From bd6e1db7137bbc8e6d480f3ae83e125a9e0f7c21 Mon Sep 17 00:00:00 2001 From: 9399e5a06ef82ea6883fcf0e93124538 <9399e5a06ef82ea6883fcf0e93124538@app-learninglab.inria.fr> Date: Thu, 1 Dec 2022 13:26:56 +0000 Subject: [PATCH] no commit message --- module2/exo3/exercice.ipynb | 90 +- module3/exo1/analyse-syndrome-grippal.ipynb | 2211 ++++++++++++++++++- 2 files changed, 2261 insertions(+), 40 deletions(-) diff --git a/module2/exo3/exercice.ipynb b/module2/exo3/exercice.ipynb index 0bbbe37..37085c5 100644 --- a/module2/exo3/exercice.ipynb +++ b/module2/exo3/exercice.ipynb @@ -1,5 +1,90 @@ { - "cells": [], + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9, 12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n" + ] + } + ], + "source": [ + "x = [14.0, 7.6, 11.2, 12.8, 12.5, 9.9, 14.9, 9.4, 16.9, 10.2, 14.9, 18.1, 7.3, 9.8, 10.9,12.2, 9.9, 2.9, 2.8, 15.4, 15.7, 9.7, 13.1, 13.2, 12.3, 11.7, 16.0, 12.4, 17.9, 12.2, 16.2, 18.7, 8.9, 11.9, 12.1, 14.6, 12.1, 4.7, 3.9, 16.9, 16.8, 11.3, 14.4, 15.7, 14.0, 13.6, 18.0, 13.6, 19.9, 13.7, 17.0, 20.5, 9.9, 12.5, 13.2, 16.1, 13.5, 6.3, 6.4, 17.6, 19.1, 12.8, 15.5, 16.3, 15.2, 14.6, 19.1, 14.4, 21.4, 15.1, 19.6, 21.7, 11.3, 15.0, 14.3, 16.8, 14.0, 6.8, 8.2, 19.9, 20.4, 14.6, 16.4, 18.7, 16.8, 15.8, 20.4, 15.8, 22.4, 16.2, 20.3, 23.4, 12.1, 15.5, 15.4, 18.4, 15.7, 10.2, 8.9, 21.0]\n", + "print(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib as mpl\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvWmUJNd5HXhfRmRGrrV1VVcv1SuAbmzE2kCDBAEUKJKgdEYSZZvSEWmKEiVxxpZn5JE8Ho1nNGPJ9hkNtfl4JMsCJYocjsiRLckiJYokSAAJgATQABpooBtAL+iluqq69i33jMiImB8RL/aIjFoi13fP6VNdVZlZ8TIjvnfjfvf7PqKqKhgYGBgYuh+xdh8AAwMDA8POgAV0BgYGhh4BC+gMDAwMPQIW0BkYGBh6BCygMzAwMPQIWEBnYGBg6BGwgM7AwMDQI2ABnYGBgaFHwAI6AwMDQ4+Ab+UfGx0dVQ8fPryl55bLZWQymZ09oC5AP667H9cM9Oe6+3HNwObXffr06WVVVceaPa6lAf3w4cN47bXXtvTcfD6PycnJnT2gLkA/rrsf1wz057r7cc3A5tdNCJkK8zgmuTAwMDD0CFhAZ2BgYOgRsIDOwMDA0CNgAZ2BgYGhR8ACOgMDA0OPgAV0BgYGhh4BC+gMDAwMPQIW0BkYGPoar15bxbtzhXYfxo6ABXQGBoa+xq/91Vv4/e9ebPdh7AhYQGdgYOhrzG/UUJXkdh/GjoAFdAYGhr5Fqd5AWZQhNpR2H8qOgAV0BgaGvsX8Rg0AUGcBnYGBgaG7sVjQAjpj6AwMDAxdjnka0GUW0BkYGBi6GguFOgDG0BkYGBi6HgsFqqEzlwsDAwNDV2OBaegMDAwMnQ9ZUfEzX3wFP3hv2fcx8yygMzAwMHQ+ijUJz19cwqvXVn0fs0g1dJYUZWBgYOhclOoNAEBZ/+qEoqhYLGoMXZJVKIrasmOLCiygMzAw9CQqopboLPkE9NWKCElWsWcgCaA3WDoL6AwMDD0JGshLdW8HC02IHhhJAeiNalEW0BkYGHoSFT2Q+0kuZkBPA+iNxCgL6AwMDAZWSvV2H8KOwWTofgFdW+tBPaD3ghedBXQGBgYAwMtXVnDi330P11cq7T6UHUFF1AN6zTugz2/UQAiwf0iTXBhDZ2Bg6Bm8Ob0OVQWWSrV2H8qOoKwnRcuid0BfLNawKyMgI/AAWFKUgYGhS1CuN3BlqRT4mCtLZQBAXer+wAaY2rmfhj6/UcP4gACB18JgL6ybBXQGhj7AF79/FT/+hz+Aqvp7ra8sawG/F9weAFAJoaHvGUgioQd0xtAZGBi6AkulOoq1RmCwNhh6DyQHAdOuWJMUNDyC9UKhht0DSSQ4PaD3wEbGAjoDQx+AFtn4yQ/rFRErZRFADzF0i3ZednjRxYaClbJoZ+g9sG4W0BkY+gA0uDkDG8VlnZ0DvaElA3appeRIjC7p9kxNQ+cARHdnMr9Rwx88cwlTK+XmD94mWEBnYOgD0EDupydbE6b1HtCSAfOuBHDfmdBZouODJkOP6s5kZq2C33nqIqZaYAdlAZ2BoQ9QbWLhu7JsZei9oaFbg3jR4UWns0THc0nD5RKV5EKTrXEu+nDLAjoDQx+ABvIghj4x3Ds9TQBtzQNJzWPuYuh6QN8zaAnoEd2Z0I2C3glECRbQGRj6AM2SoleWyrh1Tw5A7wT0Sl3GuN5J0bnuhUIdCS6G4XTclFwiyh3QgC6wgM7A0B58/cwsnn53od2HsWMIKrKRFRVTKxXcNJaFwMd6yLbYwO4Bwfi/FZplUQAhJHIfOn1dxtAZGNqEP3jmPXzpxWvtPowdQ9XoDe4O1jNrFYiygqNjGS2gt8jl8q2zc/jWVWnbr1OTZPyr/3oWy47GYhVRxnjOj6HXDPYetQ+dvm5HaOiEkAOEkGcJIe8SQt4mhPyy/vMRQsh3CSGX9K/DkR8tA0OLsFSq94z0oKqqoaF7MXRaUHR0LAshzrVk3dOrFfzqf3kT37m2/YD+9o0Cvnrqum12KF3zmA9Dny9oZf8AwHMxcDESWUCXOoyhNwD8qqqqtwF4CMAvEUJuB/BrAJ5WVfUWAE/r3zMwdD3EhoL1itQzAb3eUECnq3kF9Mu6ZfHoaAYJLnrJRVVV/K9/cw4VUUatsf2xbxtVUf9qbg5VSYaqAsPpBBJczHVnslISMZoVjO+jXLeRFO0Ehq6q6pyqqq/r/y8CeBfAfgA/DuDL+sO+DODjUR0kA0MrsVLWBwf3SEC3+rG9XC5XlssYTMUxkklAiMci38i+fuYGnr+4hP1DKdRkTcPfDtYrWiDfqJgBna4zk+CQETjbRtaQFWxUJYxkEsbPEnwsss+73qkuF0LIYQD3AjgFYFxV1TlAC/oAdu/0wTEwtAPLRVoC3xvJQWsw8wzoSyUcHcuAEAKB5yLdyFZKdfzG376New8O4Wfef0g7Ph9vfFhQZr5uYeh0WlFG4JFN8rb3gD7OFdAjToq2wuXCh30gISQL4K8A/HNVVQuEkLDP+xyAzwHA+Pg48vn8Fg4TKJVKW35uN6Mf1x3lmlVVxe+eruMjh3jcPeZ9+p9Z1C7+jWKlpe99VOueKZqBamp2wfU3zs9WcOcoh3w+j3qlijmpHNm6v/JOHYVqA//oQB3vXb8CAPjusy9gV2rrwe7MJW0DPn9lGvn8IgBgqqAF9KuXzgOShKuz88aaZkva+zF37T3k69cAAGpDxPWZOeTzq1s+Dj9cek87vhe//zxietyM6rMOFdAJIXFowfzPVVX9a/3HC4SQvaqqzhFC9gJY9HquqqpPAngSAE6cOKFOTk5u6UDz+Ty2+txuRj+uO8o1l+oNnPvOd/DonYcxOXmr52MWX50GXn8LhE+09L2Pat2vX18DfvAiACCZG8Tk5PuN3xVrEta//RQ+8L6bMDl5M/7owksAYHvMTuJP3juFuw408KkffRh/99YN/Nnbb+DOex/Acd0DvxXkC28Dl68hNTiCyckHAACvXF0FXnwJJ++7By+tXkSCj2Fy8iEAwKkrK8D3X8YHH7gHD988CgAYOJ3H0OgAJifv2/4iHXi1fh7clSv40OOPm8cc0WcdxuVCAPwpgHdVVf09y6++AeAz+v8/A+DrO350DAw7jHKTHtmA2bhJ7BHJhVoWMwnO1Zzrql7yf3Q0CwCRu1zEhmIkB3PJOACgVN+e02W9IupfzdehMk5a4JAR7JLLmv744bRFcuGi09Cta44aYf7KwwA+DeBDhJAz+r8fAfBbAD5CCLkE4CP69wwMHY1mg4MBYKmoBfRecbnQYDaWE1wuFyOgj2UAQC8sim7ddVkxkoNZffSbs8/KZrHuoaHTdWYFHlmBt33eq2W3hi5EmBQVG0pLEqJACMlFVdXvA/ATzH9oZw+HgSFaNBtLBsAoUKk3FKiqirD5ok4FdbnsziVxzdHCdbkk6r/TLHxRV4qKDcVIDub0PitBm2sYGC4Xj6RoOsG5Ajpl6EPpuPGzKJPBoqy2pKgIYJWiDH2GkhHQ/YMWZegAIMnb90m3GzSgjw24GfpGRQQhwIAufwg8F2mlqNiQXQy9tE2GXqiatkU6Ys+0LfK65GJ+3qtlEZkEh2ScM36WiHAjs25iUYMFdIa+QrO+4ABsJeS9YF2kwy125wSURRmKxfe9XpUwmIojFtPuQhIRSy6ibOrJ2Z1i6HpAF2UFVb31L11zRuCRFTiUxYYR7NfKIoYtcgsQvW2xVZILC+gMfYVQSdFiHbwe4Fqlo8+sVaAEDHAOi1K9gTV9lBwF3cTGdFmlYul3vl6RMJSySg+xSJPBVj05k9i+hq4oKtYrZtUnlV/Koow4pzXeygg8VNW8U1mtiDb9HIg6KSp3VFKUgaFnUGqiodcbMgq1BvYOJfXvow/oM2sVTP52HqcXth9If+Mbb+MX/p/XbD+riA0IfMyQVZxFNoMWt0fUlaLWgM7FCJLc9gJ6SWxAUYFDu9IALAG93kBGl3ScdwJrZdHmcAG0dfdCUpQFdIa+QjOGTpOE+4e0YQ+tKP8/PbWGhqJivbZ9hn59tYKZNfuos4ooG8lBwL729YqIYUdykCaDo4Bm4TO16xRPtmVbpOX+RkDX+7qU67JxB+Bctx9Dj2ojk2QVca41iXUW0Bn6ClaXi1fQWtYTovuHtADRCg39jevrAIDqDiRgN6qSzY8NaJ7stJ4cBBwM3UNyAaLtDW5lqyl+exo6XevhXZrtkiZINYaubRw0sJcNhi65GHqUvVwYQ2foGCiKimcvLEbG2FoN2nVPUWEk0KygCdH9dBxbC3qDvzmjBfRtmj0AwOgSWbOsrVKXkRE4I8A5GfpQ2u7HBqKRmhRFhSSrtuCW5Emg5FIVZVtbXCeoVdElueibGABjIyvVG6g3ZJTqDYxk4rbXibQ5l6wgwXPNH7gDYAGdIRDPXVrCz/3Zqzg7u9HuQ9kRNGtURS2LE0Otma8pNhS8faMAAKjtAEOnkkPB6smWZKQTvCE90CSprKgo1BoYtDJ03coXxUbm1aSqGUP/i1ev41N/csolI1HQ9VKGvm5h6HS9VnskDfhOl4vAc6hHOFOUJUUZOgJX9eEH263m6xSULJ39vLzoToYetYb+7lzB+BvVbfYGr0kyanogtncebCCd4FySC2W39gIbytB3XmoyRrFx1oBOAn3ol/Xz78J80fP3NEDvGUwiwcWM72neADCTomWxgVXdATTiI7lEcScqyQoSPNPQGToA0zoz6gU/NmBn6F5Ol6ViHbkkb1QxRr1uKrcMpePbllys2rm1arIs2hk6ZcTrHj1NopRcjEEPvCOgBzD0qVXt/Lu4UPL8PV3nYCqOwXTcGHZRsrhcTKlJNiydboYePncws1bBt87ONX0cBWPoDB2D6dUqgNZoya1Aud6AbjH3vOtYLokYywkQdM0zasnlzPV1jOUE3DSW3fb0Hio/APbgXhEbuoZuZ+iUxQ96MfQoJBfPgB589zeltyq4uODH0EUk4zEk4xyGUnEjwFdE2QjkWcu6V/VNzMvlYj3GIHz5xWv4p1993ZanCAJLijJ0DKh2WesRhl6qy0YRih9DH80KkUoPVpyZXsfdE0PICDxq2/xTfgydyg9pXR83JBf98XaXi/aYKFwuXqPYKENXPKYWSbKC2TWNUPgHdAlDKS04D6Xjdh+6nhRNxTnEiKahU4buDOhCPHxAv7FRg6oC8xu1po8FWKVox+I7b8/jmfML7T6MlkFVVcys9R5D3zOoT4L3mJSzXKpjLCcYF2CUGvpGRcKV5TLuPTiErMBtn6FbAjqVUwCqofOIxQgyCc5w+lBG7+lyCck+NwPRY1hyUteWvT6LG+tVNBQVw+k43lsseY6q26hKRg5gMJXAekVCQ1ZQbyjGHQkhBBm9QRfttGjdxABzkwlzR7agB/LZ9WrTxwJu732UYAF9E/j337uEJ5+/0u7DaBnWK5Khb3ZbK1lJVvCbf/uOrS8LoAX03TktoHu6XEp1jNkYenTrpvr5PQeGkEnwO6Chm0GculwURUVFkpHRE4TW3uBrenCzFRbFW62ha1+9PotrK9rd4YduHUe9oWB61e10ob1oAE1H36hKKItmp0WKrL7utYqIwVQcvEPT3swGPrfZgC4riLOkaOdhqVjrusAWhLMzG/jt75z3/f20xSoWVi/sFJyfK+KLP7iK/IUl289L9QbGBzTJxemuqEkyirWGpqFHaN+jODO9DkKA900M6pLLdjV0LUAn+Jjx/1pDhqoCaYuFjzp91qsSCDEHTQCINHfgNSw5pQc6L6fLdV0//8jt4wC8ZZeNisnQNclFtPVCp8gIvOFyccot1mNqJjUpiorFohbQb4QI6Kqqat0WWVK0syDJCpZLYs9MggeAb56dwx8+e9lXJ6YJUaD7GPqaMcXGZK30Vpw2qXJq6JTNj2YTZpIsIm8yALw5vY6bxrIYSMaRFTSGvh3b3HpFQpwj2DuYtCUHAZOtWhn6RkXEQDIOLmayx0hti/o5JHBuhl70YejJeAwP37wLAHBp0e10Wa+KBkMfSsVRFmVj7WlHQC/WNIZuvSOhMHIHTc7z1YpotFSm+n4Q6GOZht5h6LUpNoA2T1L76n2v380M3ZhiYx1LpmvH5hQb+5roZzyWExDnCAiJRksGtMB9Znod9xwYAqAFHBXe1athsVHVqj6HUmZy0Bz0YFr4rC6XIUdwMxh6hIVFYRn61EoZh0YyyCXj2D+U8vSir1ckIwdA10KZc1awSi7aupsx9GYbmTURemOjeUD3WnOUYAE9JBaLdM5kLwV0vVGVT0CfWatgMKWxx27byCgzX7MwdCo1ZAXeFtgoaGOu0awAQkik49hm16tYKYu4Ww/oO9EbnPZlGbDY92iykWro1o1szRIMKVqvoWsB3YtUTK1UjJL+W8azLsmlJsmoNxRTQ9fXQgM63cQAqqHLnp0WgfBJURrQJ4ZTuLHe3OUi6a/HJhZ1GBYK2ofXKwU2gMnQ/YLI9GoVB0ZSkY8liwI04Wdl6HTjyghao6qSw1lhZeiA2XkwCtDNg7YYoGwyaJJSM6xVRAyl4xhKJ4ykKJVcUj6Si7/bIzrJxTspam8opigqplYrODyqlfQfH8/hylIZDYsERj9b0+WifZ3RA3omYZdcSroPPVBDbxbQ9Thw/6FhzK5XPe2WVjCG3qFY1D/IXmLoNJAXat7tS6fXKjgwnEYyzhkl5d0CasmzFtvQ9WaTuuRS89bQd2W0gB7l9B4q5TiHPQTNOm2G9YqEwVQCgynekJysk3vo10DJJUqGLutrtrDVpA9Dny/UIDYUHByhDD0HUVaMylHA0rqA+tBTVHLRrtWMYHe5LJfqqEmKq0oUCF8hO79RAxcjuHtiCGJDwYpjmIhrzR7e+yjBAnpILPakhu4vuSiK5kE/MJKOfBJ8FKDsjTJ1wD0J3ispOpSOG0E2yjsTZ6Mqr17lm8VGVcJwOm7Y91RVNRh/2ia50NJ/yZehR0FcNmNbnNIti7Tp1rHxLADgkkV2WXcMe3Zq6BlHUpSew84+LoCl9D8EQx/LCjigbzTNnC5ezp4owQJ6SJiSS3cFtiDQgO6lXy6V6hAbCiaGUxpT7bakqIfLhQZwOjjYGURolShFlBuZM7h59SrfLNZ1C99QKgFZUVGqN0yGTpOiCS2waZOZ3Bo6z8XAx0jLJJcYIUgnOBepoCX/VEO/ebcW0C/Mm06XdUsfF8Bk6l4B3Wph9GLoYSWXhUIN44NJYwBKMy+64exhAb2zQBm6rKg2Ha+bUQjQ0GkRhyG5dNlGtqYzdGvXwZKToYtuhj6atVZNcpH50J3MLbNNhl6TZFQlGUPphBHgNqqSh21R+zqvl687JRdA38giWDdds+Comsx6bK5TqxXEOYJ9euBMJ3gcGEnh4qLJ0GnrArreXJIHISb5oq0O6N+gcPZCB8L70Oc2atg7YAb0ZgxdkllStC2oN+TABMdCwaw4jNKb3CooOoMDvIMILfk3kqIRMnRZUQ0muVOgzLwiygbbNBi6PuzByQqdDD3SSfAGc3M2kNra++zsOghojJ2+r9bCIsD8fD0DejyaZLBfgjCX5F0+9KmVMg4Mp20e+WO7c3bJpWqXXGIxgsFUHIqqbWAxy3OtbN3L5WLaNYPf/4WNGvYMJjGQ4pFJcM0ZOkuKth6qqmLyt/P481eu+z6GJkWB3kiMlsUGaA2LV1KUMvSJ4XRkFzjF//71c7jrXz+FT//pKXzlpWvYqO/EoAfJ0IOtk+AB0+XiDJ6LxbrRFgBApBuZW3KxN87aLIzBDRaGXqhKxhpTcdPlAphFMVSmsGIzuYNCTfLsseIFL8kFALLJuEv2u7ZsWhYpbhnP4epy2WC96xUJXIzY2Dddu9WyCNg96VutFC3VGyjWGxgfSIIQgv3DqabFRSwp2gaIsoK5jRquLZc9fy/JWjZ7t25n6wUd3XoBeSVFp9cqGMsJSMY5JPlYpIVFcxs1ZAQeM2tV/PrX38ZvvRKuR4YfZEXFRlXCQcdYslK9AT6m+ctzAg9RVowLrlxvoCLK2D1g0dAj3MhowKQXOtW4tyq5WBOElLGuVyVUJRnJeMxgugZDXw9g6CFzB5Ks4LHPP4uvvHQt1DGKDQV8jNhYNwDkBB4lC6lQVRXXVys4pCdEKW7dk4Mkq0aB0UZVS+oSYr4eTfJaHS7a99q6YwQYSHpILiGSwdSDvldv7rZvKNW0uMhvE4sKLKBDm1sIwPe2n/qTqYWqFzoPWgO6V1J0erWKA/rUHiHORXpXIjYU3Lw7i2d+9TH844cOYq22PYZeqEpQVdMhQYuLyvrQA9p9j/4MMHMkdNMGok2KGnqybhOMxQgEbhsM3Sq5WDR0axtZwIOh+8gPYc7x+Y0a1ioSzvtME3LCry+4U0NfKYso1Rsuhv7BW0ZBCPDdd7SOp+tVydbLHTCLizIuhq59P5xO2KQYijhHjGP0A9Xmxwe0gL5/qHlxkcg09NaDJo789Et6sVOrEvXTdjOKNXey0IrptYqx3qgZuigreqk9wa6MgJqM0LfxXqDB7cgoZejmFBt6YTuTkFRSs0ou2liyaG2LTk+2VxvZMNiwFNnQgK5p6DLSFrZKmSvtc++0LQLUf9983VSW20zXQc+AnrTXBFCHy2EHQx/NCnjg8Ai+8/Y8AL0xl+P4/Ri6EdA95BYAoSqDKUPfY2Hoq2UxMP/DXC5tgBnQvT8YujNTxtptRTZeoKw8GY+5JJeGLkFNGAw9Wh+6JCsGg8ntQAk8ZeRHRjWrm23ogWOKTcnJ0AdaxNAlj4DOwdVfJizWLOPkUnEOCS7mydDpumkQHvAI6ELIZDDt9TMXdtCDzyi2rGBPilIPupOhA8DH7tiD8/NFXFsu2xpzUVAJyZoEtX7v5UGnaFZIRqtE91gYOoBAls4klzaASi5+7IiytwmDoXd/QKeJ0H2DKVdSdG6jBllRcWBYW2+UJfCAdtJTBkP1zaJP9WoYULZ6WGfoa0ZAl20Vk9rPgiSX6NYtylpws97+J3kSKLm8fWPDaN3qxHpV67SYTnAghBj9XKqSbJT9A+a65zdqGEjyLj0b0DfwEKSFduOcW6+G6hLpJ7kMJDXJhb7GlaUyuBjBxLA7oD9x5x4A2rCZdY9eNDTAOyWXjMHQ3RsYRbONbH6jhsFU3Hg/6SDxIOsic7m0AfSWiTJ1JxaLdcSIFvyA3tLQ9w2lXGyYMi9DcolHK7l4MfSgOZPNQNnq3kGtKMpLcnEz9BoSXMzG+KJ2uTgvco2he6+7WJPwif/0En7jG+94/p6W/dME4ZA+MNmPoTcU1Vd+CLuR0fOkLMooVJt/XvUAyUVVzevv/HwRR0Yzno/dP5TCXROD+Pbb89ioSC6GPthEcvFyuFAkuFhwUrRQM9g5AMMjHyQ5SR7SWpRgAR1ARWouuYzlBGNn7rZGVV6gAXPvYNIVROb0W0h6SynwHBoRFlRJsmoJ6JShbyegm5N4hn3mTDp930tFbfSc1TERVnoAgJVSHc9fXGr+QB31huwO6AEM/W/O3EBFlPHcxSUjSFihtc41gxst/6fzRCkE3nS8eOnn9DFhzvEZi2UvVCtZX8nF/plfWCjg1j0539d54o49eOP6Oor1hsulQxm707bIxQhu3p3FrXsGfF+3matpXvegU4znBHAxEszQabdFxtBbh2qTpOhCQfMnh+330Gl4b7GIU1dWbD8r1jQP71hOQLHWsN0yr+oNh3bpVZNCCI/udmBlqyZD347kIoLo9rThdMLlcgFMBke7/NGAbgXV0MPICV968Rp+9s9eCV0g5RXcUrw3qVBVFV89dR0CH0Op3sCr11Zdj1mvSLbBDbQnujOgE0KMVrqDPnpy2NzB9GoFt+gl+XMhA7pXctBsHayNPJxereK2vf6B92O67AK4NyX6fdahoQPA937lMXzmA4d9X1dj6P4bmZOh81wMewaSgQzdqAhmDL11aKqhF+sYH2jNnMko8Pvfu4R/8Zdv2n5WqjeQS/LIJeOQFdWW6F0pi4hzZsFGUi9KiSoZLO645KLditPKQasPPetKimqf/WKhbtPPAY2xqao5dSYIs2tVKGq4KTaAHtziTsmFeCZF35zZwLtzBfzKR44hwcVcY/UAumYzQJsMvWGb3AOYa/dn6M1tizVJxmKxjgePjAAAZkP0BvfT0HOC+ZlTj/nxcX+GftNY1thInBo6Zexph+QSBpqryXvd2sSyOsYtDB0A9g0lAz9zVljUBlDJpSLKnmxssVDDWC4ZekxVp2GlVMdioW5bW7FGA7qbEa/pU12o/BDlWDJAu1gSug84twNJUW3MmHahD6cTWK+KWudBMSgpWrM5XABsagwddXrMhLTw1T0YetKHoX/11BRScQ6fPHkQJ4+O4Jnzi67HbFTskstAKo6NilYpmkl4F9l4jWIDqKsp+LOmcst9B4fBxwjmQqw7yLYIaBvu+fkCAODWvf4BHTBZutOHbrhcEm6G3gxBEttisQ5VNYuKKPY3KS6illwv73sUYAEdQFVn5rKiutg3rRIdHxAsY6qiD+jlegO/99QFrFS3/7fWKxLqDcWmlRdrEnJC3AzojsIOa78LyiSjYuiSh+RSCGDoi4Ua/u+nL/l61Tcsk+CH0nGs6euXFdUIZnEuBoGPoVxvQGwoWKtINg86YOkNHiIxSiWHmU0wdC8NvSrJtnUVahL+9s05/Njd+5BLxjF5fDfeWywZHnCK9ardkz2UjqNYb+guF2/Hh5/kkuCaSy40IXpoVxrjA8lQ1kU/Dd2wquoMPSfwRv7GD//wvgncvncAtzk08f1Dadx/aBj3HhxqejxOJAKakhke9AEnQ09hXneFeUFqKC0rKgJYQAdgd7c4GRKtEh0fSEbOVCk2KhL+8Z+ewn945j28vrj9v0U15JWS2Uq24GDoVi/6WkU09HMASPLRJoOtkksyzoEnwZLLn5+6jt/97kW8c6Pg+XvrIOChdAIbFcnWaZGC+p+XSm7LIhB+6IGqqkZACy25yG49OanfpVilv6+/MYuqJOOTJw8CAD50624AwLMXTJZeb8ioiLLNtWJ1fzgZelPJJUTdwcyq6YTaN5Rs2nUQCK4UBTRScX6uiON7crbktBcOj2bw979P/hrAAAAgAElEQVT8iC1JCWiTmf7qn3wAd01sLaD7MXRnlSjF7pwASVaN5mhO+N2VRAUW0GFq6IDburhgVBAKBmOLUnJZLNbwU0++hHOzG9qxNbZXBq+qquH6oBN5ACq5xF0OA0BLinox9Cjsmqqq2lwugJYcdI4ks+JlPcH7ztyG5++1BCGVXOIQZcXYmJ1DD8r1hmv0HIXRga/J503vgACzArMZ6pIXQ9e+WknF116Zxu17B3DXxCAA4MhoBod3pfGsRXZxtpEF7D1anBo6TQh79XEBtHU3axM9s1ZFgo9hLCtg72DzniYADW5ubTtnOQffnS80lVuigtO2+PS7C/jf/uYsnjm/gGt69apTcmkmEfrdlUQFFtDhYOiOxOiihaGHHSS7VdQkGT/1xy9jaqWCL/7sA0hwMWwjNwhAmyJPT1J7QJeQ00exAfYAuloWsStj7wtOj2+nQROOtik2ceLL0GuSjDem1wEAb/sw9PWK2eODBi0qhWQFe5FNud7wLPu3HlOzDdwqN4Qtg697BDc6jo0G9Jok4525Aj525x4bY3381t148fKKQURoqwOnbZHCX0P3d7kAwbmD6bUKJoZSiMWIITs0na/pE9zoBnNpoYhirYHjAdbCKOHsWfSVl6fw/758HZ/90mv4/LcvIMHHXJtgsyS+311JVGj6lwghXySELBJCzll+9q8JIbOEkDP6vx+J9jCjhV1ycbRUtTB0ntM8vFEx9CtLZVxdLuM3fuwOPHLLGLJJHrVtMnTKzgFgySK5OJOiVLOWZEUbZWYJ6MlI50y6XQAp3j+gvzm9DrGhJZq8JBdRzxXQYEVdEJQ5Wxl6Tm8K5VX2D4RPBlP9/Nh4dlMaulty0b5SpwuVMQ6M2PXkx4/vRr2hGHcqxrBkm8vF/H/aR3JxJhQpjHUH3JFNr1aNyul9Q0lIsorlct338YCeCPYIbjwXQyrOGXbM2wI86FHCmTtYKtbxyC2j+PJnH8SnTh7Ef/foUZcURBm631zeTpRcvgTgYx4//31VVe/R//39zh5Wa1GVzODh1NAXClqV6C598IH2oUfbsGk0p3eME7htSy5rliG2y3rgUlXVYlu0a+g0OIx4MPQoArpECy8480JJ8/63sKeuroIQ4EfetxfvzhVcrJBqmVRDp4Gdatt2yYUzAjohsN2VAOHXTRn6icMjWCrWQ93JeBUWpRwMnbJ9WqFMcfLoCFJxDk/RroOO2ZqAnaE7i2wyTTX05uvWBohrx7V3sHlPEwAQG7Jvk6psksflJU3WONaugM67A/r+oRQeOzaGf/cT78OvfPS46zmhGHonSS6qqj4PwF3J0EOoiLLxpjsLQxaLWpUora6LslGVc1xVVogjREV1INYtDH1FZ1AVUXNSaBq6vQSeFhWNeDD0aCQXdyVdEEM/dXUFx8dz+MBNu1AWZVx3uj304DZoMHSn5OLU0GUsFWvYldHuwKxIhGCqgDkJ/t4DWiIubIJQ8LAtAuZnQV9nn8PxIfAcfvTuvfir12cwu15tLrn4lMF7tc7VXj/4zqRYk7BekYzWEFRXbmZdDGKr1Iu+fyjl2a+8FRAs3TVlRcVKWXTlVZwYaFLZ3IkM3Q//jBDyli7JDO/YEbUBFVE2Zkk6JRdaJUohBBQfbBfOIoScwKMWoqglCNThEucIlova/+nJl0vyxu0uZcRGQE+3hqF7VdL5BXSxoeD01BoeOroLt+/VkoROHd1a9g9YAvq6W3Khfbi9iooAq5bcTHKpYXdOMPrlh5Fd/AqLAAtDX6siRuBycgDAL3/4GKAC//67Fy0M3dvlkorbGfqP3b0P/8sP3+rvQ3d83sWahI//4Q/wxvU1AGZTLtq8zeg62MS6GMRWKdO9rU0JUcDuQ18ti5AVtWlAb1bZ3GqGvnn3vYY/AvBvAKj6198F8FmvBxJCPgfgcwAwPj6OfD6/pT9YKpW2/FyKakPFb71Sw8/dkcDhQZO1LK5UQT+2M2+/i13F94zfXZmrYiRJjL+tSCKmZm8gn9/5m5a3lrQL+exbZ1C9zqFerqFcl7e17lNT2om2OwVcnl1EPp/HbEk7aaevXEK+ehWJmIKLV6eRzy/ilXntGC6/+xbEGX2EW017/Ftvv4tRy3uzE5gva6/93sULyJcuAwDiqoTVUsO17ktrMmqSgmxlDnMXFsER4Fsvn0Vm9YLxmNcX9ON/5y3Is1oPGgC4tqgF/jOvvoxLcS1wri3WUag0cPnGMnIJ4vp700Xt2E6fOYvY/Lu+a3jnWhUZAsxc0Kpxnzl1BsqNYJZZrtWxOD9nO4/kegUAwRvn3sVI4T2cPl/HkEDwgxee93yNxydi+MvTM7hnNweOAK+++IK9Fw0H1GXg3JnXsHjRHlSOA3juuWnP1724qL2HL778Cm4McriyLuPMdA2//hen8C8eSBrv8cLVd5BfvQBVVZGIAa+cvYibGlOerykrqlZJOz2FfH7O+Dm9rqWqtkkk62vbvs63ihuzIuqSgmeffdb47Bem3kO+fs33OfT8euvdS8hL7rUvrVTBx+Ba007EMy9sKaCrqrpA/08I+QKAvwt47JMAngSAEydOqJOTk1v5k8jn89jqcyneuVHA1PdeAD9+MyYfOmT8nDudx6FdGVwtLGLfwaOYnLzJ+J304tM4dnAUk5N3AwAGX38OI7tymJy8b1vH4oX62/PA6dN46IETuHP/IP5q7g3MX5rb1rrf/N4l4N2LuOvwON6dK2BychKnp9aA77+Ik/fdhcnju7HrdB7ZkQFMTt6H6ZengDPn8MRjH8Bu3XO7UZWA/FM4dPRmTH7wyA6tVsOF+SLwwvO4+313YPJ9ewEAf33pKdRkCY8++pitwu7tZ98DcAGf/dFHMZJJ4Jazz6McT2Jy8kHjMYuvTgNvvIUfeuT9hiSQyX8bJT3x/cSHHjOklTeki/jO1CWU1TgeODRmfMYUV5fLwA/yuOX4bZi8d7/vGn7ztTxu2z+AH//oPfiXL3wbmd0HMDl5a+C6lae/jaOHDmBy8nbjZ995+lkAFeMc/OOLL+PouILJyQ94vsZdD4h48fPP4o3FBkazAh5//HHb73e99DRubNTw+CMPN2WaVsQuLgGvv4I7774XJw6PoPHOAvDyazi3ImP3sfswyK8Ab7yDj3/4EUOamzidBzeQw+Tk/Z6vWREbwFPfwfFbbsLkY+b1Ra/rr02/hndWFvDEyTsxefe+0Me6kzgrX4J6+SI++OhjePHyCvDiK3j8oftw4vBI4PNSz34bo3snbJ8lxe+f+z6G0gnbOQrsTDzzwpbuBQghey3f/gSAc36P7STQTLTzdr4qyhhOJ0CIW0PfqEo2bXIzA3Q3C6PVJk81dH7bGvpaRURO4DE+kMRyiUou2vswoN8uajMddQ1df8ywLSkaXUGVV6+LFE+gqm4L6amrqzg2njWCyO17B/DOnF1yoZPgrcdPpQiBj9l0cqolLxXrLocLYNHQA9ZNi4r2DCbBczHsHQzu7UGhFRbZte1ETJt5aU2KOvVzK0YyCXzu0aP6Gt13BAM+rWSbwVlQRXMvXIzgCy9cwfRqBZkEZ5Ns9jUZx9aspwmthwjqshg1rDZVv9oEL+SSvK+G7ufsiQphbItfA/ASgOOEkBlCyM8D+Dwh5Cwh5C0AjwP4HyM+zh0BdUA49a6KJCMjcMgk7JPg6w0ZVUm26ZHNpppsBy4NfQdsi+sVEUOZOMZyAkr1BmqSbNHQ9c