diff --git a/module3/exo3/exercice.ipynb b/module3/exo3/exercice.ipynb index a7e6a86bccd04bfe9adf9904e56b5ff14389aa6e..4b1d4edf58f04ca2c7307a04d67ca52bd18279f5 100644 --- a/module3/exo3/exercice.ipynb +++ b/module3/exo3/exercice.ipynb @@ -2008,7 +2008,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 14, @@ -2034,16 +2034,16 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 16, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, @@ -2071,6 +2071,121 @@ "On voit de prime abord une augmentation globale, et des oscillations assez régulières avec des minima locaux les mois de Septembre / Octobre et des maxima locaux les mois de Mai et Juin." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Pour caractériser la croissance globale de la concentration de CO2 dans l'atmosphère, on va tenter de joindre au graphe des courbes de tendance linéaire et exponentielle, et voir quelle est la plus appropriée." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4W9X5wPHvkTwk2/Le20ns7El2CCtAAqSEUUaZBQq0UApt2aUtlNJSRqFltGWU8aNA2IRAEhJISAIZZO/Ejh3vKW9Zki3p/P64suzQUAwktuO8n+fJE+n6XvmeB/L6+L3veY/SWiOEEGLgMvX1DQghhDiyJNALIcQAJ4FeCCEGOAn0QggxwEmgF0KIAU4CvRBCDHAS6IUQYoCTQC+EEAOcBHohhBjggnp6olLKDGwAyrXWc5VSDwM/ANqB/cBVWutG/7l3AdcAXuAXWusl/+uz4+PjdXZ29ncbgRBCHKM2btxYp7VO+KbzehzogZuB3UCk//1S4C6ttUcp9RfgLuAOpdQI4GJgJJAKLFNK5WmtvV/3wdnZ2WzYsOFb3IoQQgilVHFPzutR6kYplQ6cBTzXeUxr/bHW2uN/uxZI97+eB7yutXZrrYuAAmByT29cCCHE4dXTHP3jwO2A72u+fjWwyP86DSjt9rUy/7GDKKWuU0ptUEptqK2t7eFtCCGE+La+MdArpeYCNVrrjV/z9d8AHuA/nYcOcdp/tcjUWj+jtZ6otZ6YkPCNKSYhhBDfUU9y9DOAs5VSZwIWIFIp9YrW+jKl1JXAXGCW7up3XAZkdLs+Hag4nDcthBCi575xRq+1vktrna61zsZ4yPqpP8jPAe4AztZat3W7ZAFwsVIqVCmVA+QC64/AvQshhOiBb1N181VPAqHAUqUUwFqt9U+11juVUm8AuzBSOjf+r4obIYQQR9a3CvRa6xXACv/rIf/jvAeAB77PjQkhhDg8ZGWsEEL0kX+vLuKj7ZVH/PtIoBdCiD7y7KpClu2uPuLfRwK9EEL0kq7iRHB1eKlqdpEVG37Ev68EeiGE6AVfFNSRc9dH5Fe3AFDW0IbWkBUXdsS/twR6IYToBYt2VB3095KdRspmeErk115zuEigF0KIXuDqMKrMD9gdaK15e2MZ0wfHMTTZdsS/twR6IYToBQW1rQBUNrqoaXFTWOdg1vCkXvneEuiFEOII01qzv8YI9BVNTgprHQDkJUX0yveXQC+EEEfY/tpWml0eLMEmKhtdFNYZQT8n/shX3IAEeiGEOOwcbg93vbOd8kYnAM+vPoA12MzVM3Jo9/rYVNxIiNlEapS1V+5HAr0QQhxmn+2r5bX1Jfzitc0ALN9Tw8nDEpiQGQPA2kI76bFWTKZDdXU//CTQCyHE91Tb4sbn61oMtbmkAYBmZwctrg6qml2MTosmJdoCQHmjk4yYI18/30kCvRBCfA/2VjeTHljGo0v3Bo5tLDYCfV2rm9J6I32TGRtGenRXcM+MlUAvhBBHhQ3+oP7cqiLAqJffUd4MQENbB3uqjNeZsWFEhQVj9qdrJNALIcRRYmd5EwChQUY43VHeRLvXx1mjUwBYtrsak4IhiUYpZZA/0GdIoBdCiP6p1e3B2y0fX97oAqDZ5cHt8fLymmKCzYqzx6UCRquD3EQb1hAzAPfPG0VWXBjjMqJ77Z4l0AshRA9tLK5n1O+X8NCSPYFjFf4SSoCqJherC+o4e2wao9OiAPD6NNnxXbP3Cydl8NltJ5McZem1+5ZAL4QQPbSzwsi3d+bjvT5NYV0r8REhAOyubKbe0c6wZBtJkZZAmiY5sveC+qFIoBdCiB6yt7YDRoB3dXhZuquK6mY3P56eDcCq/DoABiWEYzYpYsONHwDJ/oVRWmvKWsp6/b4l0AshRA/VO9oDr2tb3Ly1sYy0aCtXH58DwOoCI9APTjAevHZ2rEyNtlDlqOKGT27gooUXYXfae/W+JdALIUQPdQ/0NS1uCmpaGZcRTVhIEHHhIRTb2wg2K9JjjBn8T2YOAjStIZ9z7vvnsrF6IzeMu4EYS0yv3ndQr343IYQ4ilU2OQkPMeNo91LR6KS0wcncMUZ1TWq0Fbujnay4cILMxhz6/MlhbPe+z4NfrmVS8iTum3YfGZEZvX7fMqMXQoiv8eLnRXy0vRKABkc7W0ob+cFYI7B/XlCH16fJ9bcaTvW3NxgUH45P+5i/Zz7nLTiPbbXbuGfKPTx32rNkVO6A926AbnvH9gaZ0QshxCE0uzq494NdABx48Cx2Vzbj03Dm6BTe2FDKh/4fAJNzYgGItAQDkBDr4NqPr2V91Xqmpkzl3un3kuZ0wH8ugP2fQPxQcNRCRGKvjUUCvRBCHMK20qbAa59PU1hnbBaSmxRBbHgoda1uIi1BpPgranLiwwiO+ZzFDUsJMQdx77R7OS9jFmrlw7DunxAcDnMehEk/AXNwr45FAr0QQhxC94VQpQ1t5Fe3YA02k2SzkGAzAn3noqfi5mLWOv+IJXkTk1OO5/dTfktywafw5ERw1MGEy+GU30FEQp+MRQK9EEIA720up7GtnR/PMEoly7sF+t2VzazMr2PKoFhMJkVyZCi7KyExMoSXdr7EE5ufIMQcwv0z7mdeaBrqtUuhYhOkT4ZL34TU8X01LOBbPIxVSpmVUpuVUgv972OVUkuVUvn+v2O6nXuXUqpAKbVXKTX7SNy4EEIcLu0eH7fM38K9H+yiwV9CWdbgJMpqpFi2lDZRVOdgUraRjx+cEIEppIYDwQ/xyIZHmJYyjfdmPcM525egnj8VmivgvGfhmo/7PMjDt6u6uRnY3e39ncAnWutc4BP/e5RSI4CLgZHAHOBppZT58NyuEEIcfsV2R+D1rkqjzcG+6hZGp0URHRbMllKjFXFGbBgdvg6qTAsJy/kb7aZq/jz9fv4eOpjE52bDjrfg+F/CTRtgzIWgemcHqW/So0CvlEoHzgKe63Z4HvCS//VLwDndjr+utXZrrYuAAmDy4bldIYT4/lrdHkrr2wLvyxq60jSVTS6c7V72VrcwIjWSuPAQtvofzHqCSvjRwh/xWe3/MTnpBD4a/yvmLr4ftez3kD0TblgLp94LobZeHtH/1tMZ/ePA7YCv27EkrXUlgP/vzlqhNKC023ll/mMHUUpdp5TaoJTaUFtb+61vXAghvqurX/ySmQ8tD2z/V3ZQB0on728pp93j47QRScRFhOL0uAhJWMR9G39Kvauexyfeyb8bqoh/8xrjokvfgkteh7jBfTGcb/SND2OVUnOBGq31RqXUST34zEP9rvJfqwO01s8AzwBMnDixd1cPCCGOaeuL6gEosjsYnBBBaX0bIWYTYaFmKppcFNY6SLSFMjErhuDwA4TnPIMptI552XO51amJfPtmCLLA6X+EyddDUEgfj+h/60nVzQzgbKXUmYAFiFRKvQJUK6VStNaVSqkUoMZ/fhnQfY1vOlBxOG9aCCEOhx3lTQxOiKCgppVBCeGYlKKqyUWx3cHI9FD+tO5PbPO+DiqGU+pm8Ifat6G1GsZdCrN+D7akvh5Cj3xj6kZrfZfWOl1rnY3xkPVTrfVlwALgSv9pVwLv+18vAC5WSoUqpXKAXGD9Yb9zIYT4Djo7SgIU1TlobGtnXaGdIYkRpEZbKGtoo8y1md2m3zF/73xmhM3gubJW/tbyGkSlw08+gXOePmqCPHy/XjcPAqcppfKB0/zv0VrvBN4AdgGLgRu11t6v/RQhhOhFnZuHABTWOli8owpHu5cfHpdOrM1DienfhKT/mzBzCC9HjOUfO19nCHW8knwHXLMM0if24d1/N99qwZTWegWwwv/aDsz6mvMeAB74nvcmhBDf256qZt7dXM4ds4dhMik+3FaJSUFuoo3i+jYSbaGEBJlwhWxmheN+gqJaGG7P5EXnVsK8G/FMvZHnnPO49rSxYDo6+0DKylghxIB21t9X4/Vpzp+QTl6SjY93VXH6iGRsliA+21fL7jAHUVmvctvKLWQGJXNzcT2ne1bjzj4F5j5EUHwud/X1IL6no/PHkxBC9JDXX0K5sbiBVreHsgYno9OjSI6y0GD+nG3cQ3vwDm4xJ/N+/npy2z1c3X4rIVe8DfG5fXz3h4fM6IUQA5azvevx4J7KZoYmGwuZ4qMdvLr/r1hSNpHsDOcf9kqGUE3r8fcwe1kuwSEW1FGapjkUCfRCiAGrqtkVeL2vupW9lU0Ex3zOIzuXgc/Dz+tcXNtSQkXm2fDDh4iITOGviRVMyYnrw7s+/AbOjywhxDFvc0kDo+9dwgF/7/jONgdp0VYKGvfzr4JbsSR/wIQOH++XHGBaUzg/dN9L65lPQWQKAHPHpJJgC+2zMRwJMqMXQhy1Orw+gs1d89WX1xTT4vLw6voS7j5zOFtLGwEPGTlfsLPtLVQ7/NFu52yfFffpf2XGO3FoTGTHhffdIHqBzOiFEEelXRXN5P5mEavz6wLHivwz+R3lTbR7fLyyZRWxeU+x0zWfk9vaeL+0jJjQs1A3bcQy+cekRIVx6vAkLMEDu8GuzOiFEEelJTurAHh/SznH58bT6vawvdzoMrm9opp7Vv6Rtrg3SfTBb6tqMbcO5nLPr7ngxFM5wRoNwIrbTibY3D9aCR9JEuiFEEelvVUtAFS3uAFYtL0Sr08zcXgV+zqeZ3FJCxe3tPCzDhsdJz/JlHcsgCItxhr4jJCgYyOpcWyMUggx4OTXGIG+rMF44PqfL3eSmPM6e3mcbF3Pc1X1hFafRtjP1hJ33Hl0NtZNjbZ+3UcOWDKjF0IcdVwdXg7YjQBf3tDGG7vfpjj0AZSpnRsamki0j+R3wT/GHZ3MrVbjQWuUNZgmZwfpMRLohRCi3/H5NP9aWcgPxqaQHhPGltJGvD7NtKGafOeT3L++jAkdLn7liib2xMeZOd8NHXBadkTgM5b96kQKa1tJtFn6cCR9Q1I3Qoh+b22hnb8s3sNNr20GYEupncjYj9mnfkOwtYQ76p2klszFeuFSYkecFLhuSGJXoE+whTJl0MBaCNVTMqMXQvR7K/YZ240eqHOws3Y7bxfegE5q5HiHk8HVo5kffhW7dBD3JUQe9IA1t1ugP5bJjF4I0e/8Z10xOyuaAu93VTSDaifS9jyXfHgJXl8dt9SF8+DZ7/BX90/YXm8mKy4sEOTPG29sUz02I7pP7r+/kRm9EKJf6fD6+M27OwA48OBZaK2pqF9G5uA3qQ/2cr7Th73mPApGXog1fQyx4dXUO9oPmr0/euFY7p03kkhLcF8No1+RGb0Qol+paHQGXlc1lHH7m2dTm/Q6kbg5s3QYGUPn80HbdMZlxgCQ6O9Lk5toC1ynlJIg343M6IUQ/UppvRPwMSH6HS547w5aFZzcYOOMyY/ys4IGZuxvBWB4SiTQtQdsXrLt6z7ymCczeiFEn+nw+rjz7W38Z11x4NiefZ8wJfO35KdsIM1nYrbrUja6H2DWlKkEmxVr9tsByPI3Irvx5CHMzI3n9BFHz2bdvU1m9EKIPrOusJ7Xvyzl9S9LOWeYhVeX3Mgzjt0oq2J0TR6nTP4Tz31ezrTBsYQEmUiOslBa7yQ2PIQoq5GauWBiBhdMzOjjkfRvEuiFEL2m3eMDunrMlDW0YcLH6