 2852504\n",
+ "2016 2859019\n",
+ "1987 2867464\n",
+ "2008 2984311\n",
+ "1998 3047298\n",
+ "2002 3115484\n",
+ "1994 3514133\n",
+ "1996 3540251\n",
+ "2009 3558474\n",
+ "2004 3572810\n",
+ "1997 3624129\n",
+ "2015 3647492\n",
+ "2000 3808190\n",
+ "2005 3831409\n",
+ "1999 3914003\n",
+ "2010 3992174\n",
+ "2013 4176872\n",
+ "1986 5050543\n",
+ "1990 5214494\n",
+ "1989 5461328\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 76,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "yearly_incidence.sort_values()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Enfin, un histogramme montre bien que les épidémies fortes, qui touchent environ 10% de la population\n",
+ " française, sont assez rares: il y en eu trois au cours des 35 dernières années."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 77,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 77,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEKCAYAAAAyx7/DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAFfVJREFUeJzt3X+UZGV95/H31xl+DDQMbkYaHYhj1LiiIyCNLnHVbjQGgSQbwxEVjePRtO5GJDo5m4nH6GrWDcZMckyiMaMxeozSx0XZTRhDYnQbxBhkBn+MiBIXJgtDGBbQ0R5YceC7fzx30t1MT9ft6q7qfrrfr3P6TFXd51Y99Z2qT9373OdWRWYiSarHoxa7A5KkuTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZVZ3Ys7XbduXW7YsKHr9ffv38+xxx67cB2qnPWYznpMZz2mq7UeO3fuvCczH9OmbU+Ce8OGDezYsaPr9cfHxxkeHl64DlXOekxnPaazHtPVWo+I+Oe2bR0qkaTKGNySVBmDW5IqY3BLUmUMbkmqTMfgjoinRMTXpvz9ICJ+vR+dkyQdquN0wMz8DnA6QESsAvYAV/a4X5Kkw5jrUMkLgP+dma3nG0qSFlbM5TcnI+IjwI2Z+SczLBsFRgEGBwfPHBsb67pTExMTDAwMdL3+crMc67Frz76u1x1cA3sf6G7djevXdv24S9VyfH3MR631GBkZ2ZmZQ23atg7uiDgSuBN4Wmbuna3t0NBQeubkwlmO9diwZXvX627eeICtu7o76Xf3Zed3/bhL1XJ8fcxHrfWIiNbBPZehkhdTtrZnDW1JUm/NJbhfDlzeq45IktppFdwRcQzws8BnetsdSVInrQYKM/N+4Cd63BdJUgueOSlJlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUmVbBHREnRMQVEfHtiLg5Is7udcckSTNb3bLd+4CrM/PCiDgSOKaHfZIkzaJjcEfE8cDzgE0Amfkg8GBvuyVJOpzIzNkbRJwObAO+BZwG7AQuzcz9j2g3CowCDA4Onjk2NtZ1pyYmJhgYGOh6/drs2rNv1uWDa2DvAwv/uBvXr134O22p03OeTa/q0Uu9rPVKe790Ums9RkZGdmbmUJu2bYJ7CPhH4DmZeX1EvA/4QWb+9uHWGRoayh07dsylz9OMj48zPDzc9fq12bBl+6zLN288wNZdbUe12tt92fkLfp9tdXrOs+lVPXqpl7Veae+XTmqtR0S0Du42ByfvAO7IzOub61cAz+y2c5Kk+ekY3Jl5F3B7RDyluekFlGETSdIiaLu/eQnwiWZGya3Aa3rXJUnSbFoFd2Z+DWg19iJJ6i3PnJSkyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmVa/VhwROwGfgg8BBzITH84WJIWSavgboxk5j0964kkqRWHSiSpMpGZnRtF3AZ8D0jgzzJz2wxtRoFRgMHBwTPHxsa67tTExAQDAwNdr1+bXXv2zbp8cA3sfaBPnalAjfXYuH5tz+57pb1fOqm1HiMjIzvbDkO3De7HZeadEXEi8Dngksy89nDth4aGcseOHa07/Ejj4+MMDw93vX5tNmzZPuvyzRsPsHXXXEa1lrca67H7svN7dt8r7f3SSa31iIjWwd1qqCQz72z+vRu4EnhW992TJM1Hx+COiGMj4riDl4EXAd/sdcckSTNrs785CFwZEQfbfzIzr+5pryRJh9UxuDPzVuC0PvRFktSC0wElqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKtM6uCNiVUR8NSKu6mWHJEmzm8sW96XAzb3qiCSpnVbBHREnA+cDH+5tdyRJnURmdm4UcQXwu8BxwG9k5gUztBkFRgEGBwfPHBsb67pTExMTDAwMdL1+bXbt2Tfr8sE1sPeBPnWmAtZjuk712Lh+bf86swTUmh8jIyM7M3OoTdvVnRpExAXA3Zm5MyKGD9cuM7cB2wCGhoZyePiwTTsaHx9nPuvXZtOW7bMu37zxAFt3dfyvWjGsx3Sd6rH74uH+dWYJWAn50Wao5DnAL0TEbmAMOCci/rKnvZIkHVbH4M7M38rMkzNzA/Ay4AuZ+cqe90ySNCPncUtSZeY0UJiZ48B4T3oiSWrFLW5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFWmY3BHxNER8ZWI+HpE3BQR7+xHxyRJM2vzK+8/As7JzImIOAK4LiL+JjP/scd9kyTNoGNwZ2YCE83VI5q/7GWnJEmHFyWXOzSKWAXsBJ4EvD8zf3OGNqPAKMDg4OCZY2NjXXdqYmKCgYGBrtfvxq49+/r6eHMxuAb2PrDYvVg6rMd0neqxcf3a/nVmCZiYmOC2fQ8tymPPp9YjIyM7M3OoTdtWwf2vjSNOAK4ELsnMbx6u3dDQUO7YsaP1/T7S+Pg4w8PDXa/fjQ1btvf18eZi88YDbN3VZlRrZbAe03Wqx+7Lzu9jbxbf+Pg4m67evyiPPZ9aR0Tr4J7TrJLM/D4wDpzbRb8kSQugzaySxzRb2kTEGuCFwLd73TFJ0sza7G8+FvhYM879KOBTmXlVb7slSTqcNrNKvgGc0Ye+SJJa8MxJSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMp0DO6IOCUi/ldE3BwRN0XEpf3omCRpZqtbtDkAbM7MGyPiOGBnRHwuM7/V475JkmbQcYs7M/8lM29sLv8QuBlY3+uOSZJmFpnZvnHEBuBa4OmZ+YNHLBsFRgEGBwfPHBsb67pTExMTDAwMdL1+N3bt2dfXx5uLwTWw94HF7sXSYT2m61SPjevX9q8zS8DExAS37XtoUR57PrUeGRnZmZlDbdq2Du6IGACuAd6dmZ+Zre3Q0FDu2LGj1f3OZHx8nOHh4a7X78aGLdv7+nhzsXnjAbbuajOqtTJYj+k61WP3Zef3sTeLb3x8nE1X71+Ux55PrSOidXC3mlUSEUcAnwY+0Sm0JUm91WZWSQB/DtycmX/Q+y5JkmbTZov7OcCrgHMi4mvN33k97pck6TA6DhRm5nVA9KEvkqQWPHNSkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIdgzsiPhIRd0fEN/vRIUnS7NpscX8UOLfH/ZAktdQxuDPzWuC+PvRFktRCZGbnRhEbgKsy8+mztBkFRgEGBwfPHBsb66pDu/bsY3AN7H2gq9WXJesxnfWYbqnWY+P6tYvyuBMTE9y276FFeez5POeRkZGdmTnUpu3qrh/lETJzG7ANYGhoKIeHh7u6n01btrN54wG27lqwrlXPekxnPaZbqvXYffHwojzu+Pg4W6/bvyiP3a/n7KwSSaqMwS1JlWkzHfBy4MvAUyLijoh4be+7JUk6nI4DY5n58n50RJLUjkMlklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqTKvgjohzI+I7EfHdiNjS605Jkg6vY3BHxCrg/cCLgVOBl0fEqb3umCRpZm22uJ8FfDczb83MB4Ex4Bd72y1J0uFEZs7eIOJC4NzMfF1z/VXAszPzjY9oNwqMNlefAnxnHv1aB9wzj/WXG+sxnfWYznpMV2s9Hp+Zj2nTcHWLNjHDbYekfWZuA7a1edCODxixIzOHFuK+lgPrMZ31mM56TLcS6tFmqOQO4JQp108G7uxNdyRJnbQJ7huAJ0fEEyLiSOBlwF/1tluSpMPpOFSSmQci4o3A3wKrgI9k5k097teCDLksI9ZjOusxnfWYbtnXo+PBSUnS0uKZk5JUGYNbkipjcEtSZZZdcEfE+ohYv9j9WCoi4qci4s0Rcc5i92UpsB6TrMWhaqnJsgnuiNgQEdcAVwPvjYjnLnafFltE/Hvgc5TvmHlDRPzHRe7SorIek6zFoWqqSdXBHRFHT7n6TOCGzNxImbr4pojY2LSb6ezPZScizomIJzSXAzgHeEdm/iqwFTgvIoanLF/WrMcka3GommtSXXBHxPER8cGIuAX4/Yh4fLPol4D/01weA74LvO7gan3uZl9FxKkR8Q3gvwB/ERHnZJnneSpwEkBmXg/8A/Cag6stRl/7wXpMshaHWg41qS64gXOBoylFfhB4e0Ssoezi/DxAZv4IuAJ4bnP94cXpam9ExMkRcfyUmy4CPp2Zz6N8aL0iIp4MfJKmJo0rgadHxFHLqSbWY5K1ONRyrMmSDO4oVkfEayPiixFxaUQ8sVn8JODBzDwA/CHwPeCVwN8Bj42If9O0uwW4PSLO7vsT6JGIeGpEfBa4DnhXRBz8et3/BxzTXP4UcBdwPmWL4Sem7JXcR/nWxtP61+vesR6TrMWhlnNNlmRwN7stzwd+Bfg94CjgQ83iu4C7m0/B2ymFfSLlP+NbTH617BHAvc3t1YqIY6dcPR24IzM3AF8Afr+5/T7gRxFxXGbeB/wT8DjKc/8H4C1NuyOBh4Ddve95b1iPSdbiUCulJksiuCPi7Ih4T0Rsaq4H8FTg6sz868z8PeDxEfEzwB7Kp+VTm9VvBgaa2/6EckDh5ymhPwh8va9PZgFExKMj4qMRcQNwWUQ8pqnJRuBLERGZ+VfA9yPifMrexXHNcprrJwIPU/ZKToyIDwGXAwcy8+5+P6f5sB6TrMWhVmJNFj24I+JpwJ8CPwReGhFvofRrPfDDKUdzPwq8ghLEB4CfaW6/kXI0+P7MvBbYAmwCngP8TmY+vNSOCLfwPMpzPI9yUOStwPGUL/k6KSe/YOZjlJp8hVK/FwNk5peb+1idmTcDrwduAv5bZr6G+liPSdbiUCuvJpnZtz/KlvHrKLswq5vb/gC4tLk8BPwRcCHwQuBvp6x7CmW3B0pQf5XySztnAP8TeOyUttHP5zWPeqyivEiuoQzxrGtu/xTwpubyE4DLmuVnUcbrVk2p5/9t7mc9Ze/jjcBfAB8Ajl3s52g9rIU1Wfi/vm1xR8RplAOIvwi8A3hbs2gP5XctoXzKfQn4ZeDzwEkR8YyIOCLLePaeiHhuZn6B8tWN7wE+A1yemf9y8LGy+V+qwAXALwDvBM6mjOdDmSFzcI/iduCLwIsz8wbKFsUIQGZOANcDZ2XmHuBVlOGhu4C3Zeb+Pj2PhWI9JlmLQ1mTRpufLutKRJwB7M/MW5qbngXckpmbIuKZwLsjYggYB34uIo7JzPsj4uvASynzKT8J/CrwRxHxALALuK25vw8Cn8zMfb16DguhGV/LiDiLspv2RWB7limLPw3cmplfiIjbKGd8vgjYCfxSRKzLzHsi4p+A/RHxk8AfA6+MiBMpv0Z0L2XXj8zcAezo+5OcA+sxyVocypq0s+Bb3BHxpIi4jjIm/faI+JVm0cPA7mbr+UbKbsrZwP1MTscB+DFld+Ykylb1N5v7uga4JzPvgLJVXVFoPw/4COWo9QuB322aPAzcEhFrMvM2Sk2eQRl/u5My3xTKke1VlP+vT1PqcjFwJrAtl9gc08OJiFVNPZ5P2T1dsfVonmNGOTNvxb82oJxcZ01amu9YC3AscPaU6xcA72suP5vyifZ44NWUXZz1zbILKePZB5dd09x+NGWYZN2U+zwDOHKxx5Va1uMY4A1M7i0cAfw68GvN8kcD32ie00WU8bgNU2q3jfIr1RdQ9jDWUsb0Pzu1BsCjFvu5zuH18TrKG2gz5aDRSq7HccB2yi9JAbx5pdai6esxzfv/85STYlZ8Tdr8zWuLOyLeCtwKfDYiBpubf44yt5osp41+BbiEMo/yFMqcayhj2adTZoN8DPheRHycctDxO8C/jjdl5lcz88H59LUfIuIk4CpgGPg45QDJSyh7FgcAMvN7lIOpb6KMzZ3I5NTGaynz1x/MzKuAP6ecAfp+yhHxHx98rKxgq6GZU/t5yhvpQ8CLKMcvzqJsPa2oejTWUM5LeGJErKO8H1bByqtFRBxBOa51IfDezPzlZtEZB9ustJq0Ns9Py2HKrsqHgc3NbW+hjEkdbHMqcHtz+d3Au6YsuwE4o7l8FGU6z1mL/Wk2j3qsAZ495fomygGUVwNfmXL744A7m8u/Rjnt9tHN+n8N/OSUtuv60fce1uSEKZf/M+UNePEKrsergfcCvw28lnKK9Q0rsRbNc/gMcPEjbrsIuH6l1qRV3eZZ9IPTbC5icqjjBOD7wNFT2t1A+RQ9AfjvlN2bv6F8Kh612EVYsGKWI9jB5G95PnNKXe6lzCk92PZzB0Me+K+UGTf3Ar+52M+jB3U5nnKcYi/wrub6vcDgSqnHlNfEayhDaS8BPtHcds9KqsUj6nIB5QSYrZSJCm+nDJ/eB5y4EmvS5m9eQyWZ+VBz8e+B4yLitMz8PmVc+/VTmt4IHNcsu4QyHPI/gNEsR4uXhWxMuelSyhYFlDG3NwNE+T6VfwYOTmF8J2VPZX1mvqdP3e2bzPwBZcjs31EOOr+UMhz2+iiWfT2mvC7OowwbfR44OSLeRjk4Pwor8rVxFWWm2L2U6XlPA/4D5fXxhpXy+pirBfuV94j4AGW8+jeaWRT/iRLgj6acWHPelKBf9iLiZMqY2yWZeUuUL8kapbww1wNfy6V6VlYPRcTplA/1L1PGKp9Omaa17OsREQOUYZKjKM/931JOEHkrZUv8yayQWkx1cCpwc/k0yvvkS5RT0lfM62MuFjK4T6fMEnkB5UV5P+X08weAD2bmTQvyQJWI8n0pzwd+izKueQdld+8i4NtZpkSuOBFxCuUD7eWZeW9EvBK4KTO/ushd67koP/zxZ5SDZpdTpq29NTNf1CxfMbU4nCjfzPdh4KLMvM+azGwhg/tllClw9wO/QzlKvLyO5M5BRHwJ+CnKN4vdCbwzM7+xqJ1aJBGxlvKB/grKweptwPsz88ezrrjMNSeIvAQYy8y7Frs/iyUijqJ8z/7BoZI/BT6Q5aubNYMFCe6IeAbl9PMrKAdcqv4q1flqpjm9gzJ295fLaRy/GxGxmjI88iNKPVb662MV8HAu1FbTMhARr6dMEf34Sn99tLFgW9ySpP5Y9K91lSTNjcEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKvP/Af1gbJT9Os/YAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "yearly_incidence.hist(xrot=20)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.4"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 1
+}