50SXOm41pFRC7J2wp96AUepvRfVVV86Hfy+PNT3rfeTogeSdG0ft9ovUgkWcHpa6s4eWSX8bPb9w1goVC3+evXKtqgB6v3mg41cHbgs+rpTg86YNHQAz7vQlUrr6eJwYnhVFMNvSFrbQicFzqddVqqN6AoKuY2ggM6AHz2g0cwmhVcDh3ADPJJj2KeIFCXi1m/oG2SP/XAAfztmzfw2tQqDoykbfLO3sFkYMfFZpN7htNxJOMxHBnNeP6+FRAiCOitToo2lVxUVf1pjx//aQTHEjkKVW+GXhG1qS4ZgbMxdLoBDKbtbDVyl4t+AmQSPERFCwBOB0ZYrOlVkzTpu1yqG8E7ZzD0OJaKJQBaHxdncDDnLTZn6EulOq4sl3H62ho+dfJQ08ebzh4zOKR0jdv6OZ2b3UBZlHHyqHn7e7veYvWdGwU8emwMgLaBWQc9AKY/2z2WzAx0QUnRoM+bVkhS697+oTRevLzs+3ggeIpNllavluqQZNWYiuOHjMDjKz//ILwq5QdTcaQT3KYbQznvyFZKIjIJDv908ib8xavTODdbwIdv2217zt6hFBaLdd9CmnqTgP6Ljx7FE3fu2fJ5vhNIWJLBS8U6sgLvsnx6IZuM+/vQPdxMUaKvKkW9GLqsqBAbCtJxXmPoliIjr5LqRJRjyRwMnXah8+vTHgbrFRFD6QRGdR/9ckk01m9j6HrwXCuLnpNshIDGRVZQB8R0yBJ4GtCt/uSUHmetn9Pr17XqUNquFdAYOgCb7OLsCw74z5m0MnYvySWMu8c5OHhiOIX5Qi2Q1QcNDs4IPMpiw/Cg7x9y3zk4cdveAc/BDeMDycAJPX7wklxGcwImhtP40bs0tdU5Hm7/UBKqarbKcEL0+Jydx/pAE606atgkl5K7P74fBgIYutRFtsWuA62GtHYdpIw8neCQFjhbYZHB0B1jySKzLdIyeIttEQCKAX1NmmFND3BGQC/WUaw1QIhZEm69ZfRi6ACd5hJmik1F/xq+YhKAvZcLZeiWz+LGehWZBGeTRobSCewfStkqRq2tcyno91kfPzbgLbnQu4aggE6Liqjksn84BVU1A70XgtiqJrnIvh70zeCff/gYvvRzDzZ/oANGYZFktoyg58Qv6pr9TXo/cgp6h+LXdbHVfcG3AiOgy7LWMjsbLqDnLJKlEyLrthgdqORibc1a1YtlUgkO6QRvC+hmSXVrkqJOnTHjKPrZCmiAo90TV8paQM8KvCFL5AQeJVHTbdfK7oAIaMVFYRg6DeTzhVqo98lZTAUAad4tucwXaq5Od4DGTp0M3bdHdoCG7sXGwkhN8xuaV5xKNhO6RBLUpCsouGV1UkETq83ayAZhJJPAzY7AGwZekgutlL5j3yC+9cuP4BP3T9ies0+/k/ArqmqmoXcCrHcmm2HoOSEe7ENnDN2O8/MFvLm0TbsHvDV02uAoneCQFXhbXxcvhh7UM3m7cOrJpuSytbU3ZAXFmjZ30Sq5FGqSrRqPDuktiw2slkWMZL0kl5CDg/XKTVVtXgoOmHclzm6LgF1yWSy4B1AAmuxyZalkNqrylFy8NXTK0HNJ3pjK5EQzqenGRg27c0lD+50Yal5cRN9HweNvZnRScWO9akyUajWckstySTRyMIC2iTrfL6P83ycxGpQ36BRY5x14jST0QyclRTv33bXgz1++ji+8Fdz4JwxM26IZKCqWgJ5OcDarnFdJtcBzkc7WjBEYwcHoE73FlovrRl+TBJJxDjmBx5IuudCEKGBq6QuFGkRZsVWJUgh8LFTp//RaBbyehHMOYfCCl57sx9CdwwUA4N4DQ1BU4CsvXwPgJ7nouQKfniZeCVGKzQ4O3jOYRIwETy6izNeboWu377PrtW2x8+3AGtgURcVquY5dmeDglhG0vkCLBe/rtBskF5q8LNYaKNYamwjocVRE2dVuWFG01tAd1culE5AR+G23kQWsSVGrhk4lF95gR87HW1mSxtii86HHPXzSW5VcnE2bRnMClkt1o3Wu8+9MrWgB2CuRlmwS2Chm1qq4R+9pEiYx6iW5JDjN80w3XlVVsVCoe0ouk8fH8LE79uC3vnUe33tnAfWGElpyoe+Bl35uHktwzkSzFprPT/AxjA8kQ0kuvknRupYUbVtAp22iJRnrVQmKCtvAEz/Q7pVe6AbJhR4blbs2o6ED7utUUlq/5s59dy3IChwa6vYHSxSqZlKUztekt+qpuJYUrVgcJYWqhIEkbzTmAoLnDm4XziKE7Uoua47OiaPZhB7QG7ZNip6QtNGVV0APw9BlRcWN9SruPzyMOEdCJUa9bIuEENtt7HpFgthQPAM6IQS/85N346axLP77r70BwN3ne8gnKSrwWjtkLynHeEzAfE2jqGjAHngnhlOhBgf7BfSSLrlsJyG6HRi5A30wMgBDsgtCKsHZhsVY0cy22AmgrqZZve/PZiQXwH0n3Y67ks59dy2gXlBnFedmQSUXWVENZm51uWR1yxgN9usV0cX2qA/da5j0dqENS3Yz9K1KLrR1Lg1wuzICVkqih+SyMwx9vlCDJKs4NJLB/qHUpiQX54VuDegLRe/xXxRZgccXfuaEsSk4NfRhHw2dEIJb9+Twvv2DvscXlDso1BqoiLLn4OAwGrq3D50zRpo186BHCZo7oAE9DENPJ3jfa7SZbbETQD8P+tltRnIB3D3R23FX0rnvrgXblR4oNqqS0eyfBguny0VRzQtuoyrZhgYA2oejquaknZ2EMyNObYVbXfeaS3JJ+Egu2u+bMfRmrpVpY85kChPDaUyHLIEH4LJ2WZ0Dptfb/wI7PJrBf/jpezGUjrucHXsGkjgwksJte91e7W/+D4/gFx456vu6QZXB9Lj2OrziE8NpzBdqviPcgi5066bTLoYOmLkDOoc2DEPXclDe54jJVjdXtdpKOCWXoNyKFQN+DL0NieCuCOj0JN9OgY0kK6iIsmEro8HCmhSllYM0gK5bpsdT0NuyKGQXp4bOczEkuO1LLpShjmYFrFUkfUC0W3KZ0ucm+ksuTSbB6wF9YjiNAyMpY5BwEKSG3XtvPSZqL6WJtiCtGwAmj+/GG7/+Edy8294PJJXg8MK//JBRTboZWHtkOzFnVInaj2t8QICsqEYrYidMturhcrEE9DBFRVGBbuArlKGHKFBKB0gu3aShz6xVQYj3deCFrE9A9zu3o0TnvrsWOAPtVkAtizTRRIOFEdDjZpkv1dE3qm5Pszn0IIJGVR4WpxRPtsXQE1zMuCuhLEsbbmFh6Pr/p9eqiHPE1fMEoJJL8JrphbBvKImJ4TRWymLTzUiUZfAx4ipPt0ou83QMYIDWTdFsWvxmEdTqYc64c7AzaRqUnQPHKQyXi0/pP8X+obTr960CXfdKWUSM+A/DsCJQcglYc6eAykELxRp2ZRKh2xD4DYqmffTjjKHbkRW2lxwEzABOS5bpm1/VT8BUgjOSZtS6uFHxYui0miyC+ZoN1SU9JDlvDV1WVLxydRWf//Z5394h62WtUyQNctbbZitDp3Y+saFgJJPwDIphethMr1WwZyAJgeeM1rXNhiZLsnvN9PjoZ7RQqGEkk/BktFFD4DlfH/rcRg2EuG/N6QbqF9DDSC58jGyq5e1Og657uSRiJCPYjAF+SCc4/zV3kQ9dVcNJTBR+SVGv4S1RY6sDLlqKnUiKGgzdkFxMhs7HCBJ8zPZ3VFVLTLkCOh2YHEFxkR9Dd25kv/vUBXz11HWs6Lf0z15Ywrd++RHX6zk92dbikAELQ4/FiOF/9p0EH+eaulxmVqvGFBs6b3J6tYJj4/4tUenAZydsSdFCLbSeudPwyx2oqoqn3p7H8fGca0Nqdr4GuVwoqdg7lAwVRKMCdfcsl+q28yYIgQG9C3zo1mPbzGbqN7Uo6HOOCp377lpgJkW3LnNsOCQXKmPQTouAVdqRURZlNBTVNUiXJnWiGpiccAS3FG+XmhRFxX/MX8aBkTT+4JP34n964jjenSvg4kLR9XrrFXsvdyvrcMoq9Hs/N0MyhLtneq2CCX1CPb0TauZ08WteRPtjUA+61xi2VsDPpvrCpWWcny/isx4DP5ox9GCXi/Z5OQdDtxraMHQFK6V6KIcLAKSFIMnFbU/tNGw1oAs8hwQfc2votDcTC+h20EC7PclFC+jOpGhVlI0L0NTQG55l/0C4HtlbhRdDTzrma65WtFmHP3Hvfvw3d+3DT544AC5G8DdvzLpez8XQc96Si/a9tvYghq6q/lJTvSFjvlAzGPpoNoFUnGvqdPGbuZhLxiErKqqS9rrjTRKiUUHw6WHz5PNXsDsn4MfvcU/XSYUN6B7rpud6u4qKKAyXS1lsWiVKkY5rlkvJ4xyp6+f2Tuc4dhKxGDE+k83KXQNJ3tZMDvBuPBc1uiSgN7ctTq2U8UtffR3XV7wZIQ3QewdTiBGL5CLJRiA3tHpRNlrnOifBhJlis1U4XS6ANgne2o7A2Xh/LCfg4ZtH8fUzN6Aodva8VpGM4Q6AZoNMxs3hGVbQxKifm6FZb/C59RpU1dwwCSGYGG7uRZdkxTNpRI9vrSJhuVTHeNsYutuHfm52A99/bxmf/eARb6fKtiQX7bnt9KADZldRrTFXOIYetJG1ui/4VkGv72aOKie0nI/Tttj6RHDnv8PQK/pIMEP/xpkb+OZbc/hH/+lFbU6lA7RKdDAVR1Yw9dmq2EAqThk6PSEbxiizgVYydA+2muKJ0asccAd0APj4Pfswu17FaX0qO6BpvLQXOgUhxGBbzoBOGbtXL3TA3VLVCVrmT5Oh9P/NqkWDkqIAcHWpDFXVrIDtQMKjXfKTz19BVuDxyZMHPZ8TRnJJcN5sdTAVxz+ZvAk/1qa5mhQCH0OhKqFUb4ROEJruHvd12uqug1sFPcbNMnQt5+NTWMQYuh2EEAic/wUCAGdnN7A7J4AQ4KeefAlnptdtvy/UJCS4GJLxGHKWCSMVi+RivROgSVRnYZER2FoluXB226IR0C0X2Ufv2INkPGaTXUr1BhqK6qqapLKLS3IRwjF0v8QoHWxhDegTw6mm/VzqvpKLdjyXFrXNuW2Si54UpbmDmbUKvnl2Dj/94AFbx0or0gGBDQgOboQQ/M8fuxW3BCSSWwGB5wy76GaSooA/Q++KgE4ll024XADvjovtaHfQ+e+wjmQTP/bZ2Q08dHQX/st/+wEMJOP41Bdetk1P2ahKGEjxrj4h1qSowMcQI5oPnfZCd/nQuegkF2+GrrFY+veWSm6GnhV4fPT2Pfjm2TmDFRi93B2a+Fg2YTzHCvq9H0NPNtnIptcqiHPE1hHxwHAaxVrDkK+84Ce5UBfOe4vaaLx2JkUVFWjoctZXXpoCAfBzD7uToRT0js/fwid3dAk8oOUOZH3NYTV0Y90e5oVWt5HdKqiLbdMM3aMnOk2KMpeLB5K8v+SyXKpjbqOGuyYGcXBXGr/3k3ejLMp4a2bDeIzWaEsLztbbo5pkMnQ6pLcsmklRp8vFsC1G4XLxsS0CMGSXpWIdmQTn6kvy8Xv3Yb0i4fmLSwDMsn9nknMsJyDnaDgGmIzYrzrOOfTAiZk1rZmU9XUP6I6XIJau9a/xsi1q7/slPaCHKSqKAglH7uDtGwXcsX8wsCyfi2nNrXwbVUmdH9ysQSisht5UcukGDX2LSdGsB0NnSdEAOKUHK87OaoH7Tr3J0qFd2uTwWUsg0Rg6DehxG0O3DoLNJHiNoVcl8DFiBHsKk6FHo6F7JUUBMyHs13j/kVvGMJJJ4D+/Ng3AWvZv35B+4ZGj+J1P3O16fjZkQPcr/59erRgOF4ow1kW/W3G6wVxeLIGLEYyGZIk7DaPVg/55z65XjcRvECgx8EI3sFVrsjeshm4kRT1kua6RXPgYEnzMVqcRBl6SSzuqYzv/HdaRCmDo53Qmfoc+NHg0m4DAx2wJuUKtYQno3pILAKQFDiWdoVurLCkoQw+TFP36mVk8+vlnQydQJVn1Z+hNAnqci+HTDx3CU+8s4K2ZdaPTolNyuWksiyfu2ON6vrXfixdMycWPoVdcgY7q6UGJUS9nD2BKQCtlEbtzwqYn1+8UrHcmiqJidi1cQE/Fg4tsOl1ySWyFoTtaZ1jRDZsYoK17LCts2l6ZS8ZRqjcMmQpgzbkCIXDEtznXW7MbODqWMW7TCSHYP5yylZ0X9d7mgF1ysbpcAMrQNd3X6XABwk2Cp/i7t+ZwfbUSOOzACi+G7pRcFos139vBX3jkCEYyCfxf3z5vkVzCjTD7+L378Sc/c8I3oBuBzcHQJVnBH+UvY7kkGndGFIOpOHJJPnjYg4/LJZPgQa8pv7a5rYC1Mni5VIcoK5gI4RHPCMG9wTs9uNHPO613IQ0Dq0vMCb/kd6chK/CuZmthQGOLVUWQ5NY35+qK0n9AS4ouVn0Y+uwGHjwyYvvZxLDdMmct46eSi6qqug/dEtAFrQWoJLurRIHmWjKFoqh49doqAK3P+NGx4GG9qqr6uFy0r/T2falYxwdvHvV8jVwyjn/2+M34zb97B3VJASHuwig/DKbi+PDt476/Nzcyc92np9bwr/76LC4sFPHEHeP45INuG9+Ahz/XCrEhe57wtB1BsdZom2URsFcG01YLE8PNm2alEnxgK9lOD270PA/LzgFTcqn6SC5Oq2wn4l//2B1bmnVgLf+n11y90frq2M4+qyzwS4rShKhzSMGEhaGrqqoNRrZILg1F69WiqrBJLhm9Y9x6VfQMhvRCbCajXFgoGk6Ta3pb2iCYu7n9w09a5mvWJBmFJrMOP/XQQewfSuG1qTUMJOOhO8Y1Q9KRDF4u1fHTX3gZhZqEJz99P/740ydcjiBA2yCD7KZeMhMFTWJ7zRJtFax1B/R8ClP0k45zRuM3JzTJpXP7ggOmPTeswwUwJRevO+lukJkATZJ0tl8OA7PjovmZ0427ldWxnf8O60j6SC7OhCjF/qEUVssiKmIDVUlj3FaGDgALep/tdNyqofMo12XPxlyAxhzjHGkquZy6sgJA65o35VO9aoWf3payJEWXPSyLTgg8h1/5yDEA4eWWMKAXOPWhX1suQ2wo+D//wfvwUQ9NniKV4D2TZBSahu59whszPztBcmnIhnQUpiw/I3C+EmG9IXeN5BLWgw5omz4h8NzIukVD3yq8Oi62IxHcNe9wktdOCiczPjuzAULMhCgFTVzNrlWNKlHK+KjetaiPNrO7XDiUdQ3drwe0wHNNGfqpq0X3GooAABzdSURBVKvYP5TCsfGcMTgiCJKPxYky9HK94Vkl6oWP37sft+7J7ejEG2fpPy062dukiVQQUwX8k6KAeZG0VUO35Exm1qoYTsddllEvpBK8p/RAX6vTg5shuWyCoRNCkI57Ty3qBplpO/DqiS7Krd+4O1/U0pHkzMCW4M1Ae3Z2A0dGM67KRxrQNX+09rOBlJkUBUyGbpNcdN22KsmeSVGg+Tg2VdV6lT92fAxVUfZsReCEH0MXOIAQLSlKA3qzPhNcjOBrv/gQ5B2ce5p0lP4bY+GaBNt0gsN8wb+wKCi45TpAcrH27tEcLuGGTmQSXOB8zU6XH+hGNpoLz9AB/Y6siytFtwovhi411JZvYl3zDjv92BTnZjc8h/zSC29mvWqU+bslF8rQrRo6ZzArr6QooM+ZDOiH/t5iCStlEQ8d2YVDuzKYXqvY7Exe8CtCiBGCbELr5OZVJeqH4UxiU036m8FZ+j+/UUMqzhmbpB+CJsED7sHYVpgMvZ2DHkwNfWatEroLYirBedr3gC4pLIpvnqEDdAxdH0sulvgkygrifGvttl3zDlPpwbr7LxW9E6KA1oshwcUws1Yx+rJYK0UBYFEP6HYfuhmg/Bwifj2yKV6+qrlbTh4dweFdaUiyihtNJvcETUXPCLwhuWxm1uFOgo8RxIhdctkzmGya8AkaegD4N+cCLAG9TWX/gL2gKmxREaCvW5I9HRPdwdA373IB/AdFa5JLZyeCt4Oc4CG5tEFm6uyzygJq37My9HN6QtQroMdiBPuGkphdq7p6m9OiFSMp6tDQKZytcymaMfRTV1awZyCJgyNpHNyl3Sk0S4zSHtKeRTb6sIfFYh0j6URLS4kpCCG2uaLzG7VQzDlozqSsqJAVf5fLzWNZHBxJG43D2gF6bDc2qqhJSui2tukED1lRPZPn3eBymRhKI8HFcHzP5hwffoOie11yScZj4GP22QWanNjaz7lrNPSUJTlIQTvx3bp3wPM51ItuMHSn5FL0kFxCMXTOl6GrqoqXr6zi4Zt3gRCCw3qxzdRqGR+Et38cCG61Sf3Ykqy2ec5kzCj9ny/U8MDhkSbP0CUXn+Rg0CYGAJ/5wGH8zPsPt3UoAg28V5a0xHZYDZ2eU1VRNvIPFN3gcjm4K43z/+Zjm67QTSfcLQ/8aix6CWbTP5Oh+03jihJd8w4LtMDGEtCXSyKScf++C/uHUphZq2JDd7nQW3jK0BdpUtRqW7SwdT+GHpQUvbJcxnKpjpNHdgHQEnoJPhaeofsMPaCSSzsDOmXoiqJisVAP5T6hU2y8XEGiHFx4QQhpW8k/BdWSryxpTcLCSi5GGbxfX5MucHxs5b33YuhBcmIvwTnkQvQYKRk1uuYdTjp6mgDAcrGO0YC+CxPDKSyX6lgs1pBJcAYT5PQqxEVPhm7+38/lEiS5nLpi6ueAdlEcHEnj2nKwdTFoLBkd4LxUrG+6T/NOgjL01YoIUVawJ4TkkrIwVSfaMUR3s6DHdlln6GElF6NRlSOJ35AVKGpnr3k78MqZdMOA6J2As0FXO+5KuuYd9kyKlurYFRDg6MV3fr7oCs65JG9UZ1pZufX/W0mK/uC9ZezOCTg6avY1ObwrjetNR7HRgbLuzSmb5DXbYqm9DF0bxyablsUQg4yNOa2SW0dvJrl0AmgQ2tB7AfkNtXDCb9hDO4YetBJeg6LFHl8zhVNyYUnRAHglRZdLojGwwQtU7zw/V3AFZyq/EGKWtQOmHJOKc76JKz+GLskKnr+4hMeP77bdNRwcyeDaSjmwR4TJYtx/U7ubqENsKG2WXLRJ8GZAby650DseL6eL1NDej04O6IQQIxDtD6mfA+ZG5tSTez24pT26TLaj62A74Cm5MIbujXhMs87ZNfR6oNeaMvSyKLuYFU2MpuKcLfhSZhXU1MovKfratTUU6w08futu288Pj6ZRkxQs6oVBXjA1dA+GLvDGxJx2M/SaJBtVomEKfmh+wlNy0YfoeuUNOglUHgmrnwP2pKgVpp7c2S6XrSKtJ8GtA8v7VXLRkqKt/Zy75h02pgnpAV1RVKyWxcCAPp4TwOuJHWcBDGXoKYcDgbpc/BKigJ4U9Uh25S8sIs4RfPAWu5uFtpUNSowGulwsSd+2BnSdoS8UauBiJNSxGJKLp4be+vaiWwENvmGLigD/OxN6Z9erbDUt8FBVoGYxDfT6XQnFgGVWMaDJa63stAh0UUAHNI94Sa++W69KkBU1sPCB52LYO6SxSLeGrjN0x0Qiyqz8EqKALrl4uDaeOb+IB4+MuOZ1HtIHPQR1XRQD9GSrlXJ3uzV0ScHcRg1jWcE1xs4LRnLQw4suGbfi7XWyNMNWGHrK2Mgckovc+ik2rYRX7qDX8wYUOb1ehN6dtKOArOlfI4R8kRCySAg5Z/nZCCHku4SQS/rX4WgPU4OVodPOg83K2ymrcksu2gXnHDEn8FqBgF/Zv/YYd3Ou6dUKLi2W8Pjx3a7H7x/WZm1eD8HQvU4Aa2HNWLa9nQdrDRkLepVoGPhJD0DwJtZJ2JLk4jMoOsjN1AvwGhTdLxp6Vr87oXmTTk2KfgnAxxw/+zUAT6uqeguAp/XvI4d1TuNyMVxAp4lRv6RoyjGNhRBtjmiQhu7F0PMXFgHApZ8DWsCaGE4FMvTASlE9oCe4WNPeKVFC0JPB8xu10A2z/NwegNlhstODW8II6JtIivpJLnTjjnf2mrcKY1C0ZE8OAoDQ4Z/zdkHv+gu6jt6RhUWqqj4PYNXx4x8H8GX9/18G8PEdPi5PZK0MXZ8eM9akG5zB0B0BmjL2dNydtPi1H74Nn3rokO9rUtui1bXy7IUlHNqVttkVrTg4kg6nofv0cgE0/bydVZO0sGh+IzxDDxwcHFBM1UmgveA3o6EnuBi4GPG18PVqcEt5bOD9oqEfHdOu/XdvFAB4j5SMGlv9a+Oqqs4BgP7VTUsjgHVoQHiGTiUX76SoU3IBgE+ePIh7Dgz5vqbgmN5Tk2S8eHnZZVe04vCuYOtiEEOnxzraRv0c0DayjaqEYr2xCclFO3avDnztmLm4FQhcDJkEF5god4L2BvctsunR4OY1KLrX10xxz4EhJPgYTl1dgaKoaAT0KYoKkd+/E0I+B+BzADA+Po58Pr+l1ymVSiiu1bG8ISOfz+P1iyI4Arx+6geIBbDW5RXtxJq5cgH50mXj59OzWja6uL6y6WOavqY995n880jHCd5caqAmKdhVn0M+v+T5HGlNQrHWwDe/m0c24T7ei5e1O44fvPCcbVMolUpYOHMaABCrF7f8/u0EFm+IRhBenb2KfH666XMUfQN75+Jl5BX749+Y14L8m6+fxvIl88QvlUptXacTlVINwwkFzz333Kaex0HG5akZ2znxxqK25nNvvoHSNTuZ6LR1bwXXNrTr7ZXXz6Axq4UX43N+43WsvmcPcL2wZiuO5IDvvTmFB5ILAICZ69eQz99wPS6qdW81oC8QQvaqqjpHCNkLYNHvgaqqPgngSQA4ceKEOjk5uaU/mM/ncdPBUbyzfgOTk5P4++U3Mbq8hA89/njg8x5RVGT3TeEnHzhg8/5K7yzgC2dfw+GJvZicvHtTxzL98hRw/hweeOgDGMsJyH/jbSTj1/GLH3/c1YiJYnVgBv/fhTdx530P4rCHLPNy9TwS167iccd68vk8Tt7/fuCF7+G2I/sxOfm+TR3rTuJM4yJw9RIA4PGT9+L9N+0K9Tzh6W9h974DmJy8zfbz9TdmgTNn8IH3n8QRy3uSz+ex1fMkCgzdtI66JOPk0XDrpRh+LY/BXYOYnLzX+Fn5rTng9dfx/pMPujoZdtq6t4LLSyXgpedw9NhtmLx3PwDzc374oQddw9J7Yc1WvC5ewB88+x7uuP8h4LvP4NZbbsbkI0ddj4tq3Vu9H/gGgM/o//8MgK/vzOEEw+5yCfagU3Axgk+//7CrkMOUXDa/p1H9kzbourxUwrHxnG8wt/4dZ+UgRVBVWS7JI0baO7kHsBfD7N1Ej/K0z/SeZs25OgX3HBjadDAHvIc99LptMeNRd9AvkgsAnDy6C4oKvHRZmyncatti02hGCPkagEkAo4SQGQD/B4DfAvCfCSE/D+A6gE9EeZAUWcHs3LfSpEq0GUyXy+YruaiGTk/UmbUqbvdp4UsR5PYAgoclJ+McvvRzD3r2fW8lrC0SwmroAO2J7t+cq9M19K0inXAPiqaFRb3anMur7qDeJ7ZFALjv4DDiHMELlzSZrdVJ0aYBXVXVn/b51Q/t8LE0BXV7lOsNLJdE3LQ72+QZ/ghyuTSDdWCyoqiYXavio7ePBz4nqKcJ0Lzvw6PHxjZ9nDsNytAHU/HAuxEn/IYeSD1+oacSvDFchaLXPdlexMV09vRmuwMrUgkOd08M4fuXlgG0/nPuqrOK3s6V9Pma22klO5SOI84RjGxyxBZgfkhiQ+vPIsoKJkaCPcpGCXzdW3LRGHpnfxx0I9uM3AL4j6Hrhm6L20Emwbk+716XH+JcDAku1reSC6C1zl7RbdUsoAcgY4yOq0FsKNuUXOL4+i99EP/wvolNP5cy1XpDwfSa5i0/0KSKMGNo6D6Dg7tgogtl5WEGW1jhNyjabzB2ryDlsZHVAyqCewUpR+6g7wL6ETPf0mo5sWtG0AGmbHFNL9AZbVJU1Ay37wvWvf2Q4M2k6JLuhz/QhKEH9TQBtKrJTteSaRDabHI2nTCHiVghyrR9bmcnRbeKTIJ3jd/r9dJ/QLszsRIXUZbBx0io3j+9gPsPDYOLEciK2vKiua46q2gJ/HW9hH47DH07ECySy/RqFUDzKsKmGnoXMHSaDN5MQhTwZqqAXhrNxdpa/RoltKSoW3Lp5TUD7juyXh8Q7URG4A0DQ6srgrvqXaaSy5Q+/WdXpl0B3ZRcZtYq2J0TmiYJkzwHQrpbQ6dr3GxAT8f9JZdeZeeAFtjqDQWypTd4vSH3tNwCuAdF91tAB8wRlExDDwDVoXdKctkqrEnR6bVKU7kF0GaLpuKcr4beDYOD9w4mwccIbmti0XQiKCnayxd6xqOFbj8EN+fnLcqdf27vND582zj4GNl0vmm76EoNfWqlDEKAkXR7Arpg0dCnV6t44HC47sF+fmxA05NTic4+6SeG0zj3G09syrIIaPY9P9tip9+VbAfWAdm0E1+/BPTlkmh8X++DNTvxwOGRLV0r20VXvctUclmvSBhJJ8C3KRjQk7NclzG3UQ3F0AFtQ/JLinYDQwewpRM0ndBG9kmOsX1iQ+3pgO6VN6k3Wj/0oNVIC0xyAbZ2rWwXXfUu0+ETAAInFbXiOABtApGiAgdC9slOJ3hX5SCFJj/0pp7sVyXbDYng7SAVd7d76Ifg5syZdAtZ6QV01btM54oC7XO4AGZS9PJSCUD4STZ+PU2A3j7prdKDFd1g1dwOvKY19fomBrjdPe0Yxdav6Lp3OaNfJO0M6NSZcXlRs0+GlVz8koNAb+vJXslBQF9zj96VAH6Si+xqFNdrSAt2/30/3JV0CrruXe4Ehk4IgcDHMF+ogYuR0KXwmQQfzNB79KT3mmIDaMytVzcxwJRcXC6XHl4zoEkutIke0Nvndqeh695lI6C3ybJIYe1rEjY569V9j6KXg5shPTiqJns9uHkx9H4IblaJTVVVTK9VttV3iSE8usq2CJjVoqNtKiqiSPAcgEbohCigDQ52BjUKsYfdD35JUUlWjA26F0EDW7nPXC7WQdHFuoSFQh33Hwpn7WXYHrruaqKsp1MYetiEKKBJLs5ScIpe1tCp9OAe9qBgqEfXDHjPU+0Hhm7dwM/NbgAA7mMBvSXoujOLJtjaqaEDZkAPmxAFtAvcWQoOAA1ZgaL2bjc6X4beUHtacknFvX3ovfo5U6Qtg6Jfu7aGTILDrXu21giPYXPoujOrE5KigBl8D4yEZ+hpn46LYo/3BQ+SXFrdja6V4GIEyXjMo7Cox10ulvP89NQa7j043DedFtuNrruasvrouJFMmyUXnX1tVkMHvJkq0LsM3c+HXu/x5lyA29kk9kFzLvp5LxbrOD9fYPp5C9F1Gvon7p/AwZF0W8pqraBtMTcjuRhDLhw6ep0ODu7R4Jb2GBwMaAy9H4Jbpd5fhUX0PH/x8goUFSygtxBdF9CPjmVxdGzrs0R3CkI8hgQf25Qdy1966G2GzsUIEnzMu7CoR2UmCmsxmaqqfeFyoef5C5eWECPAvQeH2nxE/YPePrMiRDrB4cBwCrFNaIN+TLUfRnR5VclKcm835wL0Dpu6VbWhqFDV3p5WBJgBfWatiuN7BoxOkwzRo+sYeqfgVz96HCUfC6IfqIZe9mCqQO8mRQGqJbs3sl5eM6BvZPp50g8bN2ASFwC4/xBj560EC+hbxLHx3Kafk7HYuawwLvQeDm6pBIeqZG5kqqr2hZ6cTvBYr2hjCvthQDQAJOMxEAKoKnDi0Ei7D6ev0NtnVoehqW2xhy90p+TS0L34vZoIpkgnzOpgk6H3tm2REIK0blpgCdHWgjH0FsK3Lzhlbr3M0OOcq6cJ0NsyE2BvJdsvkgugTanKCPymKqkZtg8W0FsIWhTlq6H38IXuHEtG19zrwS1tGb9Xb2hfe11yAYCxnIBj41kQ0tt3YJ0GFtBbCIGPIUbcBTb9oKFr81Qrxve9Xh1LkU5wKIsNw7II9P4mBgB/9rMPGAVGDK0DC+gtBCHEcwxdP7hcUgn3WDKgtzcxQHM2KaqWEBX75K4EAPaEnBHAsLPo/TOrw+A1hq4fmFs6wRl+bKD3i6koaHKwKspY1SWnfpBcGNoDxtBbjIzA2/pjA5bg1sNsNeVwufTDXQlgerI/8ccv4b3FEggBG/bAEBlYQG8xUnHO3Re8Hxh6nIfYUNCQFfBczOJy6e2k2ZGxDLgYwUCSx6/98K144o49ODKaafdhMfQoWEBvMTKCewydyVZ7N7gZlk1JxgAX6wvvPQA8cHgEF//tD7P2sQwtQW9fTR2ItMeg6H5g6M4WulIfeO8pWDBnaBV6/2rqMGQEd5OqfrDwOQcm07xBrzN0BoZWgl1NLUYq7t2kCujxpGicdprUqyb1HvC9vIkxMLQa7GpqMTIC51kpysfIplrxdhvSDslFbPS+s4eBodVgV1OLkU7wnt0We1k/B9x9bMzS/97dxBgYWo3ejiIdiEyCgygrRkAD+mNyT8oR0PulORcDQyvBrqYWwxnYgP6YM0kLbGhP9H5pzsXA0Epsy4dOCLkGoAhABtBQVfXEThxUL4N2XKyIDQymtNFcYkPteS3ZT3JhDJ2BYeewE4VFj6uqurwDr9MX8OqJ3g8M3elDrzPJhYFhx8GuphYj7TGGTmooPV0lCphNqpw+9F6/M2FgaCW2ezWpAJ4ihJwmhHxuJw6o15FJuAdF9wND57kYElzMw+XS2+tmYGgltiu5PKyq6g1CyG4A3yWEnFdV9XnrA/RA/zkAGB8fRz6f39IfKpVKW35uJ+HKuhbQTp1+A7Xr2tu/sFRFrQHP9fXKugEgHlNw6eoU8vl5XLosggB44fnnXI/rpTVvBv247n5cMxDdurcV0FVVvaF/XSSE/FcADwJ43vGYJwE8CQAnTpxQJycnt/S38vk8tvrcTsL+hSLw8vO46fjtmLxrHwDgP154CVkAk5Pvdz2+V9YNAIMvPY3hsVFMTt6NlyrvInH9mufaemnNm0E/rrsf1wxEt+4t3+8SQjKEkBz9P4CPAji3UwfWqzBsi3V7b/B+kB4yAo/VsjbkoR9kJgaGVmM7V9Q4gO8TQt4E8AqAb6qq+u2dOazeRSbhHhQtNpS+SA4+fPMoXri0hJVSXdvE+mDNDAytxJYlF1VVrwC4ewePpS+QFty2xX6oFAWAT548iC+9eA1/eXoGYqM/1szA0EqwK6rFSHAxcDFi64neD71cAODYeA4nDg3ja69c75s1MzC0EuyKajEIIUgn7FOLJFntG7b6yZMHcW2lghcvr/S8956BodXojyjSYcgkeKNiEtCqJvuFrf7I+/ZiMBXHYrHeN5sYA0OrwK6oNiDt6ImuJQj7g60m4xz+wX37AQBCn2xiDAytArui2oB0wj6Grt/05E8+eBAA6+PCwLDT2InmXAybRDrBo1y3M/R+Cm63jOfw2LExDKXj7T4UBoaeAgvobUAmwWFFL7BRFBUNRe0rhg4Af/KZE+BIf8hMDAytQn9FkQ5BWjAZutinfcHjXKynZ6gyMLQD/RVFOgTpuKmh04DOEoQMDAzbBYsibUBG4NlsTQYGhh0HiyJtgOZyYbM1GRgYdhYsirQB6QQHSVYhNhTG0BkYGHYMLIq0AXQMXVWUGUNnYGDYMbAo0gZkBHMMHR2W3C+VogwMDNGB+dDbAMrQv/j9qzg2ngPAGDoDA8P2wQJ6G3Di8DAePDKCP/3/27u/0CrrOI7j7w+zln+oNCvWprlgVBbUwkIrIjJILVp3LRC86KKLIIsgFK+6j6iLCsL+SIUSJjW8iGIFQReW/SFmc2mtdLncJMrqQo2+XTy/4DA8q7adPTu/5/OCw87z2xnn++GcfTjn92ycj4eJKNa8h25m0+VCL0HbBfN586E1nPj9FP2Dxzlw7CTdyxeXPZaZNTkXeomWLmrl/huXlz2GmWXC7/PNzDLhQjczy4QL3cwsEy50M7NMuNDNzDLhQjczy4QL3cwsEy50M7NMKP753/PZuDNpHPhhij++FDgxg+M0iyrmrmJmqGbuKmaG/5/78oi4+N9uNKuFPh2S9kfEqrLnmG1VzF3FzFDN3FXMDI3L7S0XM7NMuNDNzDLRTIX+YtkDlKSKuauYGaqZu4qZoUG5m2YP3czMJtdMr9DNzGwSTVHoktZJGpJ0WNKWsudpBEnLJH0oaVDSAUmb0/oSSe9LOpS+ZvdJGJJaJH0haW86rkLmCyXtlnQwPeZrcs8t6bH03B6QtFPSeTlmlvSypDFJAzVrdXNK2pq6bUjSXdO57zlf6JJagOeA9cBK4AFJK8udqiH+BB6PiKuB1cDDKecWoD8iuoD+dJybzcBgzXEVMj8LvBsRVwHXUeTPNrekduARYFVEXAu0AL3kmflVYN2EtbPmTL/jvcA16WeeT503JXO+0IGbgMMR8V1EnAZ2AT0lzzTjImI0Ij5P13+j+AVvp8i6I91sB3BfORM2hqQO4G5ge81y7pnPB24DXgKIiNMR8QuZ56b4hLT5kuYBC4BjZJg5Ij4Cfp6wXC9nD7ArIk5FxDBwmKLzpqQZCr0dOFpzPJLWsiVpBdAN7AMujYhRKEofuKS8yRriGeAJ4K+atdwzXwGMA6+krabtkhaSce6I+BF4CjgCjAK/RsR7ZJx5gno5Z7TfmqHQdZa1bP80R9Ii4C3g0Yg4WfY8jSTpHmAsIj4re5ZZNg+4AXghIrqBP8hjq6GutGfcA3QClwELJW0sd6o5YUb7rRkKfQRYVnPcQfFWLTuSzqEo8zciYk9aPi6pLX2/DRgra74GuAW4V9L3FFtpd0h6nbwzQ/GcHomIfel4N0XB55z7TmA4IsYj4gywB7iZvDPXqpdzRvutGQr9U6BLUqekcylOIPSVPNOMkySKPdXBiHi65lt9wKZ0fRPwzmzP1igRsTUiOiJiBcXj+kFEbCTjzAAR8RNwVNKVaWkt8DV55z4CrJa0ID3X11KcJ8o5c616OfuAXkmtkjqBLuCTKd9LRMz5C7AB+Ab4FthW9jwNyngrxVutr4Av02UDcBHFWfFD6euSsmdtUP7bgb3pevaZgeuB/enxfhtYnHtu4EngIDAAvAa05pgZ2ElxnuAMxSvwByfLCWxL3TYErJ/Offs/Rc3MMtEMWy5mZvYfuNDNzDLhQjczy4QL3cwsEy50M7NMuNDNzDLhQjczy4QL3cwsE38Dnih2IZMSFoQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "ax.plot(x);\n", + "ax.grid(True);" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAADDpJREFUeJzt3VGIXPUZhvH3rbEQshKVNEOa2m5bgigujc1QBEuZRZTUXEQvhEopkQrrhbYWchO8UShCCo1elUKKIbmoLkK1BiNVCW7TQindFXEjQSKytYkhQdTUlUBZ/XoxJ7AmWefszNk5M1+eH4SdOXt2zuff2cfx7JyNI0IAgOH3lboHAABUg6ADQBIEHQCSIOgAkARBB4AkCDoAJEHQASAJgg4ASRB0AEhiVT8Ptm7duhgdHe3nISv16aefas2aNXWPMfBYp85Yo3JYp7aZmZkPIuJrnfbra9BHR0c1PT3dz0NWampqSq1Wq+4xBh7r1BlrVA7r1Gb732X245QLACRB0AEgCYIOAEkQdABIgqADQBIEHQCSIOgAkARBB4AkCDoAJNHXK0UBXGx016Fajju3e1stx8XK4RU6ACRB0AEgCYIOAEkQdABIgqADQBIEHQCSIOgAkARBB4AkCDoAJEHQASAJgg4ASRB0AEiCoANAEgQdAJLoGHTb19l+zfYx22/ZfrjYfq3tV20fLz5es/LjAgCWUuYV+oKknRFxg6RbJD1o+0ZJuyQdjohNkg4X9wEANekY9Ig4FRGvF7c/kXRM0kZJ2yUdKHY7IOmulRoSANDZss6h2x6VdLOkf0pqRMQpqR19SeurHg4AUJ4jotyO9oikv0p6PCKes/1xRFy96PMfRcRF59FtT0iakKRGo7FlcnKymslrMD8/r5GRkbrHGHjDuE6zJ8/29XiN1dLpc3095EXGNq6td4AShvG5tBLGx8dnIqLZab9SQbd9paQXJb0cEU8U296W1IqIU7Y3SJqKiOu/7HGazWZMT0+X+gcYRFNTU2q1WnWPMfCGcZ36/fd67hxb0J7Zev9K32H4O0WH8bm0EmyXCnqZd7lY0lOSjp2PeeGgpB3F7R2SXuhmUABANcq8RLhV0s8kzdp+o9j2iKTdkp61fb+k9yTdszIjAgDK6Bj0iPi7JC/x6duqHQcA0C2uFAWAJAg6ACRB0AEgCYIOAEkQdABIgqADQBIEHQCSIOgAkARBB4AkCDoAJEHQASAJgg4ASRB0AEiCoANAEgQdAJIg6ACQBEEHgCQIOgAkQdABIAmCDgBJEHQASIKgA0ASBB0AkiDoAJAEQQeAJAg6ACRB0AEgCYIOAEkQdABIgqADQBIEHQCSIOgAkMSqugcAFhvddajuEYChxSt0AEiCoANAEgQdAJIg6ACQBEEHgCQ6Bt32PttnbB9dtO0x2ydtv1H8uXNlxwQAdFLmFfp+SVsvsf3JiNhc/Hmp2rEAAMvVMegRcUTSh32YBQDQg17OoT9k+83ilMw1lU0EAOiKI6LzTvaopBcj4qbifkPSB5JC0q8lbYiIny/xtROSJiSp0WhsmZycrGTwOszPz2tkZKTuMQZeL+s0e/JsxdMMpsZq6fS5emcY27i23gFK4HuubXx8fCYimp326yroZT93oWazGdPT0x2PN6impqbUarXqHmPg9bJOl8ul/zvHFrRntt7fvDG3e1utxy+D77k226WC3tUpF9sbFt29W9LRpfYFAPRHx5cItp+R1JK0zvYJSY9KatnerPYplzlJD6zgjACAEjoGPSLuvcTmp1ZgFgBAD7hSFACSIOgAkARBB4AkCDoAJEHQASAJgg4ASRB0AEiCoANAEgQdAJIg6ACQBEEHgCQIOgAkQdABIAmCDgBJEHQASIKgA0ASBB0AkiDoAJAEQQeAJAg6ACRB0AEgCYIOAEkQdABIgqADQBIEHQCSIOgAkARBB4AkCDoAJEHQASAJgg4ASRB0AEiCoANAEgQdAJIg6ACQBEEHgCQIOgAkQdABIAmCDgBJdAy67X22z9g+umjbtbZftX28+HjNyo4JAOikzCv0/ZK2XrBtl6TDEbFJ0uHiPgCgRh2DHhFHJH14webtkg4Utw9IuqviuQAAy9TtOfRGRJySpOLj+upGAgB0wxHReSd7VNKLEXFTcf/jiLh60ec/iohLnke3PSFpQpIajcaWycnJCsaux/z8vEZGRuoeY+D1sk6zJ89WPM1gaqyWTp+rd4axjWvrHaAEvufaxsfHZyKi2Wm/VV0+/mnbGyLilO0Nks4stWNE7JW0V5KazWa0Wq0uD1m/qakpDfP8/dLLOt2361C1wwyonWML2jPb7bdfNeZ+2qr1+GXwPbc83Z5yOShpR3F7h6QXqhkHANCtMm9bfEbSPyRdb/uE7fsl7ZZ0u+3jkm4v7gMAatTx//ki4t4lPnVbxbMAAHrAlaIAkARBB4AkCDoAJEHQASCJet8Ii4E02uN7wXeOLVw27ycfZr3+e+7F3O5ttR07M16hA0ASBB0AkiDoAJAEQQeAJAg6ACRB0AEgCYIOAEkQdABIgguLAPRd2Yuaqr5ILfsFTbxCB4AkCDoAJEHQASAJgg4ASRB0AEiCoANAEgQdAJIg6ACQBEEHgCQIOgAkQdABIAmCDgBJEHQASIKgA0ASBB0AkiDoAJAEQQeAJAg6ACRB0AEgCYIOAEkQdABIgqADQBIEHQCSIOgAkMSqXr7Y9pykTyR9JmkhIppVDAUAWL6egl4Yj4gPKngcAEAPOOUCAEn0GvSQ9IrtGdsTVQwEAOiOI6L7L7a/HhHv214v6VVJv4iIIxfsMyFpQpIajcaWycnJXuat1fz8vEZGRvp2vNmTZ/t2rCo1Vkunz9U9xWBjjcqpep3GNq6t7sH6aHx8fKbMzyh7CvoXHsh+TNJ8RPx2qX2azWZMT09Xcrw6TE1NqdVq9e14o7sO9e1YVdo5tqA9s1X8eCYv1qicqtdpbve2yh6rn2yXCnrXp1xsr7F91fnbku6QdLTbxwMA9KaX//Q1JD1v+/zjPB0Rf6lkKgDAsnUd9Ih4V9L3KpwFANAD3rYIAEkQdABIgqADQBIEHQCSGJo3wtb5nuxhfe8qgC/K3hFeoQNAEgQdAJIg6ACQBEEHgCQIOgAkQdABIAmCDgBJEHQASIKgA0ASQ3OlaJ3OX122c2xB9w3p3yIEID9eoQNAEgQdAJIg6ACQBEEHgCQIOgAkQdABIAmCDgBJEHQASIKgA0ASBB0AkiDoAJAEQQeAJAg6ACRB0AEgCYIOAEkQdABIgqADQBIEHQCSIOgAkARBB4AkCDoAJEHQASAJgg4ASfQUdNtbbb9t+x3bu6oaCgCwfF0H3fYVkn4n6ceSbpR0r+0bqxoMALA8vbxC/4GkdyLi3Yj4n6RJSdurGQsAsFy9BH2jpP8sun+i2AYAqMGqHr7Wl9gWF+1kT0iaKO7O2367h2PW6pfSOkkf1D3HoGOdOmONysm0Tv5NT1/+rTI79RL0E5KuW3T/G5Lev3CniNgraW8PxxkYtqcjoln3HIOOdeqMNSqHdVqeXk65/EvSJtvftv1VST+RdLCasQAAy9X1K/SIWLD9kKSXJV0haV9EvFXZZACAZenllIsi4iVJL1U0yzBIceqoD1inzlijclinZXDERT/HBAAMIS79B4AkCHoJtudsz9p+w/Z03fMMCtv7bJ+xfXTRtmttv2r7ePHxmjpnHARLrNNjtk8Wz6k3bN9Z54yDwPZ1tl+zfcz2W7YfLrbznCqJoJc3HhGbeQvVF+yXtPWCbbskHY6ITZIOF/cvd/t18TpJ0pPFc2pz8fOoy92CpJ0RcYOkWyQ9WPw6EZ5TJRF0dC0ijkj68ILN2yUdKG4fkHRXX4caQEusEy4QEaci4vXi9ieSjql99TnPqZIIejkh6RXbM8WVr1haIyJOSe1vUEnra55nkD1k+83ilAynERaxPSrpZkn/FM+p0gh6ObdGxPfV/s2SD9r+Ud0DYej9XtJ3JW2WdErSnnrHGRy2RyT9SdKvIuK/dc8zTAh6CRHxfvHxjKTn1f5Nk7i007Y3SFLx8UzN8wykiDgdEZ9FxOeS/iCeU5Ik21eqHfM/RsRzxWaeUyUR9A5sr7F91fnbku6QdPTLv+qydlDSjuL2Dkkv1DjLwDofqMLd4jkl25b0lKRjEfHEok/xnCqJC4s6sP0dtV+VS+0ra5+OiMdrHGlg2H5GUkvt34h3WtKjkv4s6VlJ35T0nqR7IuKy/oHgEuvUUvt0S0iak/TA+fPElyvbP5T0N0mzkj4vNj+i9nl0nlMlEHQASIJTLgCQBEEHgCQIOgAkQdABIAmCDgBJEHQASIKgA0ASBB0Akvg/KY/5kVk2LV4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "ax.hist(x);\n", + "ax.grid(True);" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], "metadata": { "kernelspec": { "display_name": "Python 3", @@ -16,10 +101,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.3" + "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 } - diff --git a/module3/exo1/analyse-syndrome-grippal.ipynb b/module3/exo1/analyse-syndrome-grippal.ipynb index 59d72b5..8945ab9 100644 --- a/module3/exo1/analyse-syndrome-grippal.ipynb +++ b/module3/exo1/analyse-syndrome-grippal.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -28,10 +28,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 2, + "metadata": {}, "outputs": [], "source": [ "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" @@ -61,9 +59,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202247310242590897.0113953.0154137.0171.0FRFrance
120224636788860187.075589.010290.0114.0FRFrance
220224534530638909.051703.06858.078.0FRFrance
320224433471328880.040546.05243.061.0FRFrance
420224334476936884.052654.06856.080.0FRFrance
520224234746240773.054151.07262.082.0FRFrance
620224134858342388.054778.07364.082.0FRFrance
720224034192736115.047739.06354.072.0FRFrance
820223933990234168.045636.06051.069.0FRFrance
920223832878123733.033829.04335.051.0FRFrance
1020223732139517076.025714.03225.039.0FRFrance
1120223631412010487.017753.02116.026.0FRFrance
12202235392836485.012081.01410.018.0FRFrance
13202234374984731.010265.0117.015.0FRFrance
14202233375864442.010730.0116.016.0FRFrance
152022323122227749.016695.01811.025.0FRFrance
162022313132578905.017609.02013.027.0FRFrance
1720223031500610738.019274.02317.029.0FRFrance
1820222932080115829.025773.03124.038.0FRFrance
1920222832338717970.028804.03527.043.0FRFrance
2020222733601529709.042321.05444.064.0FRFrance
2120222632942124314.034528.04436.052.0FRFrance
2220222532288718582.027192.03529.041.0FRFrance
2320222431929415406.023182.02923.035.0FRFrance
2420222331715913450.020868.02620.032.0FRFrance
2520222231423910930.017548.02116.026.0FRFrance
262022213118048686.014922.01813.023.0FRFrance
2720222031735513600.021110.02620.032.0FRFrance
2820221931717813462.020894.02620.032.0FRFrance
2920221832756922584.032554.04234.050.0FRFrance
.................................
195719852132609619621.032571.04735.059.0FRFrance
195819852032789620885.034907.05138.064.0FRFrance
195919851934315432821.053487.07859.097.0FRFrance
196019851834055529935.051175.07455.093.0FRFrance
196119851733405324366.043740.06244.080.0FRFrance
196219851635036236451.064273.09166.0116.0FRFrance
196319851536388145538.082224.011683.0149.0FRFrance
19641985143134545114400.0154690.0244207.0281.0FRFrance
19651985133197206176080.0218332.0357319.0395.0FRFrance
19661985123245240223304.0267176.0445405.0485.0FRFrance
19671985113276205252399.0300011.0501458.0544.0FRFrance
19681985103353231326279.0380183.0640591.0689.0FRFrance
19691985093369895341109.0398681.0670618.0722.0FRFrance
19701985083389886359529.0420243.0707652.0762.0FRFrance
19711985073471852432599.0511105.0855784.0926.0FRFrance
19721985063565825518011.0613639.01026939.01113.0FRFrance
19731985053637302592795.0681809.011551074.01236.0FRFrance
19741985043424937390794.0459080.0770708.0832.0FRFrance
19751985033213901174689.0253113.0388317.0459.0FRFrance
197619850239758680949.0114223.0177147.0207.0FRFrance
197719850138548965918.0105060.0155120.0190.0FRFrance
197819845238483060602.0109058.0154110.0198.0FRFrance
1979198451310172680242.0123210.0185146.0224.0FRFrance
19801984503123680101401.0145959.0225184.0266.0FRFrance
1981198449310107381684.0120462.0184149.0219.0FRFrance
198219844837862060634.096606.0143110.0176.0FRFrance
198319844737202954274.089784.013199.0163.0FRFrance
198419844638733067686.0106974.0159123.0195.0FRFrance
19851984453135223101414.0169032.0246184.0308.0FRFrance
198619844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1987 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202247 3 102425 90897.0 113953.0 154 137.0 \n", + "1 202246 3 67888 60187.0 75589.0 102 90.0 \n", + "2 202245 3 45306 38909.0 51703.0 68 58.0 \n", + "3 202244 3 34713 28880.0 40546.0 52 43.0 \n", + "4 202243 3 44769 36884.0 52654.0 68 56.0 \n", + "5 202242 3 47462 40773.0 54151.0 72 62.0 \n", + "6 202241 3 48583 42388.0 54778.0 73 64.0 \n", + "7 202240 3 41927 36115.0 47739.0 63 54.0 \n", + "8 202239 3 39902 34168.0 45636.0 60 51.0 \n", + "9 202238 3 28781 23733.0 33829.0 43 35.0 \n", + "10 202237 3 21395 17076.0 25714.0 32 25.0 \n", + "11 202236 3 14120 10487.0 17753.0 21 16.0 \n", + "12 202235 3 9283 6485.0 12081.0 14 10.0 \n", + "13 202234 3 7498 4731.0 10265.0 11 7.0 \n", + "14 202233 3 7586 4442.0 10730.0 11 6.0 \n", + "15 202232 3 12222 7749.0 16695.0 18 11.0 \n", + "16 202231 3 13257 8905.0 17609.0 20 13.0 \n", + "17 202230 3 15006 10738.0 19274.0 23 17.0 \n", + "18 202229 3 20801 15829.0 25773.0 31 24.0 \n", + "19 202228 3 23387 17970.0 28804.0 35 27.0 \n", + "20 202227 3 36015 29709.0 42321.0 54 44.0 \n", + "21 202226 3 29421 24314.0 34528.0 44 36.0 \n", + "22 202225 3 22887 18582.0 27192.0 35 29.0 \n", + "23 202224 3 19294 15406.0 23182.0 29 23.0 \n", + "24 202223 3 17159 13450.0 20868.0 26 20.0 \n", + "25 202222 3 14239 10930.0 17548.0 21 16.0 \n", + "26 202221 3 11804 8686.0 14922.0 18 13.0 \n", + "27 202220 3 17355 13600.0 21110.0 26 20.0 \n", + "28 202219 3 17178 13462.0 20894.0 26 20.0 \n", + "29 202218 3 27569 22584.0 32554.0 42 34.0 \n", + "... ... ... ... ... ... ... ... \n", + "1957 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1958 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1959 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1960 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1961 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1962 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1963 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1964 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1965 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1966 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1967 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1968 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1969 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1970 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1971 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1972 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1973 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1974 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1975 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1976 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1977 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1978 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1979 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1980 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1981 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1982 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1983 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1984 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1985 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1986 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 171.0 FR France \n", + "1 114.0 FR France \n", + "2 78.0 FR France \n", + "3 61.0 FR France \n", + "4 80.0 FR France \n", + "5 82.0 FR France \n", + "6 82.0 FR France \n", + "7 72.0 FR France \n", + "8 69.0 FR France \n", + "9 51.0 FR France \n", + "10 39.0 FR France \n", + "11 26.0 FR France \n", + "12 18.0 FR France \n", + "13 15.0 FR France \n", + "14 16.0 FR France \n", + "15 25.0 FR France \n", + "16 27.0 FR France \n", + "17 29.0 FR France \n", + "18 38.0 FR France \n", + "19 43.0 FR France \n", + "20 64.0 FR France \n", + "21 52.0 FR France \n", + "22 41.0 FR France \n", + "23 35.0 FR France \n", + "24 32.0 FR France \n", + "25 26.0 FR France \n", + "26 23.0 FR France \n", + "27 32.0 FR France \n", + "28 32.0 FR France \n", + "29 50.0 FR France \n", + "... ... ... ... \n", + "1957 59.0 FR France \n", + "1958 64.0 FR France \n", + "1959 97.0 FR France \n", + "1960 93.0 FR France \n", + "1961 80.0 FR France \n", + "1962 116.0 FR France \n", + "1963 149.0 FR France \n", + "1964 281.0 FR France \n", + "1965 395.0 FR France \n", + "1966 485.0 FR France \n", + "1967 544.0 FR France \n", + "1968 689.0 FR France \n", + "1969 722.0 FR France \n", + "1970 762.0 FR France \n", + "1971 926.0 FR France \n", + "1972 1113.0 FR France \n", + "1973 1236.0 FR France \n", + "1974 832.0 FR France \n", + "1975 459.0 FR France \n", + "1976 207.0 FR France \n", + "1977 190.0 FR France \n", + "1978 198.0 FR France \n", + "1979 224.0 FR France \n", + "1980 266.0 FR France \n", + "1981 219.0 FR France \n", + "1982 176.0 FR France \n", + "1983 163.0 FR France \n", + "1984 195.0 FR France \n", + "1985 308.0 FR France \n", + "1986 213.0 FR France \n", + "\n", + "[1987 rows x 10 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data = pd.read_csv(data_url, skiprows=1)\n", "raw_data" @@ -78,9 +1043,73 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
175019891930NaNNaN0NaNNaNFRFrance
\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", + "1750 198919 3 0 NaN NaN 0 NaN NaN \n", + "\n", + " geo_insee geo_name \n", + "1750 FR France " + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] @@ -94,9 +1123,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202247310242590897.0113953.0154137.0171.0FRFrance
120224636788860187.075589.010290.0114.0FRFrance
220224534530638909.051703.06858.078.0FRFrance
320224433471328880.040546.05243.061.0FRFrance
420224334476936884.052654.06856.080.0FRFrance
520224234746240773.054151.07262.082.0FRFrance
620224134858342388.054778.07364.082.0FRFrance
720224034192736115.047739.06354.072.0FRFrance
820223933990234168.045636.06051.069.0FRFrance
920223832878123733.033829.04335.051.0FRFrance
1020223732139517076.025714.03225.039.0FRFrance
1120223631412010487.017753.02116.026.0FRFrance
12202235392836485.012081.01410.018.0FRFrance
13202234374984731.010265.0117.015.0FRFrance
14202233375864442.010730.0116.016.0FRFrance
152022323122227749.016695.01811.025.0FRFrance
162022313132578905.017609.02013.027.0FRFrance
1720223031500610738.019274.02317.029.0FRFrance
1820222932080115829.025773.03124.038.0FRFrance
1920222832338717970.028804.03527.043.0FRFrance
2020222733601529709.042321.05444.064.0FRFrance
2120222632942124314.034528.04436.052.0FRFrance
2220222532288718582.027192.03529.041.0FRFrance
2320222431929415406.023182.02923.035.0FRFrance
2420222331715913450.020868.02620.032.0FRFrance
2520222231423910930.017548.02116.026.0FRFrance
262022213118048686.014922.01813.023.0FRFrance
2720222031735513600.021110.02620.032.0FRFrance
2820221931717813462.020894.02620.032.0FRFrance
2920221832756922584.032554.04234.050.0FRFrance
.................................
195719852132609619621.032571.04735.059.0FRFrance
195819852032789620885.034907.05138.064.0FRFrance
195919851934315432821.053487.07859.097.0FRFrance
196019851834055529935.051175.07455.093.0FRFrance
196119851733405324366.043740.06244.080.0FRFrance
196219851635036236451.064273.09166.0116.0FRFrance
196319851536388145538.082224.011683.0149.0FRFrance
19641985143134545114400.0154690.0244207.0281.0FRFrance
19651985133197206176080.0218332.0357319.0395.0FRFrance
19661985123245240223304.0267176.0445405.0485.0FRFrance
19671985113276205252399.0300011.0501458.0544.0FRFrance
19681985103353231326279.0380183.0640591.0689.0FRFrance
19691985093369895341109.0398681.0670618.0722.0FRFrance
19701985083389886359529.0420243.0707652.0762.0FRFrance
19711985073471852432599.0511105.0855784.0926.0FRFrance
19721985063565825518011.0613639.01026939.01113.0FRFrance
19731985053637302592795.0681809.011551074.01236.0FRFrance
19741985043424937390794.0459080.0770708.0832.0FRFrance
19751985033213901174689.0253113.0388317.0459.0FRFrance
197619850239758680949.0114223.0177147.0207.0FRFrance
197719850138548965918.0105060.0155120.0190.0FRFrance
197819845238483060602.0109058.0154110.0198.0FRFrance
1979198451310172680242.0123210.0185146.0224.0FRFrance
19801984503123680101401.0145959.0225184.0266.0FRFrance
1981198449310107381684.0120462.0184149.0219.0FRFrance
198219844837862060634.096606.0143110.0176.0FRFrance
198319844737202954274.089784.013199.0163.0FRFrance
198419844638733067686.0106974.0159123.0195.0FRFrance
19851984453135223101414.0169032.0246184.0308.0FRFrance
198619844436842220056.0116788.012537.0213.0FRFrance
\n", + "

1986 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202247 3 102425 90897.0 113953.0 154 137.0 \n", + "1 202246 3 67888 60187.0 75589.0 102 90.0 \n", + "2 202245 3 45306 38909.0 51703.0 68 58.0 \n", + "3 202244 3 34713 28880.0 40546.0 52 43.0 \n", + "4 202243 3 44769 36884.0 52654.0 68 56.0 \n", + "5 202242 3 47462 40773.0 54151.0 72 62.0 \n", + "6 202241 3 48583 42388.0 54778.0 73 64.0 \n", + "7 202240 3 41927 36115.0 47739.0 63 54.0 \n", + "8 202239 3 39902 34168.0 45636.0 60 51.0 \n", + "9 202238 3 28781 23733.0 33829.0 43 35.0 \n", + "10 202237 3 21395 17076.0 25714.0 32 25.0 \n", + "11 202236 3 14120 10487.0 17753.0 21 16.0 \n", + "12 202235 3 9283 6485.0 12081.0 14 10.0 \n", + "13 202234 3 7498 4731.0 10265.0 11 7.0 \n", + "14 202233 3 7586 4442.0 10730.0 11 6.0 \n", + "15 202232 3 12222 7749.0 16695.0 18 11.0 \n", + "16 202231 3 13257 8905.0 17609.0 20 13.0 \n", + "17 202230 3 15006 10738.0 19274.0 23 17.0 \n", + "18 202229 3 20801 15829.0 25773.0 31 24.0 \n", + "19 202228 3 23387 17970.0 28804.0 35 27.0 \n", + "20 202227 3 36015 29709.0 42321.0 54 44.0 \n", + "21 202226 3 29421 24314.0 34528.0 44 36.0 \n", + "22 202225 3 22887 18582.0 27192.0 35 29.0 \n", + "23 202224 3 19294 15406.0 23182.0 29 23.0 \n", + "24 202223 3 17159 13450.0 20868.0 26 20.0 \n", + "25 202222 3 14239 10930.0 17548.0 21 16.0 \n", + "26 202221 3 11804 8686.0 14922.0 18 13.0 \n", + "27 202220 3 17355 13600.0 21110.0 26 20.0 \n", + "28 202219 3 17178 13462.0 20894.0 26 20.0 \n", + "29 202218 3 27569 22584.0 32554.0 42 34.0 \n", + "... ... ... ... ... ... ... ... \n", + "1957 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "1958 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "1959 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "1960 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "1961 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "1962 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "1963 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "1964 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "1965 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "1966 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "1967 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "1968 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "1969 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "1970 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "1971 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "1972 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "1973 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "1974 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "1975 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "1976 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "1977 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "1978 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "1979 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "1980 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "1981 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "1982 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "1983 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "1984 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "1985 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "1986 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 171.0 FR France \n", + "1 114.0 FR France \n", + "2 78.0 FR France \n", + "3 61.0 FR France \n", + "4 80.0 FR France \n", + "5 82.0 FR France \n", + "6 82.0 FR France \n", + "7 72.0 FR France \n", + "8 69.0 FR France \n", + "9 51.0 FR France \n", + "10 39.0 FR France \n", + "11 26.0 FR France \n", + "12 18.0 FR France \n", + "13 15.0 FR France \n", + "14 16.0 FR France \n", + "15 25.0 FR France \n", + "16 27.0 FR France \n", + "17 29.0 FR France \n", + "18 38.0 FR France \n", + "19 43.0 FR France \n", + "20 64.0 FR France \n", + "21 52.0 FR France \n", + "22 41.0 FR France \n", + "23 35.0 FR France \n", + "24 32.0 FR France \n", + "25 26.0 FR France \n", + "26 23.0 FR France \n", + "27 32.0 FR France \n", + "28 32.0 FR France \n", + "29 50.0 FR France \n", + "... ... ... ... \n", + "1957 59.0 FR France \n", + "1958 64.0 FR France \n", + "1959 97.0 FR France \n", + "1960 93.0 FR France \n", + "1961 80.0 FR France \n", + "1962 116.0 FR France \n", + "1963 149.0 FR France \n", + "1964 281.0 FR France \n", + "1965 395.0 FR France \n", + "1966 485.0 FR France \n", + "1967 544.0 FR France \n", + "1968 689.0 FR France \n", + "1969 722.0 FR France \n", + "1970 762.0 FR France \n", + "1971 926.0 FR France \n", + "1972 1113.0 FR France \n", + "1973 1236.0 FR France \n", + "1974 832.0 FR France \n", + "1975 459.0 FR France \n", + "1976 207.0 FR France \n", + "1977 190.0 FR France \n", + "1978 198.0 FR France \n", + "1979 224.0 FR France \n", + "1980 266.0 FR France \n", + "1981 219.0 FR France \n", + "1982 176.0 FR France \n", + "1983 163.0 FR France \n", + "1984 195.0 FR France \n", + "1985 308.0 FR France \n", + "1986 213.0 FR France \n", + "\n", + "[1986 rows x 10 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "data = raw_data.dropna().copy()\n", "data" @@ -122,7 +2118,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -152,10 +2148,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 7, + "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" @@ -179,9 +2173,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" + ] + } + ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", @@ -199,9 +2201,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEKCAYAAAA1qaOTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztnXmcHMV593/PnHtIu1qdCElICMSNMUhcvjiNsB0bEkMsX8gOCbFDHOI4TsBH8ItNAo4NDrbBIQYbsLmMzWFzitvYQkIChG4kJHRLu9Lq2EO7O0e9f3RVT3VP9TEzPcdKz/fzkaa3u+uYmup66jmqmoQQYBiGYZhKidW7AgzDMMyBAQsUhmEYJhJYoDAMwzCRwAKFYRiGiQQWKAzDMEwksEBhGIZhIoEFCsMwDBMJLFAYhmGYSGCBwjAMw0RCot4VqCVjx44V06ZNq3c1GIZhhhWLFy/eKYQYF3TfQSVQpk2bhkWLFtW7GgzDMMMKItoQ5j42eTEMwzCRwAKFYRiGiQQWKAzDMEwksEBhGIZhIoEFCsMwDBMJgQKFiO4kok4iWqadG01E84hojfzs0K5dQ0RriWg1Ec3Wzs8koqXy2i1ERPJ8mogekOcXENE0Lc1cWcYaIpqrnT9c3rtGpk1V3hQMwzBMJYTRUH4J4ELXuasBPCeEmAHgOfk3iOg4AHMAHC/T3EpEcZnmNgBXAJgh/6k8LwewWwhxJICbAdwo8xoN4FoApwM4DcC1muC6EcDNsvzdMg+GYRimjgQKFCHEywC6XacvAnCXPL4LwMXa+fuFEINCiPUA1gI4jYgmAmgTQswX1juH73alUXk9BOA8qb3MBjBPCNEthNgNYB6AC+W1c+W97vIPWJZs2oOlm/fWuxoMwzCelLuwcYIQYhsACCG2EdF4eX4SgFe1+zbLcxl57D6v0mySeWWJaC+AMfp5V5oxAPYIIbKGvA5YLvrpnwAA797wsTrXhGEYxkzUTnkynBM+58tJ45dXcYWIriCiRUS0qKury+s2hmEYpkLKFSg7pBkL8rNTnt8MYIp232QAW+X5yYbzjjRElADQDsvE5pXXTgCj5L3uvIoQQtwuhJglhJg1blzgVjQMwzBMmZQrUB4DoKKu5gJ4VDs/R0ZuHQ7L+b5Qmsd6iOgM6QO5zJVG5XUJgOeln+VpABcQUYd0xl8A4Gl57QV5r7t8hmEYpk4E+lCI6D4AZwMYS0SbYUVe3QDgQSK6HMBGAJcCgBBiORE9CGAFgCyAK4UQOZnVl2FFjDUDeFL+A4A7ANxDRGthaSZzZF7dRPRdAK/J+64TQqjggH8HcD8RfQ/AGzIPhmEYpo6QNeE/OJg1a5YYrrsNT7v6cQDslGcYpvYQ0WIhxKyg+3ilPMMwDBMJLFAYhmGYSGCBwjAMw0QCCxSGYRgmEligMAzDMJHAAoVhGIaJBBYoDMMwTCSwQGEYhmEigQUKwzAMEwksUBiGYZhIYIHCMAzDRAILFIZhGCYSWKAwDMMwkcAChWEYhokEFihMJBz5jSfwzYeX1rsaDMPUERYoTCRk8wK/XrCx3tVgGKaOsEBhGIZhIoEFCsMwDBMJLFAYhmGYSGCBwjAMw0QCCxSGYRgmEligMAzDMJHAAoVhGIaJBBYoDMMwTCSwQGEYhmEigQUKwzAMEwksUBiGYZhIYIHCMAzDRAILFIZhGCYSWKAcIHz/qVX465/Nr3c1GIY5iKlIoBDRV4loOREtI6L7iKiJiEYT0TwiWiM/O7T7ryGitUS0mohma+dnEtFSee0WIiJ5Pk1ED8jzC4hompZmrixjDRHNreR7HAjc+uI7WPhud72rwTDMQUzZAoWIJgH4JwCzhBAnAIgDmAPgagDPCSFmAHhO/g0iOk5ePx7AhQBuJaK4zO42AFcAmCH/XSjPXw5gtxDiSAA3A7hR5jUawLUATgdwGoBrdcHFMAzD1J5KTV4JAM1ElADQAmArgIsA3CWv3wXgYnl8EYD7hRCDQoj1ANYCOI2IJgJoE0LMF0IIAHe70qi8HgJwntReZgOYJ4ToFkLsBjAPBSHEMAzD1IGyBYoQYguAHwDYCGAbgL1CiGcATBBCbJP3bAMwXiaZBGCTlsVmeW6SPHafd6QRQmQB7AUwxicvhmEYpk5UYvLqgKVBHA7gUACtRPQ5vySGc8LnfLlp3PW8gogWEdGirq4un+oxDMMwlVCJyet8AOuFEF1CiAyA3wF4H4Ad0owF+dkp798MYIqWfjIsE9lmeew+70gjzWrtALp98ipCCHG7EGKWEGLWuHHjyvyqDMMwTBCVCJSNAM4gohbp1zgPwEoAjwFQUVdzATwqjx8DMEdGbh0Oy/m+UJrFeojoDJnPZa40Kq9LADwv/SxPA7iAiDqkpnSBPMcwDMPUiUS5CYUQC4joIQCvA8gCeAPA7QBGAHiQiC6HJXQulfcvJ6IHAayQ918phMjJ7L4M4JcAmgE8Kf8BwB0A7iGitbA0kzkyr24i+i6A1+R91wkhOGaWYRimjpQtUABACHEtrPBdnUFY2orp/usBXG84vwjACYbzA5ACyXDtTgB3llhlhmEYpkrwSnmGYRgmEligMAzDMJHAAoVhGIaJBBYowwArsI1hGKaxYYHCNAT3LtiIG59aVe9qMAxTASxQhgEHg4LyjYeX4rYX36l3NRiGqQAWKAzDMEwksEAZBhwECgrDMAcALFCGAeyUZxhmOMAChWEYhokEFijDANZPGIYZDrBAYRiGYSKBBcowgF0oDMMMB1igMBXDQQMMwwAsUIYFgr0oDMMMA1igMBXDCgrDMAALlGFBow/YDV49hmFqBAsUhmEYJhJYoDAVw055hmEAFijDAh6vGYYZDrBAOcCoh7bA8o5hGIAFyrCglLDhemgzrEExDAOwQDng4LGdYZh6wQJlGFCKBlAfkxeLMYZhWKAccNRjaGeTF8MwAAuUYUEp4/WBOrj3Dmaxtz9T72owDOMDC5QSeO3dbryyZmfNyy3FjJU/QCXKrO/Nw0nXPVPvajAM40Oi3hUYTlz6s/kAgHdv+Fjd6iCEABHVrfx6MZDJ17sKDMMEwBrKMKDRTV4HqFLEMEyJsEAZZgQN3vWIuOIoL4ZhABYowwJdiAQN3awtMAxTLyoSKEQ0iogeIqJVRLSSiM4kotFENI+I1sjPDu3+a4hoLRGtJqLZ2vmZRLRUXruFpJOAiNJE9IA8v4CIpmlp5soy1hDR3Eq+x4FEPZzyLMQYhgEq11D+B8BTQohjAJwEYCWAqwE8J4SYAeA5+TeI6DgAcwAcD+BCALcSUVzmcxuAKwDMkP8ulOcvB7BbCHEkgJsB3CjzGg3gWgCnAzgNwLW64Drg0DWUgNGbx3aGYepF2QKFiNoAfAjAHQAghBgSQuwBcBGAu+RtdwG4WB5fBOB+IcSgEGI9gLUATiOiiQDahBDzhTVa3u1Ko/J6CMB5UnuZDWCeEKJbCLEbwDwUhNBBTV2c8rUvkmGYBqQSDWU6gC4AvyCiN4jo50TUCmCCEGIbAMjP8fL+SQA2aek3y3OT5LH7vCONECILYC+AMT55HZDoTu/AwbsuUV4sUhiGqUygJACcAuA2IcTJAPogzVsemBZPCJ/z5aZxFkp0BREtIqJFXV1dPtVrXBxO+QaM8mIYhgEqEyibAWwWQiyQfz8ES8DskGYsyM9O7f4pWvrJALbK85MN5x1piCgBoB1At09eRQghbhdCzBJCzBo3blwZX3N4wSYvhmHqRdkCRQixHcAmIjpanjoPwAoAjwFQUVdzATwqjx8DMEdGbh0Oy/m+UJrFeojoDOkfucyVRuV1CYDnpZ/laQAXEFGHdMZfIM8dkAjHsf/wfaBuvcIwTONT6dYrXwHwayJKAVgH4IuwhNSDRHQ5gI0ALgUAIcRyInoQltDJArhSCJGT+XwZwC8BNAN4Uv4DLIf/PUS0FpZmMkfm1U1E3wXwmrzvOiFEd4Xf5YCAdxtmGKZeVCRQhBBvAphluHSex/3XA7jecH4RgBMM5wcgBZLh2p0A7iylvsMV3ekd6EOpi0SpQ5kMwzQcvFL+AIOd8gcu3/3DCky7+vF6V4NhPGGBMgwoSUTUxSnPQqwW3PHK+npXgWF8YYEyzAgOG6497EOpnD+u6ULPAL9AjBnesEAZBpQyYHOU1/Cjc98APn/HQlx1/5v1rgrDVAQLlGGAc6V8wF5evA5l2KFeHvb2jp4618Sfheu70d03VO9qMA0MC5QyaOStRhq3Zo3Njn0D+OoDb2Igkwu+OWLUCzgbuFtBCIG//t/5+NzPFwTfzBy0sEApg3ytH/xStl6py/b1DTwShuQ/n1iJh9/YgqeWba952ar5GrkdB7OWFrW6wbUopr6wQCmDXM0lSoFGfMFW4w6D4UknrEehHhpKNm8N1o3cjkqgpOLDd8j4y1v/hPff8Hy9q3FAU+lK+YOSWju+G3mgGU7k8wJb9+7H5I6WomvphPVqHjVw1pKsnKA0sIKCwawlaFOJ4StQ3ti4p95VOOAZvr2jjtQzkirILMJvbPTmR8+twQdufAEbd/UXXVMaiho4a0kmZwmxsL9dPUxjgzJwIDmMNRSm+nDvKINam7xKGT+Gy+BeD15623p9wc6+waJrauY9VA8NJWf9aDEyvZWhmHr8xkroJWLh6sgcnLBAKYN87cccm0AfSk1q4S5zeEixrBwUk7Hibq8Gymwd/GOqzJDypD5aaM1LZIYjLFDKIFdzH0opm0OyV94LpQkk4sUjd0KacirRPt/ctAedPQNlpCzNh1KPmBA7Em24/NhMXWCBUgYNbfKqXjWGPcpsY/IDxKWGUslve/FP/4TZN79ccjr1+4b2oZT5K6/f2YcF63aVlZZ7FhMGjvIqg7pub9KA29cPl6EmI22VcYMfIB6RyWt3f+n7cQnXZ+D9ZVbxnB+8CAB494aPlZy2sFamvLKZgwPWUMrAaxa7qbsfP3l+TeRmp1Jya+TFcfUmk1WmpeI2sn0oufpFyYX97Q5WH8qV976O636/ot7VYHxggVIGXgLl8rteww+eeRtb9uyvWtmBe3lVrWSfMhthtAnBfrlo0fTzFUxetY+4UIKkkX0oinr+1I+/tQ13/om38G9kWKCUgdcMsX9IDlgRj0mN/sbG4eKo3W+vgvfRUOowWqsiw5Zcz7VGw2XywNQHFihl4KWh2Jv81XGAHS6Dez1Qa0yMg2LYmN0qIOwor5BO+TqErYsAT8+aHT11WcPDNBYsUMrAa4aoFqZFPYvT8wvKuh5rZIbbrNUoT2peCw07yivc7Y22G8L6nX348M0v4+Zn365dhZiGhAVKGeQ8Bm0lUOq6NQtrKIH4/T71WRhqEbbfNJrJa/V2awfiNcNkJ2IOXKkeLFDKwNPkJT+r+cAHPQwcNhyMqY3q+R2EvzWp+P6q1cSvTO9S1foetcFm1etSYSevZ1DDgQ4LlDLwEhjKDJ+JOPS0FJNXXQRKhIXWYvZoLKLESKsoUYP1cNBQTNTad1ipQODXZFcPFihl4O2Ur99aBsVwN3nV4lk3tZEwHNWKwrYmpd1fD8z+p+r4Dr2oVCCwQKkeLFDKwGsvL2XyykbsGS9lL6967vMUSV7RZeVdhqGQfB3fSTIcfCgKkwZZ61cYV/r9WZ5UDxYoZZD3GLULA0Pt6lJUB35aAqmGD6WSdh8OCxvDaFG10o4r7eKsoVQPFihl4GXyKgwM1fSh+Oc93B2ONfGhmExeFS7cq6TdVdLQ29fX4Uf263e1Drmu3OQVUUWYIliglIGXyasmGkpg3o3lsC05r+iy8i6jChpKRYNciUnrE3jhXXbtTV6VpWctvnqwQCkDTxeJvUAtYg2llHuH+bNSi/qbfp9KB5nK5ImVmELO9Rtvc0gKcU90sIbSuLBAKYNgDaWK61ACrtfFvj7MIst8oobL/i6V/OalJq2Hv8fPnFvrXWsq3XqGNZTqUbFAIaI4Eb1BRH+Qf48monlEtEZ+dmj3XkNEa4loNRHN1s7PJKKl8totJONviShNRA/I8wuIaJqWZq4sYw0Rza30e5SClw07bz900ZZXygNQj4clWpNXfdahFPbTqnrxxWXLMmv1CuByJh2+zvgK/U+lwhpK4xKFhnIVgJXa31cDeE4IMQPAc/JvENFxAOYAOB7AhQBuJSK1tPY2AFcAmCH/XSjPXw5gtxDiSAA3A7hR5jUawLUATgdwGoBrdcFVbbyd8tZnNU1ejRg2HCW1GZSKC6nnYjmVNuxEv/KV4hVoU75na9P5eB1K41KRQCGiyQA+BuDn2umLANwlj+8CcLF2/n4hxKAQYj2AtQBOI6KJANqEEPOF9aTc7Uqj8noIwHlSe5kNYJ4QolsIsRvAPBSEUNXxNnlZ56s5qAe/D6XR7OsRlxXBYGD6fUpdXOiVvqy08pNCqij1EH5+28PY2+8PE6c8C5TqUamG8iMA/wZAt2pOEEJsAwD5OV6enwRgk3bfZnlukjx2n3ekEUJkAewFMMYnr5rguQ6lWhpKCdn9aN6aSMtuNKJo2mqYvGrpQ6nPwj6h/e/ENvWWXaMSa8ILGxuWsgUKEf0FgE4hxOKwSQznhM/5ctM4CyW6gogWEdGirq6uUBUNwlNDsWdqVXTKB2S98N3uqpXtRbR7eQVcj6QMU5RXhXlGkDqsyavSjRgq0lBKvFYNhquGMv+dXXhq2fa6lF0rKtFQ3g/gE0T0LoD7AZxLRL8CsEOasSA/O+X9mwFM0dJPBrBVnp9sOO9IQ0QJAO0Aun3yKkIIcbsQYpYQYta4cePK+6YuvHwoheuRFKPR2FOqKGsXaNKLYDAwR3lVKBIq+M1rraFU4pQ3tVMhGGW4+FAiqkiJfPr/XsWXfhV2/j08KVugCCGuEUJMFkJMg+Vsf14I8TkAjwFQUVdzATwqjx8DMEdGbh0Oy/m+UJrFeojoDOkfucyVRuV1iSxDAHgawAVE1CGd8RfIczXBq0OrB6qeYcPDnVpoKOZ1KCr/8kqoxHdlpwypolTavYImROWWWau+WbFAGe6RKw1Mogp53gDgQSK6HMBGAJcCgBBiORE9CGAFgCyAK4UQ6iXfXwbwSwDNAJ6U/wDgDgD3ENFaWJrJHJlXNxF9F8Br8r7rhBA1s/V4aSB+s7hKcGy9UiVhtWr7PvQN5jBzaunBcrW0IERSlo9juVwq2nqlxLSVBl549aG+wSyGsnl0tKY80/j6UGrUD9gH0rhEIlCEEC8CeFEe7wJwnsd91wO43nB+EYATDOcHIAWS4dqdAO4st86VEOyUr2FlIuLCH/0RAPDuDR+raz2Cmi6KKDa/QbHc7CvaHLJUH0qVhN/ZP3gRXT2Dxj7gV6Ty6QwbDYUlUtXglfJlEBw2HLGGoh835LMQpVPeZI4S2nEUZRjOuT5LpZYaSrUG1K6ewcC0vm1XMx9KfdMz3rBAKQG1TGAwkzNer5aG0phCpEC0K+Wrmz/gv5dXuYN1FD6UsOtQ6rGw0c/HVOsZfz0XdjL+sEApgZaktbC/30ugqE/usJEStYbmZ/IqdzJQ0cLGEhNXvttuGWn8BKYSNjXq9rzbcOPCAqUEUgmrufoHgzSUqE1e0Zp8oibSsGGTSUU3eUXhQzGGvqrP8vKP4jev1ftQyony8hMaw09DiagiTBEsUEpA9cP9niYvOcuNfB1KY1PxokBHGJvhunYcxWBQHad82dUpw4dSfllW+jJMXr75qXuGiw+FJUq1YIFSBp6bQ8rPam69Mty2ig9D0PeLOmzab6V8PTSUWm8OWZbJy0fe1nqn5srXoURUEaYIFigloPpx8CuAa1WjxqBSIRc0QDhMfhWVJPMwmW3yFTrlI9BQQjvlyy8KQLkaineaWpuQOGy4cWGBUgJKYGTrqaEcgM9CkNM96u9v9gM4P6PIM3TaEu+v69YjPj6u4bKw8UB8hhoFFigloPphzkNnrsXCxkZ8FqJ8wI0mFYfEqawsrywq3Y+qorDhEk1e9dy+3s8kWTsfSoUmv4Z8ig4MWKCUgm3y8rhcpb28avkAlPd62ArLdESxGQYsh8mr8rbwX4dSbp7l16fWGkpZv7Gd1rs+1Zz563XmhY2NCwuUEgiroVTiNO0dzKJnIGPMt9K8w1APc0BQmaWYvJZu3ouv3PeGb2isv8mrXB9K5RIlbNhwpX2gnN2w/cqsMEAuZPmFY/ahNC4sUEogrA+lrDh/yYnfeRonfueZktPFwtpLAvDaVsaPKDUocxSR/3WdL/96MX6/ZCu27tlfUimVLmysTEMpLXFd3ofi+jTmV8VxWq9z5VFuLFCqBQuUEgjrdK/mvk5elxOxaH7KeszegjQQUcJgooR53EfC+mko5Q82lfhQ1FHYVwBXOqCWkyg4Pz/BuHjDbpx83TNY29lbRuHRrkVik1f1YIFSAurByeY8NJQq+VBMdWik/CP1oRi1B/1ef7IhBIr5nfKV+QFq6UOptAtUEjYc5OPy4qll27C7P4OX3i7vral6nSvdKcAv/d/e9Rr+84mVFeV/MMMCpQTUgxO0sNHree3sGcCaHT2llxvi+YnK7FSJuQ6oklO/BB+Kqr/fXN9vg8P6rkMJe399tUg3Be0uOH25wsDpQyknfTin/rMrO3H7y+tKzv+3izfjyntfL71iBxgsUErA1lAC34divv7hm17Gh29+udJa+JZdKfUwpzjKNGkPAVFgOlnpcfYbNKrhlK+k3Ur2oVRs8qmkrt75+eWqNEavZyewXMekorJJSzUE8td+swSPv7Ut8nyHGyxQSiDIhxLk2N2734reKnWWFmbAieoR8XP47uodxJ/X7iwuuwSTlIkgp3sp+SsNxW/Q9BsUy3fKV+5DCb8OpfZCvxDB6HfNO2MlUPzqPpDJ4YHXNgaa1SrY27Ls9Ew4WKCUQpAPRX4GPfCD2fLDdLyyjmrW5Vf3z/58AT7z8wW+ArHy2aPhuse9JrJhBIpPIWUvbKyhD6XaGop5N+bg9vTLNaE0FI9nBwD+++nV+PffLsWzKzsN5YerixcOH0ydo7wO5CgzFiglEORDCTsolRqaG2aGHlUX9avbqu2W/8dttqjYfxOQvJTt69VvE8aerxNGQ7ntxXfw0xfWhs4zNDJxrXwoYbU8HdU+plgHP+1FEZMJ71u40fOenb3WGyN7BzNF10SFAsERdlxy6mg5kDUkFigloPpk8CuA/fMp1fEd5u5a+FDUgJdxrYyr3OTlLzD05vJru0wuH05D8SnDL92NT63Cfz+9OnSeYVFlU83Chv3Tm5pY/eQxg9QL052b5Mvptu8b8LzH79s7Iv0qMNlZedV3RK808KWRYYFSAqoblOuUV1TSoeoZNqweeD+zRaUPu9kapc1OfayFN897u3BfmRpKXcKGS9RQKl3YGPQdTf03Kws1C5Rgk1cybg0108e1lle/CgVC5U59gXte3YCunkHf+8L4R+st0KoJC5Qy8Np6Jaxjt2QNpYYdMEzdMq7v7/BxlDFTFx7HppN+Jjl90ZzfQ2teh6I+y/WhVDBJqPL9boJ+YlPb5X2Enrrbf3sWmd6nXLV9v5/At459MvEqP8SkxK/+q7b34NuPLMPVv33Lt5wwUWwHsDxhgVIKqsOZ9kISQoRebR11iGmUAsevbmp26jZ5OetSeplB9deveglzwLmY0Z1n0Gr7um69UmJar99ow64+YxRecXmlm7yUVmrSUMIs6LV9Wz7lqpwDFJQyfSjB6f0mU509yr+T9S0nzISsnO2NhguJeldgOKG6gWlQ0ztSUKcqNRbfMYP3mV1HgZ85RY0lbpNXlE5iv7cpAv4bG+oCxd3EQX6eShc2VqI3qJSVvrHxnB+8iLwA3r3hY77p/XYKsK57C1yTUz7vM9EqKjOMRDGm958QBBFmYWPGx5S7fa+1N9zIpqRvOZZpMO57D5u8GACFQckkEPRZR9AMpNKtI4rq5f67gg7r65SHWUMJEng6b23eg1O+Ow/dfUPGNEE+FD9h7RQozvuCFk9W+oItp9O4uiZNrwlJWA05KPDB1D/9nPJhzIVh/CyF/PwnFeX8RmF+H7cpV0eF+qeT/kNmGA1FHMCvIGaBUgbGsMq8fly5huI00cB4bLrX656whIvy8rGVBwwZt77wDrr7hvDqul2FNEEDYAhzBeASKK6HNsjkUdjLq7zGC/qNwhD2FcB+QREAsD+T871uql9WazBzlJd13VRFdb/fYKqeCb/2VRMWo8mrwrDhUBqKz/qwIXktHvAbhXm2D2STFwuUkOgd0vTgODSUgBlImFmM85agGWd0VBw2HFAZlUcpocZ6nfweWP1h99NQzCYvc7qwhFk4t66rF796dUPR+bBFKoHp58MCgMGM/3Wj01ufEBlusPdIM2kodri89xdRz4evxcvHiaKfKm8vLz29OQO/vjWUU1Fu/uWEe7YPXIHCPpSQOO343g8cENxhwnSoXF5o21Vo9ajyNix+z4OaQRY/eP6DdRDBGljh2O+BTcR1p3xpZVTqlA9jkvnU7a+iq2cQnzp1ih1GC4SPjIvHCLm8sAc3L/xMN1b9istzaCjGCZP16bew0a/tohTY5WiRYQT+UAgNJRYgUTzNkSWMD8MZ1lBConeBIIES6JQPMFkA7gcIxmO/c+XiV/eYh4ZSif8AcA6oQYNraJOX2wwYcvFkFGHDXt+hd8CKEOpzRQqFLTLM9iVhrpuuOidEpus+61BCLCa17/EL+rDrZzJJmo/DEiaJr4YiBUpQ2V7mbq/n+UCDBUpIAk1eukCJQEMpZUbmfgCr5pT3CBsuxWFqm7xgfsAq0VD8TV7+daz0fSh6Mq88mqRDt2fAJVDkZ5ALRV0OMnkFCRQ/k5b3dVVHk8nLO52dXl7L+kgUkznUVKdq7eWV9WlX1eZBPpKggAmAV8ozcA4Ypk5TyguAQjnutHuC7i4y73jcN5TN494FGwM2d/Qux2ulfClvVLQdrw4znvm4cC6c9hfzCRvOB0itSsOGwwxYCWnmGnA5zcMWqW6r1ORlauQgDbugoXin9StW9Tm/389v65kgDSoQfULhUU+/drW39AkoPGjRs/v4QKNsgUJEU4joBSJaSUTLiegqeX40Ec0jojXys0NLcw0RrSWi1UQ0Wzs/k4iWymu3kJwGEVGaiB6Q5xcQ0TQDif7rAAAgAElEQVQtzVxZxhoimlvu9wiLYxZeockrlOMuwElaDre+uBbfeHgpHnlzi+c9vg+8l1NeOy7PYerfdqF9KH4mL63KphxUe0cRNuyVhy2QXTcogRmkoaivlMlWZvIyaiABJhn/sOFgYZwNIVAK9Ss+p0cWVmtho1+7qXr7aVjWdTZ5lUsWwNeEEMcCOAPAlUR0HICrATwnhJgB4Dn5N+S1OQCOB3AhgFuJSK0Aug3AFQBmyH8XyvOXA9gthDgSwM0AbpR5jQZwLYDTAZwG4FpdcFUDfZZsXIcSsckr5zGFD+ND8cp+V6+19sNtcglbt4LJy62hhEtvZSLTeKQP2jrdr23jsUJ3dgv9IA2y8jc2Bmtp3gtD5fWApY2qbkEmr6DrpuplAwZs1e4moaeu+QmLwoAcRjsvrr8+kHu1703z3sa0qx83XvMyseos27rXs04Fgeh5i3Wfh1AKM+H889qdeGFV8db9w4myBYoQYpsQ4nV53ANgJYBJAC4CcJe87S4AF8vjiwDcL4QYFEKsB7AWwGlENBFAmxBivrB6yt2uNCqvhwCcJ7WX2QDmCSG6hRC7AcxDQQhVBccsOWDQCzR5hXDKe5m8jA7LkFFCYWbCYcKG3bO0UtYImIoO8sHop3K+G1N6m0WC9oJSp8r2oYTQUBRFe6H5DNaO+1R6j1Gt8PuUoaEETIjUIO+nvfgVWzCLhelfxfc4BZ45/S3PrZF1ND2f+rE5g28+vMyzbqrf+W39Y1330lCCy//Mzxfgi798zTf/RicSH4o0RZ0MYAGACUKIbYAldACMl7dNArBJS7ZZnpskj93nHWmEEFkAewGM8cnLVLcriGgRES3q6uoq7wui8CAlZOimm6zjgfTPK8ws2GuQDjPgeQmYwkzYr27e17z28tKTlLMTrnMNj0FgBghzRVtzYVsM96AS5BQNY7bxI8xriu2wax8Nz7cMW0MxJ1C/j59z2aprMU6Tl0mgWJ9+i0LDOeWDBYrp99H7XDkvsHOG7fomN2JrKAFpvUxiYd9pP9ypWKAQ0QgAvwXwz0KIfX63Gs4Jn/PlpnGeFOJ2IcQsIcSscePG+VTPH9WJk/EYcnlRPGDpHTYCH4qXTds0oJbq1PWbCvs7TS0qMnnZacwC05w+XNv6PbT6NXNQhV/5wTh9XuZ7CiYvs0AOWidv+1A8BEbcwyRZnI+/huIXNmwURqWEDYcx9wZM2IIeH3fQQ1FdPOowdkTap055x6cXXm9jLWWd2nCmIoFCRElYwuTXQojfydM7pBkL8lMZBTcDmKIlnwxgqzw/2XDekYaIEgDaAXT75FU1VCdQi+fcnTpolu24t4IoL9OA6j7j1V/VQOK3NiuUycstUBD+YTGFnerfyZTcoV34DVo+gs2poRhmsPL+sk1e+nFAJkVO+ZBlBvlQvEySboJ8KOYoL5XWcC2ED0V9Z39znNfCWed3Dmrf/qFigRImDP+DM8YCKIR364QNKvASZmFMXlHwwqpO/Mej3qa7alNJlBcBuAPASiHETdqlxwDMlcdzATyqnZ8jI7cOh+V8XyjNYj1EdIbM8zJXGpXXJQCel36WpwFcQEQd0hl/gTxXNVSHUCuc3Q9tKU75UqO8gqOgwmoF1mfY8Ew3YdahhPTJe2pdQRqY735RPppO0PYtBQ3FM3tfSnlfR5EPyvZt+esoKluvFd0Fk5d/BUz1C9IS/QSuOuf32xf28vLWMv1MXg4fikd6r4W37rp5/T4qWMUkj3MBAiUlx4X9QyHChqu4OeQXf/ka7p5fvL1Prahk65X3A/g8gKVE9KY89w0ANwB4kIguB7ARwKUAIIRYTkQPAlgBK0LsSiGEEudfBvBLAM0AnpT/AEtg3UNEa2FpJnNkXt1E9F0AyoN1nRCiu4LvEowtUKSG4t58MOLNIUsyeQXmFp5wJi/3SvlSNJTi+4LMAV73Ft9XOHZnE5RHmM0LC3mLosHfKVQ9Bkz56Wcy9C/X+vSasITd68vkY9P7pFGDkR3cz6EfJmwYsOofM0xqVHLT86HP/IMFtn8f8vp91LvszVvT+AuUdDKGoVwe+wYyxusHyzqUsgWKEOIVeJt9z/NIcz2A6w3nFwE4wXB+AFIgGa7dCeDOsPWtFNvkFdM1lMJ7D0ravj5Eh3JuZug/u3Fn523ysj79JsJh1qEUr6MoEHaGn/MYwILfh+JdgF+0mf6nX9h3uN8GiLvaMIzTlTw0iDBNFqSlWvlbn6bvF1S/4IWN3nVdumWvb72AYpNw0vDKkMLix+JOPqBpZUG/kUlDC9NHVTo/oen1HQ9pa0LPQC/W7+wzXq+1DyWby9sLaWsJr5QPieoEqYTVZO4+rz8E0SxsDK+hhMU2rfjcs2yLd1yFHeXlNrk4zAnh6uc1gJkm12Fnd36O5SChVMrmkEazo+M4SEN1t1+wdhQm8MHvjZpBQjtQS/QJ+1WDqN9Pnwvw0QD+kWADml/Eqxwvk6yVJrgP2avhjRqacNTRC/c+bYXyC8dBfSyKN7AG7aZQLVighER1AnuDviIfin5v5QIl5zGjNJrT3IOnx4CmkppWOytufvbtwLplijQUXYPy/26m1eK5gIc9SLsopNWPheta4W/TDLYwmJjzD/tGQ3c9TBSZvPxvL87fY6yI+2weGbQSPuh9KKp9/OrqN9jq14J25DWtNRrIFgRK0KDu5yMDvAWSU2t23qQi8zwXLsr7vd5FU4rJK4q9voJeYVAtWKCERA2aSo10d+ootl7xMmsEOuWLNoc0l2ufD/uuWRd2pE5Fm0NahTtmxB7Hdv5lhA0XDQiO38d7nUKYwSZI6AU7nc3t59d0+jWvATVmm7y8o9isvEwaiPle9zlfx7vPxTBh9X6RYPoA6WnyU/kEOuX9yzeVETzhsD73GyLM3PlF4WMNgjWUBkd1GOWUd3c41dHiHgsfdUKtpvXYe8ovCurQ9ibfcsOYvPxQ9fbfbTjcw+AlgM0RSOZ0xfd556NHRvm9wtmr/kFh4WEWn3q98TLMTgdhdmKI+axDER59SxH0PhRbQwkwy3ld19vca8D0Cz/WB8ig58v0/cNokH6LH4O2jlHXTSHL7vyC5EUUwiAKoVQOLFBCoi9sBIpVX9WhkvEQAsXjofNSiwOd1vJTzf49S6+wj6mZn/uBLSnKS356CRG/ldiA/0plv3wyAQNSzh4wzXkHbf1RilD10vB8Z/9aEm8NxXulfNDu1YFC3ce/4LjPa7AO0UfyPoP2YMCEQKfcF+A5zX4eGornZNA676WhlPKMhNmaKYig3RKqBQuUkLh9KO5OkdMETlB/8NZQ9IFTFyj67Lg4Xal7QZUbZeK146qeW2DWhkikoM0fnRqK94PiNyjqs75yory+/tCSQt4BZrmgJnCXHybQwuFn8tRQzPkDwQNa8PtQ/NvHLy3gHCSDZvmm33gom0cyTtIC4L+w07R9vzMs2r986x73Nf/3oajfZOG75tULpez1FxT2HYag3RKqBQuUEGzq7sfzchfQwsJG16Agf8B0ImYecAJMJtY9hWNHlJdejo+GomaoXg+MOl9uf1Xf2b19enkmL7PGYA4b9heopvvc+egmr3I0lCeWbi/caxJ6IYIy1IJS98Ou+o6f6SvMwtlYzNvk5RhjDcmDBIqXD+H8m14CUFjYFxTBBZid7npar5XyqXhMChRj8kJdTUEJAUEH7nKLNBQVUhzCXG1aLR9max5FFAIlaLeEasHvlA/BBTe/bEdv2FuveMwyU3KvLzdhnPZe94Rx+ALBGopKahqQ0okYBrN5TPTxw9g+lKLO6q0ZeOelHQdEMOlZ+jp+fQRbkA+llO3rjWY5/bhEk1cYe7fTqW2+x8/kFaihBPgYCtu+COTzwhZeazt7AVj9ZyiXDxXU4CUQfX0o2TxSiRhENu+toYAACOP3D9qeP6iOgT4U7f5dfUOYNKrZcb0Uk1cU2kUUZrNyYA0lBHoooFrY6O5w6oFPJmKBD6yXQAkTSuu3G2/hndz+5ExRMPIznTB3CSGEFuVVgYaihJrH+y3Ms//gtnOX7R5zBh0airePIZRACVwr45/ePSip2aRf0UGh1YBu8vEWmEAIH0rAhMjkNE4nzc+FKb2XQPBbPKgESjxGgQLY9P2DfETue0TefM0vrHx0awoA0Gt431CQWdexeSk75Q8evKK8HD4U0wMdwqnquXrcUI6OMpUUTF7muqvTpsmL6tBh3oldvPWKdhwyIMEZollcD0fdtOOw61Dc7aTqnIiRh0lEDRie2Xvm7a5k0Czdbx84L8IIVTVobd+737Ns/T6dwBdsBQmURNwzrfu813jpK1ByBYESHEXp70Px+oH82ihoc8tcXqAlZbWBaS1KkFk3G9C+pcJO+WGCWjzm7rPvdFqrhdOJmG9YKuCnoQT7FXwXNga+QlZ45qGK8FKV9br5hb0Gzs5zxYNGcNhwwPdX9fBpY2Xyak7FA02SQSYrvzc+mspWqDZ0t7H6O6yG4hklKH+izp7BomsZx/fzzz/ojaSmzSnT9g4SHt/d4ZT311BM5Q9lLR9KIoyG4jNhAPx9KCqwodiHorav9xYoI9KWB8EU6eWcdBnKzvm3b6mwU36YoJzy7g6nVpg3JePGDhHGh+LYQlyYBwDj2/TkOfU+DC+bl3Ddb7oW9LCb7inF5JUxPJhhTXqAf0SUtUeUeQt0NetrScUDBX6Q1cu88M9ZD6/6AcUPu6rPlj3FmoUpz6DQVZPJRXeEB229YnIKB10vPBfGqiEvRCFC0mO8VPU3td9gNo+kdMoHfX+/nRD0+9xY/cdsulMC2S+gRmkoRqd8wIRA90v+5a1/NpZRCvVyyrNAKRGloXgNbNaA5b0SGwjnlHdGefkPJupU3O9FJ9CjvLxn2F4zm6zPgKKnCCtQvFYll7sK3UqrRRu56qiEfEsqEWiSLGdrDL0/mMJWAd1s4u2U39M/ZEwbJkpI1avXsJ+UXidT8iANRP9+putDATP4bF7Y++CVpaHk8kgnYkjEzBYAQBMoRh9ZmCivvN1/3F3AzxwHWO3TqjQUY5RXgECPWKPQhWoml0f/UDbQHB0FLFBKJOkR5aVoTSUC91IqdesHxwzdOBhKDSWmFjZ6z6K86q6ueT4wjg7qvEeUMLs3bQMetMrcsQ9XgMkrmTCHdStB1pQ0C/ycENrW+v7fwXRdF2Ce+z3lPDQULe2+/ebNBW0t1MeHoNrJ9NbAIA1Hr0OQhm26roSYl7kwrwmUoP5vXoeSC/ShqNOmSdFQgIZm1RF2//FaGOvX9q2pkCYvQxZek5By0Sd9Ty7bjuP+42ms29kbaRkmWKCUiB3l5SVQ0gmjSSAobNXK07xSVwR0Rn3bF/f9OrbQcN2gP2BeMfCOrTMq2HpFtUNJUWza8Z5+8/smVD5e64QGbQ2l2IcihLDMHTH/Ac9UX7ve2imvNlSDhtskotdV3wTRkb+8Jxknz/qptjUN+I43HhrS6kLI5BTW28wksM452nq9tp9/IuWxy0ShjsLzeiYnQkd5Gbe/19rcK302ny9MGF232L4/H2Hkq6EE9HGVfzJOdrRYJZgmAKm44Z0BEcMCpUTamq1O49WxRqTj5hmS/j4HH7OAfY/HIO0XgeO3i7Ce1l2+nmXQKmagQqe8moU6tjMvrqOp3kTApt39nnk7TF5eTvlksQ9F/anWGJl+2uljW7X6mn4DPWjB36Sz22XW0vPz2v5c3/rHazKjfpdADcWQXN+DyktDUYOtLnDamhKYe+ZUzJzaYd3n459QGoq3D9FbC1BOeS8finNSVHxdFyiDBqGdzwvkheYLcpWhL3z1CspoTYfzofg9w83JePHrIcogYxIoHksCooQFSomMarZmD3qfmHb14/ZxcyphNKkEbf0BOFegeznxzf4P67Ng8jLjFfqo/k5Ic4LJJKA/hJVsDmnvB+axGaExIleeHDcijX37vTWUnCgMWu46DuWs2adpr7Wc9v29vsNgNo+2poTndb0470g5KVD6nAIlE2Bu0vNMxc3rnPR8TANmJsDk4xxwzQKlSb4VK+NY02NphWoy4+cwtwVKQP09o7wSKsrLPyzY1P7KDDWqJYkBw9buqk7N6ju6+k8mny/sFu0RGNPiY/Ly29ZFL681ncBgxGHDQ7I/sEBpQI46ZCQA71lWKhFDJlc8KAdt/QE4Z676oKHPNsx7XUmTV4CGYm+d4uqwqj5qwDA90GoGG6Pi62Gd5kDBlp33+E5+uymPakna7/02kctZZhWi4jbu3DeITE4gHosVDTjujT+9BEqzjOIxv3NcnzCYB2SVbbePhmIazPU8m5LmsOd8vrDw1CSUerRX05oGtP6hHNqbkwA8oryEsAdbfXKUyQvE41QQKD7+kZSHOdLOK+ddf2sdStzTh+I0KRenV2aoUc1JowbhfgYyDg3a+u2a5Fobk8lUCMigATKavIImXapNmlNWlGg5L9lyLo7UNJQcaygNyaUzJ2Nkk7fJa86pU5CMmcNWf/z8GvvY66F7d1fh9aEOE1OAuUzlJ10APpvfmW3shcHK28bdP2QN5O3NyYAoL2PRhbIMs9Agc4C6tb056auhZPN5xGOEpCES6LevbwZQ0MKc6aSG4mE/B6xZXrMtcE0CQ7vXGLZauKG71ylQwqxBUG2eTsR8nbrxGGHQMCB94Rev2cemoI39mRxaU3EkYmSsQz4vbIHqnhwlY7HC+iyP39/hlPfxYQBmk5G+OaSXBqMwmbz2Z3JIJ2JoSsaNGkrWFijFGq6ql70bgIfJNEaE5mQ8cGGjSSCq8lTocTkr3fXvnckXt0eqBq8EZoFSAsdMbLO1gMILmQo/IhHZL+ByD8pPL99hH3t1lv94dLl97LXuw6QNq3uDwobtGaDH1vtqtbNpwOwbtB6S9uZk8QzfQziY62BYhxJg31dt3N6cQs9g1teHUNiR1nxPPF5sMimYvJRELk43lMujvcUyd5oHDD3Ky9uHMbIpgb6hnMNXotfHS0MZyhZm0KYBWf22anGd38I2U9Psz+TQnIojlYgZBUo2r2ko8roKZojHSHt5WPkaiupXpneKDGatsGFPDSXn3/4DQ9b3a0rGjSZBlabJoIWpeqU9IggLQTFAUypuFIj6b2x6RJSQU1piOYsb92qTLf0ZVX1K+cCqCQuUEHzoKCuC5Yvvm1ZYhyI7lT4A3Ldwo/2jeYUBtqTioV7P6Vz3Ec4kFAt4H8qg7OjFGop8YEJqKO4B1bHGIVCgCEeZQIiQVnludKv1sJnWWah84jFCIkZFWlRHSxLTx7YaNRR7H7a42WzTP5TFQKbgQzEuHPQwN7i/wxHjRgAAVm3f56h3q5yZmgY7QA97jpkXxsnfVAkUd6TWmdPH2Memn2j/kCZQPASie7DVfW9xH/8TEE5DUfmqvua4ls3ZK+WDTV6m/ptDSzKOpmTM+Pypsm2BnDUJFGXyNE/ISGkoHgJRYWojJYTamsoTKL2DWZx6/bP2326/XCoRs9+XVE1YoITgv/7qRLz09bMRi5FtFlEDo955fvvlMz1fwDUincDfvP9w9A/lbPOLziL5HoVPzZoCoDD463mlEzH0GwZTt1PZa0xXsyBPH4p8YEzCUGko49ua0N035BjUg14+pWPSUPSmMj1sKk2HDKf0Mntlcnkk4jEkDI73EU0JnDRllNFkogbohIcP5Zbn1gIA/rhmJwCgzzDgBe3FpNrosNEtAIDeQT3IQeDwcVYUmZeGoq+j8ZuhqwFx0CX0R7emMGV0s/H7AVY/bkkmkIqbB9y8KNZQ7H4Xj9n93jPCTegLG82dRA2qJg1Q38vLJLCdYcFmH0qT1FBModnqO7UaNDzb5OVRf91C0OxhUnNsThpCoJS6hf2uXud2O+6w4VqYuwAWKKGYNKoZU8dYD7xavKQGFb1zzpw6WhM4zll7/1DWto8CxTOQS342HwAwbWzxwJKVESZjWlPYbViHoQaIoLBMVdcgDcWUXs0aT5zUDsDp5A2zrYX7Xq91LaaqqwFkjBIoA2aBokJb4wYfykAmj6ZkDMlYzFOgpj3ar3cw4/rbZDIxfx/7nByUlA9uvyaUcvlChJBbECh0gWJq48KAWGyyAZSPxPttFf1ywB3RlDBqgNl8YfNDlbe+4aZqO++ggoLJy2vSoNaaZHKiOMpKXmvy8FF4TXAUAxnLB5ZOxIwmKSVAlKbo9KE4nw+vVyOkEzE0pcz1c2ooRZftNKp/eLWjF+5te5wTnFxNHPIAC5SSUTNAZfbYstv6If/pvBkAYJyp7RvIIi+sKCXFnv0Fx6xuJvrgjLEAnB1K2Y8PH9eK5Vv3FtVJdXClkptmN0IIW5tyDza2/Vj5UAwPZFfvEIhgv+dB18yCBIJOQUPJF50DgKWb92Da1Y9j8YbdhfzlvaNb0wDgGemVyVtRXNaOws7vOJjJIZ2IozkVR79LIKgZuT079XC6qgH1O48th5vegayvQ7VbhgqPlDNQ3U/QO5jFKGk79xpI1P2mhZmAM+xU/04KZdICzCanJZv2oCkRQ3tz0mGLV+hOeTUD12fmqu+ZtJtcXmAom8cIn8FSDahq0qC3Ty5v+WpS8ThGNiWNAk8/5+WUb04qH0px+e72c0Sy2QER5t93SLvenIyZTV6akDGHbVt5tCkfSokayq9e3eD42w7BzuXxh7e2Ba5RiwoWKCWiOtybm/YAAG6aZ20KqfZgUgJH30JDrTsY3ZrCjz99sry/8NCe+J1n7OMWGWmjbOkbd/Xj9pfXYSCTx7GHtGH9zkIkGGB1zkff3AqgMMM2CZTP37HQ3oXWfd0vwkXR1TOAMa1p+/vrar3fKnp3XdXD5gxrLJT/iPwuzywvvCFRDRDKh+Jl8srm8kjGzJFAA9k80skYRqQT6BvKOh5q1dYj5Xdzfwc1AKvvrgY4nedW7dDCbosHjCvuXgwAttlJTUSEENjZO4jJHS2yLub2+5cHrVcQtzUnzVFeuYLTHzBrKCPSCcSouIz57+wCADyzYgfWdfXhlbU7i9pgfyaHcSMtga4mU6rMRJzsGbDJB6QG+/EjrZe3mbSwZZutiVKHCnzQBmVlDWiSv59pQqH7tUwmr37llE+YnebFJi9nJBvgvaOyEqLpRAytKbOGpwtIk9BVAtUvdNuPI6VvTqGer5fe7sKe/gx29hbvQF0NWKCUiHpwHluyFTt7B/Fn+TB++ewjAABT5MCgO13Ve6Y7WlP2tgpqxjr/nV2ODpiWarnqdJ/+v1ftax2tKQxm846HdsH6btw9f4NMqwRC8Yjzytqd9rF7QFEzdjV7Ns2AV2zrwYS2tD1L3W/w8QDeDnMA2Nk7ZNzLS73eVQ0mQCHaxsrfqaHs89BQBjI5pJOxosWLeTlDbkrE0ZpOIC+cAlG1h5pB6w/z3v0Z3P/aJgDAZWdMtc/v6is8oEs378XO3iFs2zuAZJyK7NkAsLHbWuE/pjWF5mTcNtv1DGbtN2WmEzGHKdGEGnDcA/5vFll1VGYtt1lzIJNDS8qa4bvL2L6vYC5R2skObQv8fF6gfyiHkU1JtKbi6JbfXQ3MypRknSseCFV5E9qs389kEvr6Q29Z90rzou6Y37DTarupY1rQ1pQwtlHPYEHomDTE9Tv7MGlUM5qSMWMdN+yyypjcYQn8jEND8Y/yGsoVFg6OaEoYfWx/eGtrUV11lJBVO3Hov9/zq3bg7R09RWl03GublB90294B33RRwwKlAv7vj+vs40ParNnXcYe2IRWPYfV2qwP0DGTwb/JhGd2SsgdNpdG4TVgqVl4Ncu87worOOWrCiCJzm5V/4XhEOtzsxj1bUeY39cC7Bc7uviEs2bQH5x4z3nbM6rM83Xy112evrQ99/wUA1hYq+qCSkWsM1GAJwBZcQOEBVuYQ04By/8KNeKerD62pRJHjVn2fpmQcI6SPQRd8SkDb5g5txwL1OwLAxSdPwi1Sw9Q1UH0AOXZiG1b7PPyJmCXw1CDVJQfusSNTGDsijZ29xbsN69qUaoM+l9nu56+sBwBbi3BrCsrkYzJpKVPO+cdOsCPZ9AFN+d5aU3EcMX6E/f1U3xvZlLAnUu90FW9AqO5TGsr+oeL++d4powAAV513FADnjL6zxxoUD2lvxoh0AoPZfJHAVGWMak4Va1dDOezpz2DK6Bakk2YNRS0qniKDJvRdK1Rbtmgaqs6ArqGkE8YowLd3WO1iaVjF/ffXCzYCKI7yEkLgb365CBfc/HJRGr1+v3p1o+PcvBU7MOt7z2JdV59HqurAAqUCdFOoCsmLxwiTOprtPad+s6gQ0TVtTCs6pNmmu8/qVN97fKUjz3Qi5nActqYTaE3F8eRVHyoIFG0w1IWDl7rs1hrWdfXZD10+L/APv3odAHD4WEtt3qVtDZLJ5TH7R1ZnPv7QdtssppskhuT6j+Zk3Gh/B4BX1+2yhciJk9odJr9MLo9kIubwMemvIlbmm0KUV/EDe/XvltrtkYw7Q1/VgN+SitvOb7UOZFfvIJ5aZpnXbJOXJiD17eST8ZjttO3zcAJPG9PqWKDqJp2MOUJzH31ji/XdWlIYOzJtNE2o2TNQGHB6tEABXXicJAfmIi1UmnzamhNFGp7qL9d89Bj896Unyfs1k638rdqakzikrcn+7f7zCavvjkgn0d6SxKiWpN2WOmqwb29OIpWIoT/j7o+9eHzpNgDAeCkQ9UFfCd1xI9O2Sc/dp1du24emZAyjW1NFPkAlkMaPTKMpEcNgNl9ktnr8Lav8UQYfhurrSti6BYoywbY1JzEybTZ5TWhL4/xjx2NkU7HAEULYpmzVP1X5XYaXpblZtmVf0bl1XX3Y2TuIxRstX+R//dWJgflEAQuUMvj+Je8B4P3uiimjW7Cp2zIjbN9ndeZ0Iob2lqStoSx6t9voYE8n4khrGkrvYBajWlKIx8g2yehayY59BZVWDcjuHXk3dRdvqLh1j5XuqeXbbRV8xgRLoOzUOvHSLXtt38sR4wbQWjkAABdpSURBVFptDeXlNV32Pf1DWbSmE2hrTngKlDm3F0x3p04b7dhmZiBjBR0ktdBG/Tvs3Z9BKmEN5q2puGeUFwC8uq7bmoXL9L2DWduJPro1ZWsh6qH/yn1v4P/+aM3uRxjs53u07xOPkf3A3zX/XQDAsyt24HN3LAAA/PjTJ2PamBZs2b3fuNXOuJFpnDF9DJLxmC3Qd+yz2vY9k0dhYlsT/rhmp6P8Z5Zvx9k/eBEAcMpho+wBVfWBeSt24OhvPQXA2sBygtSU3YEHA0M5NEkNxd1vVV4j0gnbZObQEPYVBuTxbWm8u6sPQ9m8bUZVmu2e/gyWbtlb5HRWM/KRTQkrrNbltFZtABQ0U718W4sbkcIIKVAdPpNcHg8t3owTJ7UjmYg5tyrKC/xprWWWHt/WZDu99WdICIH566x7TAsLVV3a7MAJZ/1Vn29rStoalHtS1zOQxdQxrUYfkN7XlUldlf+EFLQAsLazF99+ZBn+8d7XHelfWNUJoGB2b9W0+3WdvZg1tQOfPu0w1AIWKGVw7jHjAQAPatqHzhRNQ9nU3Y8R6QSWXHsBAMvskk7E8Ls3tuBjt7yCw7VdbAHYM30lKHoHsvZAp2bQegdUg31LKm6H9H7xl6/ZA9aKrfvwkf/5IwDgiX/6IG797CkACg+BbmOdMV4KFG2W3KkJrKljWm0/i/LbCCFw9/wN2NOfwZjWtPH1s/qM7oeXnoTRrSn0D+UwkMlh+94BPPLmFrSmEo6Z+EZNCO7tz2BUcxJEhIFs3n6AFCowAgB+9vmZGDsijYXvdmP19h78aN7b+IOcfY5pTdltqTQM/eEeJTUgPSxYH3zjMcIRcr3IY29uxZ/X7sTf3r3Ivv7BGWNx5ISRyAunD+3+1yxzxNc+fBSScs2GMnkJCExoS2N0a8q231/926V22ivuWWwf/8+ck+1JhRKIj0gNBwCuu+gETJUmGz14473XPYOewSyak3FMHtXiaOfBbA7femQZAEugNBs0MPWbjh/ZhJOndGAgk8dmbdfnaa4+rPfPvsEsLr/LaiMlUBzmzlze9hOeMX20PWFRg/jvl2zFD+Xvm07EbYGqTyp++sI7AKxna0xrCu/u7LOF2rwVO/CNh5fK+qcxZoT1GysfWC4v8P2nV9t5KaGhT4zU5GeCNNm5V/KrurS3JO366el39g6ifyiH0a0ptDUnHRGeALBim9VXfvGFU4t8Ud/5/Qr7vvNvegn3vLoBf3hrmy3UNnX34ycvWOukrjznSKz67oU4Re78DFj+mokyMrMWDGuBQkQXEtFqIlpLRFfXqtyxI9L2ww8Ai751vuP61DEt2NOfwYurO7Fpdz9mTu1wOJl1c8SkUc22mQKwTGfnHDMOC9Z3Y99ABj2DGXttgTL5fO6OBfj9kq3I5vLo3DeAGeNH4M9Xn4uj5caVQMFJ9/AbBaF3zCEjbRv8vQutQU6p63//oelob04inYg5tohfJwemR698P1KJGA5ptx4qtQDzocWF/E+c1I4F63c5zBX3vLoBR3zjCQDAVefNwCdnTrY1qcUbduNbjyzFYDaPdTv7cPOn3otknDAynXCYjV5Y3WnP+FLxGNbt7MPrUpVfuL4btzxn7ZP29dlH46yjxtmDxuwfvezwZ4wekbLbUg0K75ncbl9Xiw7vmf+u7UTVB8fRrSmMb2vCnFOnoDkVx2d+vgA6o1pS9jbun/jJn/DM8u245ndL8c2HrQH7BCnwE3GyTRovvd1l+z1U2PFvX99s9IMd0t5kC0Q169cH1jOPGIOO1hQ6WpJYL9uvs2fA/g4T2powuaMZu/qG7AHpW7JugOVcV+2jmzSVH2l8WxqHjbHa6Hkp1C+ZOdnWLG+QZhV9MvCADGgArKCP5lTcMSD/62+W2Mff+cTxdhvszxQ0SB2lQfzFj1/B/Qs3YjCbs1+/fdZR4/CBI8diY3e/7YvSrQAT25vswA4VFPP8qk7c9qIlkC48/hAk4zF0tCRtgbN3fwZX3f8mAOCkKdbvpwvb51buwL/LCUBbU8IevLftKUzE1KLlI8aNsCab3c41I0s2WxGjpxzWYfui3NGcblZus36TeSsKWzqNSCfQlIwXvQJBH6uqzbAVKEQUB/BTAB8BcByATxPRcbUq/5mvfsg+Hjsi7bg2Y7w1sH/hF69h2ZZ9ngsNASv6avrYVls7AIAzp1trUd7znWfwp7W77MgwNeAB1oP2lfvewLMrO3HoqGaMakkhGY/ZA/3Ty3dg+da9tq/mYydORCxGeM9kS3jdt3Aj3ti4G509gxjTmsI1Hz0WRIRD2pvwq1c32lrKGxv34ND2JofQmzamBU8t347fL9mK1+TD8t2LT8C5x47HQCaPF1d3YSibRzaXx+NadMvfnzUdQCGA4frHV9oO90PbmzBzagfWXP9R/MVJE/H29h4MZnO49tFl2LFv0LbjK7X+r+R7t1X5gCXIATheUKRWtydihGljWu0ZZHffENbs6LGdoYC1PT4APLuyE/947xtY29lrl/v0Pxd+75lTOzzXwozT+sIV9yzGfQsL+SuTYnMyjsff2obFG7qxuy9jm0Hff+RY+96zvv8CHlq82Z4AnClNZYfKAev+hdZArYTFl846wt7+pH8oh3sXbEQ+L/DS6oJp8pKZk23h9fsl25DLC/xOajh/8R6rfygfzfpdfRjI5LBwfbetAY5pTdltrHx/ekTb+44YK9tvBzbu6seyLXsdA+Po1hSOGNeKheu7bQ1ahbwDwDGHtDkCT0zbj+i/7Q1PrbIDXgDg8g8cjmljrfqpdUw/ft6avX/sPRMxqiWFsXKyoTTz7z+1CoClfSrtfcyINHb2WALngdcKv59qeyWAANjaF2BF2Kn81YSufyhrC8Wzjx6HqWNasXXvfnvStWPfAL7/lKUhtbdYvqhJo5qxdMseu41Omza6qB3uX7gRl925ENf9wdJgbvrrk+xr5xw93nGvElK1wHvpbONzGoC1Qoh1AEBE9wO4CMAK31QR0ZJKYExryuHAVpx5xBjH38cf2ub4+7mvnYXzfviS/fcJk9rx/y46Hnvk4P8+V3rlhG5NJ/CbL52JS+Wq+ielA1TfE/K6i4/HA4s24dvSjHHsxDa8Z3I7fvIZKzqpORXH+ceOx7MrO/GXclDWhcW/fPgoXHX/m5j1vcK+QGdMd3bo1nQC7+7qtx+U0a0pfP6MqdggZ8Vf+tViuHn4H95n+x/OPWY8WlNxrNi2D1v3JnHG9NG4/4oz7XvPOmo87lu4yfYNALAf9s+efpg9wOnvoQGA846ZAACOHQkA4P1HjsHPLzsVTcm4vd7ja9rMGLAGFDVYKs6/qfAb6dqf28QzfVwr7ph7KgDvLcL/+G/n2NFUx01sw/Kt+/DJ2+bLelsDwOnTx2DSqGZs2bMfW/cO2LP3r88+GleecySAgtP6mRU77O8/+/gJuPojx9hlKQ14+jeesBfKHjVhBFrTCVug/Otvltj5zxg/Aj/5jNW+E6UG+v2nVtsDHQDMmtqBRDzmEJgA7Kg3wFpjM2V0M378/Fp7IFd8/KRDEY8RLpk5Bc+u7MSR33zScf3OL8wCUJicffvR5fi23Cz10PYm/Pma86wytMFxT3/GFkg3f+okEJE96XL3wZ/K76f2UvvKfW9gd/8Q1nT2or05aW+tBFjP01PLtzv61+2fn4mJ7ZZAWbRhN37w9Gq8+HbB9HruMeMRixUiFefeuRBfOusIvPR2FzI5geMmtqEpGcf0ca0Qwloce9rho/HDZ6y+fMKkwhhx6rQOPPLmVjyx1Gqjj7/3UFx88iQc0p7GucdMwAnXPm2HsgOW5v9Xp0y2//6Hc47E+2eMxcL13bjhyVV2BF0tGLYaCoBJADZpf2+W52rG/GvOw9LvXFB0vikZxx++8gH776vOn+G4fsS4Efb1WVM78NnTD0NbU9I2J8RihMf+8f32/T/+TOGhPXXaaCz/f7Px4eMm2Ocu/8B0+1gNWoqV2/Zh5tQOx8Zwt352JuacOsX++yhNO/rESYfiqAnORVJ//6EjHH9f8aHpjr8vnWV15sNGt2CWZr9VfPb0w3DyYYXzRIRrP348AGtQmH38IY77zzxijGPn5E+eMhkfPXEiAGv2+PXZRzvub0nFsf6/Pmrb/z9+0qG4dGbhAbtk5mT7WlMybvtBFDd/6iS8858fRavm69I5cryzPZSvSnH1hcc4fGHf+OgxjutfPvsIOxwVAD59utNBepgmyJ772lkOMxxghSsriAgdWjQc4JwQAJb5UvHHNTtxxLhWPHWVpWGZBpfxbQUhQUSOtlP85ktn2teX/McFOP3w0fjNl860fWrq2n1/d0ZR2h9/+mR7Qe95x44vuv6Tz5yMc+VkIBajIhPNfVcU8rR2DHYOW6ccNgp/ebJVZ7VFks69f3u6faybntXu3t/62LEYpa2B+ur5RznSX/Gh6bhA9tFvfvRYq84vrLWjq646bwZu+5wlsCZrAu9nL72Dldv24fxjx+P2y2YCAM4+yvr+97+2Cf/y4BJs2bMfF7/3UDzyD4Xn/RPvPdRR/tlHjcNnTj/MbqNfye9z4qR23Pt3p+OfXeNLPEY45bAOXPHB6fjT1efiONeEtppQOS9yaQSI6FIAs4UQfyv//jyA04QQX3HddwWAKwDgsMMOm7lhw4aivKrFS293IREjhylDx9rfqzwlUQiB51Z24swjxtiRS4qte/bj4Te2YMOuPnT3DeG/LznJ9r/ovLpuFzZ29+MTJx3qeNDUtuQxIuS097S7y1+2ZR+OnTjS3lRR8U5XL2565m3EY4R/veBoTO5otmd/OgvXd2NtZy8+fdqUop1Q9/QP4ZnlO7Bk8x589cNHOcyKQgis3tGDtzbtxe7+IfzdB6cb89/U3Y93d/XhA0eOdeSfywvkhcDazl60NSft7WR0+oeyOP+HL+EjJ07EVz98lG2KUWRyeTzyxhYs2bwH133ihKLys7k8nlvVic6eQVw6c7KjfQHL1LGuqw9LNu/B337g8KI2BCyzXFfPoEM7Unnvz+Twu9e34JD2Jlxw3ISi9ts/lMPHf/IK1nb24o//do5DoO3dn8GyLXvxn0+sxIh0Ajd96r1FbfD7JVuxq3cQx05sw9QxrbbvLAybuvsxlMvj8be2YeqYFlz0Xuc8b/9QDhu7+/Hksm34wvumOQZzwArC2LS7H3khcPjYVofQAiz/gmq/llQcnzjpUEf75/IC2/cNYEQ6YfkYJzjbD7DWVi3esBtvbtqDL519RNHvC1gLCgczeVx4wiF2++7dn8H/vvQOBjJ5nH/seEzuaMGU0c2O9n9r8x78dvFmnHPMeAxm8zj/2AmOCdKyLXvxwqpO7OgZwNGHtOGvZ012TASFEHhq2XZ0tKZwaHuzY8KhyOeFsc9XCyJaLISYFXjfMBYoZwL4jhBitvz7GgAQQvyXV5pZs2aJRYsWeV1mGIZhDIQVKMPZ5PUagBlEdDgRpQDMAfBYnevEMAxz0DJsnfJCiCwR/SOApwHEAdwphCjeBpZhGIapCcNWoACAEOIJAE/Uux4MwzDM8DZ5MQzDMA0ECxSGYRgmEligMAzDMJHAAoVhGIaJBBYoDMMwTCQM24WN5UBE+wH4hRa3Ayh+SUmBwwBs9LkelL7a17l+XD+unzdcv/KvHy2EKN5ywI0Q4qD5B6Ar4PrtVU5f7etcP64f14/rF/l1AIv80qp/B5vJa0/A9d9XOX21r3P9KrvO9avsOtevsuuNXr9ADjaT1yIRYj+aaqWvNly/yuD6VQbXrzIauX5h63awaSi31zl9teH6VQbXrzK4fpXRyPULVbeDSkNhGIZhqsfBpqEwDMMwVeKgFyhEdCcRdRLRMu3cSUQ0n4iWEtHviahNnk8S0V3y/Er1DhZ57UUiWk1Eb8p/xa+mq379UkT0C3l+CRGdraWZKc+vJaJbyP1GpvrXL/L2I6IpRPSC/K2WE9FV8vxoIppHRGvkZ4eW5hrZRquJaLZ2PvL2i7h+dW8/Ihoj7+8lop+48qp7+wXUrxHa78NEtFi202IiOlfLqyrPb+SECQU7kP8B+BCAUwAs0869BuAsefw3AL4rjz8D4H553ALgXQDT5N8vAphV5/pdCeAX8ng8gMUAYvLvhQDOBEAAngTwkQarX+TtB2AigFPk8UgAbwM4DsD3AVwtz18N4EZ5fByAJQDSAA4H8A6AeLXaL+L6NUL7tQL4AIAvAfiJK69GaD+/+jVC+50M4FB5fAKALdVsv2r8O+g1FCHEywC6XaePBvCyPJ4H4JPqdgCtRJQA0AxgCMC+BqrfcQCek+k6YYUhziKiiQDahBDzhdU77wZwcaPUL4p6eNRtmxDidXncA2AlgEkALgJwl7ztLhTa4iJYE4ZBIcR6AGsBnFat9ouqfpXWI6r6CSH6hBCvABjQ82mU9vOqX7Uoo35vCCG2yvPLATQRUbqaz2/UHPQCxYNlAD4hjy8FMEUePwSgD8A2WCtafyCE0AfTX0h1+dtVVkm96rcEwEVElCCiwwHMlNcmAdispd8szzVK/RRVaz8imgZrBrgAwAQhxDbAeuhhaUuA1SabtGSqnarefhXWT1Hv9vOiUdoviEZqv08CeEMIMYjaP79lwwLFzN8AuJKIFsNSVYfk+dMA5AAcCsvk8DUimi6vfVYIcSKAD8p/n69D/e6E1dkWAfgRgD8DyMJSk91UM7yv1PoBVWw/IhoB4LcA/lkI4adRerVTVdsvgvoBjdF+nlkYztWj/fxomPYjouMB3Ajg79Upw20NGZ7LAsWAEGKVEOICIcRMAPfBslUDlg/lKSFERpps/gRpshFCbJGfPQDuRXVNEcb6CSGyQoivCiHeK4S4CMAoAGtgDeKTtSwmA9jqzreO9ata+xFREtbD/GshxO/k6R3SjKDMMZ3y/GY4NSbVTlVrv4jq1yjt50WjtJ8njdJ+RDQZwMMALhNCqHGnps9vJbBAMaAiPIgoBuBbAH4mL20EcC5ZtAI4A8AqacIZK9MkAfwFLLNPTetHRC2yXiCiDwPICiFWSLW6h4jOkKr8ZQAebZT6Vav95He9A8BKIcRN2qXHAMyVx3NRaIvHAMyRduvDAcwAsLBa7RdV/Rqo/Yw0UPt55dMQ7UdEowA8DuAaIcSf1M21fn4rImov/3D7B2sGvQ1ABtZM4HIAV8GKyHgbwA0oLAAdAeA3sBxmKwB8XZ5vhRWx9Ja89j+Q0Tc1rt80AKthOf+eBTBVy2cWrIfkHQA/UWkaoX7Vaj9YET1C5vum/PdRAGNgBQeskZ+jtTTflG20GlokTTXaL6r6NVj7vQsrSKNX9ofjGqz9iurXKO0Ha/LVp937JoDx1Xx+o/7HK+UZhmGYSGCTF8MwDBMJLFAYhmGYSGCBwjAMw0QCCxSGYRgmEligMAzDMJHAAoVhGgQi+hIRXVbC/dNI2+WZYepNot4VYBjGWlwnhPhZ8J0M07iwQGGYiJAbAD4FawPAk2Et7LwMwLEAboK1MHYngC8IIbYR0Yuw9jN7P4DHiGgkgF4hxA+I6L2wdhhogbWY7W+EELuJaCasPdH6AbxSu2/HMMGwyYthouVoALcLId4D69UGVwL4MYBLhLW32Z0ArtfuHyWEOEsI8UNXPncD+HeZz1IA18rzvwDwT0KIM6v5JRimHFhDYZho2SQK+zD9CsA3YL0saZ7cET0Oa6saxQPuDIioHZageUmeugvAbwzn7wHwkei/AsOUBwsUhokW915GPQCW+2gUfSXkTYb8GaZhYJMXw0TLYUSkhMenAbwKYJw6R0RJ+b4LT4QQewHsJqIPylOfB/CSEGIPgL1E9AF5/rPRV59hyoc1FIaJlpUA5hLR/8LaTfbHAJ4GcIs0WSVgvVxseUA+cwH8jIhaAKwD8EV5/osA7iSifpkvwzQMvNsww0SEjPL6gxDihDpXhWHqApu8GIZhmEhgDYVhGIaJBNZQGIZhmEhggcIwDMNEAgsUhmEYJhJYoDAMwzCRwAKFYRiGiQQWKAzDMEwk/H8xmNxFsUe62gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'].plot()" ] @@ -215,9 +2240,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEKCAYAAADq59mMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzt3Xl8nGW5+P/PNUv2tE3StKQbXaHQYgutBawg0ANFXAABBf1CPeKpIoqer8sBj+eHB61HzldEQUFZqgU9LIIKh70U2aFtoKV7SWjpmrbZ92Qymev3x/NMOklnzTppr/frlVcm9zz3M888TXPNfd2bqCrGGGNMKjxDfQHGGGOGHwsexhhjUmbBwxhjTMoseBhjjEmZBQ9jjDEps+BhjDEmZRY8jDHGpMyChzHGmJRZ8DDGGJMy31BfQH8bPXq0Tp48eagvwxhjhpV33nmnSlWLkz3+qAsekydPprS0dKgvwxhjhhUR2ZXK8Za2MsYYkzILHsYYY1KWdPAQEa+IrBORp9yfC0VkpYiUud8LIo69SUTKRWS7iCyOKJ8nIhvd5+4QEXHLM0XkEbd8tYhMjqizxH2NMhFZ0h9v2hhjTN+k0vL4NrA14ucbgVWqOgNY5f6MiJwMXAnMAi4E7hIRr1vnbmApMMP9utAtvxaoVdXpwO3Are65CoGbgdOBBcDNkUHKGGPM0EgqeIjIBOBTwH0RxRcDK9zHK4BLIsofVtV2Vd0JlAMLRKQEGKGqb6mzicgDPeqEz/UYsMhtlSwGVqpqjarWAis5HHCMMcYMkWRbHr8CfgCEIsrGqmoFgPt9jFs+HtgTcdxet2y8+7hnebc6qhoE6oGiOOfqRkSWikipiJRWVlYm+ZaMMcb0VsLgISKfBg6p6jtJnlOilGmc8t7WOVygeo+qzlfV+cXFSQ9TNsYY00vJtDwWAp8VkQ+Bh4HzRORPwEE3FYX7/ZB7/F5gYkT9CcB+t3xClPJudUTEB4wEauKca8DsqWnhH9sOJT7QGGOOYQmDh6repKoTVHUyTkf4S6r6f4AngfDopyXAE+7jJ4Er3RFUU3A6xte4qa1GETnD7c+4pked8Lkud19DgeeBC0SkwO0ov8AtGzD3v76Tbz20biBfwhhjhr2+zDD/OfCoiFwL7AauAFDVzSLyKLAFCALXq2qnW+c64I9ANvCs+wVwP/CgiJTjtDiudM9VIyI/Ada6x92iqjV9uOaEqpraaQkEUVXckcTGGGN6SCl4qOrLwMvu42pgUYzjlgHLopSXArOjlLfhBp8ozy0HlqdynX1R2xIgpNDRqWT4LHgYY0w0NsO8h+qmAABtwc4ERxpjzLHLgkcPtS1u8Oiw4GGMMbFY8IigqtQ2dwDQ3hFKcLQxxhy7LHhEaA50Euh0goa1PIwxJjYLHhFqmwNdj9us5WGMMTFZ8IhQHRk8rMPcGGNisuARoXvLw4KHMcbEYsEjQo2lrYwxJikWPCKEh+mCtTyMMSYeCx4RaixtZYwxSbHgEaGmOYDX4yxJ0ha0tJUxxsRiwSNCTXOA40ZkAdBuLQ9jjInJgkeE2pYA40Y5wcPSVsYYE5sFjwg1zQHG5Gfh9YiNtjLGmDgseESobemgINdPls9jLQ9jjInDgoerM6TUtgQozM0k0++1GebGGBNHwuAhIlkiskZE3hORzSLyn275j0Vkn4isd78uiqhzk4iUi8h2EVkcUT5PRDa6z93hbkeLu2XtI275ahGZHFFniYiUuV9LGCD1rR2oQmFOuOVhaStjjIklmZZHO3Ceqs4B5gIXisgZ7nO3q+pc9+sZABE5GWcb2VnAhcBdIuJ1j78bWIqzr/kM93mAa4FaVZ0O3A7c6p6rELgZOB1YANzs7mXe77L9Xu7+0ml84sQxZPm9lrYyxpg4EgYPdTS5P/rdL41T5WLgYVVtV9WdQDmwQERKgBGq+paqKvAAcElEnRXu48eARW6rZDGwUlVrVLUWWMnhgNOvsjO8fPKUEqaMznXSVtbyMMaYmJLq8xARr4isBw7h/DFf7T71TRHZICLLI1oE44E9EdX3umXj3cc9y7vVUdUgUA8UxTlXz+tbKiKlIlJaWVmZzFuKK8vvod36PIwxJqakgoeqdqrqXGACTitiNk4KahpOKqsCuM09XKKdIk55b+tEXt89qjpfVecXFxfHfS/JyPJZ2soYY+JJabSVqtYBLwMXqupBN6iEgHtx+iTAaR1MjKg2Adjvlk+IUt6tjoj4gJFATZxzDagsv3WYG2NMPMmMtioWkVHu42zgn4Btbh9G2KXAJvfxk8CV7giqKTgd42tUtQJoFJEz3P6Ma4AnIuqER1JdDrzk9os8D1wgIgVuWuwCt2xAWYe5McbE50vimBJghTtiygM8qqpPiciDIjIXJ430IfA1AFXdLCKPAluAIHC9qob/El8H/BHIBp51vwDuBx4UkXKcFseV7rlqROQnwFr3uFtUtaYP7zcpWTbPwxhj4koYPFR1A3BqlPKr49RZBiyLUl4KzI5S3gZcEeNcy4Hlia6zP1nayhhj4rMZ5lFkWoe5McbEZcEjiiy/l3ZreRhjTEwWPKLI8nsIdIboDMWbC2mMMccuCx5RZPmd1VRsoqAxxkRnwSOKLJ9zW6zT3BhjorPgEUW45WGd5sYYE50FjygseBhjTHwWPKLItLSVMcbEZcEjiq6Wh3WYG2NMVBY8osj0O7fF5noYY0x0FjyisJaHMcbEZ8EjiiyfO8/DOsyNMSYqCx5RZPmtw9wYY+Kx4BGFDdU1xpj4LHhEYcHDGGPis+ARRVfaKmhpK2OMiSaZbWizRGSNiLwnIptF5D/d8kIRWSkiZe73gog6N4lIuYhsF5HFEeXzRGSj+9wd7na0uFvWPuKWrxaRyRF1lrivUSYiSxgEmW6HecCChzHGRJVMy6MdOE9V5wBzgQtF5AzgRmCVqs4AVrk/IyIn42wjOwu4ELjL3cIW4G5gKc6+5jPc5wGuBWpVdTpwO3Cre65C4GbgdGABcHNkkBooXo8gAh2dFjyMMSaahMFDHU3uj373S4GLgRVu+QrgEvfxxcDDqtquqjuBcmCBiJQAI1T1LVVV4IEedcLnegxY5LZKFgMrVbVGVWuBlRwOOAPK73X29DDGGHOkpPo8RMQrIuuBQzh/zFcDY1W1AsD9PsY9fDywJ6L6XrdsvPu4Z3m3OqoaBOqBojjnGnAZXg/BTtsMyhhjokkqeKhqp6rOBSbgtCJmxzlcop0iTnlv6xx+QZGlIlIqIqWVlZVxLi15fq9Y2soYY2JIabSVqtYBL+Okjg66qSjc74fcw/YCEyOqTQD2u+UTopR3qyMiPmAkUBPnXD2v6x5Vna+q84uLi1N5SzH5vR4LHsYYE0Myo62KRWSU+zgb+CdgG/AkEB79tAR4wn38JHClO4JqCk7H+Bo3tdUoIme4/RnX9KgTPtflwEtuv8jzwAUiUuB2lF/glg04v9dDIGhpK2OMicaXxDElwAp3xJQHeFRVnxKRt4BHReRaYDdwBYCqbhaRR4EtQBC4XlXDs+2uA/4IZAPPul8A9wMPikg5TovjSvdcNSLyE2Cte9wtqlrTlzecLEtbGWNMbAmDh6puAE6NUl4NLIpRZxmwLEp5KXBEf4mqtuEGnyjPLQeWJ7rO/ub3egiGLHgYY0w0NsM8BktbGWNMbBY8YrC0lTHGxGbBIwYbbWWMMbFZ8IjBgocxxsRmwSMGv89Dh80wN8aYqCx4xJBhfR7GGBOTBY8YfB5LWxljTCwWPGKwtJUxxsRmwSMGG6prjDGxWfCIIcNGWxljTEwWPGJwhupa2soYY6Kx4BGDzyt02B7mxhgTlQWPGDJsG1pjjInJgkcMzqq6lrYyxphoLHjE4Pd66AwpnRZAjDHmCBY8YvD7nO3TbcSVMcYcKZltaCeKyD9EZKuIbBaRb7vlPxaRfSKy3v26KKLOTSJSLiLbRWRxRPk8EdnoPneHux0t7pa1j7jlq0VkckSdJSJS5n4tYZD4Pc6tseBhjDFHSmYb2iDwXVV9V0TygXdEZKX73O2q+ovIg0XkZJxtZGcB44AXReQEdyvau4GlwNvAM8CFOFvRXgvUqup0EbkSuBX4gogUAjcD8wF1X/tJVa3t29tOzO8NtzwsbWWMMT0lbHmoaoWqvus+bgS2AuPjVLkYeFhV21V1J1AOLBCREmCEqr6lqgo8AFwSUWeF+/gxYJHbKlkMrFTVGjdgrMQJOAPO73NuTdBaHsYYc4SU+jzcdNKpwGq36JsiskFElotIgVs2HtgTUW2vWzbefdyzvFsdVQ0C9UBRnHMNOL/XuTU2XNcYY46UdPAQkTzgceA7qtqAk4KaBswFKoDbwodGqa5xyntbJ/LalopIqYiUVlZWxn0fybK0lTHGxJZU8BARP07g+LOq/hVAVQ+qaqeqhoB7gQXu4XuBiRHVJwD73fIJUcq71RERHzASqIlzrm5U9R5Vna+q84uLi5N5SwmFWx7WYW6MMUdKZrSVAPcDW1X1lxHlJRGHXQpsch8/CVzpjqCaAswA1qhqBdAoIme457wGeCKiTngk1eXAS26/yPPABSJS4KbFLnDLBlxX2sqWKDHGmCMkM9pqIXA1sFFE1rtlPwSuEpG5OGmkD4GvAajqZhF5FNiCM1LrenekFcB1wB+BbJxRVs+65fcDD4pIOU6L40r3XDUi8hNgrXvcLapa07u3mpoMN3jYLHNjjDlSwuChqq8Tve/hmTh1lgHLopSXArOjlLcBV8Q413JgeaLr7G+WtjLGmNhshnkMvnCHuaWtjDHmCBY8YrChusYYE5sFjxi6+jxsqK4xxhzBgkcMtjCiMcbEZsEjBktbGWNMbBY8Yji8qq6lrYwxpicLHjFY2soYY2Kz4BGD32ur6hpjTCwWPGI43OdhaStjjOnJgkcMGTbD3BhjYrLgEYPNMDfGmNgseMTg81iHuTHGxGLBIwYRIcProcNW1TXGmCNY8IjD7xVLWxljTBQWPOLweT2WtjLGmCgseMTh93psqG6KDtS32e6LxhwDktmGdqKI/ENEtorIZhH5tlteKCIrRaTM/V4QUecmESkXke0isjiifJ6IbHSfu8PdjhZ3y9pH3PLVIjI5os4S9zXKRGQJgyjDK9bySEFroJNFt73Mg2/vGupLMcYMsGRaHkHgu6p6EnAGcL2InAzcCKxS1RnAKvdn3OeuBGYBFwJ3iYjXPdfdwFKcfc1nuM8DXAvUqup04HbgVvdchcDNwOnAAuDmyCA10Pw+j80wT8EHlU00BzrZfqBhqC/FGDPAEgYPVa1Q1Xfdx43AVmA8cDGwwj1sBXCJ+/hi4GFVbVfVnUA5sEBESoARqvqWqirwQI864XM9BixyWyWLgZWqWqOqtcBKDgecAef3emxhxBSUH2oCYHdNyxBfiTFmoKXU5+Gmk04FVgNjVbUCnAADjHEPGw/siai21y0b7z7uWd6tjqoGgXqgKM65BoXPI7YkewrKDjUCsKemdYivxBgz0JIOHiKSBzwOfEdV4+UlJEqZxinvbZ3Ia1sqIqUiUlpZWRnn0lKT4bPRVqkItzz217dap7kxR7mkgoeI+HECx59V9a9u8UE3FYX7/ZBbvheYGFF9ArDfLZ8QpbxbHRHxASOBmjjn6kZV71HV+ao6v7i4OJm3lBS/12Pb0Kag7FATXo+gCvvrrPVhzNEsmdFWAtwPbFXVX0Y89SQQHv20BHgiovxKdwTVFJyO8TVuaqtRRM5wz3lNjzrhc10OvOT2izwPXCAiBW5H+QVu2aDwey1tlaxAMMSu6hbmHe+MZ7B+D2OObr4kjlkIXA1sFJH1btkPgZ8Dj4rItcBu4AoAVd0sIo8CW3BGal2vqp1uveuAPwLZwLPuFzjB6UERKcdpcVzpnqtGRH4CrHWPu0VVa3r5XlPm93poag8O1ssNax9WN9MZUhbNHMOanTUWPIw5yiUMHqr6OtH7HgAWxaizDFgWpbwUmB2lvA03+ER5bjmwPNF1DgS/zTBPWtlBp7/jY9NGk+HzsMeChzFHNZthHoeztpX1eSSj/FATIjB9TB4TCrLZU2vBw6S39XvqWLNz0BIZRx0LHnH4vR46QtbySEZ1czsjs/1kZ3iZVJhjaSuT9n72zFZufnLzUF/GsGXBI44MS1slrbm9k9wMJws6qTCH3dUWPEx6q6hvpaLeRgX2lgWPOPxej6WtktQSCJKT4axCUzIym4a2IC0BG2xg0lMopByob6OupYPWQGfiCuYIFjzi8NnCiElrDnSSk+m0PApy/ADUtnQM5SUZE1N1c6Br6aEDDW1DfDXDkwWPOJwl2S14JKM1ECTXbXkU5GYAUNscGMpLMiamA/WHA4alrnrHgkccGT6bYZ6s5vZOcjLCLQ83eLRY8DDpKTJgRAYSkzwLHnH4LW2VtJZAkNxMp+VRmGtpK5PeKrq1PCx49EYyM8yPWX6vh2BICYUUjyfWPEkDbp9Hz5aHpa1Mmqqob8PvFbL9Xktb9ZIFjzgyfc4n6fZgiOwMb4Kjj20t7Yf7PEZmh1seFjxMejpQ38pxI7PIzfBZ2qqXLHjEkeV3snptHZ0WPOIIhZSWjsOjrXxeDyOz/dbyMGlrf30bJSOyyc30Wtqql6zPI44svxMwWjtsHHg8bcFOVOma5wHOcN0a6/MwaepAfRslo7I4bmS2tTx6yVoecWS7waPNgkdcze3O/cmNDB65GdRZ2sqkIVVngmA4bVXdHKCto7Prw6JJjrU84jictrIRV/GEZ5KHO8wBCnMyqLG0lUlDNc0BAp0hSkZkcdzILAAONbQP8VUNPxY84sgMtzyC1vKIp8Vd3iE8VBdgVE4GdZa2Mmko3MdRMiqbcSOz3TIbcZUqS1vFkeWOtmqztW/iitryyPVby8Okpaomp5UxOi+z6wNPVZP9rqYqmW1ol4vIIRHZFFH2YxHZJyLr3a+LIp67SUTKRWS7iCyOKJ8nIhvd5+5wt6LF3a72Ebd8tYhMjqizRETK3K/wNrWDJjzCyloe8XX1efRoebR2dFp/kUk79a1Oi3hktp/8LGdYeWObtZJTlUza6o/AhVHKb1fVue7XMwAicjLOFrKz3Dp3iUj4L8rdwFKcPc1nRJzzWqBWVacDtwO3uucqBG4GTgcWADe7+5gPGuvzSE70loctUWLSU0O34OH8zja22QrQqUoYPFT1VZx9xZNxMfCwqrar6k6gHFggIiXACFV9S1UVeAC4JKLOCvfxY8Ait1WyGFipqjWqWgusJHoQGzBdaSv79BzX4dFWh4NH18q6zfaJzqSXcMtjRLaPvAwfItDYbsEjVX3pMP+miGxw01rhFsF4YE/EMXvdsvHu457l3eqoahCoB4rinGvQ2DyP5HS1PDIj53lYy8Okp4a2IFl+D5k+Lx6PkJfhs7RVL/Q2eNwNTAPmAhXAbW55tAWgNE55b+t0IyJLRaRUREorKyvjXXdKLG2VnObAkS2PcNrKOs1Nuqlv6ehaQgcgP8tnaate6FXwUNWDqtqpqiHgXpw+CXBaBxMjDp0A7HfLJ0Qp71ZHRHzASJw0WaxzRbuee1R1vqrOLy4u7s1biirLJgkmpaU9iMjhYAtOhzlgEwVN2qlv7R488rKs5dEbvQoebh9G2KVAeCTWk8CV7giqKTgd42tUtQJoFJEz3P6Ma4AnIuqER1JdDrzk9os8D1wgIgVuWuwCt2zQZPo8iEC7BY+4mgOd5Pi9uAPoABjl9nnUWJ+HSTP1rR2MyIpsefit5dELCed5iMhDwDnAaBHZizMC6hwRmYuTRvoQ+BqAqm4WkUeBLUAQuF5Vw395r8MZuZUNPOt+AdwPPCgi5Tgtjivdc9WIyE+Ate5xt6hqsh33/UJEyPR5aAta2iqelkCwa1HEML+7OGJ1s83cNemloa2D40Zkdf2cn+Wz9GovJAweqnpVlOL74xy/DFgWpbwUmB2lvA24Isa5lgPLE13jQMrye2m1SYJxtQQ6u61rFTY6L6NrQpYx6aK+tYMTx+Z3/Zyf5WdXdcsQXtHwZMuTJJDt91qfRwKRW9BGKs7PpKrRPtGZ9FLf2sGIIzrMLb2aKgseCWT5vZa2SiByC9pIo/MyqbSWh0kjnSGlsS3YPXhk+miwPo+UWfBIINPnsZZHApFb0EZyWh4WPEz6aHKDRM+huoFgiHZbhiglFjwSyLK0VUIt7bFbHo3tQeszMmkjcl2rsPD6Vk3W+kiJBY8ErM8jsZY4LQ/AOs1N2ogePGx9q96w4JFAlt9jM8wTaA4Eo462Ks5zgof1e5h00bWuVdbhDzuHV9a14JEKCx4JWNoqsZb2TrLjtDwqrd/DpImulkdOxAzzzHDLw0ZcpcKCRwJZfq8tjBhHR2eIQGcoxjwPS1uZ9NLQFjttZSOuUmPBIwGn5WFpq1jCW9BmRwkeRXnO+lbW8jDp4nDa6nDwCD9usmXZU2LBI4Esv8fWtoqjoWtvBP8Rz/m9Hgpy/NbyMGmjvrUDn0fIifiwc7jD3NJWqbDgkYAzSdCCRyzhT3KjogQPcPo9rOVh0kV4Rd3IRTzzbLRVr1jwSCDL56WjUwl2WuoqmroWN3i4S7D3ZMHDpJOGHsuxg9NCzvZ7reWRIgseCXRtCGVLlETV1fLIid7yGJ2XSVXT4fWtGuw/qBlC9a0d5EdpJefZhlAps+CRQLgj2IbrRlfX6gSGnp/mworzDrc8/r5uH/N/+iI7q5oH7fqMiVTf2hE1xZqf5bN9zFNkwSOBLJ8Fj3jCaauYwSM/k9aOTg7Ut7HirQ8JBEM8vGY3ZQcbWfpAqaUKzKCqamzvGkIeyTaESp0FjwQyu/Yxt+ARTX1rB1l+T9eWvT0tnnUcPo/w3b+sZ93uOnIyvDz2zl5+8PgGXthykG0HGgf5is2xSlWpagowOv/I/rkRtix7yhIGDxFZLiKHRGRTRFmhiKwUkTL3e0HEczeJSLmIbBeRxRHl80Rko/vcHe52tLhb1j7ilq8WkckRdZa4r1EmIuGtagfV4X3Mrc8jmvqWDkZlR+8sB5g8OpcvnT6JN8qr8XuFZZfOpro5wLrddQBU2zBeM0gaWoMEOkNdy+ZEyrc+j5Ql0/L4I3Bhj7IbgVWqOgNY5f6MiJyMs43sLLfOXSIS/kh6N7AUZ1/zGRHnvBaoVdXpwO3Are65CnG2vD0dWADcHBmkBku239JW8dS1BmKmrMJuWDSD/CwfF84u4bNzxnN8UU7XTm7Vtv2nGSSVTW3A4WVzIuVlWssjVQmDh6q+irO3eKSLgRXu4xXAJRHlD6tqu6ruBMqBBSJSAoxQ1bdUVYEHetQJn+sxYJHbKlkMrFTVGlWtBVZyZBAbcNbyiK+upaPbOkHRFOVl8uy3z+Jnl87G6xH+/o2FPPr1MwGobrLgYQZHpburZfSWh3/YL8n+vb+8x3V/emfQXi/hHuYxjFXVCgBVrRCRMW75eODtiOP2umUd7uOe5eE6e9xzBUWkHiiKLI9SZ9CEh+ra+lbR1bd2MKkwJ+FxEwoOH1OQ66S5RmT5qLGWhxkk4dWdo7U88rN8NAc66QwpXo8c8fxw8EFlE7lRFigdKP3dYR7trmuc8t7W6f6iIktFpFRESisrK5O60GRlWdoqrvrWjphzPBIpysu0pUvMoAnvahlrtBUM7w2hqpsCjM6L3f/Y33obPA66qSjc74fc8r3AxIjjJgD73fIJUcq71RERHzASJ00W61xHUNV7VHW+qs4vLi7u5VuKzvo84qtrOXLGbrKKcjMsbWUGTWVTO36vRP19Pbyy7vDt96hqaqcoSmAcKL0NHk8C4dFPS4AnIsqvdEdQTcHpGF/jprgaReQMtz/jmh51wue6HHjJ7Rd5HrhARArcjvIL3LJBlWkzzGNq6+iktaMz5tIkiRTlZVjaygyaqsZ2inIz8URJS+VnDu/1rVoCQVoCnVFbVQMlYYJMRB4CzgFGi8henBFQPwceFZFrgd3AFQCqullEHgW2AEHgelUNf2S/DmfkVjbwrPsFcD/woIiU47Q4rnTPVSMiPwHWusfdoqo9O+4HXFfayvbhPkJDlC09U1GYm8k7u2r785KMiamyqT1qfwdEpK2G6SzzcAt+MNNWCYOHql4V46lFMY5fBiyLUl4KzI5S3oYbfKI8txxYnugaB5LNMI8t0bpWiYx2Wx6hkEb9NGhMf6pqao860gqG/7Ls4cEAg9nysBnmCfi9gkewZdmjqOtzyyODkB4+jzEDqbIxXstjeKetDrc8LHikDRGxdW9i6FqOPc4M83jCnXs2y9wMtFBIqW4KJExbDdeWR3jUYtEwGG11TCnKzbCZ0FHUtTj3pNdpK3e+R5WNuDIDrK61g2BIY34y72p5DNs+DwseaakgN4NaCx5HCPd5JJphHkuh+4tuI67MQKuKM0EQINPnwe+VYZthqGoKkJ/lI9MXfYHSgWDBIwkFOTakNJr61g48Anm9nNValOumrZotbWUGVmWcCYIQmZ4evmmrWIMBBooFjyQU5vqpbbHg0VN4gmBvR0oV5PgRsfWtzMCr6hqNFDutM5xX1q1qir5PyUCy4JEEJ23VgTN30YQdbGiLmQZIhs/rYVS231oeZsCFP6CEW7vRDO/gERjU/g6w4JGUotwMAp2hYTuBaKDsq2tl/KjsPp2jKC/TWh5mwNU0B/B6oi9NEpafOXxX1q22lkd6KnCX36htHp750IGyt7a122q5vVFoI9nMIKhubqcgJyNuijUvyzcs17bq6AxR29JhLY90VOgOKa2xfo8ujW0d1Ld2ML6gby2Pghx/15BfYwZKdVOAotz4f1yHa9oqPBLUWh5pKLz/hA3XPWxfXStAn9NWhbkZ1FiLzvTSrupm6lsS//7UNCfuExgxTEdbDcXSJND7zaCOKYU5Nh+hp321TvCY0OeWRwZ1LQFUFXdbe2OS0tweZPGvXiWkcNlpE1h2yeyYaanq5gCzxo2Ie778LB9N7cFh97t4qCH+HJaBYi2PJNhktiN1tTz6IXgEQzpsZ/aaobOlooG2jhBzJ4zioTW7+fv6fTGPTaZDOT/LR0ihZZitoL2ruhmA44v61v+YKgseScjP9OHziPV5RNhb20qGz8PoOEMfk2EpQdNbG/fWA3DnF0/llPEAc5y6AAAeC0lEQVQj+cXz26Oufh0IhmhoC3b1XcZyeH2r4fVBZndNKzkZ3oR9Ov3NgkcSRMSWKOlhX20rE0Zl93kp9QJ3aZPaJPLWxkTatK+eMfmZjB2RxQ8vOon99W38z+rdRxwXnuCbKHjkZQ7PZdl31zQzqTBn0FNtFjySVGhLlHSzt7alzykrsJaH6b2N++o5ZfxIAM6cVsTxRTmU7jpyv7hkN0o6vBXtcGt5tDCpcHBTVmDBI2mFuRm2REmE/pggCIcHI9i9NaloCQT5oLKJ2W7wAJgxJp/3DzYdcWx4BYPCBCnW4bgsu6qyu6Zl0Ps7oI/BQ0Q+FJGNIrJeRErdskIRWSkiZe73gojjbxKRchHZLiKLI8rnuecpF5E73H3OcfdCf8QtXy0ik/tyvX1hk9kOaw10UtUU6PNIKzg8AdNadSYZoZBy76s7eHjNHkJKV8sD4ISxeXxY1UwgGOpWJ/y7lShtNWIYbghV2dhOW0do2LY8zlXVuao63/35RmCVqs4AVrk/IyIn4+xPPgu4ELhLRMLrB98NLAVmuF8XuuXXArWqOh24Hbi1H663Vwpy/ZZace2uaQHo8+xycFIFXo9Yy8Mk5YUtB1n2zFZueWoLAKdMiAwe+QRDys6q5m51qpJMW43JzwKgor61Py95QO1y/y9OKsod9NceiLTVxcAK9/EK4JKI8odVtV1VdwLlwAIRKQFGqOpb6qw8+ECPOuFzPQYskiEagF2Yk0FdawedIVsccduBBgBOPC6/z+fyeISCHL91mJuEVJW7Xy7n+KIcrj7jeBbPGsvYEVldz88YmwdA2aHGbvVqmtvxeoQRWfH3nRmZ42dMfmbU1Fe62l3tBo8haHn0dZKgAi+IiAK/V9V7gLGqWgGgqhUiMsY9djzwdkTdvW5Zh/u4Z3m4zh73XEERqQeKgKrIixCRpTgtFyZNmtTHtxRdcX4mqk4z8biRWYkrHMW2VjTi9wrTivP65Xyjcmwkm0nsjfJq3ttbz3997hSuWnDk//NpxXl4hCP++Fc3BRKuaxU2Y2weZYfSL3j8f09sojXQyec/OpGPTi7sKt9V04JH+r7SQ2/0teWxUFVPAz4JXC8iZ8c5Ntq/nMYpj1ene4HqPao6X1XnFxcXJ7rmXgn/oSxPw1+swbbtQAPTivPI8PVPw9VGsplkPLx2N6PzMvjcaeOjPp/l93J8US5lB7u3PKqbAwlTVmEzxuRTfrAxrbZfKP2whgfe2sVf1+3jit+9xS9f2N51fXtqWigZmd1v/xdT0adXVNX97vdDwN+ABcBBNxWF+/2Qe/heYGJE9QnAfrd8QpTybnVExAeMBI4cizcIZox1UjTv9/jFPBZtrWjg5JL4Sz2koiDXT52lrUwcqsrbO2pYOH103K1Wp4/JO+L/aE1zIGFneWT95kAnFfVtfbre/vT7V3cwKsfPmh8u4vPzJ3DHS+X8elUZ4HyYHYqRVtCH4CEiuSKSH34MXABsAp4ElriHLQGecB8/CVzpjqCagtMxvsZNcTWKyBluf8Y1PeqEz3U58JIO0UeC0XkZFOT4j8inHmtqmgMcbGhnZknf+zvCCnIybPa+iWtHVTNVTe2cPqUo7nEnjM3jw+oW2oOHZ5pX1LUyJsl1n2aMcTIM6fIhcduBBl7cepCrzzieorxMbr3sI5xzYjGPrN1DdVM7m/bXJ7wnA6UvLY+xwOsi8h6wBnhaVZ8Dfg6cLyJlwPnuz6jqZuBRYAvwHHC9qob/ha8D7sPpRP8AeNYtvx8oEpFy4P/ijtwaCiIScxz5sWRbhdNZflK/tjycPo90ShWY9LJ6h5NwOH1qYdzj5kwYRWdIeXdXHeBMPt1f35b07+sJboYhHdLTf313L5ff/Rb5mT6uOXMy4Pwd+tQpJVTUt/G7Vz5AFc6dOTCp+kR63WGuqjuAOVHKq4FFMeosA5ZFKS8FZkcpbwOu6O019rcZY/P43/f2D7tVN/vT1gPOJ7L+DB6F7uKITe3Brola6ey9PXX84LENTBmdy08vnT3oS2Efi1bvrKY4P5Opo+MPST1zWhE+j/BqWSVnTiti837nw07kZMJ4CnIzGJ2XQdkQf0hsbOvgB49tYM7EUfzqC3O7rZh77swxiMAf3viQ0XkZzB6X3HvrbzbDPAUnjM2noS3IocZjd8/tzfvrGZ2X2a9/MEeF17caBvt6/GPbIS67+01qWwK8tP0QF/36tWG5+9xwoqqs3lHD6VMKE35oy8/yc9rxBbyyvRKATfudxRMTLcceafqYvF6np1sCQR5du4dQH4f0v/VBNcGQ8v3FJzKxxzDc0XmZnDapgGBIOfuE4j6vL9dbFjxSEB5Hni750IHW1B7k1y+Wdf1xDARDvLTtEAun92+ONdyZGV5GIl2FQsqtz21jUlEOK//1E9z9pdM41NjOO7tqh/rSjirLnt7CJb99g589s5U7V5Xxf+5fzYGGNj42bXRS9T9xQjFbKhqobGxn8/4Gxo/KZlRO8ivOzho3ks37G3r1oeD3r+zgB49v4I0PqhIfHMdrZVXkZHg5bVJB1OcXneTMgDj3xDFRnx8MFjxScELXiKuhz4cOhsdK93D7i+/z4yc2A/B6eSV1LR18ds64fn2d8GiRdBxfH+mFLQfZdqCRG86bwcgcP2dMLcIjsH533VBf2lHjlfcrufe1ndS2BFj++k5uW/k+5Yea+MGFJ/L5+RMSnwA4e4bTB/BaWSWb99Uze3xqKdZPfaSE9mCI5zYeSKleSyDIA299CMCanX0bFPpqWSVnTi2KOQT3C/Mn8tWPT+GfThrbp9fpC9tJMAVOuiaDjXuPjT8Wf1+/H59H+Ou6fZwzcwyrth5kZLafs2b0bwfd1NF5jMz28+6uWj4/f2LiCkNAVbnzpTImF+Xw6Y+UAJCb6WPGmHzeO0Z+HwZaSyDID/+6kanFuTxzw1n4vR5Cqvg8klIf46xxIxiTn8ndL3/AzupmLjk1+ryQWE6dOIopo3P567q9fP6jyf8+Prp2D7UtHRTk+Fndh+Cxq7qZXdUtfGXhlJjHFOVl8qNPn9zr1+gP1vJI0TknjmHVtkNHLL52tPmwqpn1e+r41/NPYM6Ekdzw0Dqe2lDBRaeU9PuEJI9HOG3SqLRO/7y07RCb9zfwjXOn4/Mefv9zJo7kvT11NlKsHzzw1i721bXyX5eeQpbfi9cj+L2elAeneDzCbZ+fw46qZlRJueUhIlx66nje3lHTtWNmIh2dIe59bSfzjy/gstMmsH5PXbfhwql49X2nv+asGcml6YaKBY8UfXL2cTS2BXmzjznNdPfE+v2IwOdOG8+f/+UMvr1oBseNyOJLpw/M8i/zji+g7FAT9Wk4WVBVuWNVGRMLs7m0x6fYuRMLqG3p6FoscrCUHWw8YgHA4aw10Ml9r+3grBmjOX1q3/vUzppRzE8vcUbCzZ0Yvd8gnvC/81Pv7U9wpOOZjRXsq2vl65+YxoIphQSCITa4Ox2mQlV5pHQPJ4zNY0qCkWVDzYJHij4+YzR5mT6e25RaPnQ4ef9gI8vf2MmZU4soGZlNXqaPfz3/BN648bykhzym6rTjnf/g7+4Z+tZHsLN7q/KV9yt5b2893zhnOn5v9/8ycyY692P9nsFLXTW1B/nCPW9zyW/f6Nq/erh7aM1uqpoCfOu8Gf12zqsWTGLtvy9KenZ5pImFOcw8Lp+Xth1KeKyq8rtXdjBjTB7nzRzTtfZUb/o91u+pY9O+Bq4+4/i0nw5gwSNFmT4v580cwwtbDh7xR+ZosK+ulavvX02mz8Otl31k0F53zoRReD3CuiFOXVU3tXPqT1ay/PWdgPOH4deryhg3MovLTjuyw/bEsflk+T2s60On+cGGNq6+fzVPrN+X1PH3v7aTmuYAoZDyLw+U0tw+PPafCHaG+NHfN/LI2u5bxYZCyh/e3MmCyYUsmBJ/EmCq+vIH+LyZYyjdVUt9a/zW8FMbKtha0cDSs6c6q0TnZjDzuHz+Z/VuPqhMbRDIg2/vIjfDy6VRftfSjQWPXrh47jhqmgP8dV1y/9mHi+b2IF9dUUpLoJMHrz39iPHlAyk308dJJfm8UlY1pP0Hz246QGNbkFuf28aOyibeKK9m3e46rjt3etS+Hp/Xw5lTi3hu04GkP0yoatexB+rbuPKet3mtrIrv/eU9Xiur5N3dteytjZ4Gq2pq597XdnDhrOP43dXzKDvUxG0vvN/7NzyIfvbMNv709m7+7fGN/G3d4YW0S3fVsqemlatOT6/BEufNHENnSHmtrDLmMZv21XdN5rt47uGU5s8v+whtHZ1c+ts3kk4v1jQHeGpDBZ87bULXfurpzIJHL5w3cwxzJo7i9pXv09bRu06xdNPW0cm3H17H9gMN/OaLp/XLXh2p+sL8iby3p44XtyZOFQyUpzbsZ0JBNpk+D9euKOU/ntjEcSOy4g4TvWrBJA40tCWV4gD4wWMbOPu//8G63bUsWb6GysZ2ln95PuNGZXP1/Wv43F1v8vFb/8H5v3yFzfsP582b2oNcu6KUQGeI7y0+gYXTR/Ol0yfxxzd3srEX+fXB8uzGCr7yx7Usf2MnV59xPGdOLeL7f9nQNUDi8Xf2kpPhZfGs44b4Srs7dVIBo3L8rNxykMrG9iM+1Lyw+QBX37+aghw/914zr9uHi7kTR/G3bywkGFJ+8cL2pF7v0dI9BIIhrj7z+H59HwPFgkcviAg3XjiTivo27nfTG8NZfUsHX7pvNS9uPcR/fnYWnzhhaNbKuWrBJKYV5/Jfz2ylYwhSgoca2li9s4bPnTaBX105l5wML/WtHfzfC06Iu5LreTPHcNyILP68enfMY8Je3HKQv7yzl0ON7Vx615t8UNnE76+ex3kzx/Lnr57Ojz51EvdcPY+bP3MyTe1BLr/7LV7ccpCOzhBLHyhl07567vriaUwf4wT37y+eSVFeJteuWMuT7tI56eTOVWVc9+d32X6gkevPncbNnzmZ318zj5JRWdzw0DrKDjbyzMYKPjm7hJyM9Pq07fUI55xQzBPr9/PRZS/yqxedlWxVldte2M7SB99h3Khs/vTV07t2IYw0qSiHaz8+hac3VLBpX/zg3hlS/rx6F6dPKeyaT5buLHj00pnTilg8ayy3r3yf0g+HZJX4fnP7i++zfk8dd33pNK52F2AbCj6vh3//1EnsqGpm2dNbB/31n9lYgSp85iMlnDdzLE/fcBbv/sf5Ceee+LwevvDRibxaVsnPntnKgRjLedc0B/jR3zcx87h8nrrh48yZMJJfXDGHhdOdIZkTCnL46llTuWDWcfzzwik88c2FnDA2j+v+/A7XrijlzQ+qufWyj/BPJx+eGDYy288fvvxRxozI5IaH1vHTp7emTQC5++UPuG3l+3zu1PG88v1z+P7imfi8HkZk+bnzqtM42NDG+be/SmN7kMvmpTYXY7B894IT+feLTuLj00fz+1c/YF9dK7c8tYU7XyrnC/Mn8rdvLGRqnE3R/uXsqYzM9vPdR99j3e7Y/XmvvH+IPTWtw6bVASDp8ovWX+bPn6+lpaWD8lr1rR1c8ts3aGoP8sJ3zqagF6M6htq+ulbO/X8vc9m88fzX5wavgzyeW/53C8vf2MmPP3MyX44zUaq/XX73mzS1B3nuO/H2NIuuvrWDf//bRp7ddIDcDC8/vOgkKurbqGxqZ9zILD4+o5hlT2/hvb31PP71j3XbezvueVs6uOret9lS0cDXPzGNGz85M+pxnSHlJ09t4Y9vfsg3zpnGDy6MftxgeW5TBV//07t8Zs44fv2FuVHXX1qzs4btBxqYWpzHx6YVpfXooj01LSy67RWy3dboVxZO4T8+fVJS17xq60H+7fGNVDW1M3fiKJaePZWLTinper6jM8Rn7nyd+tYOXv3BuUeM6BssIvKOqs5P+ngLHn2zaV89n77zdb57/gl8a1H/DTMcSC2BIBleD16P8N2/vMdT71Xw8vfPYdwQbGUZTWdI+dqD7/DStoPct2Q+580c+CUY9te18rGfv8T3LjiBb/ZhuOjOqma+/fA6NuytRwRGZXffn/3Oq07lMyku71LbHODVsko+/ZFxeOMsgqeq/PBvG3lozR7uXzKfRf24dEVbRyd3rCqjrSPEd86fEXM/8Ob2IL/9Rzn3vraDWeNG8vDSM8jyx075DSc/f3Yb97++g//87Gy+mOJ8p6b2IH96exePvbOXnVXNPHH9wq5h77975QN+/uw2fn/1vCHt97HgMcjBA+DLf1jDpn31vP5v56XVf5TWQCd/eWcPe2pa+Pz8iXg9wsNr9/CHN3YyflQ208fk8eLWQ3zt7KncdNFJQ3253bQEgnz+92+xo7KZpWdP5TNzxvXbnunR3PfaDn769FZe/t45TO7j5KxAMMTbO6o5qWQExfmZ1DYHeGZTBXmZvm4jcgZCe7CTS377Jgcb2vjL18/sumftwU46OjWlUTyqyvI3PmTtzhq2u5MSRWBsfhY/vWQ240Zlc+9rOxiR5WNqcV7XfIcDDW187rTx/OhTJ/dqjkW6UlXqWztSWmSxp/qWDv7p9lcYnZfJbVfM4cWtB/nNS+Wcc2Ix91yT9N/tAWHBYwiCx5vlVXzxvtX87NJTUv5EMlCcpvIGqpoCeD1Cp7tEtAhcPGccWysaKa9s4nsXnMjX3PHp6eZgQxvf+p91rN1VQ47fy3PfOTul4cO7qpvxiCRV5+LfvE6nKk9966y+XHJaKD/UyOfuepPWjk7OPXEM9a0dvLe3DlW4YdEM/nnh5Lid0zXNAbZVNPA/a3bz1IYKpozOpSg3g28tmsGobD//9vgGth1oRATyMnyEVGkOOKMOZ40bwS0Xz2Le8f07X+No8sLmAyx98J2unz91Sgk/uWT2kAfaozJ4iMiFwK8BL3Cfqv481rFDETxUlUvuepPN++r51nkzuGzeeMaPyu7Khw7m5lGHGtv4xfPbebR0LyeVjOA/PzuLacW5/H39fvIzfXx0SiFTRufSGVKqm9ujjhJJN7uqm/n0Ha9zUskIHlp6RtzUDcAHlU0se3pr19DZE8bm8a3zZvDpj5R0+3cIBEOU7qrhf1Y7fyRv/ORMvv6JaQP6XgbLocY2/t9z2yndVUtBjp85E0dRUdfGc5sP4PcKp04sYOH00SycXsTMkhHsq21lZ1UTr5dX8WjpXgLBECLwg8Uz+fonph5x3+57fQdVjQFuWDSdEVl+qpsDNLUHmVSYk/Dfx8DGvfXsq2uhZGQ2cyaOGurLAY7C4CEiXuB9nC1t9wJrgatUdUu044cieICTl/6PJzbx1IYKAE4uGcFXz5rCn97exaZ9DRTnZzJmRCZj87Oc7yOymDo6l3NnjiGkyo7KZiqb2tmyv4Ga5gCfnTOOYEjZuLeOTL+XhtYOals6OGX8SCYWZhMMKaGQUpibwbhR2Ty9oYJnNlbwenkVIVW+snAK/3r+CWmVRuuLx9/Zy3f/8h4fm1bEv5w9lUmFORTnZ5Kb4aOhtQPFybf/Y/shbn12Gz6vh68snEJ+lo9HS/ew7UAj08fk8alTShg/Kpv1e+v43/X7aWwPkpfp40unTzqq7lcsaz+sYdXWQ7xRXsWm/fX0/O/v9wqXnTahK0143Mj0/3Bh+sfRGDzOBH6sqovdn28CUNX/inb8UAWPsM3761mzs4b7XtvJvrpWRudl8tk546hrCXCosZ2DDW0cbGijoc1ZUiInw0t7MNSVVgLI8HoIRJnnEJl+iuQRCClMLMzmvBPH8OWFU9J+UbVUqSor3vyQO14qp6Y5EPfY+ccXcOcXT6VkpDMAoDOk/H3dPh5Zu4c17rDqLL+Hi2aXsHj2cSycPnpYzOjtb7XNAd7eUc0HlU1MLMxh6ug8phbnknsM3gtzdAaPy4ELVfWr7s9XA6er6jcjjlkKLAWYNGnSvF27dg3JtUZqDXTyRnkVC6YWRh2Z0tbRyTu7anlmYwWFuRmc7HauTivOw+sVntlQQXaGlzOnFtGpSk6Gj5wML5v21VPTHMDjEbwiVNS38kFlM584oTjthzv2h+b2IOv31FHZ2E5lYztN7UFGZvu7lu+eM3EkJx03ImYfTmNbB3UtHRTkZhyTAcOYWI7G4HEFsLhH8Figqt+KdvxQtzyMMWY4SjV4DIcZ5nuByCm+E4DkFtk3xhgzIIZD8FgLzBCRKSKSAVwJPDnE12SMMce0tE/6qmpQRL4JPI8zVHe5qm4e4ssyxphjWtoHDwBVfQZ4ZqivwxhjjGM4pK2MMcakGQsexhhjUmbBwxhjTMoseBhjjElZ2k8STJWINALJbBo8Gqjqp5cdCfTnJtLpfr7+vHeQ/u83ne9fur/XdL53kP7vd7Du32ggV1WT34NaVY+qL6C0P49L8lz39PN7SPfz9du9GybvN23v3zB4r2l774bJ+x2U+9eb+2ppq/7xv8fY+fpbur/fdL5/6f5e0/neQfq/37S9f0dj2qpUk1ifJdnjzJHs3vWN3b/es3vXN7HuX2/u69HY8rinn48zR7J71zd2/3rP7l3fxLp/Kd/Xo67lYYwxZuAdjS0PY4wxA+yoCR4iMlFE/iEiW0Vks4h82y0vFJGVIlLmfi9wy4vc45tE5Dc9zvUFEdngnue/h+L9DKZe3LvzReQdEdnofj8v4lzz3PJyEblDjvbdqej3+7dMRPaISNNQvZ/B1F/3TkRyRORpEdnmnufnQ/m+Bks//+49JyLvuef5nbsFeGz9OQxsKL+AEuA093E+zr7nJwP/Ddzolt8I3Oo+zgU+Dnwd+E3EeYqA3UCx+/MKYNFQv780u3enAuPcx7OBfRHnWgOcCQjwLPDJoX5/w+z+neGer2mo39dwundADnCu+zgDeM1+91L+3RvhfhfgceDKuK891G9+AG/qE8D5OBMGSyJu9PYex325R/D4KPBixM9XA3cN9ftJx3vnlgtQDWS6x2yLeO4q4PdD/X6Gy/3rUX5MBI+BuHfuc78G/mWo389wvH+AH2eI8BfivdZRk7aKJCKTcSLsamCsqlYAuN/HJKheDswUkcki4gMuoftOhke1Xty7y4B1qtoOjMfZ+TFsr1t2zOjj/Tum9de9E5FRwGeAVQN5vemmP+6fiDwPHAIagcfivd5RFzxEJA+nyfUdVW1Itb6q1gLXAY/gNH0/BIL9eY3pKtV7JyKzgFuBr4WLohx2zAzn64f7d8zqr3vnfuB7CLhDVXcMxLWmo/66f6q6GKelkgmcF6Vql6MqeIiIH+cG/llV/+oWHxSREvf5EpyoGpeq/q+qnq6qZ+I0/8oG6prTRar3TkQmAH8DrlHVD9zivTh7zIcdM/vN99P9Oyb18727ByhT1V8N/JWnh/7+3VPVNpytvi+O97pHTfBwR/XcD2xV1V9GPPUksMR9vAQnJ5joXGPc7wXAN4D7+vdq00uq985NCzwN3KSqb4QPdpvHjSJyhnvOa0jifg93/XX/jkX9ee9E5Kc4Cwl+Z6CvO1301/0TkbyIYOMDLgK2xX3xoe7g6ceOoo/jpEg2AOvdr4twRk+twmk9rAIKI+p8CNQATTifmk92yx8CtrhfcUccHA1fqd474EdAc8Sx64Ex7nPzgU3AB8BvcCeiHs1f/Xz//tv9XQy533881O9vONw7nFauAlsjyr861O9vGN2/scBa9zybgTsBX7zXthnmxhhjUnbUpK2MMcYMHgsexhhjUmbBwxhjTMoseBhjjEmZBQ9jjDEps+BhzCATka+LyDUpHD9ZRDYN5DUZkyrfUF+AMccSEfGp6u+G+jqM6SsLHsakyF2A7jmcBehOxVkG+xrgJOCXQB5QBXxZVStE5GXgTWAh8KSI5OOsmvsLEZkL/A5nSfEPgK+oaq2IzAOWAy3A64P37oxJjqWtjOmdE4F7VPUjQANwPc6s3MtVNfyHf1nE8aNU9ROqeluP8zwA/Jt7no3AzW75H4Ab1FlfzZi0Yy0PY3pnjx5eG+hPwA9xNtdZ6Sw3hBeoiDj+kZ4nEJGROEHlFbdoBfCXKOUPAp/s/7dgTO9Z8DCmd3qu69MIbI7TUmhO4dwS5fzGpBVLWxnTO5NEJBworgLeBorDZSLid/dMiElV64FaETnLLboaeEVV64B6Efm4W/6l/r98Y/rGWh7G9M5WYImI/B5n5dI7geeBO9y0kw/4Fc4KpfEsAX4nIjnADuCf3fJ/BpaLSIt7XmPSiq2qa0yK3NFWT6nq7CG+FGOGjKWtjDHGpMxaHsYYY1JmLQ9jjDEps+BhjDEmZRY8jDHGpMyChzHGmJRZ8DDGGJMyCx7GGGNS9v8D8wRKn4fRQqkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'][-200:].plot()" ] @@ -252,10 +2300,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 11, + "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", @@ -274,7 +2320,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -298,9 +2344,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG1JJREFUeJzt3X+wlNWd5/H3By9CxqACguGHClthnGiyq+MtMOXsrpgVyExKzI7JMrKRqrEKx5gqZ51ahYpbZpXZka2tOMtacbSiGRN/oJMJJTsJEkSoOLMscFk1ioa5uGGQkXgvCwqkiju58t0/+lzt27k/+t77dPfzdH9eVV3dffqc8xwOffvb58fztCICMzOzsRrX6AaYmVlzcEAxM7NMOKCYmVkmHFDMzCwTDihmZpYJBxQzM8uEA4qZmWXCAcXMzDLhgGJmZploa3QD6um8886LOXPmNLoZZmaFsmfPniMRMW24fC0VUObMmUNHR0ejm2FmViiS/qGafJ7yMjOzTDigmJlZJhxQzMwsEw4oZmaWCQcUMzPLhANKjnQdP8WXH95B14lTjW6KmdmIOaDkyLqtnew+cJR1L3Q2uilmZiPWUueh5NXFd2+ip/f0h8+f2HmQJ3YeZELbOPat+XwDW2ZmVj2PUHLgpTsXct1lM5k4vvTfMXH8OJZeNpOX7lrY4JaZmVXPASUHpp89kUkT2ujpPc2EtnH09J5m0oQ2pk+a2OimmZlVzVNeOXHkZA/LF1zEjfMv5KldB+n2wryZFYwiotFtqJv29vbwtbzMzEZG0p6IaB8un6e8zMwsEw4oZmaWCQcUMzPLhANKwfhsejPLKweUgvHZ9GaWV942XBA+m97M8s4jlILw2fRmlncOKAXhs+nNLO8cUKqQl4XwvrPpN3z1KpYvuIjukz0NbY+ZWTmfKV+Fuze8xpO7DrJ8/oWs+eJnatAyM7P8qvZMeS/KD8EL4WZm1fOU1xC8EG5mVr2qAoqkA5Jek/SKpI6UNkXSFkmd6X5yWf7VkvZL2idpcVn6Fame/ZLWSVJKnyDpmZS+U9KcsjIr0jE6Ja0oS5+b8namsmeOvTv680K4mVn1RjJCWRgRl5XNo60CtkbEPGBreo6kS4BlwKXAEuBbks5IZR4CVgLz0m1JSr8ZOBYRnwQeANamuqYA9wALgPnAPWWBay3wQDr+sVRH5rwQbmZWnaoW5SUdANoj4khZ2j7g6og4LGkGsD0iLpa0GiAi/izl2wx8AzgAbIuI30rpf5DK39KXJyJ2SGoDfgFMoxSYro6IW1KZh4HtwHqgG/hERPRK+mwq/+FoaCC+fL2Z2chlffn6AH4saY+klSnt/Ig4DJDup6f0WcDbZWUPpbRZ6XFler8yEdELvA9MHaKuqcB7KW9lXWZm1gDV7vK6KiLekTQd2CLpZ0Pk1QBpMUT6aMoMVVf/xpQC4EqACy+8cKAsZmaWgapGKBHxTrrvAjZQWs94N011ke67UvZDwAVlxWcD76T02QOk9yuTprzOAY4OUdcR4NyUt7KuyrY/EhHtEdE+bdq0av65ZmY2CsMGFElnSZrU9xhYBLwObAT6dl2tAJ5LjzcCy9LOrbmUFt93pWmxE5KuTLu7bqoo01fXDcCLUVrc2QwskjQ5LcYvAjan17alvJXHNzOzBqhmyut8YEPa4dsGPBURz0vaDTwr6WbgIPAlgIjYK+lZ4A2gF7gtIj5Idd0K/CXwMWBTugE8CnxP0n5KI5Nlqa6jku4Ddqd890bE0fT4LmC9pDXAy6kOMzNrEF96xczMhpT1Li8zM7MhOaCYmVkmHFDMzCwTDihmZpYJBxQzM8uEA4qZmWXCAcXMzDLhgGJmZplwQDEzs0w4oJiZWSYcUMzMLBMOKGZmlgkHFDMzy4QDipmZZcIBxczMMuGAYmZmmXBAMTOzTDigmJlZJhxQzMwsEw4oZmaWCQcUMzPLhAOKmZllwgHFzMwy4YBiZmaZcEAxM7NMOKCYmVkmHFDMrGl0HT/Flx/eQdeJU41uSktyQDGzprFuaye7Dxxl3QudjW5KS2prdAPMzMbq4rs30dN7+sPnT+w8yBM7DzKhbRz71ny+gS1rLR6hmFnN1Xoq6qU7F3LdZTOZOL70kTZx/DiWXjaTl+5aWJPj2cAcUMys5mo9FTX97IlMmtBGT+9pJrSNo6f3NJMmtDF90sSaHM8G5ikvM6uZek5FHTnZw/IFF3Hj/At5atdBur0wX3eKiEa3oW7a29ujo6Oj0c0waxldx0+x5kdv8uO9v+DUr04zcfw4Fl/6Cb7+e5/y6KFAJO2JiPbh8lU95SXpDEkvS/qb9HyKpC2SOtP95LK8qyXtl7RP0uKy9CskvZZeWydJKX2CpGdS+k5Jc8rKrEjH6JS0oix9bsrbmcqeWe2/xczqw1NRrWUkayi3A2+WPV8FbI2IecDW9BxJlwDLgEuBJcC3JJ2RyjwErATmpduSlH4zcCwiPgk8AKxNdU0B7gEWAPOBe8oC11rggXT8Y6kOM8uZvqmoDV+9iuULLqL7ZE+jm2Q1UtWUl6TZwOPAnwJ3RMQXJO0Dro6Iw5JmANsj4mJJqwEi4s9S2c3AN4ADwLaI+K2U/gep/C19eSJih6Q24BfANEqB6eqIuCWVeRjYDqwHuoFPRESvpM+m8h+OhgbiKS8zs5HLesrrz4E7gdNlaedHxGGAdD89pc8C3i7LdyilzUqPK9P7lYmIXuB9YOoQdU0F3kt5K+syM7MGGDagSPoC0BURe6qsUwOkxRDpoykzVF39GyOtlNQhqaO7u3ugLNYCfEkOs9qrZoRyFXCdpAOUppqukfQE8G6a6iLdd6X8h4ALysrPBt5J6bMHSO9XJk15nQMcHaKuI8C5KW9lXf1ExCMR0R4R7dOmTavin2vNyJfkMKu9YQNKRKyOiNkRMYfSmsaLEfHvgY1A366rFcBz6fFGYFnauTWX0uL7rjQtdkLSlWl3100VZfrquiEdI4DNwCJJk9Ni/CJgc3ptW8pbeXyzD1189ybmrPohT+w8SETpPIg5q37IxXdvanTTzJrOWM6Uvx+4VlIncG16TkTsBZ4F3gCeB26LiA9SmVuBbwP7gbeAvr/qR4GpkvYDd5B2jEXEUeA+YHe63ZvSAO4C7khlpqY6zPrxJTnM6mdEZ8pHxHZKu6yIiP8HfG6QfH9KaUdYZXoH8OkB0k8BXxqkrseAxwZI/7+UthKbDWok50F0HT/F155+mQdvvDz350kUqa3WOnwtL2t61Z4HUaR1liK11VqHL71iLa/yelN98njp8yK11ZpH5pdeMWtWRVpnKVJbrfU4oFjLK9L1porUVms9vny9GcW69HmR2mqtxWsoZmY2JK+hmJmNgi/TM3oOKGZmZbwle/S8hmK555P4rB7q+XPFzcojFMs9f2O0evCW7LHzCMVyq5W/MXpUVn/ekj12HqFYQw21ANrK3xg9KmsM/1zx2HiEYqOWxbfo8g/ONV/8TL/XWvEbYyuPyvLg4a98tDN2zfW/dh1bG4YDio3aUMFgONV+cLbaSXwv3bmQNT96kx/v/QWnfnWaiePHsfjST/D13/tUo5tmNiwHFBuxLL5FV/vB2WrfGFtxVGbNw2soNmJZrG34g3NwRZvH94mA1scjFBuxrIJBq01nVatoo7KxTH1ac/G1vGxUbvleB9MmTewXDMo/CK35+bdZWke11/JyQDGzUek6fmrQdTBPXTYXXxzSzGrK62BWyWsoZjZqXgezcp7yMjOzIXnKy8zM6soBxczMMuGAYmZmmXBAMTOzTDigmJlZJhxQzMwsEw4oZhnyhRKtlTmgmGXIv7RorcxnyptlwL+0aOYRilkmsviNGLOic0CxwsvDuoUvlGhWRUCRNFHSLkmvStor6T+n9CmStkjqTPeTy8qslrRf0j5Ji8vSr5D0WnptnSSl9AmSnknpOyXNKSuzIh2jU9KKsvS5KW9nKntmNl1iRZOXdYui/dKiWdaGvThk+tA/KyJOShoP/C1wO/BvgaMRcb+kVcDkiLhL0iXA08B8YCbwAvCbEfGBpF2p7P8GfgSsi4hNkr4K/POI+CNJy4AvRsS/kzQF6ADagQD2AFdExDFJzwI/iIj1kv4CeDUiHhrq3+KLQzYX/8CTWX1kdnHIKDmZno5PtwCWAo+n9MeB69PjpcD6iOiJiJ8D+4H5kmYAZ0fEjihFse9WlOmr6/vA51IgWwxsiYijEXEM2AIsSa9dk/JWHt9ahNctai8P04lWHFWtoUg6Q9IrQBelD/idwPkRcRgg3U9P2WcBb5cVP5TSZqXHlen9ykREL/A+MHWIuqYC76W8lXVVtn2lpA5JHd3d3dX8c60gvG5Re3mZTrRiqGrbcER8AFwm6Vxgg6RPD5FdA1UxRPpoygxVV//EiEeAR6A05TVQHisu/8BTbXgbtI3GiM5DiYj3JG0HlgDvSpoREYfTdFZXynYIuKCs2GzgnZQ+e4D08jKHJLUB5wBHU/rVFWW2A0eAcyW1pVFKeV3WQh7+ykfTumuuH+p7jo3ES3cuHPT34s0GU80ur2lpZIKkjwH/BvgZsBHo23W1AnguPd4ILEs7t+YC84BdaVrshKQr0xrITRVl+uq6AXgxrbNsBhZJmpx2kS0CNqfXtqW8lcc3szGq93Ri0dZqitbeeqlmDWUGsE3ST4HdlNZQ/ga4H7hWUidwbXpOROwFngXeAJ4HbktTZgC3At+mtFD/FrAppT8KTJW0H7gDWJXqOgrcl467G7g3pQHcBdyRykxNdTSM32DWbOq5DbpoazVFa2+9+DflM3L3htd4ctdBls+/kDVf/ExNjmHWbIq29bto7c1KtduGHVDGqFXfYGZZ6Dp+atC1mjzu1itae7OS2XkoNrRqz4XwlJjlUaPfl0Xb+l209tabA8oYVfsG85yr5VEe3pdFu2RN0dpbT57yysAt3+tg2qSJ/c6F6NvO6ikxyyO/L20kvIYygEZcy6uoc65dx0/xtadf5sEbL891O210ivq+bCZF+hvzGkpOFHXONQ9TIVY7RX1fNpNm/BvzLzbWQZEuD+JLbrSOIr0vm0kz/415ysv68VSIWW0V8W/MU142Kp4KMautZv4bc0BpQcOde+BtkWa11ax/Y57yakG+TIyZjUS1U15elG8hzbwYWA9F2uZp1gie8moh/sncsWnGbZ5mWfIIpYU082JgLXlkZ1Ydj1BaTLMuBtaSR3Zm1fEIpcX4J3NHziM7s+o4oJhVwWeVmw3P24bNzGxIPlPezMzqygHFzMwy4YBi1qQa/fO+ra4V+98BxaxJ+UTMxmrF/veivFmT8c/7NlYz9r8X5c1alE/EbKws+79o02YOKGZ1VusPCZ+I2VhZ9n/Rps18YqNZnZV/SNTq5wN8ImZjjbX/i3r9OK+hmNVJM86t11Mr/XxA3n4m2GsoZjnjtY2xKdr0z1gUddrSU15mdVLUD4lGK+r0z1gVcdrSAcWsjor4IdFoL925cNDpn2ZWxCuDO6CY1VERPyQazSO74nBAMbPc88iuGLzLy8zMhpTZLi9JF0jaJulNSXsl3Z7Sp0jaIqkz3U8uK7Na0n5J+yQtLku/QtJr6bV1kpTSJ0h6JqXvlDSnrMyKdIxOSSvK0uemvJ2p7JnVdo6ZWbPI09n01Wwb7gX+JCI+BVwJ3CbpEmAVsDUi5gFb03PSa8uAS4ElwLcknZHqeghYCcxLtyUp/WbgWER8EngAWJvqmgLcAywA5gP3lAWutcAD6fjHUh1mZi0lT9uph11DiYjDwOH0+ISkN4FZwFLg6pTtcWA7cFdKXx8RPcDPJe0H5ks6AJwdETsAJH0XuB7YlMp8I9X1feDBNHpZDGyJiKOpzBZgiaT1wDXAjWXH/walgGVm1vTyuJ16RCc2pqmoy4GdwPkp2PQFnekp2yzg7bJih1LarPS4Mr1fmYjoBd4Hpg5R11TgvZS3sq7KNq+U1CGpo7u7eyT/XDOz3MrjibJVBxRJHwf+GvjjiDg+VNYB0mKI9NGUGaqu/okRj0REe0S0T5s2baAsZmaFk8ft1FUFFEnjKQWTJyPiByn5XUkz0uszgK6Ufgi4oKz4bOCdlD57gPR+ZSS1AecAR4eo6whwbspbWZeZWUvo20694atXsXzBRXSf7Gloe4ZdQ0lrGY8Cb0bEN8te2gisAO5P98+VpT8l6ZvATEqL77si4gNJJyRdSWnK7Cbgf1TUtQO4AXgxIkLSZuC/lC3ELwJWp9e2pbzrK45vZtYS8naibDUjlKuArwDXSHol3X6XUiC5VlIncG16TkTsBZ4F3gCeB26LiA9SXbcC3wb2A29RWpCHUsCamhbw7yDtGEuL8fcBu9Pt3r4FekobAO5IZaamOixH8rSd0cxqzyc2Ws3cveE1ntx1kOXzL6zZ736YWe1Ve2KjL71imcvjdkYzqz3/HoplLo/bGc2s9hxQLHN53M5oZrXnKS+rCV8d1qz1eFHezMyG5N+UNzOzunJAaUI+/8PMGsEBpQnl6XLWZtY6vCjfRHz+h9nwuo6f4mtPv8yDN17unYcZ8wilifj8D7PheQRfOx6hNBGf/2E2OI/ga88jlCaTt8tZm+WFR/C15xFKk8nb5azN8sIj+NpzQDGzluErONSWz5Q3M7Mh+Ux5MzOrKwcUMzPLhAOKmZllwgHFzMwy4YBiZmaZcEAxM7NMOKCYmVkmHFDMzCwTDihmZpYJBxQzM8uEA4qZmWXCAcXMzDLhgGJmZplwQDEzs0w4oJiZWSYcUMzMLBMOKGZmlgkHFDMzy8SwAUXSY5K6JL1eljZF0hZJnel+ctlrqyXtl7RP0uKy9CskvZZeWydJKX2CpGdS+k5Jc8rKrEjH6JS0oix9bsrbmcqeOfauMDOzsahmhPKXwJKKtFXA1oiYB2xNz5F0CbAMuDSV+ZakM1KZh4CVwLx066vzZuBYRHwSeABYm+qaAtwDLADmA/eUBa61wAPp+MdSHWZm1kDDBpSI+AlwtCJ5KfB4evw4cH1Z+vqI6ImInwP7gfmSZgBnR8SOiAjguxVl+ur6PvC5NHpZDGyJiKMRcQzYAixJr12T8lYe38zMGmS0ayjnR8RhgHQ/PaXPAt4uy3copc1KjyvT+5WJiF7gfWDqEHVNBd5LeSvr+jWSVkrqkNTR3d09wn+mmZlVK+tFeQ2QFkOkj6bMUHX9+gsRj0REe0S0T5s2bbBsZmY2RqMNKO+maSzSfVdKPwRcUJZvNvBOSp89QHq/MpLagHMoTbENVtcR4NyUt7IuMzNrkNEGlI1A366rFcBzZenL0s6tuZQW33elabETkq5MayA3VZTpq+sG4MW0zrIZWCRpclqMXwRsTq9tS3krj29mZg3SNlwGSU8DVwPnSTpEaefV/cCzkm4GDgJfAoiIvZKeBd4AeoHbIuKDVNWtlHaMfQzYlG4AjwLfk7Sf0shkWarrqKT7gN0p370R0bc54C5gvaQ1wMupDjMzayCVvvC3hvb29ujo6Gh0M8zMCkXSnohoHy6fz5Q3M7NMOKCYmVkmHFDMzJpY1/FTfPnhHXSdOFXzYzmgmJk1sXVbO9l94CjrXuis+bGG3eVlZmbFc/Hdm+jpPf3h8yd2HuSJnQeZ0DaOfWs+X5NjeoRiZtaEXrpzIdddNpOJ40sf8xPHj2PpZTN56a6FNTumA4qZWROafvZEJk1oo6f3NBPaxtHTe5pJE9qYPmlizY7pKS8zsyZ15GQPyxdcxI3zL+SpXQfprvHCvE9sNDOzIfnERjMzqysHFDMzy4QDipmZZcIBxczMMuGAYmZmmXBAMTOzTLTUtmFJ3cA/DPDSeZR+WrgoitTeIrUVitXeIrUVitXeIrUVat/eiyJi2nCZWiqgDEZSRzV7rPOiSO0tUluhWO0tUluhWO0tUlshP+31lJeZmWXCAcXMzDLhgFLySKMbMEJFam+R2grFam+R2grFam+R2go5aa/XUMzMLBMeoZiZWSaaNqBIekxSl6TXy9L+haQdkl6T9D8lnZ3Sx0t6PKW/KWl1WZntkvZJeiXdpje4rWdK+k5Kf1XS1WVlrkjp+yWtk6Ss25pxe+vRtxdI2pb+X/dKuj2lT5G0RVJnup9cVmZ16sN9khaXpde0fzNua+76VtLUlP+kpAcr6spV3w7T1jz27bWS9qQ+3CPpmrK66vK5AEBENOUN+FfAbwOvl6XtBv51evyHwH3p8Y3A+vT4N4ADwJz0fDvQnqO23gZ8Jz2eDuwBxqXnu4DPAgI2AZ/PeXvr0bczgN9OjycBfw9cAvxXYFVKXwWsTY8vAV4FJgBzgbeAM+rRvxm3NY99exbwO8AfAQ9W1JW3vh2qrXns28uBmenxp4F/rFfflt+adoQSET8BjlYkXwz8JD3eAvx+X3bgLEltwMeAfwKO16OdMOK2XgJsTeW6gPeAdkkzgLMjYkeU3kXfBa7Pa3tr0a6BRMThiPg/6fEJ4E1gFrAUeDxle5yP+moppS8XPRHxc2A/ML8e/ZtVW7NsU5btjYhfRsTfAv1+5SmPfTtYW+tlFO19OSLeSel7gYmSJtTzcwGaeMprEK8D16XHXwIuSI+/D/wSOAwcBP5bRJR/YH4nDW3/U02Hi9W19VVgqaQ2SXOBK9Jrs4BDZeUPpbR6GWl7+9StbyXNofRNbidwfkQchtIfL6XRE5T67O2yYn39WNf+HWNb++StbweTx74dTp779veBlyOihzr3basFlD8EbpO0h9Iw8p9S+nzgA2AmpamDP5H0z9JryyPiM8C/TLevNLitj1F6U3QAfw78L6CX0nC2Uj238I20vVDHvpX0ceCvgT+OiKFGn4P1Y936N4O2Qj77dtAqBkhrdN8OJbd9K+lSYC1wS1/SANlq9rnQUgElIn4WEYsi4grgaUpzzlBaQ3k+In6VpmX+jjQtExH/mO5PAE9RpymFwdoaEb0R8R8i4rKIWAqcC3RS+tCeXVbFbOCdynpz1N669a2k8ZT+KJ+MiB+k5HfTdEDflEtXSj9E/xFUXz/WpX8zamte+3YweezbQeW1byXNBjYAN0VE32dbXT8XWiqg9O3GkDQOuBv4i/TSQeAalZwFXAn8LE3TnJfKjAe+QGlqp2FtlfQbqY1IuhbojYg30vD3hKQr0xD8JuC5erR1NO2tV9+mvngUeDMivln20kZgRXq8go/6aiOwLM0/zwXmAbvq0b9ZtTXHfTugnPbtYPXksm8lnQv8EFgdEX/Xl7nunwtZr/Ln5UbpW/Jh4FeUovTNwO2Udkv8PXA/H53Y+XHgrygtZr0B/Mf4aKfHHuCn6bX/TtpF08C2zgH2UVqke4HSVUD76mmn9OZ+C3iwr0we21vHvv0dSkP8nwKvpNvvAlMpbRboTPdTysp8PfXhPsp2xNS6f7Nqa8779gClDR0n03vnkhz37a+1Na99S+lL3C/L8r4CTK9H35bffKa8mZlloqWmvMzMrHYcUMzMLBMOKGZmlgkHFDMzy4QDipmZZcIBxczMMuGAYmZmmXBAMTOzTPx/yCCfx6w8frMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.plot(style='*')" ] @@ -314,9 +2383,56 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "2021 743449\n", + "2014 1600941\n", + "1991 1659249\n", + "1995 1840410\n", + "2020 2010315\n", + "2012 2175217\n", + "2003 2234584\n", + "2019 2254386\n", + "2006 2307352\n", + "2017 2321583\n", + "2001 2529279\n", + "1992 2574578\n", + "1993 2703886\n", + "2018 2705325\n", + "1988 2765617\n", + "2007 2780164\n", + "1987 2855570\n", + "2016 2856393\n", + "2011 2857040\n", + "2008 2973918\n", + "1998 3034904\n", + "2002 3125418\n", + "2009 3444020\n", + "1994 3514763\n", + "1996 3539413\n", + "2004 3567744\n", + "1997 3620066\n", + "2015 3654892\n", + "2000 3826372\n", + "2005 3835025\n", + "1999 3908112\n", + "2010 4111392\n", + "2013 4182691\n", + "1986 5115251\n", + "1990 5235827\n", + "1989 5466192\n", + "dtype: int64" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "yearly_incidence.sort_values()" ] @@ -331,9 +2447,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEKCAYAAAAyx7/DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAE6BJREFUeJzt3X2UXHV9x/H3twkPgeWpjSwakPhUKxJ5WlSk4gY9PhDUqhxBQQ1HDLYKFONpI0elaqnxAXvU+tD4fBTZo0CrEutDoYuKFtmAGjGKHohCEBAQNECFyLd//O6WOeludhIyO/Obeb/O2XNm5t6Z+/v+ZvYz9/7uvXMjM5Ek1eNPut0ASdLWMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlZnbiRedP39+Lly4sBMvPaO7776bXXfdtSvL7hWD3geDXj/YBzXWv2bNmtsy82HtzNuR4F64cCETExOdeOkZjY+PMzo62pVl94pB74NBrx/sgxrrj4hftjuvQyWSVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakynTkBBxpJgtXrO7Yay9ftIml07z++pVLOrZcaba4xi1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVpq3gjogzI+KaiPhxRJwfETt3umGSpKnNGNwRsQA4HRjJzAOBOcAJnW6YJGlq7Q6VzAXmRcRcYBfgps41SZK0JZGZM88UcQZwDnAv8I3MPHGKeZYBywCGh4cPGxsb285Nbc/GjRsZGhrqyrJ7RQ19sHbDXR177eF5cMu9U09btGCPji23l9TwGeikGutfvHjxmswcaWfeGYM7IvYCLgSOB+4EvghckJmfm+45IyMjOTEx0X6Lt6Px8XFGR0e7suxeUUMfLFyxumOvvXzRJs5dO3fKaetXLunYcntJDZ+BTqqx/ohoO7jbGSp5FnB9Zv4mM+8HLgKe9lAaKEnadu0E96+Ap0bELhERwDOBdZ1tliRpOjMGd2ZeAVwAXAWsbZ6zqsPtkiRNY+qBwM1k5tnA2R1uiySpDZ45KUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZVp6wo46k+dvNK6pM5xjVuSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqTFvBHRF7RsQFEfHTiFgXEUd0umGSpKm1e7Hg9wNfy8zjImJHYJcOtkmStAUzBndE7A4cBSwFyMz7gPs62yxJ0nQiM7c8Q8TBwCrgJ8BBwBrgjMy8e7P5lgHLAIaHhw8bGxvrSINnsnHjRoaGhrqy7F7Rbh+s3XDXLLRm9g3Pg1vunXraogV7zG5jumTQ/w9qrH/x4sVrMnOknXnbCe4R4L+BIzPzioh4P/C7zHzLdM8ZGRnJiYmJrWnzdjM+Ps7o6GhXlt0r2u2DhStWd74xXbB80SbOXTv1xuT6lUtmuTXdMej/BzXWHxFtB3c7OydvBG7MzCua+xcAh25r4yRJD82MwZ2ZNwM3RMTjm4eeSRk2kSR1QbtHlZwGnNccUXIdcHLnmiRJ2pK2gjszfwC0NfYiSeosz5yUpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyrR76TKpL/Trle03t3zRJpY2tQ7Kle0HiWvcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmXaDu6ImBMRV0fExZ1skCRpy7ZmjfsMYF2nGiJJak9bwR0R+wJLgI93tjmSpJlEZs48U8QFwDuB3YA3ZuaxU8yzDFgGMDw8fNjY2Nh2bmp7Nm7cyNDQUFeW3Sva7YO1G+6ahdbMvuF5cMu93W5Fd7X2waIFe3S3MV1QYw4sXrx4TWaOtDPv3JlmiIhjgVszc01EjE43X2auAlYBjIyM5OjotLN21Pj4ON1adq9otw+Wrljd+cZ0wfJFmzh37Ywf7b7W2gfrTxztbmO6oN9zoJ2hkiOBF0TEemAMODoiPtfRVkmSpjVjcGfmmzJz38xcCJwAXJqZJ3W8ZZKkKXkctyRVZqsGAjNzHBjvSEskSW1xjVuSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqM9iXwpbUl9ZuuIulK1bP+nLXr1wyK8txjVuSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqzIzBHRH7RcR/RcS6iLgmIs6YjYZJkqbWzsWCNwHLM/OqiNgNWBMR38zMn3S4bZKkKcy4xp2Zv87Mq5rbvwfWAQs63TBJ0tQiM9ufOWIh8C3gwMz83WbTlgHLAIaHhw8bGxvbfq3cChs3bmRoaGirn7d2w10daE13DM+DW+7tdiu6Z9Drh97og0UL9ujasm+9466u1P9Qal68ePGazBxpZ962gzsihoDLgHMy86ItzTsyMpITExNtve72Nj4+zujo6FY/b+GK1du/MV2yfNEmzl3bzihYfxr0+qE3+mD9yiVdW/YHz/tSV+p/KDVHRNvB3dZRJRGxA3AhcN5MoS1J6qx2jioJ4BPAusx8X+ebJEnaknbWuI8EXgEcHRE/aP6O6XC7JEnTmHEQKDO/A8QstEWS1AbPnJSkyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTK9NylsB/q1daXL9rE0j66Yrskbc41bkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakybQV3RDw3In4WEb+IiBWdbpQkaXozBndEzAE+BDwPOAB4WUQc0OmGSZKm1s4a95OBX2TmdZl5HzAGvLCzzZIkTScyc8szRBwHPDczT2nuvwJ4Sma+frP5lgHLmruPB362/ZvblvnAbV1adq8Y9D4Y9PrBPqix/v0z82HtzDi3jXliisf+X9pn5ipgVTsL7aSImMjMkW63o5sGvQ8GvX6wD/q9/naGSm4E9mu5vy9wU2eaI0maSTvBfSXwuIh4VETsCJwAfLmzzZIkTWfGoZLM3BQRrwe+DswBPpmZ13S8Zduu68M1PWDQ+2DQ6wf7oK/rn3HnpCSpt3jmpCRVxuCWpMoY3JJUGYN7MxGxICIWdLsd3RIRj46IMyPi6G63pRusf7Drhzr6wOBuRMTCiLgM+Brwnoh4erfbNNsi4i+Bb1J+k+a1EfHXXW7SrLL+wa4f6umDgQ7uiNi55e6hwJWZuYhy6OPpEbGomW+qs0erFxFHR8SjmtsBHA2cnZmvAc4FjomI0ZbpfcX6B7t+qLcPBi64I2L3iPhoRFwLvDci9m8mvQj4VXN7DPgFcMrk02a5mR0VEQdExI+AfwA+FRFHZzku9ABgH4DMvAL4LnDy5NO60dZOsP7Brh/q74OBC27gucDOlDfoPuCtETGPsnn0fIDM/ANwAfD05v4D3Wnq9hER+0bE7i0PHQ9cmJlHUb6kXh4RjwM+T9MHjX8DDoyInWruA+sf7Pqh//qgL4M7irkR8eqI+HZEnBERj2kmPxa4LzM3Af8M/BY4CfgG8PCI+NNmvmuBGyLiiFkvYDuJiCdExFeB7wBvj4jJn+P9H2CX5vYXgJuBJZS1iz9r2Qq5g/IrjwfNXqu3H+sf7Pqhf/ugL4O72eR5BvBK4N3ATsDHmsk3A7c236A3UN6Ux1DeyJ/w4E/T7gDc3jxejYjYteXuwcCNmbkQuBR4b/P4HcAfImK3zLwD+DnwCEqt3wXe0My3I/BHYH3nW759WP9g1w+D0Qd9EdwRcUREvCsiljb3A3gC8LXM/EpmvhvYPyKeBmygfNM+oXn6OmCoeexfKDsjnk8J/WHgh7NazDaIiL0i4tMRcSWwMiIe1vTBIuDyiIjM/DJwZ0QsoWxN7NZMp7m/N/AAZStk74j4GHA+sCkzb53tmraG9Q92/TB4fVB9cEfEE4GPAL8HXhoRb6DUtQD4fcue4E8DL6cE8Sbgac3jV1H2JN+Tmd8CVgBLgSOBd2TmA720N3kaR1FqOoayA+UsYHfKj4Ltkw/+IM1nKH3wfUp/PQ8gM7/XvMbczFwHnApcA/xTZp5M77P+wa4fBq0PMrOaP8qa8SmUzZ+5zWPvA85obo8AHwCOA54FfL3luftRNpmgBPXVlCv1HAJ8CXh4y7zR7VqnqX8O5QN1GWVIZ37z+BeA05vbjwJWNtMPp4ztzWnpv980r7OAsrXxeuBTwIeBXbtdo/Vbv30w8181a9wRcRBlB+ILgbOBNzeTNlCuiwnlG/Jy4CXAJcA+EfGkiNghy3j2hoh4emZeSvnZx3cBFwHnZ+avJ5eVzTvcg44FXgC8DTiCMn4P5YiYyS2IG4BvA8/LzCspax+LATJzI3AFcHhmbgBeQRkOuhl4c2bePUt1bCvrH+z6wT4A2rt0WVdExCHA3Zl5bfPQk4FrM3NpRBwKnBMRI8A48JyI2CUz74mIHwIvpRyL+XngNcAHIuJeYC1wffN6HwU+n5l3zV5VM2vG4jIiDqds0n0bWJ3lEMU/B67LzEsj4nrKGZ7PBtYAL4qI+Zl5W0T8HLg7Ih4JfBA4KSL2ply96HbKZiKZOQFMzHqRW2D9g10/2Aft6Lk17oh4bER8hzIm/daIeGUz6QFgfbP2fBVlE+cI4B4ePJQH4H7KptA+lLXqHzevdRlwW2beCGWtuodD+yjgk5Q93M8C3tnM8gBwbUTMy8zrKX3wJMpY3U2UY1Oh7AWfQ3l/L6T0w4nAYcCq7KHjUVtFxJym/mdQNl0Hrf55Tf2jDOD7D+UEuUHvg7Z0e6wG2BU4ouX+scD7m9tPoXwb7g+8irJ5tKCZdhxlPHty2mXN4ztThknmt7zmIcCO3a51mvp3AV7Lg1sHOwB/C7yumb4X8KOmhuMpY3cLW/pqFeWK1sdStij2oIzhf7W1ZuBPul3rFt7/Uyj/XMspO5QGpv6mbbsBqylXlwI4c8Dq36X5H76EclLMwPXB1v51dY07Is4CrgO+GhHDzcPPoRxbTZZTTr8PnEY5BnM/yjHXUMayD6YcDfIZ4LcR8VnKTsefAf83VpWZV2fmfZ2vaOtExD7AxcAo8FnKzpQXU7YkNgFk5m8pO09Pp4zj7c2DhzJ+i3K8+n2ZeTHwCcoZnx+i7D2/f3JZ2YNrGM3xtpdQ/sk+Bjybsn/icMqaVV/X32Ie5VyDx0TEfMpnfA70f/0RsQNl39RxwHsy8yXNpEMm5+n3PtgmXf6mHaVs5nwcWN489gbKeNbkPAcANzS3zwHe3jLtSuCQ5vZOlEOBDu/2t+FW1D8PeErL/aWUnS2vAr7f8vgjgJua26+jnKK7V/P8rwCPbJl3/my0fTv2wZ4tt/+O8s954qDU37T5VcB7gLcAr6accn3lANV/EXDiZo8dD1wxKH2w1X3W5Tds8hCd43lwqGNP4E5g55b5rqR8A+8JfJGyafQflG/UnbrdiQ+h/pj8a+4f2tIPt1OOP52c95uTIQ/8I+UIm9uBv+92HduhH3an7Ie4BXh7c/92YLif629530+mDJe9GDiveey2fq+/pbZjKSfAnEs52OCtlCHQO4C9B6EPtvavq0MlmfnH5uZ/ArtFxEGZeSdlXPvUllmvAnZrpp1GGQ75d2BZlj3NVcpGy0NnUNY+oIzPnQkQ5fdTfglMHrL4NsqWyYLMfNcsNbdjMvN3lCGxp1J2Kr+UMtx1ahR9WX/Le38MZajoEmDfiHgzZYf7MhiI9/9iytFet1MOz3si8FeUz8Br+/kzsK165irvEfFhynj1G5ujKv6GEuB7UU6sOaYl6PtOROxLGZ87LTOvjfKjWMsoH+IFwA+yF8/g2s4i4mDKl/b3KOOYB1IO4erL+iNiiDJMshOl3r+gnDByFmVN/HH0cf2TJg/nbW4fRPnsX045Jb2vPwPbopeC+2DKUSLPpHyA76Gcfn4v8NHMvKaLzeu4KL+P8gzgTZQxzxspm4bHAz/Ncghk34uI/ShfYC/LzNsj4iTgmsy8ustN64goF/P4V8pOtPMph7GdlZnPbqb3df1TifLLfB8Hjs/MOwaxD2bSS8F9AuWQuHuAd1D2MPfPXuAZRMTlwKMpv0J2E/C2zPxRVxs1SyJiD8oX9sspO6NXAR/KzPu3+MQ+1Jww8mJgLDNv7nZ7ZktE7ET5rfzJoZKPAB/O8vPL2kxPBHdEPIly+vkFlJ0zVf2U6kPVHBJ1NmWc73M1j9tvi4iYSxke+QOl/oF6/6GcfAQ8kL3wD9klEXEq5TDQzw7iZ2Br9ERwS5La13OnvEuStszglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZX5Xx9bbOEbOB5tAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.hist(xrot=20)" ] @@ -341,9 +2480,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [] } @@ -364,7 +2501,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.6.4" } }, "nbformat": 4, -- 2.18.1