Commit 7903397d authored by Angeline Pelus's avatar Angeline Pelus

Exercice mooc

parent eac56f97
--- ---
title: "Votre titre" title: "A propos du calcul de pi"
author: "Angeline Pelus" author: "Angeline Pelus"
date: "03/04/2021" date: "04 avril2021"
output: html_document output: html_document
--- ---
```{r setup, include=FALSE} ```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE) knitr::opts_chunk$set(echo = TRUE)
``` ```
## Quelques explications ## En demandant à la lib maths
Mon ordinateur m'indique que $\pi$ vaut *approximativement*
```{r}
pi
```
Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez <http://rmarkdown.rstudio.com>. ## En utilisant la méthode des aiguilles de Buffon
Mais calculé avec la _méthode_ des [aiguilles de Buffon] (https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme _approximation_ :
Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante: ```{r}
set.seed(42)
N = 100000
x = runif(N)
theta = pi/2*runif(N)
2/(mean(x+sin(theta)>1))
```{r cars}
summary(cars)
``` ```
## Avec un argument "fréquentiel" de surface
Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d'appel à la fonction sinus se base sur le fait que si $X\sim U(0,1)$ et $Y\sim U(0,1)$ alors $P[X^2+Y^2\leq 1] = \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait :
Et on peut aussi aisément inclure des figures. Par exemple: ```{r}
set.seed(42)
N = 1000
df = data.frame(X = runif(N), Y = runif(N))
df$Accept = (df$X**2 + df$Y**2 <=1)
library(ggplot2)
ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw()
```{r pressure, echo=FALSE}
plot(pressure)
``` ```
Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles. Il est alors aisé d'obtenir une approcimation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2 + Y^2$ est inférieur à 1 :
```{r}
4*mean(df$Accept)
```
Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter.
Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment