diff --git a/module3/exo2/exercice-varicelle.ipynb b/module3/exo2/exercice-varicelle.ipynb new file mode 100644 index 0000000000000000000000000000000000000000..97ba0a90c1251ee31950614907d33c6966a92a21 --- /dev/null +++ b/module3/exo2/exercice-varicelle.ipynb @@ -0,0 +1,3314 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Incidence de la varicelle" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import isoweek" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "raw_data = pd.read_csv(\"http://www.sentiweb.fr/datasets/incidence-PAY-7.csv\", skiprows=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202234723065934019306FRFrance
12022337735301741411026FRFrance
22022327780140861151612618FRFrance
3202231768964170962210614FRFrance
42022307903957701230814919FRFrance
52022297148511006019642221529FRFrance
62022287154711102819914231630FRFrance
72022277211911619826184322440FRFrance
82022267168541280620902251931FRFrance
92022257222461801126481342840FRFrance
102022247224581810526811342741FRFrance
112022237187721487522669282234FRFrance
122022227189161494122891292335FRFrance
132022217203101630724313312537FRFrance
142022207235851900428166362943FRFrance
152022197185931418123005282135FRFrance
162022187178511396321739272133FRFrance
172022177203141600124627312438FRFrance
182022167196601486024460302337FRFrance
192022157177991371521883272133FRFrance
202022147170051316220848262032FRFrance
212022137154481165919237231729FRFrance
222022127147021079418610221628FRFrance
23202211711729834715111181323FRFrance
242022107133141003616592201525FRFrance
25202209710485760013370161220FRFrance
26202208712088874115435181323FRFrance
272022077140031078917217211626FRFrance
2820220679798704812548151119FRFrance
29202205710851779713905161121FRFrance
.................................
16261991267176081130423912312042FRFrance
16271991257161691070021638281838FRFrance
16281991247161711007122271281739FRFrance
1629199123711947767116223211329FRFrance
1630199122715452995320951271737FRFrance
1631199121714903897520831261636FRFrance
16321991207190531274225364342345FRFrance
16331991197167391124622232291939FRFrance
16341991187213851388228888382551FRFrance
1635199117713462887718047241632FRFrance
16361991167148571006819646261834FRFrance
1637199115713975978118169251832FRFrance
1638199114712265768416846221430FRFrance
163919911379567604113093171123FRFrance
1640199112710864733114397191325FRFrance
16411991117155741118419964271935FRFrance
16421991107166431137221914292038FRFrance
1643199109713741878018702241533FRFrance
1644199108713289881317765231531FRFrance
1645199107712337807716597221529FRFrance
1646199106710877701314741191226FRFrance
1647199105710442654414340181125FRFrance
16481991047791345631126314820FRFrance
16491991037153871048420290271836FRFrance
16501991027162771104621508292038FRFrance
16511991017155651027120859271836FRFrance
16521990527193751329525455342345FRFrance
16531990517190801380724353342543FRFrance
1654199050711079666015498201228FRFrance
16551990497114302610205FRFrance
\n", + "

1656 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202234 7 2306 593 4019 3 0 \n", + "1 202233 7 7353 0 17414 11 0 \n", + "2 202232 7 7801 4086 11516 12 6 \n", + "3 202231 7 6896 4170 9622 10 6 \n", + "4 202230 7 9039 5770 12308 14 9 \n", + "5 202229 7 14851 10060 19642 22 15 \n", + "6 202228 7 15471 11028 19914 23 16 \n", + "7 202227 7 21191 16198 26184 32 24 \n", + "8 202226 7 16854 12806 20902 25 19 \n", + "9 202225 7 22246 18011 26481 34 28 \n", + "10 202224 7 22458 18105 26811 34 27 \n", + "11 202223 7 18772 14875 22669 28 22 \n", + "12 202222 7 18916 14941 22891 29 23 \n", + "13 202221 7 20310 16307 24313 31 25 \n", + "14 202220 7 23585 19004 28166 36 29 \n", + "15 202219 7 18593 14181 23005 28 21 \n", + "16 202218 7 17851 13963 21739 27 21 \n", + "17 202217 7 20314 16001 24627 31 24 \n", + "18 202216 7 19660 14860 24460 30 23 \n", + "19 202215 7 17799 13715 21883 27 21 \n", + "20 202214 7 17005 13162 20848 26 20 \n", + "21 202213 7 15448 11659 19237 23 17 \n", + "22 202212 7 14702 10794 18610 22 16 \n", + "23 202211 7 11729 8347 15111 18 13 \n", + "24 202210 7 13314 10036 16592 20 15 \n", + "25 202209 7 10485 7600 13370 16 12 \n", + "26 202208 7 12088 8741 15435 18 13 \n", + "27 202207 7 14003 10789 17217 21 16 \n", + "28 202206 7 9798 7048 12548 15 11 \n", + "29 202205 7 10851 7797 13905 16 11 \n", + "... ... ... ... ... ... ... ... \n", + "1626 199126 7 17608 11304 23912 31 20 \n", + "1627 199125 7 16169 10700 21638 28 18 \n", + "1628 199124 7 16171 10071 22271 28 17 \n", + "1629 199123 7 11947 7671 16223 21 13 \n", + "1630 199122 7 15452 9953 20951 27 17 \n", + "1631 199121 7 14903 8975 20831 26 16 \n", + "1632 199120 7 19053 12742 25364 34 23 \n", + "1633 199119 7 16739 11246 22232 29 19 \n", + "1634 199118 7 21385 13882 28888 38 25 \n", + "1635 199117 7 13462 8877 18047 24 16 \n", + "1636 199116 7 14857 10068 19646 26 18 \n", + "1637 199115 7 13975 9781 18169 25 18 \n", + "1638 199114 7 12265 7684 16846 22 14 \n", + "1639 199113 7 9567 6041 13093 17 11 \n", + "1640 199112 7 10864 7331 14397 19 13 \n", + "1641 199111 7 15574 11184 19964 27 19 \n", + "1642 199110 7 16643 11372 21914 29 20 \n", + "1643 199109 7 13741 8780 18702 24 15 \n", + "1644 199108 7 13289 8813 17765 23 15 \n", + "1645 199107 7 12337 8077 16597 22 15 \n", + "1646 199106 7 10877 7013 14741 19 12 \n", + "1647 199105 7 10442 6544 14340 18 11 \n", + "1648 199104 7 7913 4563 11263 14 8 \n", + "1649 199103 7 15387 10484 20290 27 18 \n", + "1650 199102 7 16277 11046 21508 29 20 \n", + "1651 199101 7 15565 10271 20859 27 18 \n", + "1652 199052 7 19375 13295 25455 34 23 \n", + "1653 199051 7 19080 13807 24353 34 25 \n", + "1654 199050 7 11079 6660 15498 20 12 \n", + "1655 199049 7 1143 0 2610 2 0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 6 FR France \n", + "1 26 FR France \n", + "2 18 FR France \n", + "3 14 FR France \n", + "4 19 FR France \n", + "5 29 FR France \n", + "6 30 FR France \n", + "7 40 FR France \n", + "8 31 FR France \n", + "9 40 FR France \n", + "10 41 FR France \n", + "11 34 FR France \n", + "12 35 FR France \n", + "13 37 FR France \n", + "14 43 FR France \n", + "15 35 FR France \n", + "16 33 FR France \n", + "17 38 FR France \n", + "18 37 FR France \n", + "19 33 FR France \n", + "20 32 FR France \n", + "21 29 FR France \n", + "22 28 FR France \n", + "23 23 FR France \n", + "24 25 FR France \n", + "25 20 FR France \n", + "26 23 FR France \n", + "27 26 FR France \n", + "28 19 FR France \n", + "29 21 FR France \n", + "... ... ... ... \n", + "1626 42 FR France \n", + "1627 38 FR France \n", + "1628 39 FR France \n", + "1629 29 FR France \n", + "1630 37 FR France \n", + "1631 36 FR France \n", + "1632 45 FR France \n", + "1633 39 FR France \n", + "1634 51 FR France \n", + "1635 32 FR France \n", + "1636 34 FR France \n", + "1637 32 FR France \n", + "1638 30 FR France \n", + "1639 23 FR France \n", + "1640 25 FR France \n", + "1641 35 FR France \n", + "1642 38 FR France \n", + "1643 33 FR France \n", + "1644 31 FR France \n", + "1645 29 FR France \n", + "1646 26 FR France \n", + "1647 25 FR France \n", + "1648 20 FR France \n", + "1649 36 FR France \n", + "1650 38 FR France \n", + "1651 36 FR France \n", + "1652 45 FR France \n", + "1653 43 FR France \n", + "1654 28 FR France \n", + "1655 5 FR France \n", + "\n", + "[1656 rows x 10 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", + "Index: []" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "raw_data[raw_data.isnull().any(axis=1)]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "data = raw_data.dropna().copy()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202234723065934019306FRFrance
12022337735301741411026FRFrance
22022327780140861151612618FRFrance
3202231768964170962210614FRFrance
42022307903957701230814919FRFrance
52022297148511006019642221529FRFrance
62022287154711102819914231630FRFrance
72022277211911619826184322440FRFrance
82022267168541280620902251931FRFrance
92022257222461801126481342840FRFrance
102022247224581810526811342741FRFrance
112022237187721487522669282234FRFrance
122022227189161494122891292335FRFrance
132022217203101630724313312537FRFrance
142022207235851900428166362943FRFrance
152022197185931418123005282135FRFrance
162022187178511396321739272133FRFrance
172022177203141600124627312438FRFrance
182022167196601486024460302337FRFrance
192022157177991371521883272133FRFrance
202022147170051316220848262032FRFrance
212022137154481165919237231729FRFrance
222022127147021079418610221628FRFrance
23202211711729834715111181323FRFrance
242022107133141003616592201525FRFrance
25202209710485760013370161220FRFrance
26202208712088874115435181323FRFrance
272022077140031078917217211626FRFrance
2820220679798704812548151119FRFrance
29202205710851779713905161121FRFrance
.................................
16261991267176081130423912312042FRFrance
16271991257161691070021638281838FRFrance
16281991247161711007122271281739FRFrance
1629199123711947767116223211329FRFrance
1630199122715452995320951271737FRFrance
1631199121714903897520831261636FRFrance
16321991207190531274225364342345FRFrance
16331991197167391124622232291939FRFrance
16341991187213851388228888382551FRFrance
1635199117713462887718047241632FRFrance
16361991167148571006819646261834FRFrance
1637199115713975978118169251832FRFrance
1638199114712265768416846221430FRFrance
163919911379567604113093171123FRFrance
1640199112710864733114397191325FRFrance
16411991117155741118419964271935FRFrance
16421991107166431137221914292038FRFrance
1643199109713741878018702241533FRFrance
1644199108713289881317765231531FRFrance
1645199107712337807716597221529FRFrance
1646199106710877701314741191226FRFrance
1647199105710442654414340181125FRFrance
16481991047791345631126314820FRFrance
16491991037153871048420290271836FRFrance
16501991027162771104621508292038FRFrance
16511991017155651027120859271836FRFrance
16521990527193751329525455342345FRFrance
16531990517190801380724353342543FRFrance
1654199050711079666015498201228FRFrance
16551990497114302610205FRFrance
\n", + "

1656 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202234 7 2306 593 4019 3 0 \n", + "1 202233 7 7353 0 17414 11 0 \n", + "2 202232 7 7801 4086 11516 12 6 \n", + "3 202231 7 6896 4170 9622 10 6 \n", + "4 202230 7 9039 5770 12308 14 9 \n", + "5 202229 7 14851 10060 19642 22 15 \n", + "6 202228 7 15471 11028 19914 23 16 \n", + "7 202227 7 21191 16198 26184 32 24 \n", + "8 202226 7 16854 12806 20902 25 19 \n", + "9 202225 7 22246 18011 26481 34 28 \n", + "10 202224 7 22458 18105 26811 34 27 \n", + "11 202223 7 18772 14875 22669 28 22 \n", + "12 202222 7 18916 14941 22891 29 23 \n", + "13 202221 7 20310 16307 24313 31 25 \n", + "14 202220 7 23585 19004 28166 36 29 \n", + "15 202219 7 18593 14181 23005 28 21 \n", + "16 202218 7 17851 13963 21739 27 21 \n", + "17 202217 7 20314 16001 24627 31 24 \n", + "18 202216 7 19660 14860 24460 30 23 \n", + "19 202215 7 17799 13715 21883 27 21 \n", + "20 202214 7 17005 13162 20848 26 20 \n", + "21 202213 7 15448 11659 19237 23 17 \n", + "22 202212 7 14702 10794 18610 22 16 \n", + "23 202211 7 11729 8347 15111 18 13 \n", + "24 202210 7 13314 10036 16592 20 15 \n", + "25 202209 7 10485 7600 13370 16 12 \n", + "26 202208 7 12088 8741 15435 18 13 \n", + "27 202207 7 14003 10789 17217 21 16 \n", + "28 202206 7 9798 7048 12548 15 11 \n", + "29 202205 7 10851 7797 13905 16 11 \n", + "... ... ... ... ... ... ... ... \n", + "1626 199126 7 17608 11304 23912 31 20 \n", + "1627 199125 7 16169 10700 21638 28 18 \n", + "1628 199124 7 16171 10071 22271 28 17 \n", + "1629 199123 7 11947 7671 16223 21 13 \n", + "1630 199122 7 15452 9953 20951 27 17 \n", + "1631 199121 7 14903 8975 20831 26 16 \n", + "1632 199120 7 19053 12742 25364 34 23 \n", + "1633 199119 7 16739 11246 22232 29 19 \n", + "1634 199118 7 21385 13882 28888 38 25 \n", + "1635 199117 7 13462 8877 18047 24 16 \n", + "1636 199116 7 14857 10068 19646 26 18 \n", + "1637 199115 7 13975 9781 18169 25 18 \n", + "1638 199114 7 12265 7684 16846 22 14 \n", + "1639 199113 7 9567 6041 13093 17 11 \n", + "1640 199112 7 10864 7331 14397 19 13 \n", + "1641 199111 7 15574 11184 19964 27 19 \n", + "1642 199110 7 16643 11372 21914 29 20 \n", + "1643 199109 7 13741 8780 18702 24 15 \n", + "1644 199108 7 13289 8813 17765 23 15 \n", + "1645 199107 7 12337 8077 16597 22 15 \n", + "1646 199106 7 10877 7013 14741 19 12 \n", + "1647 199105 7 10442 6544 14340 18 11 \n", + "1648 199104 7 7913 4563 11263 14 8 \n", + "1649 199103 7 15387 10484 20290 27 18 \n", + "1650 199102 7 16277 11046 21508 29 20 \n", + "1651 199101 7 15565 10271 20859 27 18 \n", + "1652 199052 7 19375 13295 25455 34 23 \n", + "1653 199051 7 19080 13807 24353 34 25 \n", + "1654 199050 7 11079 6660 15498 20 12 \n", + "1655 199049 7 1143 0 2610 2 0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 6 FR France \n", + "1 26 FR France \n", + "2 18 FR France \n", + "3 14 FR France \n", + "4 19 FR France \n", + "5 29 FR France \n", + "6 30 FR France \n", + "7 40 FR France \n", + "8 31 FR France \n", + "9 40 FR France \n", + "10 41 FR France \n", + "11 34 FR France \n", + "12 35 FR France \n", + "13 37 FR France \n", + "14 43 FR France \n", + "15 35 FR France \n", + "16 33 FR France \n", + "17 38 FR France \n", + "18 37 FR France \n", + "19 33 FR France \n", + "20 32 FR France \n", + "21 29 FR France \n", + "22 28 FR France \n", + "23 23 FR France \n", + "24 25 FR France \n", + "25 20 FR France \n", + "26 23 FR France \n", + "27 26 FR France \n", + "28 19 FR France \n", + "29 21 FR France \n", + "... ... ... ... \n", + "1626 42 FR France \n", + "1627 38 FR France \n", + "1628 39 FR France \n", + "1629 29 FR France \n", + "1630 37 FR France \n", + "1631 36 FR France \n", + "1632 45 FR France \n", + "1633 39 FR France \n", + "1634 51 FR France \n", + "1635 32 FR France \n", + "1636 34 FR France \n", + "1637 32 FR France \n", + "1638 30 FR France \n", + "1639 23 FR France \n", + "1640 25 FR France \n", + "1641 35 FR France \n", + "1642 38 FR France \n", + "1643 33 FR France \n", + "1644 31 FR France \n", + "1645 29 FR France \n", + "1646 26 FR France \n", + "1647 25 FR France \n", + "1648 20 FR France \n", + "1649 36 FR France \n", + "1650 38 FR France \n", + "1651 36 FR France \n", + "1652 45 FR France \n", + "1653 43 FR France \n", + "1654 28 FR France \n", + "1655 5 FR France \n", + "\n", + "[1656 rows x 10 columns]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "def convert_week(year_and_week_int) :\n", + " year_and_week_str = str(year_and_week_int)\n", + " year = int(year_and_week_str[:4])\n", + " week = int(year_and_week_str[4:])\n", + " w = isoweek.Week(year,week)\n", + " return pd.Period(w.day(0),'W')" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "data ['Period'] = [convert_week(yw) for yw in data ['week']]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "sorted_data = data.set_index('Period').sort_index()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
Period
1990-12-03/1990-12-091990497114302610205FRFrance
1990-12-10/1990-12-16199050711079666015498201228FRFrance
1990-12-17/1990-12-231990517190801380724353342543FRFrance
1990-12-24/1990-12-301990527193751329525455342345FRFrance
1990-12-31/1991-01-061991017155651027120859271836FRFrance
1991-01-07/1991-01-131991027162771104621508292038FRFrance
1991-01-14/1991-01-201991037153871048420290271836FRFrance
1991-01-21/1991-01-271991047791345631126314820FRFrance
1991-01-28/1991-02-03199105710442654414340181125FRFrance
1991-02-04/1991-02-10199106710877701314741191226FRFrance
1991-02-11/1991-02-17199107712337807716597221529FRFrance
1991-02-18/1991-02-24199108713289881317765231531FRFrance
1991-02-25/1991-03-03199109713741878018702241533FRFrance
1991-03-04/1991-03-101991107166431137221914292038FRFrance
1991-03-11/1991-03-171991117155741118419964271935FRFrance
1991-03-18/1991-03-24199112710864733114397191325FRFrance
1991-03-25/1991-03-3119911379567604113093171123FRFrance
1991-04-01/1991-04-07199114712265768416846221430FRFrance
1991-04-08/1991-04-14199115713975978118169251832FRFrance
1991-04-15/1991-04-211991167148571006819646261834FRFrance
1991-04-22/1991-04-28199117713462887718047241632FRFrance
1991-04-29/1991-05-051991187213851388228888382551FRFrance
1991-05-06/1991-05-121991197167391124622232291939FRFrance
1991-05-13/1991-05-191991207190531274225364342345FRFrance
1991-05-20/1991-05-26199121714903897520831261636FRFrance
1991-05-27/1991-06-02199122715452995320951271737FRFrance
1991-06-03/1991-06-09199123711947767116223211329FRFrance
1991-06-10/1991-06-161991247161711007122271281739FRFrance
1991-06-17/1991-06-231991257161691070021638281838FRFrance
1991-06-24/1991-06-301991267176081130423912312042FRFrance
.................................