eHvcfmbt5EfbGZIm42pmb/nlQMmEiudVDW7AjtDDYqPoLTeSXZcWJ+N4WgkqRshRK85/x9fMPeJVYH3ruIVnJN6N19krKPBHMwsdREH7H/gtrPmkBkXxtJd1QCBQD84waisSY+RQP9tSKAXQvQKe6ub7eVN7KtupbmmmI/nn8vLzX9mWaQmtXEwc9Neorj1ZIYm2zCZFFlxYTj8e74O8wf6GUOMla2JA2wHqCNNUjdCiF5xwO4glHYuCn2HO99ZzyprCIm+SI4LuomNjQk0OYMoqGll3rhUADJjjYetEaFBJEca/WlmDU/i+SsnMsFfWil6RgK9EOLI0xrXzgX8NOFBXos1o1Uo1w+6gkc+zOPKeWMorj3AnsoWWlwehvjTM1n+PLzZpFCqa3OQWcOluubbkkAvhDgimto6qG11MURVsm3RLTzm2s/e+BBsrWmcMei3JFoygW1MHRTHwq2VrD9QD8AQ/8KnE/ISAJg7JqWvhjBgSKAXQhx2Wmsuf/pjZje/xPyEDcy3hREWZCPJcRmO5lE0NIezptlOfEQIuYkRxEWEBK7NTTJm9GnRVtbfPYtIq6xw/b6+8WGsUsqilFqvlNqqlNqplLrPf3ycUmqtUmqLUmqDUmpyt2vuUkoVKKX2KqVmH8kBCCH6GZ+P1rUvcIXvJt7O2s58WzhzUn9AVcFdXDH+HDJiwyltaGNDcT2Tc2JRSpHm3/XJEmw66EFrYqRlwG/c3Rt6UnXjBk7RWo8FxgFzlFJTgYeA+7TW44Df+d+jlBoBXAyMBOYATyul5L+UEANYTYuLTSUNUPolFc+dxJ1b/sR9SeE0epKYar2P0bbrwWfh1OFJZMSEsb/WQVmDk7wkI00zIct4uBplDT4oHy8Oj29M3WitNdDqfxvs/6P9fyL9x6OACv/recDrWms3UKSUKgAmA2sO430LIfqRS/76Ptd5XmZ7zFaeio3Gp2y4qk+nvXkmjTqOwjAH1mAzKVEWMmKt1DvaAciJNyprTshL4JxxqZwqbQyOiB7l6P0z8o3AEOAprfU6pdQtwBKl1CMYvxlM95+eBqztdnmZ/9hXP/M64DqAzMzM7zwAIUQf8rjRa//BA8EP81CKjX2hMZyYOgNb2494Y6+DaUPiOVDnIDzUTE58OEopMrotdupcABURGsTjF4/vq1EMeD1aMKW19vpTNOnAZKXUKOBnwC+11hnAL4Hn/acf6vcufYjPfEZrPVFrPTEhIeG73b0Qou/s+5jWp6fy502Pc21qLPmmaE6Pv50nTv0Hq/d6mTUskWHJNqqaXRTWOchJMGbvGbFdgX6odJzsFd9qZazWuhFYgZF7vxJ4x/+lNzHSM2DM4Lt3GEqnK60jhDjK6bp8Wl84hyXvXcE8m4fXoyJxN0yjufA2QtzjcLR7Ka13MiY9iqRIC+0eH8X2Ngb50zSdfWrSoq0Em2Vxfm/oSdVNglIq2v/aCpwK7MEI3if6TzsFyPe/XgBcrJQKVUrlALnA+sN940KIXuZugaW/o+RfM7jFtZtbkxKIicvj58P+hrt6HvgslDW0Gdv+AcOSIwMrWqErH58YaeGVa6aw+JaZfTKMY1FPcvQpwEv+PL0JeENrvVAp1Qj8TSkVBLjw59u11juVUm8AuwAPcKPW2ntkbl8IccT5fLBtPu3Lfs/zQU6eSUvG4wsmR53P63Nv5+El+QSbizghN4Eiu4N1hXaUgonZMeyvbQ18TLY/0AMcnxvfFyM5ZvWk6mYb8F9PSbTWq4HjvuaaB4AHvvfdCSH6VvlG+Oh21tq380ByKgdUKMGusbSWnkF7fDpmZeaT3TWMy4hmUEI4qwvq2FHRRE5cONFhISRHWQMfNahboBe9SxJkQoj/1loD799I3b9P5XZfJdemJOGNTOWJk5+m8cDFaE8UB+wOSurbKKhp5eyxqaTHhOH2+NhY3NiVpum2+Ck6LOTrvps4wqQFghCii6cd1j+D97O/MN+ieCIrGzeK60dfzU9G/4TtZW349BrGZkSztbSRtYXGtn6j06Opa3EDUNfqDmzzF2w2cfOsXKYOiuuzIQkJ9EKITgWfwOI72dl8gD+kZbELNyOjx7Fuw4lUR07EMt7CO5v2YQsN4rIpmWwtbWTF3lqUgrykCCzBXQmC7PiuEspfnpbXF6MR3UjqRohjXX0hvPYjml89nz+GuPlRWgo1VhsPnfAQI9St6PYEVuyrAYw9XqcMimWQf6HTir21ZMWGERYSFOhXA10bd4v+QWb0Qhyr3K2w+q/oL57gw4gIHhmUR73Xzfm5F/Krib/AFmLjxY+NziXVTW4qm5wU1jm4eHIGKVFG2aSzw8uwZKMTis3S1WVS9nTtXyTQC3Gs0Rq2vwVLf0uhq5Y/5QxnnbeJ3IhsSrbMosg3Htt0G1pr9lW3YFLQ7vWxcGslAJNz4g6qj+++uvWHx6XT7Ow4qM2B6HsS6IU4llRuhY9ux1W2jmfSc3kh2ILV5OOeifdgcU1n09ptrNxXC8Cq/Doa2jo4c3QyH22vCmwMkpcUgcmkCDIpPD7N8JSuQP/IBWP7ZFjif5McvRDHAkcdfHAz/OtEVrYUck7uKJ4NcjEn5wwWnLuAi4ZdxMbiJsColNFaM39DKbHhIVw9IweALaWNxEeEEBZizA9/MSuXoUk2JmbH9tmwRM/IjF6IgczbAV8+Dyv+RJXXyUPDJrPUXUmONZZLU+7gzJyZxFuj8fo0i3ZUAeD2+Gh2elhXWM/JQxNJ8T9krW1xMzYjOvDRv5iVyy9m5fbJsMS3IzN6IQaqwhXwz5l0LL6D5xJzmJeVzUpPPb8Y/wuuzPo7/1xi4kfPrEVrzeaSBmpb3IH9WXdWNFHX6iYvKYK48K6FThkx1q/5ZqI/k0AvxEDTUAzzL4OX5/GlbuOcvOP4m7keqx7Ku/Pe5dox17K5pAUAR7sXu6OdLaWNAFw40Wg8+1m+kacflBCBJdgcaF/QvcWwOHpI6kaIgaK9DVY/Bl/8nVqzmUdHncSHjkIitcJZejkHWkeQ+KNUALaXNQUuK6lvY1dlM0mRoYxNN1Izn+01Av1gfw/5cRnRFNY5iLTIRt1HIwn0QhzttIad78DHv8PTXMZrQ4/nKV8d7c5SrhtzHfay43mx1dgSYk9lC8NTItld2cKsYYl8sqeGEnsba/bbGZ8RQ6Q1CFtoEHuqWgg2q8AM/q4zh2N3tHPGqOS+HKn4jiR1I8TRrGo7vHgWvHU1GyNsXDhqGg+1lxDqHcy7897lpvE3saPMGcizbytrZNGOStq9Pn4w1pjdr8yvpbLJxYlDE1BKke4P7pmxYYGNQRJsobx09eSDWg2Lo4cEeiGORm31sPBX8K8TqKvbw93jZvPjUAct2oez7DKKd11CmyOGJmcHG0sauHRqFiFBJsoanCzcVklatJW5Y1JItIXy6R6jvcHwFGOFa7r/gWvnfq7i6CepGyGOJl4PbHwBPv0jHncL80eexpPtJbhbCrh29LVMjL6ASzZuAmBHeRMNbe1oDROzYkiICKWmxc2O8iYm58QSZDaRGRvGhuIGoCsf39mzZpAE+gFDAr0QR4uiVbDoDqjZyeacyfzRFsK+lt1MT53OXZPvIjsqm1fWFgdO31PVQmNbBwAjUyNJjAyloKaVyiYXI/yz985AnxJlCfSqOSEvnpX5tcwbl9r7YxRHhAR6Ifq7xlJY+lvY+S726Ez+OnEeC+ybSfYlc/dxfybLMpXsKGNrvt2VzURagkiOslBS30Zdq5vUKAtxEaEk2kJZsrMagCGJxmw90998rHvZ5CnDkjhlWFIvD1IcSRLoheivOpzw+d9h9WN4gDcmnM+TrbtxNmznmlHXcN2Y6xjx2+XAOvb/6UzMJsXuymaGpUQSHmKmvMGJ2+NlZFoUAIm2rkZknfn3zvRM5wxfDEwS6IXob7SG3QtgyT3QVMKWYafxgKWDPQ1fMjVlKndPuZucqByaXR2BSw7YHWTEhLG7soWLJmXg8fn4vMBOh6+ruqb7tn6dD1zPHJVM1NWTmTpI+tUMZBLohehPqnfB4jugaCX1icN5fOpFvFu9hkRzIpdk38NnW1JIONFYvVre4AxctqO8idoWN84OL9MHx7G/1kG71wfAqFT/jD7SCPThIWaC/GWTQWYTJ+Yl9OYIRR+Q8koh+gNnA3x0O/zzeLyV25g/7Qrmxpj4oOZLrhp1FR+c8wHvro5jT2UL720uB6CsW6DfVdHM7spmAMZnxpDWrSfNKH/qpnNz7oRuM3txbJAZvRB9yeeFTS/DJ38AVyPbxp7HH1Uju6tWMDl5Mr+Z8hsGRQ+i3tGO3dEOwM4KI6BvKmnApCA12sruqhba2r3YLEHER4QctK1fkn8mPy4jmuy4MB69cFzvj1P0KQn0QvSV4jWw6Hao2kZd1lQeTx/C+xUrSbQmckn2b3htRQxBE42WA1/sr8Pr04QGmdhb1YzWmgVbKjhpaCJBJkVRnQOfTzMoIQKlFFn+apoT84zVrgBJkRZW3HZynw1X9B1J3QjR25rK4a1r4IU5dLTV8/LMa/lBaDMfVn3B1aOuZsG5C/hoXSLNTg9vbiwFjCZkIWYTZ41JobTBSVGdg/JGJycPSyQ5ykJ1s4uiOkegy2R8RCgf//IEnr9yYl+OVPQTMqMXord0uGDNk7DqUfB5WTvlSh50HWB/2RKOTzueOybdQXZUNgCuDuNBameaZnt5E8NSbGTEhFHX6ma5v7vkCbnxNDs7aHZ5aHZ5yOnWiyYvyYYQIIFeiCNPa9j7ESy5GxoOUDFsNo/ExrC0cjnpEek8ccoT5FgnkRVlBGlXh5faFjcA+TUt+Hya7eVNnD02leQoC1rDou2VpEZZyIoLP2ij7hxpOiYO4RtTN0opi1JqvVJqq1Jqp1Lqvm5fu0kptdd//KFux+9SShX4vzb7SN28EP1e7V545Tx4/RJcQaH848TrOdtTyKqaTdw0/ibeO+c9WurzOPGRFSzdZaxaLalvAyAj1kpZg5PCulZaXB7GpEeRHGUE9Q3FDQz2r27tPAYS6MWh9WRG7wZO0Vq3KqWCgdVKqUWAFZgHjNFau5VSiQBKqRHAxcBIIBVYppTK01p7j8wQhOiHXE2w4i+w/l/o4HA+nXE9DzdtpbxkEbOzZ3PrxFtJDjcetHaWSy7dVcVpI5JYV2gHYPaIZJ5bXcQKf5pmVFoUJv+DVegK6kkyoxff4Btn9NrQ6n8b7P+jgZ8BD2qt3f7zavznzANe11q7tdZFQAEw+bDfuRD9kc9nlEv+fQKsfZrCMefy0/GzuKViEdbgMJ459VmiWq7G5ezKn++pMrb1211p/P15gZ20aCvHZcUAsHxvDSFBJvKSbKRE/Xcbg+4z+vBQycaK/9ajqhullFkptQWoAZZqrdcBecBMpdQ6pdRnSqlJ/tPTgNJul5f5jwkxsJWuh+dOgQU30RqXwyMnXce5TRvYYt/DnZPv5M0fvIl2DeH51UXcPH8LAI1t7ZQ3GgufCmpa8XjC4/6fAAAgAElEQVR9rCm0M31wXGBh0+cFdkakRBJsNhFl7drKb1Sa0Z8mIjSIcRnR3H3msF4esDha9OjHvz/tMk4pFQ28q5Qa5b82BpgKTALeUEoNAtShPuKrB5RS1wHXAWRmZn63uxeiP2ipgmX3wtbXaApO4LMTb+Kx2s+xFy/G3Xgc7Q1ncemlPwRg7X4jLVPd5AK6qmpmj0xiyc5qlu+tpcnZwYwh8Qc1IRuRagR1pRTZcWEcsLcFNgoBeO/GGb0xUnGU+la/52mtG5VSK4A5GDP1d7TWGlivlPIB8f7jGd0uSwcqDvFZzwDPAEycOPG/fhAI0e953LD2H7DyYbS3nfvMp/JWbBuq5H1Gx4/meNtt/N9u439tj9dHkNnEtnJjU+5mVwdaa9YV1QMwZ1QyS3ZW88FW45/K5JzYg5qQZXVrI/zqtVMJCTIRFiJpGtEzPam6SfDP5FFKWYFTgT3Ae8Ap/uN5QAhQBywALlZKhSqlcoBcYP2RuX0h+si+JfD0VFj2exqyp/PTURfyVkY+OqSR3065l1fOfIXy6q5mYbWtbrTW7PAH+rZ2L81ODwu3VTAzN57R/n40qwvqCAsxkxJlCTQeA0iP6Qr0qdFW4iOkX43ouZ7k6FOA5UqpbcCXGDn6hcC/gUFKqR3A68CV/ge3O4E3gF3AYuBGqbgRA0ZdAfznAnj1QjzKxGuzfslcVcGa5tV01E/Hsf9WJsXPQaHYXNJAfITRSKyqyUV1s5u61nYmZxstgQ/YHRyoczA+I5pUf2+aekc7OfHhgbYFs0caG4B0tjQQ4rv4xt/9tNbbgPGHON4OXPY11zwAPPC9706I/sLVDCsfNlI1wVb+HP9D3g4rw134NlOSp6Dr5vFJjTFvqmxyYlLQ0NbBZVMzeWVtCVVNrkB9/Okjk1h/oJ41hXZ8GgYnRhAWEkRseAj1jvaD9mp94kcTWFdkZ2SqbAwivjvpdSPE/+LzwZZX4cmJ8MXfqRg9j19PmsertvU4fQ4enPkwz57+LFV2ozMkGLP3zSWNAJwxKgWAyiYXb28qJzM2jDNHG8c+L6gDYFC8Edg7c/Lda+FDgkzMzO1qTCbEdyFPc4T4OuUbjR7x5RuoTxrPa5Mv5IWSxehWcNeeSrv9BNJnT0Vr2F/byvkT0jlgL6GyyUVti5uwEDNTcmIJCTJR1exiV0UTpwxLJCnSQpBJsSrfH+gTjMBuCTYb72XRkzjMJNAL8VWtNbDsPtjyCr6IJC4N/QHbgg9gKnqfM7LPINI5j+d2GjP2gppWIq3BuDp8jEmP4qPtwVQ2Odle3szotCiCzCZSoizsKG+irrWdocmRmE2KpEgL5Y1OkiMtgUVOPz1xMIt3VHLaCNmYWxxeEuiF6ORph/X/gs8egg4nOyddwf3eWnY2bEU707hu+O+4acbpnP3kasakR7G7spmC2tbA5eMzY0iJslJS72RXRRNXH58DGC0KvvDXzw9LNlbEpkYbgX5wYtfsfc6oZOaMSu7FAYtjhQR6IQDyl8HiO8GezxrbJD6cPJIFZcuxBUfjqjifjqbjaMvOpMXVwfbyJm6elUuLy0NpfRs7yptIjrQwOCGClCgLq/Lr6PBqhicbD1C7ty3oDPQpUVagIZCfF+JIkkAvjm32/bDkN7BvEe2xg7g09hx2R+wkqHwlV468kiTfXO7ZVkBIkIm9VS1sK2tCa5iQGcP6onrKGpzsqWrmkslZmE2K5ChLYFPuIV/pLpkSZSHOX/8eEmTUQXRf3SrEkSKBXhyb3K2w6hFY8xTaHMJn067h4dY9lLRuwtsyjDMzrufXE0/l+v/bQGx4CGPSo6hodLLdv+BpTHoUqdFW3tpYBhBIwaR226u1s+lYjH9T7hHdgvpVM7KJsgbzw+PSe2W44tgmgV4cW7SG7W/C0t9BSyX7R83joXATX1QtJSMim7aSq/A6hlIdFsnOiiaW7Kzm5ycPocnZwZbSRnZXNpMaZSE6LOSgoN5ZEtl9ExBriFFFc/yQeIYl27jrzOGBr41MjWJkalQvDVoc6yTQi2NHxRZYdAeUrqUpdSxPjJnNGxUriOgI587Jd2J1Hc+vvtxBapSFwrpWtpYas/cLJ2bwwbYKGts62FzSGEi3pEV3BfXOXHtajBH8h3bbxm9UWhSLbzmhlwYpxH+TBVNi4HPUwYJfwDMn4anfz/wZ1zA3UvNGxXLcDZO5dfgLXDr8UhZurSE9xsoPxqZS2ehid2UzYSFm0mOsgQeqJfVdXSO7z+iTIo3c+6TsWP5y/mievUI25Rb9h8zoxcDl7YAvn4Plf4YOB+smXMhffDXkVyxlUvIkWsrP4ssqC1uKOzhvHOyubGbqoDgyYsPw+DSr8mvJS7Jh8j9k7XSoQN+5ctVsUlw0Sdpui/5FAr0YmPYvN8ola/dQOmgmjyQk8WnNGlLCU3nspMeYlTmLmQ8tB5wcsLfR5OygsslFXpKNdH/65YC9jYty4oDOckjD8BQjLZMTF87Ns3KZOyal14cnxLchgV4MLA0HjHLJPQtxxGTx3Iwrebnqc3y1VbhrZnPG+Ks4NWskbo+XCv/OTsV2B/nVxjZ+eUkRB7UEHhqoe++a0WfFGQ9eTSbFL0/L66WBCfHdSaAXA0O7A1Y/Dp//Da/JzGvjLuA5dz72iuXMHTQXe+mpfGx3sbPc6CB5oK4Nn4b0GCtlDU52Vxo7PeUl2Q7q9d4Z6C3BZu6YM4y8pAjMJmkwJo4uEujF0U1r2PkOfPxbaC5n3fDTecDsoqhpHcmhw3j1zCcZnTCas59cDbgoqnMAsLG4AYB541J5avl+lu+txRpsJi3aiqlbIO9cyQrws5MG9+rQhDhcJNCLo1fVdqNcsvhzDqSM5NG8CaywbyXcnICz7BJU2HRGJ4wGCPSCL6134vVpFm6rICXKwklDE3lq+X4+3VPD6LSoQJB//KJxmE0qsJJViKOZBHpx9Gmrh0//CBtfoCkshvuHnsGyjj1Ymgu4ecLNLPo8l6qWVhroAKCm2UVjWweDEsIprHWwu7KZL/bb+eWpeWTHdTUVy03q6jtzzvi0Xh+WEEeK1NGLo4fXA+ufhb+Pp2Pji/xn1OnMTk1msXsX4e3TWHjuQq4eeU0gD1/b4sbZ7mXF3loALpuSBcDCbZUAHJcVE9jqDyA30YYQA5EEenF0KFoF/zoB/dGtrEwZwvkjJ/Ng6y6izTm0Ff2C8oK5xFniKG904urwMW2QURZZ1tDGp3tqSI60cMZoowXwR9uNQD8yNfKgnZvykqSTpBiYJNCL/q2xBN64El6aS76nhUuHncCN1KDNwTxxyhOMC74dn9uoY69qdlFQY/SHP2loAmDs/LQqv5ZThieSHGnBGmympL6N+IhQYsKN2fxfzh/NiJRIxmfG9M0YhTjCJNCL/qnDCSsehCcnYS/4mD+MnsUPo01sa6vGVTWXt+a+zUkZJ1HW4ApcUlDTytayRpSC00cas/cFWytwtHs5eWgiSimy/Pu65iZ2zd4vmpTJRzfPJDY8BCEGInkYK/oXrWH3AlhyD+1NJbySN41ndQMuRxGz0s7lnU9Ggi+M2lYPyZFBbCtr5Pgh8awuqKO8wcnG4gaGJtnIjgvDGmxm6a5qAMamG50is+PC2VPVImkacUyRGb3oP6p3wctno9+4go/DrczJHctjHeUclzyJd+a9w/Ton4DPmJHvr3WwsbiBZpeHCydlAFBU52BdYT3HD4lHKUVGrJUOr8ZmCSLBZpRJdrY3sFmC+2aMQvQBmdGLvudsMBqPffkcOyOieWjkVDa1VeBtjcRdcw1PXHEzSikWNOQHLimsbaWq2UWwWXHy0ATiI0JYsbeWdq+PaYONB7GZsWHsq24lNzEi8ND1uhMHsb28iQsmyoYf4tghgV70HZ8XNr0En9xPVUczjwyewBJvNbE+F1fk/pqnFsQCZvbXOhiSGEF5YxuJtlCcHV4Kax2sLbQzKTsWmyWYpEgLOyuMNgadW/h19qzJju+qlU+0WZh//bReH6oQfUlSN6JvFK+BZ06k7cNf8WRSKqenZbK4o44rRlzFwnMXEtE+EzB2aOrsQ7OtrIm8JBuDEyLYWtZIfk0rM4bEA107O4WYTYEA3/k1qY8XxzoJ9KJ3NZXDW9fgeWEOb3kbOHPIcP6lmmlvGYGj8FdMibocW4iNjcX1pMdYMZsUe6tasLe62VPVwrTBcWTHhbGtzNj9qbOKJtEf6HPiwwNNx04bkcS7N0znx9Oz+2SoQvQX3xjolVIWpdR6pdRWpdROpdR9X/n6rUoprZSK73bsLqVUgVJqr1Jq9pG4cXGU6XDByofRT05kZdESzsgczn0RJjJihnDj0L/hqrgE3RFHcX0bWms2FjcwbVAcqdEWShvaWFNoB4xZemK3fVnT/Jt/dM7oM2LDDvq24zNjAnu3CnGs6smM3g2corUeC4wD5iilpgIopTKA04CSzpOVUiOAi4GRwBzgaaWU/Es7VmkNuxfCU5PZu/ovXJeZzY2JMVR4LZyXdjcvn/EyDQ0pBPln4WUNbRTVOWho62BidgwpkVYqm1x8sd+OLTSIUamRB7Ut6EzTxPmPjUmXDbeF+KpvfBirtdZAq/9tsP+P9r9/DLgdeL/bJfOA17XWbqBIKVUATAbWHK6bFkeJ2r2w6A6qi1fyZEoW78ekYgsy4yk7G6d9MqFpeSil2FbaxIjUSJqcHYFaeIAJmTF8XmBnS2kjda1uJufEEmQ2HdQvvjPonzM+jUhrMGeNlt2ehPiqHuXolVJmpdQWoAZYqrVep5Q6GyjXWm/9yulpQGm392X+Y+JY4WyExXfh+OcMnmzeyVlZWXwYqrhixBXcOepFnPbpQBBlDW34fJrt5U2MTY8mLdpKeaOTTSUNRFqCGJwQQUq0hZL6NgprHYzNiAYI1MRnxFoDZZMRoUGcPTZVNgUR4hB6VF6ptfYC45RS0cC7SqkxwG+A0w9x+qH+pen/Okmp64DrADIzZTPlAcHngy2v4Fl2H++aXTyVlYVdt9PROILfTP81l0+cwHOrCgEjxVJa76SwrpVWt4cx6VG4Orx8tq+Wdo+PsRnRmEyKlG75+Lwko3pmUnYsN50yhPMmSC28ED3xraputNaNwAqM9EwOsFUpdQBIBzYppZIxZvAZ3S5LByoO8VnPaK0naq0nJiQkfLe7F/1HyTr0syexaultXJAYyR/iY8lMGElO+524Ki5hc6Hxv1ppfZuRa0+Loqyhja2lRvXM2Ixo0mKs1LS42V3ZzFB/UE/util39239fn36UHK61ccLIb5eT6puEvwzeZRSVuBUYLPWOlFrna21zsYI7hO01lXAAuBipVSoUioHyAXWH7ERiL7VXAnvXMeeV87iOpOdG5ITcUak8NhJj/H8aS+wryQWgGK7kaZZV1RPVnwYGTFhNLR18MV+O+EhZgYnRAQqaHy6axOQ1OiuGX3mVypqhBA905PUTQrwkr9yxgS8obVe+HUna613KqXeAHYBHuBGf+pHDCQeN6x9mupVj/JEZCgL0lIIJhxX1cnkpJ/LqVmT2VXRjKvDhzXYTLHdQX5NK3uqWvjDvJHEhBkPUT/cXsHY9GjMJhWooAEY4l/k1DlrH5cRLfl3Ib6jnlTdbAPGf8M52V95/wDwwPe6M9F/7VuCY/Ed/NtXz8upsXhNZq4cfhmLV4/E3uBlj9nY4WlLaSNgbMD9+pelbCk1qmmOy4qhw2s8tnF1+AIPWTsbjkFXGwObJZjNvz2t14YmxEAkK2NFz9Xl4/m/83nzg6s4y+blmZgokkOns+CcD7hx7C0U1vgAKLY7cHV4WV1QS2x4CCfkGc9glu2uQSkYnBBBRregPjbdCPTJUV1pmihrV3fJmPCQwCYhQohvT5qaiW/makZ/9hdWbnuRx2Ki2B8fR3LIUBx7Z1FhHkK6LZ1tZY14fZpThyexbHc1RXUOPt5ZzeXTsgIbcC/bXU1mbBiWYDOhQV1zjM5FTsFmE4tvmUmizXLI2xBCfDcS6MXX8/lg2+tsX34vj1o1GxNjyQxP47FJt/LWymjyXdW0mD14vL5A75nTRxiB/rN9tXh8molZsYEHqlrDkAQjJaOU4ucnD8GkDk7ZDEuO7P1xCjHASaAXh1a2kZJFv+Jv7aV8HBtOqA7j/Kxr+M0JVxFsCubPNSsAaPf6KK5v47X1JQxJjGCqf1PuT3fXAEZJZJQ1mCCTwuPTDOm2s9Ots4f2+rCEOBZJjl4crKWa8jeu4oF3z2desJ1VkdFMjbmIun13sHB1DsGmYNweLwfsbUzOMUonC2sd7K5s5szRKaREWzApWH+gHkuwiZz4cJQygjxIy2Ah+oIEemHwtNO2+q/888UZnOdYz3ybjXOHnMuH5y/B6jgLfKHYHe20tXsorHXg9WlO9D9k/bygDp+GYck2gs0mkvyrWYcmRwZKIjvTM7JXqxC9T1I3x7gPtlYQX72S0sK/8I9gN3WRVkJaBtNScw43/vBHxIWFsqlkOyZlLGTaV93KlhKjTPLEvAQeXrKXz/bVAkagB0iJslDZ5GJESle+/eWrJ7OltJHRadJdUojeJoH+GLKjvImS+jbO9Hd4bCrbTf6ia3g2rp4iazDjbYOZFfkznltmpFlK6ttoa/dS1uDkymlZvLSmmMLaVj7YVsnI1EhGpkYSHRZMUZ0DS7CJLH91jSXY6Eo9IqUrTTMoIYJBCTKbF6IvSOrmGHLlv9dzw382caCihi0f3sTPPzyHF1JaqCOSeyf+mZfOXUBzY1ej0ZL6Nr7YXwfAD48z2heVNzjZW9XCcVkxKKXI9S9sykuyBdI0v/vBCE4dnsSpI5J6eYRCiEORQH+M8Pk0doeb00IX8+iCk7i8bgUHQsMIqpxNxf57CPFMwKdhxd7aQO69xN7GuqJ64iNCGJVmbPixobiBVreHXH/TsZGpRiqmex+aYcmRPHflRFK6NSQTQvQdCfTHiK1bFvGD1Hv4Mmc560LN/HzQuaR1PE5s8FwswcFsKW1kT1UzNS1uzhmfSlJkKCX1bWwva2JcRjRKKVKjrYF8fJ5/Jn/GqGTjfZJU0wjRX0mgH6C8Pk1NiwtHQzFPzZ/L9VtvY1Wkh+yWHLLaH+Kqafey8YCDU4YlkhETRml9G5v8OztNyo4lMzaMPVUt7K9tDczaO7tLQldgnzIojg9+fjzXnTCo9wcphOgReRg7QP3kxdV46/5Kcfw+6s0mxnviKay7gpxBx7Gu0E6x3UGHVzMiNZL8mlbKG40t/BJtoaRFW8mMDeftTWUAgUqZzkCfYAs9qPfMaNmnVYh+TWb0A4DWmhZXR+D1knV/pdz7MzYnFZCprLw6/UGKG+9lRNpYMmPDqGx2sb3caFmQm2jrtoVfIxMyjYes3XPunYE8zV8Lb7PI/ECIo4n8ix0APtpexY2vbuLPZzexoOBxdmgnmWjyymYyc8avSU7OoNi+jEunZBIfEYrW8MraYmyWIPKSbKTFWGls66CxrYPLphrbOmbGdaVpOhdAzcw1HtKO87cVFkIcHSTQH2WW7Kzis3213HnGMCItRivfhTtWMizzb/wpv4Vkj5fbYqbzwPozcGMhsayJzHjjwelxWTFo/+69m0oauWhiBiFBpoNy7xMyYwAYnWYE8/GZXUF9SGIEi2+ZKdU0QhxlJND3c18eqGdcRjTBZiPL9tTyAraVNRFlDeaiaaE8ueIuVnfsJNri5bymRO6+/EUe+rwNN0Wkx1jZWdFMRmwYIWYTo9KiaGrrCHz2hZOMzbW7B/pR/nz8kMQIFt50/H/1gZfukkIcfSRH349tLW3kgn+u4dGP9wHQ7vGxp6oFFdTMZ6UPcM67Z7Oyfjvn1UPc/it4234XIdFZLNhawcSsGOaNSw08ZB2RGklokJkEW2jg8ztn7YP9K1YnZ8cGVrWCEfS7/xAQQhydZEbfj326x2j1u9KfqtlYWo4l5l3CY9dSqXxc5PSQFXoB99uncs0JQ9iyvID1RfXUtri5bfZQFEaZ5cbiBi6dYuTelVJ8/MsTKLa3EeLf/CMmPIRt955OsEl+7gsxEEmg70c8Xh9B5q5g27nn6r4aO09v+icvbX8G4to53eEkqXYMP7nlGc7/9y4mDbIy1N9QbP6GUsBoOFZS3xb4rM5aeDBq4L+6wKkz3y+EGHgk0PcRrTVKqcD7FlcHp/11JScPS+TP541Ga8328npikjdCxEL+sd3JCW1OTm5IIPmkf3DZgmbGVfnIr2nl3AlpgV2cluyoIjM2jKRIC90+npGpklsX4lglv6v3AZ9PM/XPn3D/wl2BY4t2VFHV7OK19SW4O7y8vmsh3qQ/4Yl5k1HeRv5Z7yWu6RoWp/6N5CHjAHhtvTF7nzooLlAJ42j3MtzfNTIhoisf3znjF0Ice2RG3wsKa1tRSpETb7Tx3VTSQHWzm+dXF/HbuSMA2FxipGnMYflc+MG/KWzZxyDVwc21DjY2nM6WE2/h5U9L+PWkGDJjwzEpWLqrmrAQM6PToug2eWe4vw+8Uorb5wwlOy78oIesQohjiwT6I8zh9nDKo58BsOO+2USEBrHDvyoVjJSNzRLMuvItRGa/h7buw9moeaC+njDXOGbe8E+uf3QHw/cZ14zLjDZq32OslNY7OS4rJlB62Wl4tw0/bjhpSC+MUgjRn0nq5gjb6n+gCgQCfH5Na+DYmpI9XL/kZmojH8IWms8d9gZetIfyZtOvWTPuEYJjM0mPCWNbmXHtmHSjJDLaatS3d27GDQR+YxgvK1eFEN3IjP5baPf4AiWJYOTa3R4f1pCvT4vsrW4JvM6vaWVMehQr9tYSF9VGq3Uxt63ZQIiG6xubuNJt4m/Oi7g15Vy+sDdxXpoxM89LiqCozsGghHCirEZ1zEWTMqh3tDN7ZNfmHs9cfhxerUn0tywQQgiQGX2Pvb2xjLx7FlHZ5Awc+8dn+xnx+8XUNLsA6PD6OPvJ1fz4hfW4PV4AtpU1ERceQniImf01rTy5Yit1IW/hS3uQ0OgvuaDFyUclZeS2n4Dtpk2sjp7HF0XG7L1zIdOh2gRfNjWLz+88hSGJXQ9Zc5NssnJVCPFfvjHQK6UsSqn1SqmtSqmdSqn7/McfVkrtUUptU0q9q5SK7nbNXUqpAqXUXqXU7CM5gN7y78+LAFi+x9h4Q2vNw0v2ojV8tL0SgMJaB9vKmlixt5YPtlaitWZVfi3H58aTGqtY2/Aq/6n8KSGxqzmzQ/NRWRnntSRzufOPVMy4H8JiSY/pCubZ/lTMHP/mHtMHx/fmkIUQA0RPZvRu4BSt9VhgHDBHKTUVWAqM0lqPAfYBdwEopUYAFwMjgTnA00qpfl3y4fXpg94X1LQw78nVFNZ25dKd7cYMfXdlMwB7qrpSMgfsbQd9DWD5nhpK6tuoc7SiI5dTG/17ylnA6DYT75eX80CTm/kRd3Bm0+3s0ZmM8D9ATfXP2uMjQgOLmPKSbKy6/WTZ3EMI8Z18Y6DXhs6IF+z/o7XWH2utPf7ja4F0/+t5wOtaa7fWuggoACYf5vv+zlwdXrTuCuwVjU4G3/0RC7ZWBI79/ZMCtpY18fiyfMBYsdq5yrS0wfj7w22VmBSkRFk4YHcA8PamMuIjQpmSE0t5Uwv/2vIK4UMeZnntC+T5rLxUZue5qv3UJF8FP/+SitQ54C+M7Ey5dAb6wQnhB913RmxYYPNtIYT4Nv6/vTuPjqpM8zj+fbKSfYeE7EBYDDYh7KsEIkbGQZ0zrTB6mh5HHY+Z082xRxub0d60m7a7bfv0KEo7MD02iGgrrYgKyuCgCGm2IEtYkkAIIWSD7AlZ3vnj3kDEKCAkdat4PufUqVtvVeX+qip56ua9733vZfXRi4i3iOwBKoCNxpjtFz3kPuA9ezkeONHtvlK7zeVa2joY/sT7/GL9wfNtO+zT5z2/6ej5tp12W9cUBCfONNNub/WfqGnCGMO7n59i8uBoMpMiOF7dREtbB9uKqrlzdByE7KDI/0neKf1Pwtv8+e86WFOyi/KWdLLP/YaKsY+AXyApUdbJPcICfAkLtLbeJw2KIirIjztGO+ItU0p5gMsq9MaYDmNMBtZW+3gRGdl1n4gsBtqBlV1NPf2IixtE5EER2SEiOyorK688+TfQNbzxj1uKv9TW0Gr9c1JR18LJs81EB1snx65tbiOvuBqA6UNjKD3TTFFVI8VVjeSMjCUl2jrf6s7jNZjAvWxqeJQDbcvwaffh0cpgPinfxRivILZOXcHDbQspNTHnt9aT7T740IALg59GJYaz84mbmT8+qfffEKXUdeGKRt0YY84Cm7H63hGRBcBtwD3mQn9IKZDY7WkJQBkXMcYsM8aMNcaMjYmJ+QbRr1x+6YUDlbrmZd9eZBXxstpmGlvb2VVibc3//ag4AE7XtbDi02MkRASQPaI/re2dfHzI+mIanRROUmQgJqCAR7feR0DCSgJ9vFjYMYLtZbu4vf4Ynwx5DB76BP+0rPPr7hrvPnlwFNkj+vPc3Rm9/+KVUtetyxl1E9M1okZEAoBsoEBEcoAfAnONMU3dnvI2ME9E/EUkFUgD8q599K9njGHB8jx+sCb/fJ/80W4HKh2trKeupY3PT9YyPDYEY6CwsoGPD1cS4OvNzOH9AdheXENBeT3/On0QiRFWV8uGA+X4eAl15hCrSxcRmLSC2tZaZtRlsrbwIPeVbGBNRxYzWp8lbEYuePswxB4qCRDoZ23BRwf78/KCcYxJjuyrt0UpdR26nAOm4oA/2SNnvIA1xph1InIU8Ac22rMwbjPGPGSM2S8ia4ADWF06ucaYjl7KD1gHLv3PZ8cYFhvKpMHWkaK7T5zl48PWlveP5gwnKtifwsoGIgJ9OdPUxomaZs42tdFp4K6xifxs3QFKapp4f185t6QPuFDU95cDMC41Eh97Z2he2V4iB33Egx8eJNI/mpjyyfymcRuZXmshaRL1WWtY/JL1vK4hkmGBvnxv5vNS8bEAAAokSURBVBA6v9SJpZRSveuShd4YsxcY3UP7V06iYox5Gnj66qJdvn1ltfzknQP08/Wi4Oe3ApBXXHP+/pKaJry9hD0lZ/nHsQms2l5CWW0zZcebCfTzZm7GQH627gCbCio409TG1LQYYsOsaX4/K6wmwNebtP4hHKo5Qr/4V/AN3U8nwfxg5AN8uyifoObVnJJICqb8juHZ/0yICMH+H9DQ2v6Fed4fmT2sr94SpZQ6zyOmQDhuj2NvaevkdF0LEYF+rNlxYeBPSU0TR043cK6jk/njknh37ynKzjaz6WAF09KiiQ72JyzAlzd3nQRgQqp1Sr1hA0IoKK9nRFIrT3y6mHVF6/AJ8qO9ciYvDAhg2vtLoLOdP7TfwQvtc9l10x10TQK/5bEsaprO9f2boZRSF/GIQt81th1ga2EVsaEBFFU2snjOCJ5ef5CS6ibyS2uJDw9gZHwocWH9+ORIFWW1LXxvVhoACREB1Da3kRwVSGKk1W2TnmQo5i2OB+zg1HEfvpu+gIJ3a/lRx2pSGk7D8Ntg9lPMaonidn+fL8x5ExHk96UTayullCt4RqGvaSbcHof+6dFq4sMDEIG7xiXyxy1FFJTXs+VIJfPHJyEiDAwPOH8+1szkCAAGhPZjf1kdU4ZEU9VcxfJ9y9nU8Bq+4R2MicjhV5l30n/zM2A+pCowhbY7/4LvsGwAbnDNy1ZKqcviEYX++7PSuHtcIsv+r5DPCqtJjAwgfWAoYQG+JEcF8q49F81se6bH2DBrdkd/Hy8G2TtLg/19EO9GWoLfZs6bf6W1o5Wc5L+j49QknvLaSr/lc8A3EG75JdHjHwBvPceqUso9eEShjw3rR2xYP9IHhrH+83JOnm3mu5NTABjSP4S/HTuDt5cwLsUaxjjQLvQpUUH4eHtR21pLbMpmIttf5cOyFuYMmsNDNz5ISvFnkPcINFbC6Hth1o8huG/G/Cul1LXiEYW+S1ffOsBw+xyp41IieDWvhI5Oc/5MTOnx1rS/0WGGpflLeWX/K9S31TM7eTYPZzzM4Iaz8Pr9cHInJIyHf3oN4jP7/gUppdQ14FGFPqlboR9qF/qsYdaBT9HBF3aMjk8NYs7UA+yuW8vePXVkJWaRm5HLMN9w+OinsGclBMfCnS/BjXeBl07br5RyXx5V6G+IC2X++CQSIwMYZZ9yLyLIj1X3T6B/qD8t7S28dug1lu9bTk1LDdPip5E7Opf0sDTY/iJ8/Ay0t8CUhTD938E/5BJrVEop5/OoQu/n48Uv/+HGL7WPTQ3l9cOv88Dml6lqrmJi3ERyM3LJ6J8BRzbCqu9A9VEYmgO3/AKiBrsgvVJK9Q6PKvQXa+to462jb7Fs7zJON51mzIAx/Hr6rxkbOxaqC2HV3XD4fYgaAve8AWk3uzqyUkpdcx5Z6Ns723mn8B1e2vsSJxtOMipmFE9NfYoJsROQcw2w8cew7QXw9oebfw4THgIfPbhJKeWZPKrQd3R2sL54PS/mv0hJfQnpUeksnrCYqfFTrUny966BjU9CQzlk3GMNlwwZ4OrYSinVqzyi0HeaTjYc38DSPUspqi1iaMRQfp/1e7ISsxAROLkL3vshlObBwEyYtxISxro6tlJK9Qm3LvTGGDaVbOL5/Oc5cuYIg8MG89ubfkt2cjZe4gUNldZwyd1/hqAYuP0FGDVfh0sqpa4rbl3ot53axsLNC0kOTWbJtCXkpOTg7eUNHW2Q9yJsXgJtjTD532D6Y9Av1NWRlVKqz7l1oZ8YN5HnZjzHTYk34eNlv5TCTfDeIqg6BINnQc4SiBnq2qBKKeVCbl3oRYRZybOsGzXFsOE/oGAdRKTC/NXWuHjp6VzlSil1/XDrQg/AuUbY8ixs/QN4+VgjaSblgo+/q5MppZQjuHehP7kTVt8L9WXwrbsh+ycQOtDVqZRSylHcu9BHpELMMPj2Ckia6Oo0SinlSO5d6AMj4TtrXZ1CKaUcTQeUK6WUh9NCr5RSHk4LvVJKeTgt9Eop5eG00CullIfTQq+UUh5OC71SSnk4LfRKKeXhxBjj6gyISCVw/Cp+RDRQdY3i9Aan5wPnZ3R6PtCM14LT84GzMiYbY2Iu9SBHFPqrJSI7jDGOPWWU0/OB8zM6PR9oxmvB6fnAPTJeTLtulFLKw2mhV0opD+cphX6ZqwNcgtPzgfMzOj0faMZrwen5wD0yfoFH9NErpZT6ap6yRa+UUuoruHWhF5EcETkkIkdFZJELcywXkQoR2detLVJENorIEfs6ott9j9uZD4nILX2QL1FE/ldEDorIfhH5vgMz9hORPBHJtzP+1GkZ7XV6i8huEVnn0HzHRORzEdkjIjscmjFcRN4QkQL7d3KSUzKKyDD7veu61InIQqfk+8aMMW55AbyBQmAQ4AfkAze4KMt0IBPY163tGWCRvbwI+JW9fIOd1R9ItV+Ddy/niwMy7eUQ4LCdw0kZBQi2l32B7cBEJ2W01/sIsApY57TP2V7vMSD6ojanZfwTcL+97AeEOy2jvW5voBxIdmK+K3otrg5wFR/CJOCDbrcfBx53YZ4UvljoDwFx9nIccKinnMAHwKQ+zvpX4GanZgQCgV3ABCdlBBKAj4CZ3Qq9Y/LZ6+mp0DsmIxAKFGPvH3Rixm7rmg186tR8V3Jx566beOBEt9uldptTDDDGnAKwr/vb7S7NLSIpwGisLWZHZbS7RfYAFcBGY4zTMj4HPAZ0dmtzUj4AA2wQkZ0i8qADMw4CKoEVdhfYyyIS5LCMXeYBr9rLTsx32dy50EsPbe4whMhluUUkGPgLsNAYU/d1D+2hrdczGmM6jDEZWFvO40Vk5Nc8vE8zishtQIUxZuflPqWHtr74nKcYYzKBW4FcEZn+NY91RUYfrG7OpcaY0UAjVlfIV3HJ+ygifsBc4PVLPbSHNsfVIXcu9KVAYrfbCUCZi7L05LSIxAHY1xV2u0tyi4gvVpFfaYx504kZuxhjzgKbgRwHZZwCzBWRY8BqYKaI/NlB+QAwxpTZ1xXAW8B4h2UsBUrt/9YA3sAq/E7KCNYX5S5jzGn7ttPyXRF3LvR/A9JEJNX+9p0HvO3iTN29DSywlxdg9Yt3tc8TEX8RSQXSgLzeDCIiAvwXcNAY86xDM8aISLi9HABkAwVOyWiMedwYk2CMScH6XdtkjLnXKfkARCRIREK6lrH6mPc5KaMxphw4ISLD7KZZwAEnZbTN50K3TVcOJ+W7Mq7eSXCVO0vmYI0gKQQWuzDHq8ApoA3rG/5fgCisHXdH7OvIbo9fbGc+BNzaB/mmYv07uRfYY1/mOCzjt4DddsZ9wJN2u2MydlvvDC7sjHVMPqz+73z7sr/rb8JJGe11ZgA77M96LRDhpIxYgwGqgbBubY7J900uemSsUkp5OHfuulFKKXUZtNArpZSH00KvlFIeTgu9Ukp5OC30Sinl4bTQK6WUh9NCr5RSHk4LvVJKebj/B4jM11MFs14HAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "a1, b1 = np.polyfit([x for x in range(len(useful_data.index))], useful_data['CO2'], 1)\n", + "a2, b2 = np.polyfit([x for x in range(len(useful_data.index))], [np.log(y) for y in useful_data['CO2']], 1)\n", + "fit_data = [x*a1 + b1 for x in range(len(useful_data.index))]\n", + "fit_dataExp = [np.exp(b2)*np.exp(a2*x) for x in range(len(useful_data.index))]\n", + "useful_data['CO2'].plot()\n", + "plt.plot([x for x in range(len(useful_data.index))], fit_data)\n", + "plt.plot([x for x in range(len(useful_data.index))], fit_dataExp)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ces courbes de tendance ne sont pas satisfaisantes, elles ne semblent pas adaptées aux données. On tente une courbe de tendance polynomiale de degré 2." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3XeYk1X2wPHvTSaZ3ntjBmaG3kHAioAKrr1g77qo6/rbVde+ujZ2V921rL23VRHX7iooKkrvbRjawPTe+yST5P7+eJNMUFxGgWmcz/PwkLx5k9zXcubOec89V2mtEUII0X+ZenoAQgghDi0J9EII0c9JoBdCiH5OAr0QQvRzEuiFEKKfk0AvhBD9nAR6IYTo5yTQCyFEP9flQK+UMiulNiilPnc/f1QptV0ptVkp9ZFSKsLn3DuVUrlKqR1KqZmHYuBCCCG6RnV1ZaxS6mZgIhCmtT5VKXUS8K3W2qGUehhAa327Umo48C4wCUgCFgGDtdbOn/vsmJgYnZ6efmBXIoQQh5l169ZVa61j93eeX1c+TCmVApwCzAVuBtBaf+VzykrgXPfjM4B5WmsbkKeUysUI+it+7vPT09NZu3ZtV4YihBDCTSlV0JXzupq6eQK4DXD9zOtXAV+6HycDRT6vFbuPCSGE6AH7DfRKqVOBSq31up95/W7AAbztObSP036SH1JKzVFKrVVKra2qqvoFQxZCCPFLdGVGfzRwulIqH5gHTFdK/RtAKXU5cCpwse5M9hcDqT7vTwFKf/yhWusXtdYTtdYTY2P3m2ISQgjxK+030Gut79Rap2it04ELMG7AXqKUmgXcDpyutW71ecunwAVKKX+l1EAgC1h9CMYuhBCiC7p0M/ZnPA34A18rpQBWaq2v01pvVUrNB3IwUjo3/K+KGyGEEIfWLwr0WuvFwGL348z/cd5cjAodIYQQPUxWxgohRD8ngV4IIXrIq0vz+O/mskP+PRLohRCih7y8ZA/fbK845N8jgV4IIXqA3eGirLGdlMigQ/5dEuiFEKIb5FY2MeuJH6hsbAegrKENrSElMvCQf7cEeiGE6AavLM1ne3kTH24oAWB1Xi0Ag2KCD/l3S6AXQohu4GcyusMU1RrrS+evLWJwfAgT0iIP+XdLoBdCiG6QX9MCQFlDO802B+sK6pg5IgH3gtNDSgK9EEJ0g7xqI9A31VWRX92CS8PwxLBu+e4DaYEghBCiC9o7nJTUt3KH3zzOaFhOdsknAKRFH/r8PMiMXgghDolmm8P7+LONRfzV/DLX+X3GIsc4ttYbc+y06ENfWgkS6IUQ4qDLrWxm5F8WMn9tEThspH17Axf6fUdO1rXc47iSNYUNRAVbCfbvnqSKBHohhDjIVu6pAeC1b7eg357NpLalLEj5A3WTbwMUa/PruqV+3kMCvRBCHKAF2WU0tHZ4n28urieCJh5rvxfyl3Kz/ToqR1xFQngAADaHi+QICfRCCNEnFNa0ct2/1/N/8zZ4jxUX5PK+9QEGOfPZM+N5PnQdR0pk4F7BXWb0QgjRR6wvrANgVZ6Rrmku3cYjjbeRaKrlMvsdLDdPAiAlMogAi9m7cKo7Z/RSXimEEAdgZ0UTAFazCco2YX3jTAJw8ErGU6zaGkTg9kqsZhPp7lJKq58Jh93ZLc3MPGRGL4QQv0BTewcOp8v7vKzBaFI21LYF/fopNDn9uNR1H6MnTQVg8Y4qMuNCsPoZ4fapC8cxKT2KcQMium3MEuiFEKKL1hXUMuq+r3j0qx3eY2UNbUw3redN699xBMVzsfN+Ro2ZyNCEUO85A6I6Z+8zhsUz/7ojiQ7x77ZxS6AXQoguyikz0jSvLc0HQGvN8MoveNH6GDt0KkuOfYvtbeFkxoUQG+KP2Z2Pjw/rvqC+LxLohRCii+pa7ADYnS5sHQ4KPv0b9zr+RXHYeC6y382SEg1AenQwfmYT0cFWAOLCAnpszCCBXgghuqzWHegVLjq+vIv0DQ+zUB1F2NUf00IgK/cYPeYHunvMexpTxobKjF4IIfqEulY7Fhw8YXmWkPUv8JH1dP6Tdh9R4aGEBvixrawRpSDVnZMfl2r0mj8uK7Ynhy2BXgghuqq1qZ5XLY9whnk5uWNu5a62i0iNNm66JrjTM0nhgQRYzAA8fM5oFt081bsitqdIoBdCiJ9RXNdKVZMNgI6Gcm4quYmjzDncbL+OL8LOp63DRXqMMXv3BHPPc4DwIAuZcSHdP/AfkQVTQgixD1prjnn4O+LD/Fl17UD062eSritYNukZPlwSzsiccgDGpBj18ImeQN9NPeZ/CZnRCyHEPmwvN0opY5u2wasz0bYmLrTfTez4UwmymskuacTPpBieZOwS5TIKbhjiUz/fW8iMXggh9qGgpoVjTFt43vI4Lr843h/+BJuWtJMWHURMiD+Fta3EhfpjMRvz5cuOTMPp0pw3MbWHR/5TMqMXQoh9CNz+Ia9aHqFQx5Pzm/+wpDac5IhAgqx+RIcY9fGxPvXxo1MiePz8sd4bsb2JBHohhAD+790NnPf8CuPJ8qeZmn0X61xDON9+DzmNQSzfXcMxmTEA3oZk8T1cH99VXQ70SimzUmqDUupz9/MopdTXSqld7r8jfc69UymVq5TaoZSaeSgGLoQQB0tjewefbiplTX41jR/fBl/dzfqQqdwdch+tpmA2FNXT1O7w5t+T3DdeI4OsPTnsLvslM/o/ANt8nt8BfKO1zgK+cT9HKTUcuAAYAcwCnlVK9b7fZYQQwq2wphV/7Dxj+RdhG1+AyddxO38gIzGayCArW0sbAEhy95A/brCxAOr8Sb0vH78vXQr0SqkU4BTgZZ/DZwBvuB+/AZzpc3ye1tqmtc4DcoFJB2e4Qghx4Cqb2tlYVO99XlVRwtvWvzLLtIb1w26jfuqD7Km1MSwhlOhgK1tKjEDv2Szk6MwYtj84i/EDIvf5+b1NV2f0TwC3AS6fY/Fa6zIA999x7uPJQJHPecXuY3tRSs1RSq1VSq2tqqr6xQMXQohf67znV3DmM8twujTU7mH8ovMZqfL4XccfWBJ9Hh9vKMHp0pw8KpHIYAvaXTqZFNF587U33nT9OfsN9EqpU4FKrfW6Ln6m2scx/ZMDWr+otZ6otZ4YG9uzfSCEEIeX/JpWAEq3LoGXT8Rib+AK559ZHXgM5Y3tbCiqJyEsgGGJYUQHGzdc/f1MRAX3jZz8j3Wljv5o4HSl1G+AACBMKfVvoEIplai1LlNKJQKV7vOLAd/EVQpQejAHLYQQB+oE0zoSP34GwhJ4KPI+6luiSVCKysZ2CmpbGZlsLITydJ5MjghEqX3NY3u//c7otdZ3aq1TtNbpGDdZv9VaXwJ8ClzuPu1y4BP340+BC5RS/kqpgUAWsPqgj1wIIX4Fm8PJpeaveMHyGNVBGbRetoAvyoLJiA0hPsyf0oZ2CmtayYg1etSkRRullP59KFXzYweyMvbvwHyl1NVAITAbQGu9VSk1H8gBHMANWmvnAY9UCCEOlMtF46d38qDldb5yTuDb5L8xOd9JfWsHJ49KYFluNd/tMO4ZDnAHeM+WfzEhfTNtA78w0GutFwOL3Y9rgBk/c95cYO4Bjk0IIQ5YQ2sH6wprmZ4RDh9fT+zWD3nDcSIvBM4hud5JTGULZpPipOEJ7Kpo9r7Ps8/rcVkxHJURzQNnjOypSzhg0utGCNGvXfjSSkrKSlmd8Sr+JSt5MeAqFoXP5ojIQNYX1pFX3UJqZCBWP9NeVTVpUUYXyoggK+/8dkpPDf+gkEAvhOjXmst38aH1ESxl1TjPfoVH3wvi6jFRaK2paLSx29rMIHc+3rMgCiAxomc3CzmYpNeNEKLfcuQv5yPrvUSpJuYPe4r8xFl0ODVZcSHEhwVgd7jYXt7k3eM12SfQe7pS9gcyoxdC9E+b38f8ye9o0FFc1XErI+xDiHDn4DPjQiitb/OeOijWCPQpkUFMHhjFJVPSemTIh4oEeiFEv9He4WRhdhmn1b+F6fu/05IwhbPyr6KBEPwrm8mtNDYTyYgLwak713F6ZvRWPxPvXXtkj4z9UJJAL4ToN15ZvI2kH27DZF4GYy5i0YBbacjfxpGDoskuaSC3spnkiEBC/P28m3kDDIrp+X1dD6X+k4QSQhxWtNYsyC6jw+luwdVSzaz113KWeRkL4n4LZz7LmsIWgqxmjsmKocnmYGNRPRnuzbpjfXrJx4f1jb7yv5YEeiFEn/TFlnKu+/d6Xl2aB1U74eUZpLTt5Ab7//GU4wwabQ7eX1vMtCFx3pus+TWtZLorbCxmE9dOHcSrV0zss60NukpSN0KIPsnTOpi872HFfThNFi6w3c1GsvCraGJXRRN2p4uzxiUTEtAZ6jwtDQDuPHlYdw+7R8iMXgjRJ+0ob2S2eTFX5/8JQpN4f+wbbNBZXDx5AB1OzfoCo998RlzIXsE9Ibz/1Md3lQR6IUTf43JxQulzPGp5kfWmUXD1Qt7cphmTGsHkgdEArMqrwWJWpEYG7nXjNVECvRBC9HL2FpzvXcrFHR/yb8cMLrP9iWYVTE5ZIzOGxhHtbj62Kq+WAVFB+JlNKKVIjTLy9J6NvQ8nkqMXQvR6Lpfm1WV5nJbuJP6/V2Kq2MqDHZewJ+My2ndWsyavFoCM2BBi3d0mm9odHDko2vsZX/7hOErq2vrs5iEHQmb0Qoheb01+LV988QnW106EugIWjn6SV5y/4TejkwD4YZfRWjgjLphEnzYGnh42ACH+fgxJCO3egfcSEuiFEL1e9bLXedf6EM0uf7hmEUvVOMIDLYxMDgdgya5qlIL06GBC/DsTFZ7WBoc7CfRCiF5nQ2EdtS12cDnhq3s4ZfcDrHUN4XTbA9gjsyioaSU9OsjbbdKz4tWzYffUwcY+1MMSwnrsGnoTydELIXoVl0tz1rPLife3s2rwu7BrIR+YT+b29gtx4EdJfRu5lc1MHhhFWIAfIf5+NNsce6Vpnr9kAjsqmhiVEt6DV9J7yIxeCNGrVDfbSFUVvKXvRucuon3mo9zScilHDU4EYGNRHWUN7YxMDkcp5S2XzPBJ0wRazYxNjeiR8fdGEuiFEL1K/bZv+cR6D3Gqnuqz5rE16VygMx3zvXtP1+GJRlrG4TK6UPrO6MXeJNALIXpUbmUTlY3txpO1r5G54FJqdDhn2B8kN3gCn20qw2o2cfLIBABWu0sp092thUe5b8gelxXT/YPvIyRHL4ToMQU1LZzw2A+MTAjm88FfwOoX2BwwiUvr59BEEEV1razJr2XyoCiSIgKJDLJQ2tCO1Wwi3r3a9cEzRvJ/M7JIi5YKm58jM3ohRI/ZWtpIJI3cUXMXrH6B6lFzOLv+/0hLTkApKKxpJbeymSHxRv27Z1VrSmQgZpPRcTI8yEJmnKRt/hcJ9EKIbrOluIE1+bXe5+1FG/nUeg9HmHay++hHmRc5Bxcmnjh/LIlhAazcU4PN4SIr3gjknp2gUqMOvzYGB0ICvRCiW2itOe3ppcx+foVxYMt/OG3t5ZiVk9n2e1kTPoutpY0MjAkmMy6UlKgg1hbUAZAZZ8zoPYE+0F0vL7pGAr0QolsU1RqbcZtw0fzZnfDB1eRZsrgx5HGyyaC4ro286hYGxXg26u5sZeBJzZw2xmh5cPyQ2G4efd8mN2OFEN2iuK6VcJp5yvIUIeu2oCdew4VrpzMjK4X89kpqWmzkVbdwrLt6JtWdj48MshAeaAGMgL/1/pkEWWVG/0vIjF4I0S2aCjfxqfXPTDZtY9Wo+9k58T5q2uGI9Ciigq1klzRic7i89fAD3Hn4Dqfe63OC/f36/dZ/B5sEeiHEIVHZ1M6mImOXJ7Z+zPSlF+GvOrjAfg9LQk723pSdNDCKyGCrd2tATx5++tA4AK46Or3bx97fSOpGCHHQaa0557nllNS2sGzSchI3P8tO8zAei7mbypZgSurbKKprJTbUnwFRQUT79Ij3dJyMDLay/cFZ+PvJfPRA7fefoFIqQCm1Wim1SSm1VSl1v/v4WKXUSqXURqXUWqXUJJ/33KmUylVK7VBKzTyUFyCE6H3qWztoqK3iFcujJG5+lrrhl3Bmy51MnTiK5IhASura2FBYz8S0SJRS3i6UARaTd+MQ47lZ0jQHQVd+VNqA6VrrMcBYYJZSagrwCHC/1noscK/7OUqp4cAFwAhgFvCsUkrunAjRj7V3OClraPM+r83byCfWezjalM1HyX/ii7Tb6MCPaUPiSIkMJK+mheK6VrLc1TRj3A3IJLAfGvtN3WitNdDsfmpx/9HuP55mz+FAqfvxGcA8rbUNyFNK5QKTgBUHcdxCiF7kzGeWsaOiiU1/OYmwXZ+Q/vHvqVH+XGj/M1Z9FKNrWrH6mUiOCCQ5MpCqJhuAt23BsZkxHDkomt+MTuzJy+i3upSjd8/I1wGZwDNa61VKqT8CC5VS/8D4zeAo9+nJwEqftxe7jwkh+qnt5U1YcNDy0c2E7XiTivCxnFHxWwakDaKyqZ38Gj8GRAVhMimSfbb6S49xl1AGW3l3zpSeGn6/16W7HFprpztFkwJMUkqNBK4HbtJapwI3Aa+4T9/X7136xweUUnPcuf21VVVVv270Qoge12JzEE8t71ofInHHmzDlBuao+0hPH8So5HAqG20U1LSS5i6XTPZZCDVUdoDqFr/odrbWuh5YjJF7vxz40P3S+xjpGTBm8Kk+b0uhM63j+1kvaq0naq0nxsbKKjch+qrGbd/xuf9dDFMFvD/wQRwnPsTOqnYmpEURF+ZPk83B9vImb5rGd0Yf7C+Ff92hK1U3sUqpCPfjQOAEYDtG8J7qPm06sMv9+FPgAqWUv1JqIJAFrD7YAxdC9Iwd5U2c98IKdpY3wrInSfjkfBp0CGfYH+Qb09Hk17Rid7rIigshPjTA+z5PmiYtOpgLJ6XywfVH/dxXiIOsKz9OE4E33Hl6EzBfa/25UqoeeFIp5Qe0A3MAtNZblVLzgRzAAdygtXYemuELIbrbu6sLyckrpv3tv0LTD+THncAZhReSmhBHaUMbGwqNRmSjUsKp8GwoQudKV7NJ8bezR/fI2A9XXam62QyM28fxpcCEn3nPXGDuAY9OCNHrVO/ZyCfWB0lvqoCTHuIfeUcRGlbP2NQIFm2rYENRPWEBfmT+aGu/dNkYpMfIkjMhRNdt+Q+P1t9EmGrlRsv9tE38Hd9ur2La0DiSIgKpbrazs7yJzLgQTCZFXGjn4iffm7Cie0mgF0Lsn8MOX94OH1xNtiuNc/Xf+bI5g5yyRto6nEwdHENiuJGPX1tQ590YxNN1MjrYisUs4aanyC1vIcTPcjhdfLlkFbO234WlfD25gy7hwpyTmDU6lYLNZazYXQ1AVnwoFQ0/zccrpfjqpuO8LQ5Ez5AfsUKIn7Vx0bsc993ZdFRsh/Pe5DHzVcSGh3DGWGMN5NLcaqxmE2lRQST6BHPfrf4Gx4cSImWUPUoCvRDip5wd8NWfmbjidxTqOK70/wd62Omsza/jiPQoEsKMNM3KPbUMig3Gz2zypm6gc9MQ0TvIj1khBGC0Fn59eT6npbuIWXA9FK3iy8BT+GPdbBwOf/ZUt1DZZGNieiTx4Z03WQfHG/u5Bvjs4zogWgJ9byKBXggBQG5lM9//9x3O8X8eLC70Oa9y+wchaD8XToeLBdnlAIwfELlXK+HB8Z1llNdNzcDpcpHkM7sXPU8CvRACnA745n5et77ENucAwm74iCW14TS2r+bU0Yl8vrmMje7dojJiQ1BKoRRoDZlxod6PuePkoT11BeJ/kBy9EIe7xjJ483Sydr7EO45pXKAfgphMPlxfTESQhSuOSgdgS3EDUcFWAt0bc984PYtBscFMSIvswcGLrpAZvRCHqTX5tWQ2rSHyy9+hO1p50PIHXm2fDEBjewer8mo5LiuWePeN1/LGdkYlh3vff/OJg7n5xME9Mnbxy8iMXojD0A/bS1n18h8J/+B8CI5l95mf82rTZI7NigFgd2UzZQ3tZMWFEB3SuZ9rstTD90kS6IXo5/KqWxh930JeX5ZnHKgrYNDn5/F7v0+Y75hK46ULWNlkBPjZE40O48t31wCQHhNMkNXP28pA2hj0TRLohejnNhTW0dju4L7PctBbP4bnjyWqZTe/t9/IHY45lLSY2FnRRIi/H5PSowBYlmuseB0YYzQi86RsIoMsPXMR4oBIoBeinyuoacUfO3P9XkG9fzk6JpPzeITd8TMBKK5rY1NxA0MTQokL9cdiVnvN6AGuOmYgACN8cvSi75BAL0Q/s6GwjhXuQA3QWpLNp9Y/c7HfN+wefA17TvuA7LYoZo6IB2BraQObi+s5OjMGk0mRGG6kZ+JC/b2tC47OjGHjvSdy/GDZDa4vkkAvRD9z1rPLufCllTS22XGteZVb8q8l0dLCpfY7+DzuOt5cVYLVz8S5E1IItJj5bnslWsPY1AgAkiKMKhvPbN4jIsiKUvvaElr0dlJeKUQ/UlLfBkAYLdjeuZSwogWsdo6i7sSnyP6mirTmdrJLGhk/IIKUyCBSIgPZVNwAwKBYz56uQUAtA2WjkH5DZvRC9CPbyxoZr3byhf+dRBcvImfkn7i843Yy0gcRE+JPZaONHeVNDEsMAyDFXUVjNZtIcTci8zQny4oP2feXiD5HZvRC9BcuJyGrHme+9QVKieGZgc/QHjoWk2kPWfEhxIb6k13SQFuHkyx32wJPcE+LDsJsMtIyl0xJIyrYykWTB/TYpYiDSwK9EH3YdzsqySlt5IaxfvDhtUwuWslX5mN5LeJG/DoisJQ1kREbjL+fmZgQf281jads0jOjjwvrbFKWEB7grbIR/YMEeiH6KK01V762mrNMS9Er3kIpE48E3UJO7CzC/czkVjXTanNwxECjNj7Gp+Oktz4+xSiXPHlkYvdfgOg2EuiF6ENcLo3JnWKpr63iKctTnGZeSUvUJExnv8BLT27nmtFhtHc4WbDVaCvsycfH+mzUHe+ewR+VEcO2B2Z5G5WJ/kluxgrRR8xbXciwexdQ32qHvCUEvzqVWaY1PNJxHgsmvszahlA6nJopg6JJCu9sVeAJ9DHunjWh/n57lUlKkO//ZEYvRB/x9wXbcTnsFM2/lYj8N+gISeNC+31s1hlcU95CXZsTMNoVNLV3eN83LMG48RoWaLQv8M3Hi8ODBHoh+oD6Vjtx7QU8Zn2akfn5MOEKXjRdQfbSUlKjAtlZ2YzN4SIswI/IIIt3dSt0pmzGpUaQERvMY+eN7aGrED1FUjdC9EJLdlUx/R+LqWhsB60p+fopPrHcRZKq5uGIe+G0J/kkx2hbMCQ+jIqGdvJrWkiLDkYpRWqUEejHDYjwpmniwgL45pbjGeNeASsOHzKjF6IXuveTreRVt/DF8g1cWfM4I3Yt5Ac9moVZf+GbIsWl9W3k17RyyZQ08qpbWFdQS7vD6e0yGRcawH+uO5KR0oRMIIFeiF7J7nBximkls1e/DiY770TdwBuOEzkhLpGqbXu8bYSPyoihxeakrrWDutYOThud5P2Mie6Ww0JI6kaIXsbRVM0dLY/wjPVfFKsEuHYJ/2qewbCkCOLDAnC6NAu3lhMeaDFaC/vcXB0QHdSDIxe91X4DvVIqQCm1Wim1SSm1VSl1v89rNyqldriPP+Jz/E6lVK77tZmHavBC9Af51S2c+tQS9lQ1w86vUM8dySzTav6lz+cs21+oDkyjvLGdEUnhxIUafWhW7allcHwIJpPy1sQDpEsjMrEPXUnd2IDpWutmpZQFWKqU+hIIBM4ARmutbUqpOACl1HDgAmAEkAQsUkoN1lo7D80lCNG3Pb5oJ3klFTTM/x1UfUJr2GAusP+RlOGTadtawao9tQCMSArz1rw32RykRhmzd0/wB0iXGb3Yh/3O6LWh2f3U4v6jgeuBv2utbe7zKt3nnAHM01rbtNZ5QC4w6aCPXIg+qqrJhtba+zyobCULrHcwpupTOPoP/CvjJXLNg5g+NA6AH3ZWATA8KYy4sM6gnhZlzN7jfFa8+q5+FcKjSzl6pZRZKbURqAS+1lqvAgYDxyqlVimlvldKHeE+PRko8nl7sfuYEIe9soY2jpi7iGcX74aONlxf3snc+jtxYuJ31rlw4gMsL2hi/IBIby38kl1VJEcEEhFkJdanX81gdxvhaPcxq9kkG4OIfepSoNdaO7XWY4EUYJJSaiRG2icSmALcCsxXxn9l+/ovTf/4gFJqjlJqrVJqbVVV1a++ACF6i21ljZS6N/4AsDmcnPT497y8ZI/32LJco3vkyqWL4IWpmFY9y9vOGcwJfpwFjelUNraTU9bI5EFRRLtbFpQ2tHvbGFj9Ov+X9RwzmxSvXXEE3992/KG+RNFH/aKqG611PbAYmIUxU//QndpZDbiAGPfxVJ+3pQCl+/isF7XWE7XWE2NjZR9K0be5XJqTn1zCyU8u8R77dlslOyuaeei/27zHNudXcIvffF5z3gm2JlYf8zL3OK5i6kijLfDHG0vQGiYPjCbBJ02TEdd5k/Wqowdy6ZQ00nzy8dOGxu21GlYIX12puolVSkW4HwcCJwDbgY+B6e7jgwErUA18ClyglPJXSg0EsoDVh2b4QvQOW0sbAWho6+wxs7agzvu4ze6E4nVck3MlN/p9zKfOo3Fet5z5dYMJtpo5zr3p9uIdxm+3I5PDiAq2et+fEtEZxO89bTgPnjlS0jSiy7pSdZMIvKGUMmP8YJivtf5cKWUFXlVKZQN24HJt3GHaqpSaD+QADuAGqbgR/d328kbv44a2DsIDLWxx78Xqjx37grsJ2PACVlcEVztu4xvnWI5xBvLDzipOGB7vLYtcsaeGmBAroQGWvT5fZuviQOw30GutNwPj9nHcDlzyM++ZC8w94NEJ0Uu12By4tPYG5LzqFu9rFY3thPj7kV3awGlRhfyx+UnC15fRNPwiTlw/ncnDBsK2CnZXtVDZZGNwfCgJ4QEoBVrDgKjOlMwtJw7mn1/vlP1bxQGRFghC/Aoz/vk9je0d5DwwC9g70Jc3tKM62rjF9TpXtS6gREWz4uiXyQ+fTNP6LcwYFseibRWs3GPcmE2PDsZiNhEb4k9lk22vRU83zsjisiPTCQ/ae4YvxC8hLRCE+IWcLk15YzspFQ2dAAAgAElEQVStdiftHUZWMq+6haw4Y9btzFtC4jvTudrvS6qGXMxM28NsDZjAZ5tKyYoLYcYwoz5+xZ6992/15OR/3MZAgrw4UBLohdiP+la70Z7AbVtZZz5+e3kTLpcmr7qF49ICecDvNaatuBK7w8mVrnuIPv9pHH7BVDbZ2FFu1MfHBPvjZ1KszjNWvKbHGIHd32KsepU2BuJgk9SNEP+D1ppJf/0Gu8NFzgMzCbL68f3OznUfe6qaiQi0MNG1iZtz3yDQr4zlMbP5l7oQV3QQZpMiPiyAbWWN1LTYyfL2pwmgpL6N+DB/gqzG/4bXTx3EguxyThwe31OXK/opmdEL8T9UNduwO1wA/LDTaA28eEclQ+JDMZsUZaUlmD+5nretf8PP6s+fgv/GyyHXsqHM7u0NHx/mz1J3W+HB8ca2fgnhRo287+x91shEnrhgHMH+Mv8SB5cEeiF8FNa08tbKAm8vmpK6zpWuO8qbaO9wsqGwnuOHxHBZ8Cou3zCbpKLPeZGzMF2/jOroCawrqMPmcDHEHdTjwgLwtLbxVM94FkN58vNCHEoydRDCx03zN7KuoI6MmGCOyoyhxKelwc6KJraVNZKgK7im4BliO5ayyzKUO5zXkDlyMpaAYBLC/PnBvWhqUKwRxOPd3SXDAy2dq13da5085whxKMmMXggfOyuaALylj+sL6rGaTUxIi6S0rhnXsqf4yno70bUbeD/u/ziv4z7WtSf9ZKYOMCjW03TMqKYZkRTmXc16+pgkMmKDOXt8Srddmzh8yYxeCLf6VjtN7Q4Adle3UN1s4/21RUwfGsdgvYeT8/7GsOrdfMcEjr/hDXYtb6au0GhYlubOtceHdwZ6T7mkpyfNuRM6g/rMEQnMHJHQLdclhAR6Idx2+5RQ5lW1sCavlg5bC/cFLiIu+xVqdAj/jLyLZZajmRaRSkJYnvd8z4YfnjSN1dz5y/LJIxP59pYw7wxfiO4mqRtx2Fqxu4aRf1nozcN/saUci1lx8sgESurbaN+xiK/8byMh+0V2p5zJDNujPFU+kiGJRjVNUkTn7N2z29PolHCGxIdyz6nDvK+ZTUqCvOhRMqMXh62Xluyh2ebg4w0l3DAtk9V5tUweGM3kWDsn73iM07NXUGhKgsv/y56WTBpz1wEwxJOP92k0FuBe7BQXFsDCm47r/osR4n+QQC8OW7UtdgByK5uN1a1VjTyatpoT1ryEy2TjSec5ZA+8ipfSjyGhqN77vsEJRtmkp/nYLMm1i15OAr04LJTWt3HDO+t54vyx3hunhbWt3r+rdixnHncysiifhqTjOD3vTAp0AnMSogGI96mm8dTHRwVbWX3XDNmnVfR6kqMXh4W3VhawobCeF38wqmSa2juobbETRjMXVj1O3HunEKMa2HXc0zSdO48CbczSM92NymJCOjcBifbZtzUuLEA2ABG9nszoRb+0eEclkwdGE2g1cue5lUZFTUGNMYvPrWjibNMP3Ov/LqHORjalXMglu6ezeNLphAd2dov0dKT0M5t497dTZIGT6JMk0It+Z11BHVe8toZLpgzgoTNHAVDsbmVQWNsKldtJ+Oh3PGZdR0XoKC6qupAQ13jMgU1EB1v3mqF7ZvQAR2ZEd++FCHGQSKAX/c7CreUArM3v3LO1uK6VINq5sGke+vkvCNEB/NP/Bqafcws5z62EvFrGD4jwBvkPrj8Sq9n8ky39hOiLJNCLPu/D9cVMSIv03mRdm2/0ea9uNqpqKhramGb/gXsC3yVW11CbMZsTtszgmqlHMCC6c8ae4VPrPiEtqhuvQIhDS27Gij5tbX4tN8/fxP/N2wiAy6XZWmpsDFLdbMNWvBnTG6fyL+vTqJA4zrbdx4tRf6KWMEYnR3jbFABkxMmiJtE/SaAXfdoad3pmc3E9WmvKGtuxOVxMG2Dhfr/XsL4ylcCGnfzVfC22KxexXg/m6xwjtTMsMXSvfHyGrF4V/ZQEetGn5Fe3UNNs8z4vqTeqaLQ2UjV5FY1caP6GZ2uv4RLzIkoyL+IU1xNUD7mIxIhgrH4mdle1EBFk8ZZJ3nLiYKKCrYxOCe+RaxLiUJMcvegztNYc/4/FBFnN5DwwC4DS+nbv65U5PzBk6Z85xrKdlpjJnFpwJmMDj6WgrZCbsmIxmRSpkYHsrmrZa/Z+44wsbpyR1e3XI0R3kRm96DM8tfCtdifVzTa01uwob+KouA7+aXmOEV+ei19bNfdabibgtwvYpdJZtK0CgLGpEUBn24JBsrOTOIzIjF70Wk3tHWggzF3iuLOis41wfnULTU1NnNE0jz8GfIY22VmXeiV/KJnOxMGpmM0mEiMCKKptw2JWpEQaDcgSI4y/fVsaCNHfyYxe9FrHPfIdJz72vfd5WYNnWz9Nx+b/EPvGMdxmeQ/HgGM4U/+DJ7iQ4lYzx2TFApASYcze06OD8XP3hz95pNHaYERSWPddiBA9TAK96JWK61qpa+2gotFGg3sP1pL6Nib67eED6/0cuf5W6pyB/DHgAYIuf5/2sIHe7f8Gu9sIJ7tn8b5tC47NimXJbdOYNVI6TorDhwR60Su8vaqAOz/c7H2+rqBzVWtOaSM0FHPS9nv4j9+fGWiu5K3YWzjZNpfQoTMAiA31p8OpAUh359896ZqYkL27S6ZGBUkjMnFYkRy96HF2h4u7P8oG4IZpmaREBrGh0Oj/HkQ7wcv+ji58i/EOB9/GXMJ7AbNZU9ZBs93O0ESjZXCcu1VwTIi/N6d/6ZQ01uTXcta45B64KiF6Dwn0okd0OF1Y3HnznRVN3uMbi+pJiQxiY2Ett8avZXb9a8TtqaMx4zR+k3MCfzzyBKIK6qjNLQQg6Uc3V32raaJD/Hn7minddUlC9Fr7Td0opQKUUquVUpuUUluVUvf/6PU/KaW0UirG59idSqlcpdQOpdTMQzFw0Xe9viyPUfd17tWaXdLgfa2svh37rm95qOpGbmh4jBpzLA8n/4uPMx+iWMcyeWAU0T5tC5Lc2/l5WgvLJiBC/FRXZvQ2YLrWulkpZQGWKqW+1FqvVEqlAicChZ6TlVLDgQuAEUASsEgpNVhr7TwE4xd90HPf76a9w8UXm8v47XGDyC5tINTfj0ydx7S1T2JtXEUEMWw64lH+WTaKRpuL5D21JIUHkBIZSLTPJiCeG65D3dv7nTE2qUeuSYjebL8zem3wFDBb3H+0+/njwG0+zwHOAOZprW1a6zwgF5h08IYs+rKqJhuVTUYLA8+Mvrwwl6eDXuQD0x0kNuewZvDNzLD9g9ijLyU2LIiKxnbWFdRxxMAolFJ7NSIL8TfmKicOj2fdn0/gJNm/VYif6FKOXillBtYBmcAzWutVSqnTgRKt9aYfVTAkAyt9nhe7j/34M+cAcwAGDBjw60Yvej2tNcV1baS6V6Suza9Fu6cFdTWVuBa+wzM1L2A2Kb4Inc3blrNJNCcSFlpNYngACeH+lDUYbQ6GJhi173GhRj5+jE9vGqXUXlv8CSE6dSnQu9MuY5VSEcBHSqnRwN3ASfs4fV91a/onB7R+EXgRYOLEiT95XfQP760p4o4Pt/DouaOZPTGVorpW/LFzd8wSzi6chypo5TPXsYTNvJclpf7s2l5JnauRUcnhKKX2WsHq2dZv8sAo/jF7DNOGxPbUZQnRp/yiOnqtdT2wGCM9MxDYpJTKB1KA9UqpBIwZfKrP21KA0oMxWNH3fLihBIAVu2vA5SQ690MWB9zCZc2vsFEPZtHUD/hTx3UMyhxGUkQg1c02tpc3ebfw8w30nmMmk+LcCSkygxeii7pSdRPrnsmjlAoETgA2aK3jtNbpWut0jOA+XmtdDnwKXKCU8ldKDQSygNWH7ApEr2FzOPloQzENrcZKVqdLs6W4AdDElX6Lfv4Yzil8iCZzFB+PeZ5L2m/l65oYgqxmBsYEkxjRGdQ9ZZK+gd6T/hFC/DJdSd0kAm+48/QmYL7W+vOfO1lrvVUpNR/IARzADVJxc3h4/OtdPP/9bs4en8xj541lT1Uz45ybuNU6n3ENudjD07nF/nvGnnwVMaEBsGojX+VUMDwxDLNJeUslAQa52winRxvBPSM2GLNJVrMK8WvsN9BrrTcD4/ZzTvqPns8F5h7QyESfs2J3NQBbSxqhaDXhn9zNO9bV1PrFcXvbbzn2+Bv57L1srk6PxuF0AVDf2sHIZOOmqu+MPsPdnyYiyMr3tx6PSVoWCPGrSa8b8atUN9uY8ODXLMguA4w0zY6KJoapAm6v+wu8ciJB9buY67qM709awHvOaSzONdoaDIoNJiWyMw3j6STpO6P3LaFMiw6WtI0QB0BaIIhfZeHWcmpa7Nz1UTazRiZSmruJR3mC0/xX0qCDaDjqTmatGMaEoamcnBAFwOIdld5eNCHWzv/0RrnLJAOtZv4xewwZscHSdEyIg0gCvfhVNhUZs/M4ZyX649+RsvFdokwW1qRexdW7juSB2KMpa9vIsVkxJLv70VQ325k80Aj6JpNibGoERbWtZPps63fuhJTuvxgh+jkJ9KJLludWMyI53NtTpqFsN3/1e4tz9fewxY/vo87h7qoTeW7mTBp3LeP7nVUAZMaFEh1sRSljA+9BPkF93pwpWMwmuckqxCEmgV7s14rdNVz08iqmDYnltTPj0Uv+ydM1/0b7KeY5pjP2/Ae48b0iThmb6O0F7wn0WfEh+JlNmJTCqbX3JitAgMXcI9cjxOFGAr34iVeW5pEWFcQJw+MBWLyzkhRVyW/yXkI/tQSUiXcc0ykafi0vb7ZzX10gTTYHI5LCCPX3I9hqprbFTnJEoLc3vNNlLH723e1JCNE9pOpG7KW+1c6Dn+dwzZtr6XC6oDaPI7f8he+st3C6Wkrr6MtYf8Z3/MVxJSOGDQNgaa6xhV9WfChKKe8G3EPcHSUBrj5mIBFBFm8ppRCi+0igP8xd/+91e23ht3JPLQADVAW2D65HPzWBI1u+5XP/33Cs7QnWDb+Lz/IVFrPi2KxYTAqW5Rr1855eNDHuNsK+gf6eU4ez8d6TvA3JhBDdRwL9YeTD9cX8+eMtaHf7yKLaVr7MLufd1UW43KmV6rzN/MPyPN9abyFwx0dUD7+cY21PUHn0/VQSSXFdG8t3V3NMZgwxIf7EhwXQ1uEkOtjq7T3jaVswJD503wMRQnQrydEfRm6evwmAs8enMH5AJJuLO3d2KslZTurW57ho2+fYTBbedJ5EzAm3U0kElWzj1DFJPLxgO8V1reRXtzJtaBwAg+NDKWto9zYcA5h71ihGJYdzojvHL4ToWRLoDxMd7pYDYNTAjx8QSU5pPVNMOfzO/Amp/9mC9g/jZX0WRYMv5+3sFn7fFkxuVR2pUYEkRwQSFxrA6rxa7E6Xt/Z9eFIY3++sIsZnC78Qfz+uOXZQt1+jEGLfJHVzmNhR3rkB9/bSRtjxJaetvZJ51ocYYSrk66Tr2Tx7GX+1nctRo4eQGB5IUV0bOaWNjEzq7EWztqAO6GwZfPoYY+s+z0IoIUTvIzP6fsrp0tS22L2bZW8oqseMk0tC1nHVjrtgaz4hOoaFA2/lmbrJxPlHckyF0WR07IAIUiID2V7eRH5NK+eMN1arJoUHsgFjRWyGO9APSwxj9V0zpDe8EL2YzOj7qTlvruWIuYto73BCRxsBm97g+4A/cb/jCVxOBxUznuB422O0jrmC6Ihwyhra2FTcQFyoP4nhgaREBrGtrBEwgjlAYrhxkzUu1N9bHw8QFxYgq1uF6MVkRt9PfbO9kigaqfvv/STu/DezW2vIsw7hk4G3cPPmJJ4Im4CDDWTEhpAYEcim4gba7E7GpEYAkBLZ2UlyuLu7pKc+PiLI8tMvFEL0WjKj7weW51Yz9oGvyKtuAaC5JIe5fq+w3P9GEjc+SUfiBM633cN/J/8bW+ZvcGoTH6wvJsBiYnB8KIlhAdS22NlT3cJYd6D3bQvsmcl78vCeJmVCiL5BZvR9zK6KJrJLGzhjTDImd7rks82l1Lfa+e6rjxmoPidkxxeca7bwgfMYCodcydFTjmLV1tX8fkCkN8WyeEcVM0fEE2Axe2fqAKPdLYM792z197YMHpkczqtXTGRoQlh3XrIQ4gBJoO9j7vtsK8tya2ixOblkSho4HSSVLOBj67uM3bkHAqPYlHEtV28dS7t/NCk1gQQXGjdQR6dE0NjW4f2s848w9nBPCu9crTo62ZjRj0kJ56EzR3r3bvWYPlRq44XoayR104tVNLYz8M7/8s22CgC01uSUGjdIl23dAyuexfnkOG6smUsYrfzdNAdu2srtNadiDovjtDFJFNS0sqm4gUGxwYQHWkjwCeoT0oxUjCdNY/UzEe7OvyuluGRKGkdlxnTnJQshDgGZ0fdiX+dUoDU8+c0uZgyLp6S+jci2Av7g9xXnFf0ARe1UhY/lXvs5WIefwufZlVzepthe3sStM4cQ4u9HW4eTZbnVzBhmrGS1mE389axRbCqq9/aWT40K4rmLxxMXJn1ohOiPJND3YusLjcVJ5fWt6J0L8f/mKb71X0IHFj5zTuH0Ofdz29dOymnj6iHxfJ5dyScbSwE4KiOaulY7AG0dTm+JJMBFkwdw0eQBe33XyaMSu+mqhBDdTVI3vcj7a4vYWdG5gjW/pJwrzAuYZ78R9c55BNZu4zHHbD4+fiE3d1xPYcAQ1hfUMWlglLeR2OebSwmymhmVHM4An8qZYYnSYEyIw5XM6HvIit01JIYHeHdkyilt5Nb/GO2C8/80BMeqF3iz/k1CLO2sc2Wx7ag7eLgwi4oWzf1pA4FyFm6toNnm4Ij0KG/uPbukkbGpEfiZTaREdgZ6qZQR4vAlgb4HNNscXPjSSqKCray/50QAFm8vZaZpDRebF8HTWzCZLCx0TcY1cQ63rvDjH9Fj2LQyh5OGJ5AebQTw99cVATAxPYpga+e2fEPdfeB9t+pLDJf8uxCHKwn03eD9tUWYlOKcCUbPGM9GHbUtdnRDMWr9W1y07GV+Z62mVEdRNPYmFlhnMveHWhZMPhZWLGFTUT11rR2MTAknNtSfAIuJPVUtJIUHkBwR6O0xD0brYI9FNx9HRJDVWwsvhDj8SKA/xCob270pmWOyYogPC2B3ZSNTTZuM2fsTG4yySTWORSHX80b1YP6eMo73l+zh6MxohiaEEWw1s8hdYjkqORylFKmRQeyqbGZiulEi6RvIfXd2yoyT3LwQhzu5GXuIZZd2bu6xKy8Plj7O+ctP5w3rw4w37aJ85LVsnf0DF7X9iazjzsOJmfyaFnZXtTB+QCRglD+WNbTjZ1LetExogPEz+oj0SO/nTxsSC+DtVyOEECAz+i7TWlPTYifGpx2v3eGivs2+1z6onhSKZ4a9q7yRY0xbON/8HUd+vBa0gz2M4LnAS3ijbhSPDprI1vwGLGbFKaMTeXThDpbuqsbp0t6SyMHxoWwvb2JwfKg3737jjCzeXlnIzBEJ3u9+5uLxAARZ5V+rEKKTzOi76NVl+Ux8aBFFta3eYw8v2M6kud9QUt8GGIH/uEe/Y9YTS2ivyofFf+fcpafwb+vfOM68hdUxZ/HqmPeY3X430865jg78KKxt5Yst5RybFUtYgIXE8AA2ubf4S3PfdPV0j4x2b7oNMG1IHC9fPnGvRU5BVj8J8kKIn9hvoFdKBSilViulNimltiql7ncff1QptV0ptVkp9ZFSKsLnPXcqpXKVUjuUUjMP5QV0l482FAOwZJdxI1VrzevL8wFYmF0OwJ6yasbWf8PdtXfh/8xY9OK/s8sRz5vJf+GS8Dd5JeQ6ljdGMyQ+lKMzY4gL9Wd1Xi0l9W0c7067+FbHeOrgT3LvvTp1cGy3XKsQon/pyozeBkzXWo8BxgKzlFJTgK+BkVrr0cBO4E4ApdRw4AJgBDALeFYpZd7nJ/dShTWtXPLyKorrOmfvbXZj9yXPZhy7Kptxuow0jb14I3xxK4PenMBT1qcZZCrji+jLKbtiFRe034F59DnERIRR1tDGrspmMuONzpADooJY6q7AGeKulEkMNzpJxoRYCXVv7jEoNoRVd83gqqMHdsPVCyH6m/0Gem1odj+1uP9orfVXWmuH+/hKIMX9+AxgntbaprXOA3KBSQd53AdNbYudcQ985S15BHjq210sza3myUW7AGNbvqJaIz3jSdMs2ZDDFeYFfBlwN9dtvwLWvcFG/4nM4R7+GP8Gr/mdz+ZmI+UyMimcxIhACmtaKaptJcO9SMq353uWJ9BHGDP6gT/qGhkfFuBtSyyEEL9El3L0SimzUmojUAl8rbVe9aNTrgK+dD9OBop8Xit2H+txDqeLM59ZxscbSrzHVufVUNfawdz/bvMe21BktPXdVGz8XdbQht3pwh87mRVfwdvnccXKWdxneZNgq5mnA+bguGkblzdcS8K4WSRGBlPdbCO7pBGzSTEkIZSk8ACabA5cGu9qWE+gDw3wIyrYyL+PSTEyYMcPiTv0/0CEEIeFLt2501o7gbHuPPxHSqmRWutsAKXU3YADeNt9+r6mnfrHB5RSc4A5AAMGDPjJGw6FXZXNbCyq54/vbeTMccbPnh3lxi8rrXbjl5PG9g52VzVjNil2VTbTZuugZP1CHvZ7nVMtqwlua8VZlsSLjlOIPPIycnUK/15VwLRGo1PkhLRINhbVU9VkI7u0gay4EGNzj/DOzT28gd69XV+wzw3UozNj2HzfSXsdE0KIA/GLqm601vXAYozcO0qpy4FTgYt159LMYiDV520pQOk+PutFrfVErfXE2Njuucm42T1DB4xNs4F17g6RpQ3tOJwusosb0BquHmzjVvM8LE+NZvKSKzjVvJLC+BlcaL+bz2cs5GHHhWSMmMiA6CDaO1x8ucW4ITt+QCQxIf602J0s3lHFlEHRQGdKBmBgtBHoxw2IwOpn4rqpg/YaZ1iARTbbFkIcNPudNiqlYoEOrXW9UioQOAF4WCk1C7gdmKq1bvV5y6fAO0qpx4AkIAtYffCHvn+fbCwhIsjqrVbZXdXifa2gppXMuBDWF9QRZDXTandSnL8T17K3+cz6KaPy83GYTdSHHMMDtWeTcuS5jEhLYEX+euJ21AAwOC6U5nbjN4H/rCsmKTyAlMjAvXLvnoqZVJ8GY5HuNE1mXCg7Hpwl7QmEEIdUV/IDicAb7soZEzBfa/25UioX8Ae+dgeqlVrr67TWW5VS84EcjJTODe7UzyFld7jwMynvDcuqJht/mLcRgO0PziLAYvZung2QX9NCh9NFkK2Kv2TsJLHov6S/lUs6kGvNovyIv3DqdwmcGDeST/OLeGdYKkH+xj+ub7dVkhAWQHiQxdseuLyxnbPGJaOUYlRyuPd7fpyPD7LuXYAkQV4IcajtN9BrrTcD4/ZxPPN/vGcuMPfAhtZ1lY3tTH10MdOGxvLsxRMAWLKryvt6SX0bg2KCySltZGJaJHkF+URkv0F02QJW+m/AVKLJIY2VA3/PbdszOO+4Y7lg0gCqv1vEN9sqARiRHI7NYfy8arI5mOhuPeC7Nd+UQUbfmTSfGX28z4KmdX8+AddP7lYIIcSh1S/u+G0vb6Ktw8kXW8pxOF34mU2sK6jzvl5U20prfRVHN33BzSFbiPVfhXmbpsRvAG8FXMDFV/2R057cw5D6UAp1I+PTIokOthLq70dlk43UqEDCAy24XH6YFLg0DHW3J4h077EKMHmgkY83mRRPnD+WLSUNe+Xao33aJwghRHfpF4G+1F3bDrC1tJHE8ADmry3iqFg7GbWLGbLwCeJr1/GIxYnTkc5bfudQnDyLN/cEc9mUdPzih5IQVkpOWSNWs4lxqZEopRiaGMqa/DqGuTftMJmUd0buaS6mlOLU0YlY/UzelgUAZ45L9lb2CCFET+oXgb7EJ9Bv27oBS9MS5ps/YVxTLligujWd9wPOZl3QsTxy42V88txysnc30OHUHJVpzMKTIwIpqW9jbGoEge48emacEegz40K8n3/c4Fh+2FnFiKTOPPzTF43vpisVQohfru8Heq2Jad7JQ+Gfc1THCgatLAAgWw3COe3PXLkynrbwTNbk13Hr5CGgFAlhAWwoNEothycaAdvqZ1SaTnbn2QHGpobz7uq9V7C+dNkEsksa9wr+QgjRm/XtQF+yDt6/ksvrC0CZ2BM4iodbp7Et/DjsIcm8M3UKOncVa9yNyKYPNVabem6QRgRZiA8z8uYjk8NZmlvNGWM70y2zJ6QSEWTlhGHx3mP+fmYmpHX2gBdCiN6ubwf6iHSIHQrH3gJDfsM365t47ott0A7XDzNaCQyOD2XJrmos5s5NO/6/vXuJjaoMwzj+f6gF5NrSolaKbUmQSAgBJChCiEFUIIQ1RgkLjAtdSFwYGqKJS10Yd0YjGhMVo4hK2CDxsnEhclUQKhIwNFyKJobEFeLrYr5pp9hyp/PN4fklkznzMXD+7ZS30zOnbflMmbvGjew9vXHdkqmsnt/GpIa+72AdNkz9ft67mVktqu1BP7oJnvyk92Zr4z+921PToZU59zSykWOcvxC9Q31uekbe3tT3g8NG1tf1G/JmZkVR24P+IpMa+wZ1+Rj6onubAbi74nz3ue0TeGv1/cxsHY+ZWdEVatDf1zKOtQs7aGsaxYx0VszYkfVsefYhmkf3P4fdh2TM7FZRqEFfXzeMl1ZM/996+Zdsm5ndivw7Y83MCs6D3sys4DzozcwKzoPezKzgPOjNzArOg97MrOA86M3MCs6D3sys4BRR/d9tJ+ks8Pt1/BPNwB83KOdmyL0P8m/MvQ/ceCPk3gd5NbZFxMTL3SmLQX+9JO2KiLnV7hhM7n2Qf2PufeDGGyH3PqiNxov50I2ZWcF50JuZFVxRBv3b1Q64jNz7IP/G3PvAjTdC7n1QG439FOIYvZmZDa4oz+jNzGwQNT3oJS2V1CXpN0nrq9jxrqQeSQcq1iZI2iHpSLpurPizztTcJenxIeibLLHv4JcAAANUSURBVOlbSYckHZT0fIaNIyXtlLQ/Nb6SW2PaZ52kvZK2Zdp3XNLPkvZJ2pVpY4OkzZIOp4/J+bk0SpqW3nflyzlJ63Lpu2YRUZMXoA44CkwBhgP7gelValkEzAEOVKy9BqxP2+uBV9P29NQ6AuhIb0PdTe5rAeak7bHAr6kjp0YBY9J2PfAD8GBOjWm/LwAfAdtye5zTfo8DzRet5db4PvB02h4ONOTWmPZdB5wG2nLsu6q3pdoB1/EgzAe2V9zuBDqr2NNO/0HfBbSk7Raga6BOYDswf4hbvwQezbURGAXsAR7IqRFoBb4GFlcM+mz60n4GGvTZNALjgGOk1wdzbKzY12PA97n2Xc2llg/dTAJOVNzuTmu5uDMiTgGk6zvSelW7JbUDsyk9Y86qMR0W2Qf0ADsiIrfGN4AXgX8r1nLqAwjgK0m7JT2TYeMU4CzwXjoE9o6k0Zk1lq0CNqXtHPuuWC0Peg2wVgunEFWtW9IY4DNgXUScu9RdB1i76Y0RcSEiZlF65jxP0oxL3H1IGyWtAHoiYveV/pUB1obicV4QEXOAZcBzkhZd4r7VaLyN0mHONyNiNvA3pUMhg6nK+1HScGAl8Onl7jrAWnZzqJYHfTcwueJ2K3CySi0DOSOpBSBd96T1qnRLqqc05D+MiC05NpZFxF/Ad8DSjBoXACslHQc+BhZL+iCjPgAi4mS67gE+B+Zl1tgNdKev1gA2Uxr8OTVC6RPlnog4k27n1ndVannQ/whMldSRPvuuArZWuanSVmBN2l5D6bh4eX2VpBGSOoCpwM6bGSJJwEbgUES8nmnjREkNaft2YAlwOJfGiOiMiNaIaKf0sfZNRDyVSx+ApNGSxpa3KR1jPpBTY0ScBk5ImpaWHgF+yakxeYK+wzbljpz6rk61XyS4zhdLllM6g+QosKGKHZuAU8B5Sp/h1wJNlF64O5KuJ1Tcf0Nq7gKWDUHfQkpfTv4E7EuX5Zk1zgT2psYDwMtpPZvGiv0+TN+Lsdn0UTr+vT9dDpb/T+TUmPY5C9iVHusvgMacGimdDPAnML5iLZu+a7n4O2PNzAqulg/dmJnZFfCgNzMrOA96M7OC86A3Mys4D3ozs4LzoDczKzgPejOzgvOgNzMruP8AtWMXbnYoG3EAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "a3, b3, c3 = np.polyfit([x for x in range(len(useful_data.index))], useful_data['CO2'], 2)\n", + "fit_dataCarre = [x*x*a3 + b3*x + c3 for x in range(len(useful_data.index))]\n", + "useful_data['CO2'].plot()\n", + "plt.plot([x for x in range(len(useful_data.index))], fit_dataCarre)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cette courbe de tendance a l'air plus à même de nous fournir des données moyennes correctes. On souhaite maintenant faire une extrapolation jusqu'en 2025. Plutôt que de donner des valeurs par mois, il est plus pertinent ici de donner des valeurs moyennées par années.\n", + "Pour ça, il suffit d'intégrer la fonction fit_dataCarre entre les bornes qui nous intéressent. " + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "749 2020-04\n", + "Name: period, dtype: object\n" + ] + } + ], + "source": [ + "#Valeur moyenne 2020\n", + "borne1 = useful_data['period'][-1:]\n", + "print(borne1)" + ] + }, { "cell_type": "code", "execution_count": null,