2022-01-31/2022-02-06202205710851779713905161121FRFrance
2022-02-07/2022-02-1320220679798704812548151119FRFrance
2022-02-14/2022-02-202022077140031078917217211626FRFrance
2022-02-21/2022-02-27202208712088874115435181323FRFrance
2022-02-28/2022-03-06202209710485760013370161220FRFrance
2022-03-07/2022-03-132022107133141003616592201525FRFrance
2022-03-14/2022-03-20202211711729834715111181323FRFrance
2022-03-21/2022-03-272022127147021079418610221628FRFrance
2022-03-28/2022-04-032022137154481165919237231729FRFrance
2022-04-04/2022-04-102022147170051316220848262032FRFrance
2022-04-11/2022-04-172022157177991371521883272133FRFrance
2022-04-18/2022-04-242022167196601486024460302337FRFrance
2022-04-25/2022-05-012022177203141600124627312438FRFrance
2022-05-02/2022-05-082022187178511396321739272133FRFrance
2022-05-09/2022-05-152022197185931418123005282135FRFrance
2022-05-16/2022-05-222022207235851900428166362943FRFrance
2022-05-23/2022-05-292022217203101630724313312537FRFrance
2022-05-30/2022-06-052022227189161494122891292335FRFrance
2022-06-06/2022-06-122022237187721487522669282234FRFrance
2022-06-13/2022-06-192022247224581810526811342741FRFrance
2022-06-20/2022-06-262022257222461801126481342840FRFrance
2022-06-27/2022-07-032022267168541280620902251931FRFrance
2022-07-04/2022-07-102022277211911619826184322440FRFrance
2022-07-11/2022-07-172022287154711102819914231630FRFrance
2022-07-18/2022-07-242022297148511006019642221529FRFrance
2022-07-25/2022-07-312022307903957701230814919FRFrance
2022-08-01/2022-08-07202231768964170962210614FRFrance
2022-08-08/2022-08-142022327780140861151612618FRFrance
2022-08-15/2022-08-212022337735301741411026FRFrance
2022-08-22/2022-08-28202234723065934019306FRFrance
\n", + "

1656 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 \\\n", + "Period \n", + "1990-12-03/1990-12-09 199049 7 1143 0 2610 2 \n", + "1990-12-10/1990-12-16 199050 7 11079 6660 15498 20 \n", + "1990-12-17/1990-12-23 199051 7 19080 13807 24353 34 \n", + "1990-12-24/1990-12-30 199052 7 19375 13295 25455 34 \n", + "1990-12-31/1991-01-06 199101 7 15565 10271 20859 27 \n", + "1991-01-07/1991-01-13 199102 7 16277 11046 21508 29 \n", + "1991-01-14/1991-01-20 199103 7 15387 10484 20290 27 \n", + "1991-01-21/1991-01-27 199104 7 7913 4563 11263 14 \n", + "1991-01-28/1991-02-03 199105 7 10442 6544 14340 18 \n", + "1991-02-04/1991-02-10 199106 7 10877 7013 14741 19 \n", + "1991-02-11/1991-02-17 199107 7 12337 8077 16597 22 \n", + "1991-02-18/1991-02-24 199108 7 13289 8813 17765 23 \n", + "1991-02-25/1991-03-03 199109 7 13741 8780 18702 24 \n", + "1991-03-04/1991-03-10 199110 7 16643 11372 21914 29 \n", + "1991-03-11/1991-03-17 199111 7 15574 11184 19964 27 \n", + "1991-03-18/1991-03-24 199112 7 10864 7331 14397 19 \n", + "1991-03-25/1991-03-31 199113 7 9567 6041 13093 17 \n", + "1991-04-01/1991-04-07 199114 7 12265 7684 16846 22 \n", + "1991-04-08/1991-04-14 199115 7 13975 9781 18169 25 \n", + "1991-04-15/1991-04-21 199116 7 14857 10068 19646 26 \n", + "1991-04-22/1991-04-28 199117 7 13462 8877 18047 24 \n", + "1991-04-29/1991-05-05 199118 7 21385 13882 28888 38 \n", + "1991-05-06/1991-05-12 199119 7 16739 11246 22232 29 \n", + "1991-05-13/1991-05-19 199120 7 19053 12742 25364 34 \n", + "1991-05-20/1991-05-26 199121 7 14903 8975 20831 26 \n", + "1991-05-27/1991-06-02 199122 7 15452 9953 20951 27 \n", + "1991-06-03/1991-06-09 199123 7 11947 7671 16223 21 \n", + "1991-06-10/1991-06-16 199124 7 16171 10071 22271 28 \n", + "1991-06-17/1991-06-23 199125 7 16169 10700 21638 28 \n", + "1991-06-24/1991-06-30 199126 7 17608 11304 23912 31 \n", + "... ... ... ... ... ... ... \n", + "2022-01-31/2022-02-06 202205 7 10851 7797 13905 16 \n", + "2022-02-07/2022-02-13 202206 7 9798 7048 12548 15 \n", + "2022-02-14/2022-02-20 202207 7 14003 10789 17217 21 \n", + "2022-02-21/2022-02-27 202208 7 12088 8741 15435 18 \n", + "2022-02-28/2022-03-06 202209 7 10485 7600 13370 16 \n", + "2022-03-07/2022-03-13 202210 7 13314 10036 16592 20 \n", + "2022-03-14/2022-03-20 202211 7 11729 8347 15111 18 \n", + "2022-03-21/2022-03-27 202212 7 14702 10794 18610 22 \n", + "2022-03-28/2022-04-03 202213 7 15448 11659 19237 23 \n", + "2022-04-04/2022-04-10 202214 7 17005 13162 20848 26 \n", + "2022-04-11/2022-04-17 202215 7 17799 13715 21883 27 \n", + "2022-04-18/2022-04-24 202216 7 19660 14860 24460 30 \n", + "2022-04-25/2022-05-01 202217 7 20314 16001 24627 31 \n", + "2022-05-02/2022-05-08 202218 7 17851 13963 21739 27 \n", + "2022-05-09/2022-05-15 202219 7 18593 14181 23005 28 \n", + "2022-05-16/2022-05-22 202220 7 23585 19004 28166 36 \n", + "2022-05-23/2022-05-29 202221 7 20310 16307 24313 31 \n", + "2022-05-30/2022-06-05 202222 7 18916 14941 22891 29 \n", + "2022-06-06/2022-06-12 202223 7 18772 14875 22669 28 \n", + "2022-06-13/2022-06-19 202224 7 22458 18105 26811 34 \n", + "2022-06-20/2022-06-26 202225 7 22246 18011 26481 34 \n", + "2022-06-27/2022-07-03 202226 7 16854 12806 20902 25 \n", + "2022-07-04/2022-07-10 202227 7 21191 16198 26184 32 \n", + "2022-07-11/2022-07-17 202228 7 15471 11028 19914 23 \n", + "2022-07-18/2022-07-24 202229 7 14851 10060 19642 22 \n", + "2022-07-25/2022-07-31 202230 7 9039 5770 12308 14 \n", + "2022-08-01/2022-08-07 202231 7 6896 4170 9622 10 \n", + "2022-08-08/2022-08-14 202232 7 7801 4086 11516 12 \n", + "2022-08-15/2022-08-21 202233 7 7353 0 17414 11 \n", + "2022-08-22/2022-08-28 202234 7 2306 593 4019 3 \n", + "\n", + " inc100_low inc100_up geo_insee geo_name \n", + "Period \n", + "1990-12-03/1990-12-09 0 5 FR France \n", + "1990-12-10/1990-12-16 12 28 FR France \n", + "1990-12-17/1990-12-23 25 43 FR France \n", + "1990-12-24/1990-12-30 23 45 FR France \n", + "1990-12-31/1991-01-06 18 36 FR France \n", + "1991-01-07/1991-01-13 20 38 FR France \n", + "1991-01-14/1991-01-20 18 36 FR France \n", + "1991-01-21/1991-01-27 8 20 FR France \n", + "1991-01-28/1991-02-03 11 25 FR France \n", + "1991-02-04/1991-02-10 12 26 FR France \n", + "1991-02-11/1991-02-17 15 29 FR France \n", + "1991-02-18/1991-02-24 15 31 FR France \n", + "1991-02-25/1991-03-03 15 33 FR France \n", + "1991-03-04/1991-03-10 20 38 FR France \n", + "1991-03-11/1991-03-17 19 35 FR France \n", + "1991-03-18/1991-03-24 13 25 FR France \n", + "1991-03-25/1991-03-31 11 23 FR France \n", + "1991-04-01/1991-04-07 14 30 FR France \n", + "1991-04-08/1991-04-14 18 32 FR France \n", + "1991-04-15/1991-04-21 18 34 FR France \n", + "1991-04-22/1991-04-28 16 32 FR France \n", + "1991-04-29/1991-05-05 25 51 FR France \n", + "1991-05-06/1991-05-12 19 39 FR France \n", + "1991-05-13/1991-05-19 23 45 FR France \n", + "1991-05-20/1991-05-26 16 36 FR France \n", + "1991-05-27/1991-06-02 17 37 FR France \n", + "1991-06-03/1991-06-09 13 29 FR France \n", + "1991-06-10/1991-06-16 17 39 FR France \n", + "1991-06-17/1991-06-23 18 38 FR France \n", + "1991-06-24/1991-06-30 20 42 FR France \n", + "... ... ... ... ... \n", + "2022-01-31/2022-02-06 11 21 FR France \n", + "2022-02-07/2022-02-13 11 19 FR France \n", + "2022-02-14/2022-02-20 16 26 FR France \n", + "2022-02-21/2022-02-27 13 23 FR France \n", + "2022-02-28/2022-03-06 12 20 FR France \n", + "2022-03-07/2022-03-13 15 25 FR France \n", + "2022-03-14/2022-03-20 13 23 FR France \n", + "2022-03-21/2022-03-27 16 28 FR France \n", + "2022-03-28/2022-04-03 17 29 FR France \n", + "2022-04-04/2022-04-10 20 32 FR France \n", + "2022-04-11/2022-04-17 21 33 FR France \n", + "2022-04-18/2022-04-24 23 37 FR France \n", + "2022-04-25/2022-05-01 24 38 FR France \n", + "2022-05-02/2022-05-08 21 33 FR France \n", + "2022-05-09/2022-05-15 21 35 FR France \n", + "2022-05-16/2022-05-22 29 43 FR France \n", + "2022-05-23/2022-05-29 25 37 FR France \n", + "2022-05-30/2022-06-05 23 35 FR France \n", + "2022-06-06/2022-06-12 22 34 FR France \n", + "2022-06-13/2022-06-19 27 41 FR France \n", + "2022-06-20/2022-06-26 28 40 FR France \n", + "2022-06-27/2022-07-03 19 31 FR France \n", + "2022-07-04/2022-07-10 24 40 FR France \n", + "2022-07-11/2022-07-17 16 30 FR France \n", + "2022-07-18/2022-07-24 15 29 FR France \n", + "2022-07-25/2022-07-31 9 19 FR France \n", + "2022-08-01/2022-08-07 6 14 FR France \n", + "2022-08-08/2022-08-14 6 18 FR France \n", + "2022-08-15/2022-08-21 0 26 FR France \n", + "2022-08-22/2022-08-28 0 6 FR France \n", + "\n", + "[1656 rows x 10 columns]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sorted_data" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "periods = sorted_data.index\n", + "for p1, p2 in zip(periods[:-1], periods[1:]):\n", + " delta = p2.to_timestamp() - p1.end_time\n", + " if delta > pd.Timedelta('1s'):\n", + " print(p1, p2)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsfXe8HUXZ//c555b0ENIICZAAoQYIEDCCKBCRICpFUHgVsPzEAnbfV3h9fa1RsaFY8EVBAQtNFKQJUqQYExJKGiUBAgmkQdoN4d7ce8/8/tid3dnZZ8qes+fctt/PJ7nnzJmdmZ2dnWeeTkIIFChQoECBAipKPT2AAgUKFCjQ+1AQhwIFChQokEJBHAoUKFCgQAoFcShQoECBAikUxKFAgQIFCqRQEIcCBQoUKJBCQRwKFChQoEAKBXEoUKBAgQIpFMShQIECBQqk0NTTA6gWY8aMEZMnT+7pYRQoUKBAn8LChQtfFUKMddXrs8Rh8uTJWLBgQU8Po0CBAgX6FIjoRZ96hVipQIECBQqkUBCHAgUKFCiQQkEcChQoUKBACgVxKFCgQIECKRTEoUCBAgUKpFAQhwIFChQokEJBHAoUKFCgQAoFcSjQ59HR1Y0bF6xCkfK2QIH80Ged4AoUkPjJP5bj8geew/BBTZg9bUJPD6dAgX6BgnMo0Oexoa0DALC1vauHR1KgQP9BQRwKFChQoEAKBXEoUKBAgQIpOIkDEQ0iovlE9CQRLSWib4TlXyeil4noifDfO5VrLiaiFUT0DBGdqJQfTkSLw98uIyIKy1uJ6PqwfB4RTc7/Vgv0exT66AIFcoMP59AB4HghxCEApgOYTUQzw98uFUJMD//dAQBEdACAswAcCGA2gF8SUTmsfzmA8wFMDf/NDss/CmCTEGJvAJcCuKT2WyswUEA9PYACBfohnMRBBNgWfm0O/9nOaKcAuE4I0SGEeAHACgBHEtEEACOEEHNFYHN4DYBTlWuuDj/fBGCW5CoKFChQoEDj4aVzIKIyET0BYD2Ae4QQ88KfLiSiRUR0FRGNCssmAlilXL46LJsYftbLE9cIIboAbAEwmhnH+US0gIgWbNiwwesGCxQoUKBAdngRByFEtxBiOoBJCLiAaQhERHshEDWtAfCjsDp34heWcts1+jiuEELMEELMGDvWmcioQAErFr64Eas2bu/pYRQo0CuRyVpJCLEZwAMAZgsh1oVEowLg1wCODKutBrCbctkkAK+E5ZOY8sQ1RNQEYCSAjZnupECBjHjv5XNxzPfv7+lhFCjQK+FjrTSWiHYKPw8G8HYAT4c6BInTACwJP98K4KzQAmkKAsXzfCHEGgBtRDQz1CecC+AW5Zrzws9nALhPFLEQCmSEKMyVChTIDT7hMyYAuDq0OCoBuEEIcRsRXUtE0xGIf1YC+DgACCGWEtENAJYB6AJwgRCiO2zrkwB+B2AwgDvDfwBwJYBriWgFAo7hrBzurcAAQWG6UKBA/nASByHEIgCHMuXnWK6ZA2AOU74AwDSmvB3Ama6xFChQoECBxqDwkC7Qr7B49RbM/smDeL2jiLNUoEAtKIhDgX6F7975FJ5e24YnVm3u6aEUKNCnURCHAgUKFCiQQkEcChQoUKBACgVxKFCgjli7pR0X/vExvLGj2125QIFehII4FOhX6G3eMd+98ynctmgN/r50bU8PpUCBTCiIQ4ECBQoUSKEgDgX6DXob11CgQF9GQRwK9HkQE7excJouUKA2FMShQIECBQqkUBCHAgUKFCiQQkEcejm2bO/Ek4W3rxcKlUOBAvmhIA69HOdcNQ+n/OKRnh5GgQIFBhgK4tDLsWj1lp4eQq9HEbK7QIH8URCHPoIi95EfelvCn+KxFeirKIhDH0GxyRQokMQbO7rxh3kvFuHZ64SCOPQRFLShb6IQedUPNz++Gl/5yxL8Yd6LPT2UfomCOPQRFGKljOglm3Lx2OqHTa/vAABseaOzh0fSP+EkDkQ0iIjmE9GTRLSUiL4Rlu9MRPcQ0fLw7yjlmouJaAURPUNEJyrlhxPR4vC3y4iCcxURtRLR9WH5PCKanP+t9m0Ue0xGDNAJE0Jg8kW340d3P9PTQ2kYCgJcH/hwDh0AjhdCHAJgOoDZRDQTwEUA7hVCTAVwb/gdRHQAgLMAHAhgNoBfElE5bOtyAOcDmBr+mx2WfxTAJiHE3gAuBXBJDveWK/76+MtYt7W9x/qvFG9An0SjxUpymfzsvhWN7bgHEJ4tB+o5oO5wEgcRYFv4tTn8JwCcAuDqsPxqAKeGn08BcJ0QokMI8QKAFQCOJKIJAEYIIeaKQEZyjXaNbOsmALMkV9Eb0Nbeic9d/wQ++Jt5PTaGgjZkRC9ZPY1+bvIQ0XvenvqjeDfqAy+dAxGViegJAOsB3COEmAdgvBBiDQCEf8eF1ScCWKVcvjosmxh+1ssT1wghugBsATC6mhuqByqV4G9Pcg4FCvhgIO2TkgD2NvPl/gIv4iCE6BZCTAcwCQEXMM1SnTuzCEu57Zpkw0TnE9ECIlqwYcMG17D7FYrTUd9Eo0/wEefQ2G57BFw03gL5IZO1khBiM4AHEOgK1oWiIoR/14fVVgPYTblsEoBXwvJJTHniGiJqAjASwEam/yuEEDOEEDPGjh2bZeh9Hv3pdLS1vRNbttfHwqS3EdF6jOfptVux5GXec17214uksvVHL3vm/QU+1kpjiWin8PNgAG8H8DSAWwGcF1Y7D8At4edbAZwVWiBNQaB4nh+KntqIaGaoTzhXu0a2dQaA+0QvtN3c2t6Fb/5tGborjR9a75uN6nHw1+/GId+827v+BX98DHcsXuOs15vnKM+9evZPHsK7fvYw+1tEHPLrrtciFisVqAd8OIcJAO4nokUAHkWgc7gNwPcAnEBEywGcEH6HEGIpgBsALANwF4ALhBAyu/onAfwGgZL6OQB3huVXAhhNRCsAfAGh5VNvxFWPvIBHV6aYmszY+PoOvPDq6971B/ILcPuiNfjUHx4z/t4XDsl5EK75L2xER1e3tU5/4jBdkI+9F54j+wWaXBWEEIsAHMqUvwZgluGaOQDmMOULAKT0FUKIdgBneoy3VyAPs9K3/eB+tLV3YeX3TvaqX7wAbsx9/rXoc3+TR69Yvw3v+7+5OPvI3a31KpFYqQGD6mFEnEPxatQFhYd0NchhMba1Z4sHU6x/G4Jd4m9PvhKV9LYTdK2btfQCfnrtVmu9gXSIkAeAgXPHjUVBHKpATyzGAfTOZ0alB3RAWVHr85PExXWrEefQzzgnDgOBO+pJFMShCvTIRt37978eQzsjh+9vm2N0N47FJzSN9Pqt7fjCDU+gvdOuq+jLKA5O9UFBHKpAT4Sy6G1ikt6EN3b0/o2v1lNuySNUREdXN17auD1R9u3bn8LNj72Mu5asrW0AvRjFu1EfOBXSBdKLb0dXpfFjKNa/ESMHN/f0EJzIT6xkbugLNzyJ2xcFJr+SFsn6pVL/4qQAJbZS8W7UBQXnUAW6e4RzKGDC5DFDAQBnHD6p385TyWMjvP/p9akyWb8f0oZ+JjjsfSiIgwf0F7InTioDyQolK+TclHuxhjKvofnq3nVOo9SL56Za9MNb6lUoiIMHesO23BvG0FsxEOhmzDmYb5YSn4NvMXGo29B6HMXBqT4oiIMH0ouv8YuxyOdgBjcz/e1UmdXhSzd97Y+xliIP6R4dRf9FQRyqQGHK2rsgn0dnpZIqqxWf/P1CzP7Jg4mye5atQ1t730hNKfq1WKlQSNcTBXHwQM/zDQVtsEFak9382Mt4dVtHrm3fuWQtnl7bFn1f+err+Ng1C/ClG5/MtR8AmPf8a7hV8fKW2NFVwUk/fQgAsHH7Dq+2JCmQQSL7o1ipyOdQXxSmrB7oHQrpxvfZV6B6SD+/IQhmWK+D8vbQp+LF17Y7ambH+6/4NwDgPYfsqvUZh1rZ0BYTPyGEU1wkp6ZfmrKGf4t3oz4oOAcP6CeTnjip9PfT0Z/mv4Slr/A5Clzo8jTh2dDWgSdXbQaATBFxexomb2/bpiiJRn+2Vup3iqVehoI4+KDgHOqOi29ejJMv43MUuOBLHN79s4dxyi8eAQAc98MHquqrlv3oZ/cux9znXnNXTHXKF+v+Nuq3rkoFO7oq/drPQd5cP381egwFcagCeS5GXzO8vvgCrNq4HT++59m6mxp2dfu1vzaHHOC13MqP7nkWZ//635mvM23sNgu29s4K9vmfO/s15yDvvr8fnHoKBXHwQEohneNq9HVq6ou23B+7ZgEuu3d53UU43ZVs4Uw6uxsf/qQWmPQK+pLgav0r5FT6IW2IIITAL+5fgddyNkYY6CiIgwfquS/7+i/0QdoQxaCq99A7M4bsriVCaW/aZPV0tbZZ6JecQ3jDC1/chB/8/Rn8502LenZA/QwFcfBASiGd427Xn53bGnVn3Z5iJYn2zsZxDnJkDy1/tfo2DGsky9rpn8QhuH9JJPuK70lfgZM4ENFuRHQ/ET1FREuJ6LNh+deJ6GUieiL8907lmouJaAURPUNEJyrlhxPR4vC3yyjkl4molYiuD8vnEdHk/G81P+RpOeT7fvdlGlLvbanTU6wkZfd55DbI+jxuWri6+r4M5TrDZJvnPBTS67a2Y+2W2vU2eUHevm8ipALZ4MM5dAH4ohBifwAzAVxARAeEv10qhJge/rsDAMLfzgJwIIDZAH5JROWw/uUAzgcwNfw3Oyz/KIBNQoi9AVwK4JLaby0/1NPPwVus1AdV0o3Sk+jiFRNamoLl3sjEN757cjVh4PUMeLZZyONJvOk792Lmd+/NoaV8EFtiBbPsuw4K+MFJHIQQa4QQj4Wf2wA8BWCi5ZJTAFwnhOgQQrwAYAWAI4loAoARQoi5Itg1rgFwqnLN1eHnmwDMIpMWrgeQVkjn17a/Qjq/PhuNej9KzpSV67GlLIlD7WIl31vyfWw2Jbnp2WcRKzVi/Vz+wHP44g35e467EMed6sMvSS9EJp1DKO45FMC8sOhCIlpERFcR0aiwbCKAVcplq8OyieFnvTxxjRCiC8AWAKOzjK2eqOei8+cc+i5qmT+fa310Drc88TK2tgeexlxa0ezjqrmJDJ3xxVkOyo3YOC+562n8+bHqxWdZEYmVwqNAT+RZ6c/wJg5ENAzAnwF8TgixFYGIaC8A0wGsAfAjWZW5XFjKbdfoYzifiBYQ0YINGzb4Dr1mpMRKObZt29jUF7qnT0V/nPcSVm/KP2REHnAR2C1vdOKz1z0Rfa8lrWhWJsi3ejUb2yV3Pd2v/WRckPce6Rz6loVyr4cXcSCiZgSE4Q9CiJsBQAixTgjRLYSoAPg1gCPD6qsB7KZcPgnAK2H5JKY8cQ0RNQEYCWCjPg4hxBVCiBlCiBljx471u8M6IM+N2iZOUE+GPflyb9neif/+y2Kcd9X8qq6vRazkM9WuKrps/s4la6oeT70gLBubSd9008LVWL3pDb/2G7iArnr4hUQ8qHqjpIUKKZAPfKyVCMCVAJ4SQvxYKZ+gVDsNwJLw860AzgotkKYgUDzPF0KsAdBGRDPDNs8FcItyzXnh5zMA3Cd6+qhsQZ4D22ElDo3nHLa2d+KcK+fhkRWx6aUUw7S1Z3vhG/UAs07Nn+avcldqMGycQ+99E3h887Zl+Ok/lte1jy/c8AQuuetpAH75tQtkh09U1qMBnANgMRFJ3vy/AZxNRNMR7AErAXwcAIQQS4noBgDLEFg6XSCEkHz8JwH8DsBgAHeG/4CA+FxLRCsQcAxn1XZb2fHM2jYQAfuMH576rZ65fmxWKknikF+fNrz02nY8tPxVdHULHL33GADxGJvL1bnF1KKOHihCk2otbXqrtVtHFdZXWXDzYy+nygprpXzhJA5CiIfBv993WK6ZA2AOU74AwDSmvB3Ama6x1BMnhgldVn7v5NRv9YzK2mnVOah9NhablLwBkruRpqB9Db3H7s0MG2doNVH1XRgNXkBDW8vW35/fsA3jRwzC0NbaswZImlAwDvmib77tPYw8FmE59ErqbZwDdxKVY2xROIfN23fg70vX1n08PuK0HomSmzNPU62lTW+1dhvcbCcOx//on/jI7x7NpS+pUyrESvmiIA4eqIe1UnM5JA7dZsuZpEK6MQtfMKewToZzuOCPj+Hj1y7EuhwindaKRm4JptwKtcImErERSN9w5Y3eN23JheT9zHshZXNSFSRRKExZ80VBHAxYtXE7Jl90O25ftKYuTnBSfr+jy9xYT3IOKjGSxKGpHL/wMhOajfPJY8w+TXCbZ2/xofQdhW2ubHPgG2G20ToH6/3kPJRozfZj2nDxzYtx2i8faWifRZpQA5a+shVA4Dy1/4SkkjqPF02KaGzWSqp5Y6MWvuwmoe/QwhT44NGVG/HSxoCA1Huf7s17gq+oo1plqu91vWnjzFv8w3G7/Q1/mv9Sw/ssOAcP5Mk5dFcE/vbkK9EpvNNX59CALXBreydO/+W/wv5iVNPzmb+am8uYvPwcHHXqJQryge9aqdaU1WbQkAVb2zvx18fTFkD1QN5GRTHn0I+pQw+g4Bwc6OiqYJ0WibKWJXjVwy9gzh1PRd/9/Rxq6NQTz2+wJ+UhBGKkV7epSe7rPCgP9IIhGOGtuLZaK1l0Dt5iJTv+68ZFuGvpWuy7y3DsP2GEV5vW/iz3kzfnEFkr5dpqgYI4GCBFIf98dgP++awWqqOGxa2nqvT1kG40uJdbAPjKXxbjxoWrsfPQFu+2ajm5+2yuPXFi9OYIPB9itcnp/BXS9nprwnXZiIi1K19zZwa89J5nsWn7DnzzlJTlewrbOgLnzMJaKV8UYqUqUO0SfHLVZlz58AuJMpuzkGgw55Do21B+39PrAWSLT7RszZYcRsRj1cbtuVm9+CCr/sSXwFuJiFWslA/nUC3aO7ux8fUdqXLTel2/tR2zf/KQs92f3rsc18x90WsMsv+CNuSLgjhUgWoX4f/eujRV5h9bqf4r33S6VIuj8MgZxvOJ3z9m7c8qUnF0c8z373fnQlA29LHDW+11Hcj67H3r37boFXclBl2+Ooc6LZ/Tf/kvHPate6x1dnRVMPmi2/Grfz5X1yx8A4E23LNsXcP6KohDA9HOnLZ7kxOcMHyJol8q/+diptoDViblBpu4+oo6fvnAc8bfbC10eYYiNRHz9VvbaxLLLVuz1dBfjNdDsc+v/vkcmpuyzf+h37zbW9Q1EBTSH7tmQcP6KohDFah2EW7vTAeus0kTktZKjYXJWinmHGpHT8iIyzXmy8wuVqr9Hn2tlbL6FqxY34Yjv3MvrnpkZVyvivG5+hOGch9s2t6Jlzf7RZ4tQivli4I4GGDbA6pdg1zuBl+RSiNORab+EmKlqDCH/vJrKoXEJs6IxRqFej+2WoLNrXw18ENRI/Ca8JSBQ8gCQnXEUg+5bsJA4BwaiYI4VIFv/G1ZVddxIQVs67n3cA7p3vM4EfvYp+f9vtfKOUj4DquaeXpNMRUO+jK3oeqsbISPGwZX39SEtAiqFdU8T9+wGKZaV/9rJZa8XD+jiP6Kgjg0ENzGZNs8Kg3mHIyvF3Pyli9sLYryxnl9xx3VqnPIOmYf4qA/28O//Q/ctHC18rv5WtWUtdoQHPc9vR4doVzfVC+vZ1VNO74Z3kwcxtduXYp3/ezh7B0z6OjqxqqNvTMjYt4Y8MTh5/ctx3t+ns/CcYHbmGzvSk/EVuL6kx+JYp+FPJTJURu2OjnzTLaAcD6Q4/FtxWdju3FhOu/y3Ode82rf2wnO8aCeXtuW+P7Gjm785fHVVR9KTM+tmufZmyLPfvmmRTjm+/c3NNNdT2HAE4cf3v0sFq1Os5z1CNzGbUy2hS8aLFZKEgSDzkG7hVrEDbKPvmitlKdY6fGXNlfdl6qQtoqVnKMI2wj/zrljGT5//ZOY+3xApLISCVP1alQk3noVR7U8stNJh9h6muS60CjCNOCJQyPBcg5WnYNfvTzQ1V3BZfetYPtTCYV+B7Ww6z7vfJ4ms0AOnEOG8QghnA563RXhDKrmmwgoq7USR0xktbVhyJhtYWrY/KyYsrfkq3NwEeJL//FsQzzA640lL9duHOCDgjg0EJzOwTcGja3eyldfx6m/eASTL7o9EfdIx6qN29HW3sn+dvPjL+NBJUyIKXF9nhxV5ATXQHV7lZlOI2TZ29a3mZ+FhPQ41+E7zf6bbX5z7HQ6hE604m/VcA76PRqdNb2uzd6/z5gaiUZZ3BXEoYEoMbNt5RzUkN2Wds/8v7l4YlUgmpB5Fjgc8/378d7L/8X+1mE5UakEJ8+F6ZPeMY9XUG0jN7GSY3N4bVsHK67UYXJqSljiZuQIaoE+O/IwoPbzxRufrK5tIlTzRDe0JcNzmAgMNxe6SMrXabCAB3Egot2I6H4ieoqIlhLRZ8PynYnoHiJaHv4dpVxzMRGtIKJniOhEpfxwIloc/nYZhSuPiFqJ6PqwfB4RTc7/Vv1QzxMBF4DO2wnOUm/L9pgbcO19z67bZq+g4PPXPxH+jTeDXE8tPXD4ymLKunk7EzPIc9D//ZfFDfFm9Y/66tueu75MD6ub3Pp0WA3n8InfL0x8N+kgOLGSXrUWvxAVPcc3+BtD1AofzqELwBeFEPsDmAngAiI6AMBFAO4VQkwFcG/4HeFvZwE4EMBsAL8kIplQ9nIA5wOYGv6bHZZ/FMAmIcTeAC4FcEkO91YV5PqqxwPgZbw2hbRfPZUjyXPcf2Hi++eZG6EaM09fJE/ecRtqqlMXLvrzYmY8YfsOKlmrXNiXCNeiq/V5llwNQkA4D//2P7z6Uz+/8Ko7IqsLpnXDFet1faPYmtATGQaXvtIzPhrON0UIsUYI8Vj4uQ3AUwAmAjgFwNVhtasBnBp+PgXAdUKIDiHECwBWADiSiCYAGCGEmCuCt/Ua7RrZ1k0AZlFPPAXU90TA3ZAv52AbmCoq6S3pMX3gc0q1Xl/Fha1N9sT3Kto6eP0MAKxYb+fAan0M6sbt6yhpg+9UyV716gmjBArCWvhC7fvj1y40V/SEkTgwL4nOKeTGOTSQdXjgmWTKgF6pcwjFPYcCmAdgvBBiDRAQEADjwmoTAaxSLlsdlk0MP+vliWuEEF0AtgAYzfR/PhEtIKIFGzZs0H/OBXWN98NaK3kqpC3NqhY41a4bb1PHXHUOHpyD7bdqlJsZ6g5rrT7dic882Z69v0Lasx535xZrJdsPPn1yXC8X2pvDVoPRhEQmnYNW6Bvi3IVGKqR7ysLKmzgQ0TAAfwbwOSGEjWfmlrWwlNuuSRYIcYUQYoYQYsbYsWNdQ64KPelspsPXlDVLbudqxiFBOSfcjJ3gqpv0aux0nt/gr3Ph7tb/BO6eKd8Un3bRY76cg1dbyHgIydh3h8OHIIvOQWhN1co5yPtuZJC/dO6UxrAOXsSBiJoREIY/CCFuDovXhaIihH+lTd5qALspl08C8EpYPokpT1xDRE0ARgJoXAYXBZEHbJXzL4TA5Ituxw///kzqN16s5Pfi2zYIVclab5azLqasdbDGMV2Wpb1abtVH721LmKT2Xcv8nDNzj6CeezjWcSSuF+72Ek6UGft0Ebwspqw651CrzkGikRGFbamE6wkfayUCcCWAp4QQP1Z+uhXAeeHn8wDcopSfFVogTUGgeJ4fip7aiGhm2Oa52jWyrTMA3CfqyLe95+cP49cPPs/+VmuvcvH9/P4Vqd9sTkccquEcsp7thRCZWOS8ArABtet3qjk11/pS+3I5PkT0Dau4wO85eiukM3s4C+27YxwVc/2sU+6qrp7+x49oxegwZa2PKWteOofl67dFeSrqDX3MvUnncDSAcwAcT0RPhP/eCeB7AE4gouUATgi/QwixFMANAJYBuAvABUII+RZ8EsBvECipnwNwZ1h+JYDRRLQCwBcQWj7VA90VgUWrt2DOHU/VpX0fByEVts1KXRS2Ja0uFm7hrNvajluf5DONffzahZhy8R3em8cGD8cuX0RRWW2VbKfmKvp850ETvOuyxFzp9O6lazH5otvxIpMT2ef9tRMHpU/Lb7UQO58xyjmoaFysfu3NjGWbWj8LXPekcgNNnPOQ2rfOOfhmzjNAzsd5V83HR373aE1t+aKn8lQ4NW5CiIdhXkezDNfMATCHKV8AIJUxXAjRDuBM11jywCbGdj05FvNvX33XAfjWbeZw3UIILHxxE4AM4ZAt/SWIg6f4icOxP3jAuBHd3cC0gzoinUOVG5x62V5jh+K5Da+zv6mb0xGTR6XyeJvg4sJ+EWZve2LVZuwxeqh+sRO+MXJ8w2dkRRYRobohc8NJhxlXPmflHJj6QgjWIa+pTBAW/XVarJSfiKZRuct981nkjQHnIe2aaJvOYe9xw9L1hYgsIP44/yWce9V8ALySmHsZbackdSH7ip84+J5QXZi/Mt+Xwc9aKa4z+aLb8Zk/Pc7WG9bahB+ccbCzPddJMwGHGPDJ0CudUyz7bLs2KxTffVt6xrtg2nB94QoC2WHhmDPrHJgydY2rh6YykfU+dJGM6V25du5KnH3Fvz1Gl3wwjQiCl5eeJCsGHHFwKtIsFZpKhOP3G4eDJo6Myn790POY+pU7sXn7Djy9Jg57zCkkWZMsT87BNnB1k61akV7dZTUhtlbyhyoeUwnH9h3dXidhF21Y39aOaV/7uzE5DLcRcWGzfSzI3thh3lATTnyWNtR4WByayuFpm2nF1q7+25Y34uM5Nwc2capp8zZ5q3MHOPVdUNd7qUR2XyFtWKYDyVdvWRpFoM2C1zvqb2aqz19v8pDuV3Adlmw/l4hQouQC++O8IKKmbsPtqxi2LewuwwuhoxblX0/iziVrcPNjq6u2xlF/Uzev4Dc/wqrjwWdfxbaOLlz1yAt+9tUAOpmH6EMcbKfOvJSOzWGkwaycQxwpIBjIK5vb49+Y8ekWNT5rMksoE3X9qxu+i3PQDShckgN9HfUG+EalzRsDjzg4dgrbQgvWcvKkIuO6tzaXnW1nDZ+R1DmY202e6qxDMKIn1t937ngaX7jhSTy0vHaHxrb2Lj8Fa4Zzl8qJ2BTxXd0VnH/NAvxVUcr6bO6+Joq1PJvmclpOL+Elfg/vQ+UMuLZsgRuNYzNxDkwHJs6ByE77X9qYNBZpDnoVAAAgAElEQVRwSWhm/eif1t/159oIk9aeUkgPPOLgmGjbgyiXAs5BJSAdXcFLEZxg7G1zYg/9moUvbsSRc/6Bre2dyRSQhjbXbEmG1m5k+Ou8YDMJ9L2bHd0V44acaCPDiVytOj9UPnLPuKtb4O5l6/C5MFChL2zrhbwFS3ZIHQvXgo9Y6Sf3PIvPX/8EfnqvPVGOrnMwJYtSMbiFt4dxeTqrn59e26bEu2Kuy+gEZwt5z6ER+oCUmXDdewww8IhDDRWICCWNCMiXoiKS2zLHCvI6h2S9H939LNa3dWDx6i3oVhXShjfszd+9L/G90aeMfcanlfTcZl8PtxW1Sf2lN/Vmow3L17XhJ/94lv1tSIuMyZRuuZM5gvvoP/RT5367DFeud17uBck5+PQPpDfmJ1dvYQMw6rju0VWJ7yZrMRXDWvk4V2x0VYvlnqzPiwG1dVHjOtT76K7RNNYHesiPRnH5A484uLwvbdFPKVBoqotXPriKEImH5vtuXz33RcM4kzbZvuuhkZ6bAC9b17kZwE60bBup3YxTU9Qpzfzifj6rnQ0nXPpglOSIQIn2BjWbA/ZxtvPV7O0H7jqSLVfH/6ePzWR+DypwVmllyTmwhKB+ayVh3WToxjSnXHWV+OvcQBadVd6Hp0bkh2jWIgk3Kq7TACQO1f9eLhGIKKkcE+p12XUOpjoCwlvnoKJqnUN1l/m3bxlY1cECtSZVUcxDy1/l+zIEP+SUw4+siK1XBoecAy9W4jgHtnut3+R3c7TRZLsna458tmce6RyY37iNMi+OxdPQjgW3VlROXH9WVmMNSzt5IC+Pa2sf3QL7jo+5ykKs1EOQE8+toRIjVlLjA6nlrJ+DV/z8uE5Snum3JIQQeHTlRvx54Wp35RzgI5oI6pnbsDkm5v0icE+gqyLQ2ZXuSZU/lyKinQZnrWTbZCUx0TkfdaMxXU4AfvGBwxJlAny00f12GY5Z+4+PKynY0NaBGxasSl1Tq2OihE+K20x5GZTba2tPEgdZ3UT4ffr0hZ76tRGWRJ3dFTQ3xffWKKe4AUcc3JyDMNaTpqwJb9Hob+oYWzOq4hwAnPmrufjijU9ia3un0WksdV2Vi9x/XOaK378rHaTQr80kzAppYa3TXREp8UDaKsU8jqx+Dv/z1yXBuPQlkwiDEn9JiCsN7XIn2B+eeUiU3Eif/49dsyCVJyALXAed3z6yMvpsmjrT2uHmWn3ndOKQ5QRRy8b68WvTmf1qDcfhgx3dlcgkGSg4h7rBacqq/VVRKgXWH9yC+NKNTybyN3OvThaWfePrOxKnQW+dg7L4b1yw2hhTKS/4jstqmWOZF7s8OZ/XpLO7krI60U+ItkNDVg9pqeDV26o2v7WPyE6vsn5re6ouUJ+gbmYiYBKjpcvVdS0tBF3tcL9VQxsqFYGt7Z34+9J0qJlGiJU6NeLQKL3iwCMOjnmVaQy5F65EhNbmUsJsT1Z7dOUmp4dlFp3DZ697At9Xwn77rgd1re40uNnvIkv7Kx1pHX0Xqq1etWHAqyFM3Im3uyJSHr6653GsW0r3qm9WQUdxPydN2yXxk3T+0lsqGez+XZyPaR5KRIoOy4wPHTU5bstjUk+dvqu7UgLpRk8+aEImjsLGRUdiJY+2fDZz/Rlf8dDzOPjrd7N1G2HK2tkt0KIQh0axDgOPOCifJ190e+r3//vn86l6EiUitDaV+M1AAx94L9smmHA88tU5KPWGGjKZcTF9TJv3sT98wNWhT1HkLMjB5iibxW/Dh8hwVboqwiNDmHkcXHIatZuTD56AVsXiRIqc9E2olBArKT07RaEGMWjJb8196ri9nHUkhg9qwk5DWrzrA+mxTR49JCCEGTgKTpQLALuOHOTl6R1/d6+nz1yX9Fe5/+n1hpq8SDFvBJwD4dfnzgDQOHP1gUccHItD+hbwOocgB7EtyJhEFkLgs2DztFY65vv3p8qqXXCsTTpTZtN9VCtO0V9aUyvCUaerWzizskWcA/NbO3NYKGmbe2IMFJerSCRtMtyNyZafI6Ilg95CR7MScMr1KKp5UhyHRMiqkFY5h+Dz5R84DH/+1FHYc2za18bU95f/vMg53r89+Qoee2lT9H2nIWYOvBEb9Y6uClqaShgVjqNRjq4Djji4ELOJ6QdQLgWcw46uinNDZzkHk8LUQ+H4w7v9lLbJYfFj5EJBVCvH5K7iWPcFL5ojur5uyYjGcibhWDlrm2rQVak4OYfYiif9G8cVtTSZX61YrKRzDgaxUrWcAyVNo01oKqeJiKlPCmMZZdmgON2KLewFK1YKCysVgW/8LQibP23iSEwYORh/+thMTJs4gvcC1xrbqiuzDdiuBNQbaRHPNmKjljqHOLdG3bsEMACJg2te5cZmslZqbQ6mzId7yGtMABLKbonFq9ORQ5MmhP5jqNaKg/dm5epV1TwL88blcbFSZ8qYIAdDV7dwyo5thwEuIqnq4CWS3SpipeD73y58Cx7+8nHYY/QQvm+HzkH2kQYZFdLqV1XZ6YIrlhEHjgjqJuG2+kC8pq7994tRMD2poxk7vBXH7zuOPZTkseysxKEBG7XUOZBBHFkvDDzi4JjXEYMk65YGURC2G3ArtnyUY3F5dQ/73T9/OFWWzNjlj2rttW2nvGS9/DiTx1dtYkrNohi1b7XOZ2dNBRBwi67xxWIlRh7OrIXBKnEQyasi4hB+HzO8BZNGDcFH37JnPE7lVm5btEa5mo/PxRtQxNVtd9eUIQc5Rf3Z6+njS3yHsIqVuFdL1l2pZN1LENySYeOsch9Vn5jcE9h6DRIrNZdLRkJfLww44uBaLQfsOiKoxVQLAu8Fj8glhsmS2EctdcXnd6HadfOz+9I5r10IghCmy7nN0iXTz4I/zgvESdW+JFKGLE/M3RW3cCCq4Xm/tnAb8qAuxy8JVlLnEODxlzbh8jDjnG1sqzamQ5aUiGJiqE2WujrVfl1zShph8wFrMWRYO0H9+IfhoVEFV1d9xeR7mY6xVfu6M1mRAY0xK5VOcPGhopdwDkR0FRGtJ6IlStnXiehlLae0/O1iIlpBRM8Q0YlK+eFEtDj87TIKVxkRtRLR9WH5PCKanO8tJuEjvwX4B9CssHYuMUkWziFPqC/Wp/7wmPd11dhrN5VK7Ik1zxfG7ucQfx47vNVTpwPc8Zlj8NsPH6F4PQvvdaHj4EkjsWzN1lS5PhZWrBSuMZt+6g1NH2PKa/3Oyx5KldtMWdXvrGexZQMK5iuDzoHxBC8TpdZce2c3Vr76evRuXf6Bw/Dj908PrmH6U7lASeD0ej7DtFkjAXZuqhHEYYeuc6i/gRQAP87hdwBmM+WXCiGmh//uAAAiOgDAWQAODK/5JRHJI9TlAM4HMDX8J9v8KIBNQoi9AVwK4JIq78ULPifEbR1duPCPaeuaMcNa4w3FsSjatMikQggsfcWUXcwxKKRt5U3Ia60euvtOmLnnztY65RJ5K6TzhL7ZTB49BPd+8W2e+RyAXXcajOP2HRcT+krQqrVPA+PQ2S1SCWX0ikIk5fq6zsF2kPBJiGMaOVF+cauiNi2/+aKrItBULqW80j933RM49ocPRLkhhrY2RbGhuE2Y4xx8pEqLVidTq374d48ydeJ31WZ52IgzfEdorSTXkNvsOh84iYMQ4kEAvsmDTwFwnRCiQwjxAoAVAI4kogkARggh5opgV70GwKnKNVeHn28CMIu4o0xO8DkhrjN4jwJQxEq8QliFahW0bmuH0VLCxSaOGdbqbVue177cXCo556qpTLxNeo7EgZ0bjbsbN3yQVS6sQl1act/VI+raxqHHgTK9qEKrc+Mn3hz3W0rW4U/uAZq0kNs8IeEHn8VXIt0zD6mQrkWsVKkINJcpJWr8ZyhSlUmQiNI+IToXKCGfZUqsxAz0A7+Z5xzzD/7uax1YX/LQ1V3Bjq4KhrY0YVgoYmMPI3VALTqHC4loUSh2GhWWTQSg2heuDssmhp/18sQ1QoguAFsAjK5hXFb4hM9QTQqf/No7Er+rG8rWdv+UgnIT+fzb90n36Vhf5ZL/IsyLzfWxSmkq8RYn9eccwr/R7hr+yXikIOW06RqxvCWdozT5aCQTQlWw/4QROHbfsQDSG55JVATEIberQSBWslu46JyJy5QVIKNC+lunHOg1rq6KQHO5lHIgS4VgByUOY+mReIiVmCcb5+bwg1XEVmfWYXvIRQ1pKfcZ4nA5gL0ATAewBsCPwnLeR8dcbrsmBSI6n4gWENGCDRuqU9w6H6YQCQcm3Ywt1jmIhJWHb7+TRg32vkaiRPwJnUNeLGeJ7Ll5AaCpXHIGSasVXFPmhOvu58GdNv10DnwFc8iLGLpHetlDrCSft77GOLNZ09ADhbS9TqvFH4NDMHSedzDOhVa1uyLQVKZUNFudMJVIOYw5It9GBFebngUr05Ztww1c5l5jh3qNX0W9fQ6kv8WQlqYo4oEtc2KeqIo4CCHWCSG6hRAVAL8GcGT402oAuylVJwF4JSyfxJQnriGiJgAjYRBjCSGuEELMEELMGDt2bDVDtz5oeVq2RdRUZZvtDl8HLu8tdxB0bUwBcbDXkVCdd2oBWaxJJIKNK12p3iGFhfbXWV8VRSjl6qnUmQTK8LPJRUCtL31iok1PM7u0hZrWxUpcQh99Q5RIOMHpsniDTsM1pzadg5GL0hXSQqC5xHEOAaJsfBTPjSuzYiRW0upxWexUgqi+owdNNCVbMs9KvRXS8mAxqLmkmNHXtcsIVRGHUIcgcRoAacl0K4CzQgukKQgUz/OFEGsAtBHRzFCfcC6AW5Rrzgs/nwHgPlFHQZ6NRZQLf/N2s7hIFSvpliQ6VIVbRByqUKcQ+W+4XNKaalAiXtmsItA5pMvz1Tm4Iac0S2BD9bOe4pUfh0Gub/KtUD6PHdYa9cPV4TkHvn255v510fFRmYlTI8WUVa3xrxWvYm2oV9P7dpuywuyR7cs5dAt0ViqoCOD6R19SKgZ/ngx1eSWi2Js84irixlSiGomVPNaeShBVYmvyarc1WW+xknTODBKNyfHUudMQfGQ2BUT0JwDHAhhDRKsBfA3AsUQ0HcHjXAng4wAghFhKRDcAWAagC8AFQgg5+59EYPk0GMCd4T8AuBLAtUS0AgHHcFYeN2aCnXMgCIiUc9ltn35LtKDU06ZLhJPkHOI+UmNybE3lkr9YyRqKIgOI3IswMGVNEyPbdVve8NfTmBA1r22gJtpgml9V9u+aXpP5oKltIQSmjBmKr75rfxy377jEuCNRT7QmzO3q7W8Pn++uO8XiSWuqSsa67j8UhaxPJNhkc8E7wv1qErPqdbsqIhKNXHLXM3j/EbuzfRKShzEdanfyPkxr77ZPvwXnXTUfr72+I3FAU+ubPMXt5tT12ajb2jtRqcTjk1kogcZYSAEexEEIcTZTfKWl/hwAc5jyBQCmMeXtAM50jaMRMLHM0xR2M7Y1Fs7NUw3JICLOIV0vV7FSTpwD4CdW4jkH8zU/v295xjGkO4hpgxTLZGlRtVZSxEoehgpZIMJxHb/f+KhMrhfd94DjPpLpZ2McMTltXrx2C29dJyCcc6Nzsj4xw8wiNrdyHgD22WV45EG+VTks6O2SolB3KaRl8EDTgW3CyEERAdGDIkZtGIhDljSkeeHwb/0DO7orUUpYKbIL5r8x5GHAeUi7dA6uTVjVObiekZoUSLbLiZWccl7mFG8SM+XliewjViqXeKX1P55KJ0WRyCP+vdl00y3WYMVKAXWoqs9n120zXJDmZFJiJYtG2pRcaHcm/tKZv5rLj8EDKbFS+Le1ibfokVombjpatM1VrlG16umHTcTvPnRE9B4kDlB6e00lK+egDn74oOCcm8oSJ6sqsZwS76DSrEk5b1sa9RLxSHPe2xcHoVNKiuSiQbRhABIHq87BbaEjFcoV4cM5cDoHZkzhb/9a8SrfJ2OtZOo7L2slnxNKU5knIJwSUOKWJ+yZ6VRrnO4KH0o74hz0k6a15XQd9QTvet9MNI2zHgraFCliZdIjcGtCLh2fzccWBFIXYaV+T3EOwd/RQ3m/mli0kW5Ql9nfFOYxV8WrM6eMxqihLVaCKDGouRRzdwyhUYc+IrQq3GoQW5YiKytUIVYyPwNuXfx96VqrrxQQ+C9keVcjzgFFJri6wTqvHnJ2NbaS6xlx1krcWyF/uWvpWkOfaZm3SQlpyml71F7ZXEcIbuVemXGUe3Sl2V9SCIGNr+8w/g4Az65riz6fc+U8HOdKNoTs/g0SWZ5lVgGCYDgH6e2ry8er0UP5wraZA+ZES61MbKh9xw8P2jJwzfrmKvVLJgKqQ2+ytakciap4sVKMyMzTIFYlxCduA+NgUUgnOz/7yNggUycclYrAx69d6OTmzv71vzH1K3da66iQ8+Djf5QXBh5xcPzujJmkyECz6RyCv+rLePx+45JjMzTHcg6G982knPzYW/dky00gJvaNjiZGrLRqYzq0uITPgUcNWPev5wxpV0XiTwRjbKVEnbTOQXjoHLJKw4RIj+eHZx4CIAhNIusAyU3u4S8fl+ivlkPikJYmD84h+T1ShDMX3PrpoxN1dOibqySCXEZDTs+idzmoWc1hEPyorkmVA3DdJ5RNNZkEKb7g+Q28iNCukE5+l+Nctcn8HgBBWuEsKEXEwd84pVYMPOJgmVidZTv9sImpOmpspec22PMrq6d4Tt4pZZyRmZ7FqkbfnEycg0nnkDXbWsnLWik9Lpuprs+i9nHK4jxpAT8Oolshnj7hM+Ln7W5bh74BThg5GKOHtqQc09RxTxo1BJNGDY7mqloOYt5/z8Kw1iZnDunU87IQpRYZ/M2Tc5BzV23uk9amcsqbXH2nOP2RjQhGRiGGdMyTx/BOcPoaFwL4/UffFF6f/DFPB1AVpP4tdA71gVWqpFlinLD/+FQd1cLlV/+0h1JWLYc4J7hI5uh42CUmfIZpozXltPUJ4JYEpZSt+j4S6ByEtY4Kn9O3z7sVEVPPF1Gtt35rHO9K5QJNLTWFDyzrac1oCqqcYGPOgdJ1auQcxo8YlGjb1M4ag6UTH+guzuDG3Z9O2OWa21GlHkzVOcgmVDm9Om+cP0di7Mpv6nXyPj/xtr3w4aOmsNdy62z3nQPDAJ1Rl9+rlHQaofpJFWKlOsFqrYQky8bJgq3WExoeURTMqnz5kvceBADYfefgpBKz8nw7JaLUicRkrWSyBsoql/ep31RKh8/YbvGz8JkznzoxpxUgcoLzeCVVax8fp6I4pWc2cGKlsNcUp6jXU0OX1LoRZH3uQvubai802vDhHOT7kxArZbihgHMIPstnpK5vnnMwrX+K3pnEnITVJ40anPJG16po7SXHJWHTI9UCVV9S7wgEEgOOONheN91klDtsq7GVXPj1Qy9En1VT1vcfsTue/tZs7LZz4Mgkm5J1RgxqwgNfOhYP/ddxmHvx8bxYyUQcDGKlrJ7Z7L1r35tKae3YxTcvNrbpszFkOaHrVY129srnAyaMiD5HcyLMm4rcMLLali9avYW1WCFFLmDXMaGqfk2Ioso6DALitejmfHQ0a5urfBycQtpnOZZLlFLeWx3+4Mc5JJIbRWMl4/q54sHnE9/322W4UVwnD3H9gXNwOsH1N9g5h6Tog9tQTXHj3f3Khxt8H9RcTsmepTx8SEtTQv5ZovQmoXMSw1qbsK2jy2gel46+mTa1VMGdwkmTu5lCdnN9d3s4DQKeoifD6+EjOjOF7DYRT2m7XxECl93r78C31mDKSIin8MYFq8Ix6WOMNwP1Tn929qHe/euQfZ571XzPC/hidfw6UgppIixavdnLK94Y2FB73yS3rf4G+Okc5D1xpqxE/lzWeUdNxiuhOI6zVlLHUw04zkAeBnW9aD0x4DgHu84haX3DBcnjxEqzNKsjANh/wghMVkQYnBOcvjnLU7/O3nLWSvr6+MP/CxRkRrGS9n1HdwVtlpDj3OLWi0zJfnRIZbifyMifgMjcCnIes+pVEuGgDd3KNpe8vBU/vudZa3tHMt7LXJ9CBGaeK1/bnhiHhLoBq9MxxaAwtUF/jk8xWetUSMJr5hzI2wmuvbMb7/n5I7jkrqeV9sN2tGtN61Z/31QClBArOeLPBmE/km0CSYsxX6MNIjIaKph8WVS41jin1I7D79RmwZYFA484uDgH5eDN6xyUDSXEj953SCrc764jB0W210F984lCLhYZwjht9ZE2K9W/y03MxXZLdHRVMOf2p4y/cydpvailzKcJTbUVOQ66x+VTZ8LIQNn6Yri5ymGZwzfw7ahyYxc34kN4fFIvSK5AfX56y4HoQIqe4nrZjQpUhXRaZs9B1+ek2zNvbvq6bWKcyqQns76WTGJSPTd0xTBvHOeQDNIXf1ffax+xkm1cvuJeiUpF4Es3LkqULVi5EV/5y+JofFwbqi6jCJ9RJ1gnNqVzMG+QuuJaf6A6hZdZrlhWOPwuxUp6ALNSKb0IX3iVN6NVTVnfsveY6PNuOyfDLnR0VlKpTJM3kPx64K4jUlVamvh8DjpGDw2ikvpxBe46E3dK5sSQ85h181Q3Ttmt3ob87mVi6zEXUrphM3woEUWHFKGVZ4VL3PLXC45my43PlczWSjrHqz/v751+UBQrSIdR/6JFZe02zBunA9DfyRkhZ7eTkqOlEh/1MymRZU1j5AJDUxu2deDPj8V5zyoVgTN+NRd/mPdSNOccAVcjLDRK5zDgiAOHv134Fiz9xomMziFdV7e7lvX0ByrZb4nLH3gucT2QdtyRG7u+QXGJdz70W152rJqyPqxYS0nTRon2zu7E+tU3f/3WPzhzjxSr3BL5aZiX66z9xuEjb5kCIDm3w1p5dZd8CV58zexDYtq4TFFBv3nbMrY8Stcp4mfwhROSmfpkm1zLuozdiziEYqUEcUjViTfBxEnYc1v49qlxfEu7sAWYvttOie+ynlGsJOsxPzdprJN6ym9pKuGsI3c3x79yeHDL8Rg5B8ZkV10nRMCP3xc4IQ5l1l5WsmuKkBqd8A3X6ftEVyVOLiaJWTdjVDImDPteOMHVEdy0Dm0tY2hrU4pl4+SGHDvJiX1M7Hdi/4oWWHIjkKy32r6+IerObjLDnG/gvY6uSoJQfevUaZh7cZwjQH+JKfovRku5nBj3I0xsqLOO3B0tTJL4/zl5f3ZcssrbfvCAceyuENw6HnyWzxqYjMoaYOaeSb1BbC2Tvv6EA5J+ML6bt555jvMfketJXUM+e8IHZ+6OD87cQ2k727YX9WfrSwCLXk7nT09xDsrnVlNWpBAmgq+/b0mOC6nP6jOoaO/y6GGtGDm4OTGnc0Mv/KzzZDKdjRTHhuZ0ZfP7r5gb9S2v5UKAzNwzCH9TKnQO9YPtxONjysqlLSwRJU4E0pOU64sYzkGu5313GQYAuEyzSiGKF86qjduxoa0DOiQhs8mUF/zP2zHntOBU2dHVnYyHT4QJIwcr35mxa99bm0vR8L/61yXGxO3ynlXiYdrIfU5F37/rGfYEabJTNyHpIZ2WRwMx58ApCd82dWwiBIof5wBA5xy0PsulUvQc1SZr2RSEAF7bll43qXrhX7tCWuCrf12S+k3n3NSlqHNZ+sHL7J+QHE+3QSfIcTQcIVFNcSsVgf/6cyD/t0kkd9G47qA+RW2oiJ3g+Ab19/PxlzbH9xb+NYmMZcsNcnMYgKaszJFIcsMEQD14c6cJLr68unl//d0H4Pj9xuO7dz7F98WcdiS6KgItTaXEJg0kQ2Mf8/372fui8B5MHtJAwJrKJDEdXRXWrDNqT2+fWeuqmee1/37R2K98kX50d2zt8+rr/Eblu/ClpVIwtuyyePU6NROcTrTKFg/pM2dMwvq2dtz39Hq2ztv3T1uxSTt12302lyjSP2UVK6W8rZVrv3Tjk87ro76MJ3lzXK90hNe4EVPEUwk35yASf9N9h30a2iTlr2ziyodfUMZqHtuIwU1Yqxl5yYOIzqnbDE8AXtkc6VPCtmzRWtXosvXGgOMcuHmNOQfy5hySOod48z5233HYffSQkAtJX89H4AzQ3S1YublPsh95lcsaRbZfqYjENpIyp2TGqcfIaY4cxOxjk7ekLnrd7FHC1xKDG5+noZYyrnj8slt9+tX54sbAWb4AwODmMvYcO4y5JthAbF6u5RJFm85jL8UB2oa0uM9y+rSoCumthlwHCTDiGxWcWTXAxyFTq6V9IPh+JeS8l7UTupmzTOsCExZhYTuS8wGSorFtmnHGqCGK0prpcmj4LPTrXLGVbNZM0tLQxj2ThTjnjQFHHLhpLytKx6SfA7NRh2VqOs4SAW8P4zA1hy+BKTfEuOGt0WddidZVMREH+4IZO7w12uhcMeJlnxWR3GB1kUxqkwHhmKljtDppXQIH3RwRAE49dCJ+dvah+MZ7DkzUtdG2I6fE+oBlr8RHufceNgmAv8xfQt5iMH6RGKuELWS0DrVORfBZ2OTJ1TZlzeUSuisCr23rwA/+/gwA4GPHTPHyc0hzfFKv5elnIvVfht9NB5WxyrqWUDdKnTjoUYL1sXFpebsr5rzt3Fx3JeIwyfHHc6++a/p7oz9LHeUSYWhLOZVcKHKCY0dpJw5yvmybv2rmXG84iQMRXUVE64loiVK2MxHdQ0TLw7+jlN8uJqIVRPQMEZ2olB9ORIvD3y6jcNUSUSsRXR+WzyOiyfneYhK8zkGeKpIPxsY5rFTkgiUifOf0g3Dzp46KzSwp+YLtMmIQzjh8UiL3r65E66pUWNtwW/jsN03ZGbdeeHT0EpnCZ+jjF0JgsyKakbH6P3bMFPz63BmszPTX587A/K/Mwm8/dATeN2OSlxeoUDZJ3Uz43YfsGinS1fomqErsT/5+YfT55IMD88g8OAf9nqaOG5YauxGa8pg3hSbnRl0uEbq6K2hXOLUTDtjF3T8sIjbBx0PSEZnQmjgHJgikCeqa1TnF4YOa8dlZU6O+9Bajd1JJrnXBH2VAZYYAACAASURBVB7DjQtXgwOnc+hkI7jGxM1k3QYkOUXT7Q4b1BTlwo6ui9YR37aVOEhrJRvnAL+DSh7w4Rx+B2C2VnYRgHuFEFMB3Bt+BxEdAOAsAAeG1/ySiGSA/ssBnA9gavhPtvlRAJuEEHsDuBTAJdXejA84qluOTs3uwHuyTPUuJgpOe4ftHtHIYGNQuuro6saQlmQCFX1BdxnESmUypwZ86z5jMWHk4Gjxu5zgVJ3JvaGsfI/RQ6Lyr5x8AE44YHx646cg5Me44YNw3H7j8P0zDknJg01gU0KG1+iiEtvCVzdbjqsbqdiv+0AlWiadwxffsW9QxyOgoX7aNCn1hYhDifz0rOmpOs3lwMChOk0KP8aYN7KDM6FVoQeBPCzMTTE2NLW85/NvxU2feDOA5EGFS6Sjirz0NSQPSSoBNyXDCtqSHFLcjhrTKRYrBbWCPuIZtmVaNK3vlqZSiuNwOcHZNn45XzaRI1n2grzhJA5CiAcB6Om9TgFwdfj5agCnKuXXCSE6hBAvAFgB4EgimgBghBBirgh2hWu0a2RbNwGYRcbjT+1wcg7K77bYSqoDGUtEEC+qzu4KNm3vTDlS6Uq0ropgFXeBExy/ImIrm+D7q9tibmBoSzqbF6cz4QiSzwPgTmscpMKfs9/eWUtHaSM0al1uhew+egg+cvQU+2AS4+J0DoRDJo2M6jRHZrh8G2cevhsO3HUE9ttleMqMkrXIIinikfeRrrO+rQNLX9mKRas3R2Xcaf1DR01ON28VZbl3FZdsXxcrnXbYJFx29qH4cDjvU8cPj56TTawk25J96d01RWIlpNryBRcqXM4FkPQnSnk6exCH5lIp1Yc8nOm6iKhdy8YfK92T5Z97+9R4/OTPudWKanUO44UQawAg/CvNMiYCWKXUWx2WTQw/6+WJa4QQXQC2AMiW0zIDMukcLGIlVwITlXGQDmuDmnXOIdlBV3eF9fK1Ob7E8tP0oxzF5AHmrK1YguRBn6NTnWc99YWTp/y9xyWVtqb7/NuFb0mK5Ax9HbLbSMMv3LjiPtXw2bdc+Bbr2EsEPPvtkwAEsvbbP3MMJo0anHLA4jb+be1deHnTG9E649bYotWBovSmhXEubm5zlBnlfOGzp3QLgWfXteH+ZwLfkOvOn5n4PRUEUgi855BdE+s2ttuP3xEublF0UEF6w0vrHOyD1w8qnd2VyHT3TYquSjUxV98ZvfkEF6i86pIrAoL3RuccXDo/u0KaFyup72dfzufAvbPCUm67Jt040flEtICIFmzYwDs2ucBRXbOfg5lz4E7BibFCdQ4LHG104qCPqasiWFt9m7WSLC+XKHUK5xC/kArnwPSZVkinwekSVBwwYQTevNfoaLNQxUpSbJCOFgusZlIsTh2fJCKyzdEe92yCJM7dQuD6R8MIqXodeY/K2Ac1l5mTcDrMNrfxr2/rwBOrNkd1bUR47PD43nwPi1w9aaFjU2T+5twZAILN66+Px0RJOl9J6A6f3LqMPX7jsrnPp1O+qgYN+mFL9uEbBVkVUQHAp//4ON5/xb8BAOcryu8gAF+6sXRgy7QIFIhDcABAcxMlRGdLXt6Cr9261DpOG3HYFiq3dbFSIsERuQllXqiWOKwLRUUI/64Py1cD2E2pNwnAK2H5JKY8cQ0RNQEYibQYCwAghLhCCDFDCDFj7NixVQ2cm1a5mElzMGFZdE82V75EX74pDrKV2ry1BW3WOZgXhHScA5KWUObxpzmHMsN1+Aj2yPHi3vHZYzB8UHPKcfCovcyMYUXwFimmuEmuk5oNssnFq7fgoeWBgx5npQUg4XjIjUU9UcfhetL1xo9oDeuYCcj3Tg+SQakbD7ep+Epf5UFFV0ed9+Y9os97KYp3m6K2VEpysXwUgDTnwI4r7OauJWtT/jtvdHaHbQXf1Q1zj9FDsPJ7JyfbkpZ/4XdVP6GevFXOwTZ96nyb3vQmTaz0vv+biyUv26Pe2ojDKb94BED6XX/XwbtGn2VU30agWuJwK4Dzws/nAbhFKT8rtECagkDxPD8UPbUR0cxQn3Cudo1s6wwA94l6CtUMJ6vgbwbOwcPxYO3Wdly/IJaySaWdUiWBwJSVF/GYiMPsaRMS9XR869RpUTjvoE7wV23vc7Om6pelw2cY9CqAWwaqi2ZGDDIrjisCeOCZNFeoiyXkN92vI8vK4Tga/alIaxmpvDe3Ffdt2/iP3nsMJu4U54jm5lVaX6kbD3cY8SMNsYhTX0PfOCWOwVSO1jV/WJAIzKrj77bXwOVzIzf0u5euS/0mY4FxYj0+hWnwl1uLqq6PoIos4hmU1w1qlk6P8fVGhbQmVvI50fv4Qfz8vhWJMlX0Sp795AEfU9Y/AZgLYF8iWk1EHwXwPQAnENFyACeE3yGEWArgBgDLANwF4AIhhDwGfhLAbxAoqZ8DcGdYfiWA0US0AsAXEFo+1QsqS3nklJ3x+FdPiL6roiDAThx8Fr6+OaRCCCgn79889DwWvrjRIOIhLzNN/Z0mEM6ZuQeOVqKzxn3G4z988ijo8Nl4TDHtXfVsJ7aKEJhzRzqUuG6dJEV0elrSLDbgsklTjgDAMA+sKEUNs82PGQg2YVUBazJ3BZJcEbfp+ZptBD439lzOUVh1x7ru7BZYvq4t+s5tVFE8Kkdb3EFF4o8fCw40segy/s223gSAa+euTJSpgfZM1j6y/Xs+/7aoTOa+MN2GLlby0uk4XuS/L12L523hM8jP6iwPOF0uhRBnG36aZag/B8AcpnwBgGlMeTuAM13jyAvqA2xtKiWUtro/gU0hbQtTEbQlX3IzJxKdvCHw7TC3wpQxvMhCvkC7jBgUZRnbR5PD+yQr4TZ0n9wNvM7BU1moNWaTs3Ob4PFMMqXddh6Mlze/Ye3XBTkOW1wdbqymk6seHI67zXIolrFF75Tj2dGlnJaZ5eabnCbYUASe3xBvOnrgQykq6xbCerpd+OKmxHd2LsK/zgOUhTjIEDIysY4rAKGqG/rqLUm5/2DNao/L3S3HoIa2f/DZDdh/wggjZ9xUKmFbd2yV5Ecc7L+75oyL0FwvDLzYSo5N0RT1MS5Ln+o4lJJ0ISjzEOJxYqWyIudVT8bnvnkyO7b4OzeutM6B36DcG49uiqviwuP2Nrdl4xyYaeWqmw5gWd4bznFQ9vWbc2fg9R1d7ByyYVEUj3gXV9Bdidvgsw0G1+1wiCw4zoQDAc7jZixWEpEl2UnT3I53vELa79BgSpjD1fM9gHDvZavOGVo4BxVN5bSISUVzuYQdytrxEis5OIdmxzO1xbbKGwOPOCifdcWiKjcOvvOneACJRcGBQCmHtHT8onBMSlNGsZJg6qbyPuhjMMOZ1MhyrTouvS0AmPffsxL5I/RxWTkHtp90mel0m+lQJblAJgbP28Nw3O2daeU4J7pSTZdtOody6GFsigIr2wKAHV1x32wIB+baasVPcWjymDh8efZ+zus43VscS8vvYbjFT0lDERu3wr2XYxRdn/qcVKssbuE0lwn3LFuHja/vSP0GAC1NlJAg+BGH+PNfLzgap4ZKaAlXwqpyqVSVz0c1GHixlTR7dRVZFNKdHn4O+prniBFgJ1hynLolDFfXK5Ulo3OwcUjWOvKDdp96YiF9Hm3D5F+w9AW1WCnp47Cl7ORgNBfVxEqm9dMthNWUVSpKOxPWSuk+s2S+c20nKucgT7ec41qqXXYyELVlg6+fDJE7nIWcRn1dzNpvXMKEXOXwXlM2fZZzKJXwsWsWGMfVVEoqpPUmOKKnHhil8ltFs2POm0rmUDp5Y+ARB+VzOqGNT1RWP7ESz3Wk+wOSL5jJIa27IvDSa9vxqhKTPx0sz/4dQCL7mWlcvsjycie+W+r6nnxNAdjUq32tqJKcg7tvPQxK0BZjymoiDpWYc7DptdTwD7WIlcrk3lBkW90VEc2HzaRV4uBJaUc8X4s+8iQi5RJh9aZYv8RybpKgaoe2fXcZro0tfj5qIEm1zXNm7gEAGD0saXp+1+eOSXwPnODMRIs74avPcVBTeh01a3LGDx89OfG9XCKnXiIvDDyxUmJTTP6mn/Ztilo3cUiXcf0ByQ3tPsZkMtA5AF+88Qmt3BEGmQGrc7AQQVsdm0LR3pZ5oLw8P432Lp44qOjoqhgdD9VxJaN36lxOuvebPnkUO0YfJ7ggNwdw97J1xvYjnYODOPiitbmcaAsA9tslmRZWNVSQm7WLM/nw0ZPx1n3S/kbyKl/OQb+3b55yYKqeanzArhHDe5nm1ikl/gOS+8IZh0/Ctf9+MUUc9TlraSLrPtBdEdCXn6rf4tameuB77KsnpHyjAs6hMUqHAcc5uKyHXOIWecJy6xwyjMjx3ktxl/5SpHUO6fsxjcupc/AiNMFftymrm9BIsCdk5oL2Tv4FedfBsd+HzXRTHYftJKb3/NsPHYG9mDwNqilr7ASXRomCTeOKB59PjIEbl7rxHDF553RFT7Q2ldChEdO3aOHXVWsluYFxxhEqxgxLh+kGsnMO6iP/2dmHMoYWbo7QpHOwveMmT+9yyW/8ulhJB7f+1PWtx1pT+wYYp1nIiL0F51AXqOtKf+FUxS9gOtUFf31MWX2hLhguaYr0ijTFnzF958eVFgWZoocmv5tl43rYYh16++OGp9MuSnDvI2eyahIrqacxH0UnkHyWLiMCI9Wn2IpEtlFmgyiSFqeJI8zyABK088//PDYRV0qC2yS5O25pKjljgakbejeFnIMj7apJHOlDdIN6QcWHHeljS5qliE0t5eIcVD8B9VG/V3nvOI7m/845PNVlc7lk3ajbd3SnHD7VOeHmV3apOq6qWLOlHS9tTIeXqQcGHOcgH80V5xyekucFogFPhbTTlNX80uvf1RPKQRPTgePkadPFOaTENRbRlsqacmKeB5e7Y1fJy9YroSXevGc6NIbevhplEgDmXnw8rjwviO3DbXiLmWT225kk7Dp8T67qC6tfo0+NcUNUJltuGJxZoh6byCTXL1EsVuJyfAA8IeA2ztamEjoMnJZElNQog87B9LO3/wt7Ld9PgnNg2+LfSxmuJNFn2EC3EDh679FY+b2TMXV8rJuIOYf4uuGD0ufo5iaKCDi3H+gOmkB8YNl15CDeRNvi/wIgIgyveuQDrxUDjziEC2OP0UPZzTTJOaSvj80MXRnX3OBks9xGIOPZuDgH+VWW7zwkzZZy8mwOz67bFn0+adoueOdBE1J15PypIosfve8Qps/kd52dnjBycCSq8ZWt++jkfOJfAcn510+7aaMFU1sxYYvEMsyz1JXDJm6vRPHGY7R995QutDaVnSK2yFpJxNZK3NhaymZvcomIu/bk3LhrE2PT4jnZwmfom/Tph03S6qniPz6surxFtR/OUKRJUQ5/5HePpn7niIOsf/tnjmH7ll264mbpGejqgYFHHBjvSAlCUhTBPaDWciC2eIOxf0+0xZoo6nWCv+pmYTptCpHeC3SZsFxsU8YMxbdPnYbLP5hmhSPilkFuOee0g/hkLeHftVviU4waqiAal4vDgcLKM3vYTkOyJfGRuMmQNSzuM/j7r+fiiKG+3AZXLi+VYqVmLsKuNhcmuX6JyMk5+KK5TM7DQInhHCTBOGX6rnj/jCCepgxrIcfIgQvZzdcL/g5OKGZ5jlttavP2znSd8K/qVf6ZWVNTm3pTKZ6LSoUnDhznw4mPVG9lGbgRiE1U3+hMb+BRtNkSsWtJz89igprFsV4YsDoHbu6bSiV0KquQO8W0hg/+dYPMOwvky6fKubkkITJ8hinPblwv+N5UInwwNMdLt5XkHD7xtr3YesfuOzYKgGcK0yBP5v/9l8VRGadk87Gislk+DW2pbpl+/65n8OGjplj6TA9sGEPcEtcYeIe7lqzF1vYubN6+QxHLuOfCqCei+BTMOUYCvEnn0XunxXplzTZeTWaUqicERCUYpyQYPz3rUHa8ptMt5z9iq+c2H/fPcKhyDpwfwcSdBkdmsd1CsPOv+nxIqJkf43EFOkqdo28ul9DeWWEJirzXphKxa0nq11zm5Y0IvjfgOAcbmspJ0zTuAUm22nkS89BIy4V53fw4cisXdCtynNK61DcNuc5tfetisV134pXD5x8Tx8A3Ga2s29KeKuOIg09o6VgskF70b1ZCfOtmji7s/793Zao/ecxQ6++mW9kasvnPv/q6dVPXCa1p4y9RPBe67bsEtz+oUXrjtpJK8CmGewxEXubowECS4JmeapQnwzMqqzsqATm9reVVCeLA+BEMH9SE7Tu6sWrjdix5eatBrJQe/wG7jkjVM+WakNwKd/8RV2bgHKRHvuuVaYSrw4AjDnJOuclvKpfQqbCl3PyXSpQQF1x29qFMLT9rJbkI1aTpXBIh6X3rzTlYrExknS1vBCch0yagemqaTreyDX2sOkYwyjzTuF7RLJMuOG4vzDktjteo56xoNFyPVQhF58CJCD0tzNRNy1TH9/BYLpFTXBqMLdAfXf7Ac0YdhToWs0I6+FtN4D2T5dy6remDCNeWShwmjkpbeJVCLkp6Pq/ZkraEU0OJDGou4eNv3ROTRg1J1zNwu3J/4HRec0MRZpOBOMhC09yeOj3I7eCyxMsDA484RA8sPfuBgsls1ijRGp5IhrSU8Z5DdmXrWJ57BO6l514oedpMJWE3bDQ+nMOv/vkcAF4uHpQnUxNyeN3DYggAxlpMV/U+Nmmy1KnjhkfzHcCD6lYJaTFlhUf3ct2wxgXaXJq4ArWe6RlxFjQcpLjIWY8If1+y1lpHPXiYPLQ5Rb/qfyLB5dPgltorW9pZ5W6irfDBqLo0PYwLEIdMlyd07nQfv2+BDsxMTON6KuSBi2tb6ibKBrGS9PA29fm+IwLdTwMYh4FHHCRYzqFECZO/wQbvWik6sfkV+HAO3AJ4+/7p8NQm6w9TrCbbuFKbk0HZqW5IpvZ0ruOdB/FRPDlRU3pcwV9dXJc2JXU2VTW4zUSHSecgsaOrYjVl1afb5EsgSwPxA1/nyCl+jnElIjbybKpeiZwhORI6B0OdiHPoVolD+hDF6xfcD/gDb9qd6TT4owYr5HRlUv8iCTdHM1WdSWDRxI9DNq+bVctDnE0vIEOR65AHC+Mz8jQTzgMDjjjYFNLN5RLaQoXwrz54GIYbMpbJF8iaTtFikROPJf2Aj2NyF8j+2rXTk8laKQvRMomg1A3dpJD+r9n7AkAUxfMLJ+zD1vML/x3U0U0RdeLlmxqTw+mHph0MVS/fLGHKTWjv7I4V0h6cg2kNyWq2NUZEmMg4x6X71IiuoclyiYwHIgl1PGaFdHoD49Y65xvgcuQ8eu/R+PJJ6WixnM6KDWIZmsU2lcybrCpWqhiU1kD8Xnzi9wsT5XKuXbEhufmT4zf70wRoRGDWgUccIlNW/lQhceCuvEUHEC8KWzpF/QXcZ/wwHKgptbjnyy1EOdR1bUnHF/3livwcbGIl6JuTiXNQxEqGl2P4oGaMGtIcjaOlzG8sPvt5xDlo96QHuauFcxg/Ms0ZHLZ7HDjOtAm8STmhm7q//AOHAQg2FLk58JZbvCgwVS8sN3F2WVAuUWJeTdzPljc6sXz9NvY3ta1ojI4NTOV0ubXO2eq7Ehj977sOZNPMyqvUd8JkEBBwDma9gGqtVBFuIvjv55Mp7zsi4pDdF0pyW6ZpkOuiIA51gJ1zcItSgHiDysI5XHj81PQiYx4w1yZnWgekfQrkwvEZu4SPzsGGElH0MphCPPucyE3OeTrxqoFxYE+JCRm6oe2vvTu2kDJtFFJhWRGxU2ArY0qp9+ESH9iMC3whBPCCLfWkUs+FpCkrXydSNDvCbHPEwSXWMokoiVk/rJmqFCuF64rjXtQItYBb8a7jyyFH7eYc0mVSrGR6Z0xK8Hpg4Po5MHOvbkR20Uzw21qLBUVKWey5q/mE+p6+20647KxDsfvoIWy9LDoHk4OVL3FQU6uaCI3PncfZz5KLfkd3UpRWi1iJI8Yq92famLJsiEKIiFi2MqaU+rORIrlUe+FfVwgLn+nYqtno1zKFftZKgSWOyjlwm9kGJgSES6zkyjGhxpDi5o4oIODyN9U6UR+DS8TDlX9m1tTI9NplBMCtZcnhmZ+RWRyWN2riHIhoJREtJqIniGhBWLYzEd1DRMvDv6OU+hcT0QoieoaITlTKDw/bWUFEl1FNO4Adsa0Sc6rw5Bx8RqcSmtMPnYgTDxzPjMXvAXP96YQBUMRKWRTShrot3pyDco3xVOduh8JLd2jRQ6eOS8bjr2VhcLPdlNjs7Kc1/XNiXNGJDpFRAytWUhr4zmkHGYmztKZxRUb1gW404zOHN33izWx5ws/BKr7Uo56mZ//EA9MGDC4u08g5hH9V5bDJwa0iYrES112skK4kvpvqqXj/Ebsp3v7ZN/BIrGR4SrLPvmKtdJwQYroQQtoBXgTgXiHEVAD3ht9BRAcAOAvAgQBmA/glEcmj1eUAzgcwNfw3O4dxsbC5p6une9tJ3+ehq+KA/333ATWFQEgpsh31rC+Y9tMQg0dwc5PfNqz2ZSYO1YmVnv32SYmE70DSfPOik/bD3IuP9xonwCtF1Q3E9MyTHIXrFCnwX39eBICfD3W+bIdk6YHvEiv5EN5qMod5cVG264nYaLoq3rbPWIzREuq4OIdWg8I8shzqiA8XpnzsQZ6FUjRObuxAzDmY1i831ok7DTaG/HYlnwLiCMGmMwGXybFeqIfO4RQAV4efrwZwqlJ+nRCiQwjxAoAVAI4kogkARggh5orgjq9RrskdtilNnBAti9THZrzZwx7c9/nq/hamheFnRZX8PqyVf9n8dQ7B35amkje3YWtHtTbhNtfJo2Pv3kMm7YQJI93WOhLctG1T5N6uFxLwkLMrfbDx+hPEwb2zu56Dy7QWSK8XP86Xr+TDaXF9mE78KQV91ZxDcN12JeaZzVrJNE71Opf836Wo1vcJnwxunRU75xDrc5xN1YxaiYMAcDcRLSSi88Oy8UKINQAQ/pW2mRMBrFKuXR2WTQw/6+UpENH5RLSAiBZs2OAOKW0cMUzsZFxo22B9TmIJ/UWNUrLf//ulxPcPHTWZrVeNWIkLlAf4pYgE4hdk952H1KQP8I0W6+M5bAJHbHysb9TnZ+qRC6XA6RzULmwHEOkJ6/scbNA3KR+CYpwLdb6sxnpxvfPevAfecQDvA6P345KimYilbMYVDl1aK0lnNHZNhI11RToHfiymOYosobR9wifvecQ5OPrs9ToHAEcLIQ4DcBKAC4jorZa63O0KS3m6UIgrhBAzhBAzxo5Npyf0gc2UVR2JbePxOQEkOAfDItJzN6z83slsvdcUxd3X3n1AKgyx3o9t09HHstPgdFhvwF/xK19mH0c3H8gX6AomuQrgRxzkxqpiv12G48Lj906Vq8mBTO2pU2GaF1maDPPMbE4eCl11XK7H4POY9ABw0wyB91SYxFkJPwcLkVEJ0ieP3dtLTMV9rwWcg2HAOcTfrzgn7RUfZ3v0sxxK9WuwLpTK76++6wDjmHd02RXSkeGDsYX8UNMbLYR4Jfy7HsBfABwJYF0oKkL4VyZFXg1gN+XySQBeCcsnMeV1gc2UNSkPro1zSFrB8HXGjRiE980Ibv2kafzJCgC++96Do8+2qKFLwqQ4qyyZotTbmjZxBAa32J2eXIhNLmsjDrIdaW1ykGEDI6Ub00byASYi7SXvPRhDmOiuLYpuxWVbDri9gkWizEUczGtMEgc1rwbbr/J52sR0cDggeWL90jv2wQc5D2N9nB6cg40wqe+IlcPQ2qiWy+bWAheaRG9/73HplK+yPafPQfjDEZNHJcsNDnY7In+gdIN3fvYYAHHiLJfIqlfrHIhoKBENl58BvAPAEgC3AjgvrHYegFvCz7cCOIuIWoloCgLF8/xQ9NRGRDNDK6VzlWtyR2StxIqV4s81i5U8OAcA2PpGIPN+bZs5Pvu+SpYqLq+sxGMvbQYAPLFqs7GOOpSDJu5krOcLNUx4LShrpzVbnoPomgwmhsMMcYh8xH8JsZLxRBf8cNuT9nMNebQF8MnnbbjopP1w26ePYX9T823vP2GEn4GAkYvyW9cJWF6XVPDIKtcRt/74HM1+7ale5Ub/Hc3kNerDwDnMuX0ZAF40JkO3yNwirhSsjYjKWoufw3gAfwkXSxOAPwoh7iKiRwHcQEQfBfASgDMBQAixlIhuALAMQBeAC4QQUnv0SQC/AzAYwJ3hv7og5hwYllNd+JZF6goCBmgOdZaX6K6lQaCz+Ss3Guuoa8lGHHyQXHS1rzDZnC9x2MUQvyhWSEvi4GblzRFN02UmsZcPEU8eGuymlHcvW8f+LuGrkPbdd+Vmbavuk3lOh88J3neMtvzVWRXS5rEQWppKCZ0V9w77Ep/AudNuTiyb0g9juhOdxF+fCA4OHHHQIxeb9BOmMOH1QNXEQQjxPIBUTkghxGsAZhmumQNgDlO+AMC09BX5w5oJrkbFsYqkPXhtbakiqtFDawtZrb6MeVg8ZPXkPe0w1tYg5eFqznPg1jmw6S0NxKHFI0yIWu4TYtuGpM+E+Rrfl1+KF2xtDVEs0nyt0FzOZq4+VdgONHoT3twIg9ZyyWnQ4GtRVy7Fnv8+a1EFF7cpGTKduaZcwvBBTZHXuCnndyM9pIvwGQpy1IUlOIdaiY56mho1tLqUmdFYlM95LDA5Z77OWl80BOeTbcmX22WVAmTbqDnLIb0fH6sUH6U1YPZ8VgmNbb35OkhKkQYXqkPiZ2fzmdxs8DEw8CE03z39IKNFHIAU8+obBp4dj8eYfXMvb9/RjTvD8OUmzsf0WsemsPHNqT4fKlegZu5T14xJf9RID+mBFz5DfmA5h/z68d0sm8vuLFdqUz4pM233of6Wh9xSvjiunNoSNsV1iSiRKctURyIL5+AjVnJF3wRs4q5k+WTGg11vy7pRh8/GFSVV6mhsm7kaRNIU4kSHydlMhU9bbzhEa3P58gAAEHNJREFUsPomt+dYeyY+G1Su4Ovv5i2CfNepiteYMB+ATQwZbuDKC6YSil2VSLpXf/jI6Df1WbtSsDYCA45zkKyDS+fgA1O6RcAcp1+HDxFp8oj/o8K2UaiLzvd0asOLrwWWUfNfMOtMfOHjZ+JThxUrecSQMioBPSykfMYAJAm9D0f5mVlTrb93RsTBT4FtjSSswIdz8BHRuMRT+gr0vQ8O0qt/z7FD8aGjp7B1qhFbmfQgJiOH2EM6LpP+Cx9/6544Zmpsht9ULkXGB5u2pzMr6uhLfg59DnZrpWwL52uG0wlgzvClw0eRmzW8jq9cdUMbfyKS+PTxe+Mr79w/W+c1QN5nkELRfXIyZyJLfp8wcpCx7umKDsQnwJpR/qy1bxKlbFY2ANuTt61TFVLpOcgiVlKhh0A3wWdd+uglTmVyaKjIc5Mb0hzMud3SMLuizfQMxg7j9X9RbCaR5hwO3d1sIfiqgUPhxtIID+mBJ1ay6Bz0jE61wFdB61MvqwWHz0sLxCkLTfjiO/bN1G+t8EtWlF3E8z3FT0SHGn7D1K3aj1HnoH03bcJvmTomvsYmVYo4XDskcfA9cfvm4LZxNaOGNGPT9k4vnYPNLwfI1+pmwk6D8My6NrzeYRYdcbmgXTA5vZrStMosbwmxUrcUl+bjD9TrneD6IuLAe+nFf8OC1akya1vWfvza8OFWskbmzCNBTE9AzkWWXBIc9A38bfvYvel/cMbB2HXkIOPGr/oc+PhfAObNepyST9tOHNx1AJU4+M2ZKbshAPzh/73Jqw0J13MyK1Vj+Iybi2jMQXLCtoB/5zAOkhxUwwkTQbER5KZSKUFU4rzitSkNYj+HQiGdO+KQ3WaM9vQlmGbJFqcHyzPBR4ad9bAxaZRfMLrvnHZQtobrDLnwa5brZ+S0zpyxG86csZu7oqVP2aU0MPifk93iOJ/wE657iYiDp1jJNrdZQ6C0WCL3Pvm/7/Aa07jhg/DcBnsiol998HBMufgOZ1s+hwpvPwel3nsN5tc2Dr1Uijfwp9duxdNr2wDU7izaSA/pgUccPE5kLkXhkm+ciIoQbLpCCT2ejQmjhrRgfVsHfvuhI4x1fDmHD87cHb//90v4RZiy0oX/8Aij0EhIM8Palb71M+lw5XwmIgxvLWOcwdlPxZv23Nn4mww9bTUDRSzyqEWRK+E771veCPQmo4aYD1Ejh/iZXKsbrMlB0tcUPI8ghRJyLkYObjb2rxMHdfwywB8AzP7JQ8oYa+Pq+4qHdJ+G7dTmWosuOSrgF4FRxYSdzJuJr7LxG++Zhv98x37eL2ZvRafDkUkii4d0XjDrHILyzu4KhnoqfblYTxLbQv2XizhI5BH40Jc4XHneEbj58Zcx2qCQzQL5rv34fYfg1Ol25bULWffLD840H46kns/GhatzfvOnjsL0SbGyuVQiNsxOrWKlPuEh3VfRCEUOALxt3+qixnIgIpw6fVcn21wuUY8Rhjx9RHxP/qaTIpf6MS+4wnoIUXsQQgD4yNGTcc+ydThqr9HuysiHc5DQowXrOG6/cThuv3HWOr6Qs9lcLuXG8V2mOP3ZcJrFkkqOZYyFAKproUUbf7lEfM7yHMRKIwY15ZJb3IWBRxxs5koh8lijvi+rDG3gki3/5Cy/Bd9T+OTb9sqtLV9CY5qzWiPN2mDa+FXRgyn1ahYcvsfOePbbJ3nX99U59DbIectDJCTf7Z0t4i4VB0wwE0G599qkBOozT4UeJwPn4CFWmr6b2dx17PBWLPr6icbf80TfXFE5wKpzqClTcTb84j8OwxdO2AdTDaGD+wo+bwmLkRW+s2/aUMYOb7U6KNYDieB8PWAtZgrXkQWNEFWYkKeeyOW5vdvOgzGkpWw9RMjNvlq/kOZyiRUt+4iIL7GYXjcSA5BzCP7alk9e6/T9M3YzelFK7LrTYKcXbF9AnspAX9g2lL3HDcMLr9qtYPKEeqBoBMsvsfvOQ/DSxu2ZQ3z3FpD214a9HKE1XKFXJO7/4rFu8XIUUPL/t3fvMVaUZxzHvz9WVmHxtojITcAoFBRBWW9IBbVqUSMkatDaitXGS22irf+I1UZb/5AmbbShSUu9RFNbm8ZqNbVp1Xpra1BB1FWKQLXeaDHxUkBR2D79Y95xD3tuc3bnnJmR55Oc7Ox73pl99t2z5533Pe+lf6PAhrS37bBUeixJj8Lk/Xavm6cVdr7KodZOcEHnsIEtix1bclY+7gBaIc0VbdO4Vtp3wcuvOZEtn1SfJFm6xMYHdZZBuGDWhNQmXN5/+bG8t6X6XiCNSPNzo0Z/Zr0/V/cNp9S9Ablo9kSuuGdV1Q18Ykne8OMJbElvevp2F+02uI2PPu0pG3KadHBJHux8lUONlkM88/PmhTNaGpPbURpvdrMPHM4jq2vvrdCIkXWGppa+nurFf/0ZB6cQUaSzo33Ae3zEsuhWihdurDfaKskIwfkzxnDG9NGp3Fz0JGyFxPqupTa0vY2t23pY/+6OO/nVajnctqiLd2pM4Gu1na9yCF8rvX7i5wa6Z0LeLZ73hbojUopu0awJXP/gKy37eQPZhyAvxnVGM4FbOf8lnjORxmcmkF4LttHKoW+2IYPb+OjT7azts81rrYlzJ05JNhO8VXa6ymHeIfsxaeSwijV43JT8PPyj13JJiiOL/nLVHN58v7V3O6/fdFrdPJLYa+jgul08acn7S2bpVw7j3x9urZmns6M9Udmm6ZpTp3Dd/d1MGVV/qY1WimeoJ9//Ysf3k209/2PlGx9w2d0rd0j3bqUcGz+8g/HDK3+wtfCIcfziqdfYrb04f8CsHTBiGAeMSHek1aFj02nVPHbV3M/uTJut9Ibivm/OasnPbMTph47OOoSKjj5gOA9/Z07WYZSJu7m21tn/4d7LjuH9LdvKuvaWV1jC/pcXHZXqZ3PNlpvKQdKXgVuANuBWM7up1TEsnjeFq06enOqEIhe568Ija04oKnXatFGp/My9O9rZO6X++EZMGpmP0Sau/8aHzZpqzWKHaD5KEq1ukaUhF7fIktqAnwLzgKnAuZKqb5bQJIMGqbBDAvPuuEkjmDq6dtfB906P/uT9WVY5a6Wz15MueeHy6/jJ+3Lzwhlc+aWBDzOfXmNSW57l5VV8JLDOzP4JIOkeYD7Quk8UXeYWzZrAxBEdzK2zxHYeJe2bdsUgqe5GRbXEi2ACHOaVw4CMAd4s+f4toLHF5V3htQ0Sx09OZ82eLPzo7Onst2f91Vjd59+NC6Zx44JprNu4mXGdyZbQz5u8VA6VbrvKRl1Luhi4GGD//fO13LRzZ84cm3UILmfqTcjLs1x85kDUUijdbWUs8E7fTGa2zMy6zKxrxIjidT0451xR5KVyeBY4SNJESe3AOcADGcfknHM7rVx0K5nZdknfAv5ENJT1djN7OeOwnHNup5WLygHAzB4C6m8U65xzruny0q3knHMuR7xycM45V8YrB+ecc2W8cnDOOVdGfXcqKgpJm4A1FZ7aH3gjwSX2BD5MKV+a1/L4G8/n8fdKM/4040qaz+NvTlyl+SabWf3VIc2skA/guSrp7yY8f1la+VK+lsfv8eci/jTj8vjzE3+1986+j89jt9IHCfM9mGK+NK/l8Teez+PvlWb8acaVNJ/H31ieZuQDit2t9JyZdSVNLwqPP1sef7Y8/uZLGmORWw7LGkwvCo8/Wx5/tjz+5ksUY2FbDs4555qnyC0H55xzTVKIykHS7ZI2SuouSZsu6WlJL0l6UNIeIb1d0h0h/QVJc0vOmRnS10n6iVq023eK8T8uaY2kVeHR9J1xJI2T9Jik1ZJelnRFSO+U9LCkteHr3iXnLA5lvEbSKSXpLS//lOPPfflLGh7yb5a0tM+1cl/+deIvQvmfJGlFKOcVkk4ouVYm7z/9lmRIU9YP4DjgcKC7JO1ZYE44vhD4QTi+HLgjHO8LrAAGhe+fAY4h2lzoj8C8gsX/ONDV4rIfBRwejncHXiXa5/uHwNUh/WpgSTieCrwA7ApMBNYDbVmVf8rxF6H8O4DZwKXA0j7XKkL514q/COV/GDA6HB8CvJ1l+Q/kUYiWg5k9CbzXJ3ky8GQ4fhg4MxxPBR4N520kGlrWJWkUsIeZPW3RX+ouYEGzYw9xDDj+FoRZkZltMLOV4XgTsJpoW9f5wJ0h2530luV84B4z+8TMXgPWAUdmVf5pxd/sOKtpNH4z22JmfwW2ll6nKOVfLf6s9CP+580s3qjsZWA3Sbtm+f7TX4WoHKroBs4Ix2fTu5PcC8B8SbtImgjMDM+NIdpxLvZWSMtKo/HH7ghN6uta3SyVNIHozmg5MNLMNkD0D0TUyoHK+4GPIQflP8D4Y3kv/2qKUv71FKn8zwSeN7NPyEH5N6rIlcOFwOWSVhA19z4N6bcTFfxzwM3A34HtJNynuoUajR/gPDObBnwxPL7WqmAlDQPuBa40s//WylohzWqkt0QK8UMxyr/qJSqk5bH8aylM+Us6GFgCXBInVciW66Giha0czOwfZnaymc0Efk3UN4yZbTezb5vZDDObD+wFrCV6wy3dAb7iPtWt0o/4MbO3w9dNwK9oUXeHpMFE/xh3m9nvQvJ/QlM57rLYGNKr7QeeWfmnFH9Ryr+aopR/VUUpf0ljgfuA881sfUjO1ftPEoWtHOKRCpIGAdcCPwvfD5XUEY5PArab2Suh6bdJ0tGhOXo+8Ptsom88/tDNtE9IHwycTtQ11ew4BdwGrDazH5c89QCwKBwvorcsHwDOCf2sE4GDgGeyKv+04i9Q+VdUoPKvdp1ClL+kvYA/AIvN7G9x5ry9/ySS1SfhjTyI7qw3ANuIauCLgCuIRg68CtxE74S+CUSrta4GHgHGl1yni+gFtR5YGp9ThPiJRnGsAF4k+qDrFsIomibHPpuo+fsisCo8TgWGE31wvjZ87Sw557uhjNdQMiIji/JPK/6Clf/rRAMgNofX29SClX9Z/EUpf6IbvS0leVcB+2ZV/gN5+Axp55xzZQrbreScc655vHJwzjlXxisH55xzZbxycM45V8YrB+ecc2W8cnCuCkk9YamGbkm/lTS0wfNvlTS1gfwXqM9KpM5lxSsH56r72KKZ6ocQLW9yadITJbWZ2TfM7JXmhedc83jl4FwyTwEHAkj6qqRnQqvi55LaQvpmSd+XtBw4RtH+A13huXPDWv7dkpbEF5X0dUmvSnoCODaD38u5irxycK4OSbsA84CXJE0BFgLHmtkMoAc4L2TtINqz4yiLlp2Ozx9NtAjbCcAM4AhJC8KaPDcQVQonEc0Edi4Xdsk6AOdybIikVeH4KaI1di4mWkb92bBi9BB6F13rIVqgra8jgMfN7F0ASXcTbQBFn/TfAJOa8Hs41zCvHJyr7uPQOvhMWDTtTjNbXCH/VjPrqZBea98BX7/G5ZJ3KznXmEeBs0pW1e2UNL7OOcuBOZL2CZ9PnAs8EdLnKto3eTDRpk/O5YK3HJxrgEXLp18L/Dkst76NaN/vf9U4Z4OkxcBjRK2Ih8wsXuL5euBpolV7VwJtzf0NnEvGV2V1zjlXxruVnHPOlfHKwTnnXBmvHJxzzpXxysE551wZrxycc86V8crBOedcGa8cnHPOlfHKwTnnXJn/AyE3PdmwOn02AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEVCAYAAAALsCk2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXeYZOdZp32/lVPnPD05SqNRHivZwpKFLVkYJLDFShjsBbMC1qxhl8XYu3yL+b7VB2YXDMZgkIG1MMYBGdtytiwkywqWNMqTNDn0dI7VXTm8+8cJXdVdnaqrq05NP/d19dXVb52qOnWq+vzOk5XWGkEQBEEoxFXrHRAEQRCch4iDIAiCMA8RB0EQBGEeIg6CIAjCPEQcBEEQhHmIOAiCIAjzEHEQBEEQ5iHiIAiCIMxDxEEQBEGYh6fWO1Au7e3teuvWrbXeDUEQhLrixRdfHNVadyy1Xd2Kw9atWzlw4ECtd0MQBKGuUEqdXc524lYSBEEQ5iHiIAiCIMxDxEEQBEGYh4iDIAiCMA8RB0EQBGEeIg6CIAjCPEQcBEEQKkQuf/FM1hRxEARBqACv901x6f/4Lv2TiVrvSkUQcRAEQagAp0ZnSGfznB2L13pXKoKIgyAIQgVIpHMATCUyNd6TyiDiIAiCUAESGUMcokkRB0EQBMEkbloOUbEcBEEQBAtxKwmCIAjzEMtBEARBmEcikwXEchAEQRAKsC2HZLbGe1IZRBwEQRAqQHyRmIPWmr/70SnO1VENhIiDIAhCBVgsIH1hMsH//NYRfv5vn+XMaKzau1YWIg6CIAgVIJ423EmlAtLRhHHfYDTJvQ/+uC5qIUQcBEEQKsBibqVpUwzee/1mBqNJTgzPVHXfykHEQRAEoQJYFdKpbJ6kedti2gxSb20LA5BMF9/vREQcBEEQKkAinUMp4/Zct9FMyhCHzka/sW1GxEEQBGFdkEjnaI8YJ/+5cQfLrdTRIOIgCIKwbtBaE8/k6G4MAPPjDlbtQ6cpDnFxKwmCIFz8pHN5cnlNd5MhDlZ2ksV0MovXrWgK+gDmxSSciIiDIAjCKrFqHBayHKaTGRoCXkI+d9H2TkbEQRAEYZVYbiLLcpgrDjOpLA0BDwGvKQ5iOQiCIFz8WOLQ1Wi5leZaDoY4uF0Kn8dli8PnfnyWv3zseHV3dpmIOAiCIKwSy03UFPQS9LpLupUifg8AQa/brnP47sEBvvnaQHV3dpmIOAiCIKwSq3VGyOemMegpIQ5ZGgJewBAHy3KIpXIks850MYk4CIIgrJK4ebIP+tw0Bb3ziuAstxIYApLI5AGIpbKODU6LOAiCIKwS6wQfMsWhlFup0bQcAl63vX08nXNsWquIgyAIwiqxAtIhr4fGgJepgjoHrbWdrQSGdWFNjZtJZUmaVoTTEHEQBEFYJYm5bqUCyyGWzpHXFAWkZy2HrF1A5zREHARBEFbIqZEZjg5G7b8TRQHpYnGw+io1FLqVMnlS2RyZnCEKTnQtLSkOSqlNSqnHlVJHlFKHlFK/Za63KqUeVUodN3+3FDzmo0qpE0qpN5RStxesX6uUet2875NKGT0MlVJ+pdSXzPXnlFJbK/9WBUEQKsN/+sLLfPjh1+y/LbdS0OumNexjOpW1T/hWu+5Ct1IykyOemhWEuhQHIAv8jtb6UuAG4INKqb3AR4DHtNa7gMfMvzHvuxe4DLgD+GullNt8rk8D9wO7zJ87zPUPABNa653AJ4CPV+C9CYIgVJxzY3EO9UcZiibttUQ6R8DrwuVSbG03ZjacNseBzhMHr4tEOme38QZnVkwvKQ5a6wGt9Uvm7WngCNAL3AU8ZG72EHC3efsu4Ita65TW+jRwArhOKdUDNGqtn9Vaa+Af5zzGeq6Hgdssq0IQBMFJfOegUbQ2NpPGOJUZlkPQbI2x3RSHUyOWOBS7law6h1h6VhycGJReUczBdPdcDTwHdGmtB8AQEKDT3KwXOF/wsD5zrde8PXe96DFa6ywwBbSVeP37lVIHlFIHRkZGVrLrgiAIFeHbBwcByOa13X01ns4R8hmWwfYOSxyMUaBzLYeAzxSHi8CtBIBSKgJ8BfhtrXV0sU1LrOlF1hd7TPGC1g9qrfdrrfd3dHQstcuCIAgVpX8ywavnJ9nT1QDAaCwFQCKTJWh2XA35PPQ0BTi1gFsp5PWQzuZtiwLqWByUUl4MYfi81vpfzeUh01WE+XvYXO8DNhU8fCPQb65vLLFe9BillAdoAsZX+mYEQRDWkkcPDwHwizdsBgzXEliWg9vebntHuMBymONW8rmKHgt1GnMwff9/DxzRWv9ZwV2PAO83b78f+HrB+r1mBtI2jMDz86braVopdYP5nO+b8xjrud4D/Ju2nHmCIAgO4djQNC0hL9duaQVgbMawHApjDgDb2yOcGonZBXAuBWFTPKztRs3HgjNjDp5lbPNm4JeA15VSr5hr/w34Y+DLSqkPAOeAewC01oeUUl8GDmNkOn1Qa23J4m8AnwWCwHfMHzDE53NKqRMYFsO9q3xfgiAIFWdgKklPU5D2iDHRbTRmXP0b86N99nbbO8JMp7KMzKSYTmaJ+D1YOTaBEuLgRMthSXHQWj9F6ZgAwG0LPOYB4IES6weAfSXWk5jiUi0O90cZj6V5y672ar6sIAh1TP9kgo0tIVrDhhDMWg5ZQr6Qvd2OjghgZCxFzSlwFlZsYrTArZR0YPO9dVsh/RePHeN/fP1grXdDEIQ6on8ywYbmAB63i5aQ1776T2by9kkfCjOWYkUdWWEBt5ID23avW3EYmU7ZVY2CIAhLMZPKEk1m6WkKAtAW8RcEpLNFAekNTUECXhenRmaYWVAc0nhchlPGiW271604jM6kS6q1xMEFQSjFwGQCgA3NxijQtrCvKFup0HJwuRRb28K8fmGKqUSxWylgbjc2k7LdU04MSK9jcUjNU+vX+6a48g+/b5e9C4IgWPRPGe0yNjQblkN7xM9oLEUur0ll84S8xSHcn7y0i+dOj3N4IFrSchiLpWkMevG6lSMD0utSHOLpLPF0jlQ2X2QpPPTsGaLJLEcHFqvxEwRhPWJZDj1NpuUQMSwH68Re6FYC+J137OZ/33MlDQGPHaCGWXHI5TVhn5uA1+3IIrjlpLJedBQWn6SyeQJeN9Fkhm++ZtTkjRQEigRBEMCwHJSCrkbLreRnKpFhMm6cTwJzxEEpxXuu3cjPXt1btF4oImG/x7HisC4th5Gi4hPjQ/n6K/22329kWsRBEIRi+icTdDUE8LqN02abWdfw+FGjOcSuzkjJx7ldCrdrthqgUERCPg9BEQfnMDo9v/jki8+f49KeRjoa/CIOgiDMY2AqQY8ZjAYj5gDw8It9NPg9XLulZaGHFlFYSR3xuwl4XRJzcApjsYLik0yeqUSGQ/1R3nVFD50NfoZFHARBmMPAZJINZhorYFdEv9o3xVt2tdsWxVJ43S47hTXktywHyVZyBIWWQzKTI2YO3WgN+8RyEARhHlprLpgFcBZtpuUAcMuelXWJtqyHiN+D35zv4DTWpzjMiTlYxXAhn5uOiIiDIAjFTMQzpLJ5uwAOZmMOAG/d3VnqYQsSsNt7uwl63aQcKA7rMltpNFbcKtfjMjQy6HXT2ehndCZFPq9xuWQYnSAIRjAaKLIcGvwefG4XOzojdDcFFnpoSQotB6fGHNanOEyn8HlcpLN5Upk8bmW4lUI+Dx0RP9m8ZiKeLjIbBUFYv5wbjwOzBXBgpKrevq+bG7fPG1q5JJY4zGYrOS/msD7FYSbFxuYgp0ZjRgqZaSAEfW46GowrgJGZlIiDIAgA/PjUGCGfm0u6G4vW//K+q8t6PsutFPa7Cfok5uAYxmJpNrYa7XWT2ZzdRiPkc9PRYAiCxB0EQbB46vgo129rxeepzCkz6DWeJ+zz4PdInYMjyOTyTMYz9JrmYSKdLwpId4o4CIJQwIXJBKdGY7x5Z+Vmv4R8htMm7PcQ9DlTHNadW8lqnbGxxRCHZCZHLm/4+4I+N2HzQ5NaB0EQAJ4+PgrAzbtWlq66GFbMIex3E/C4yeQ02VwezzJrJaqBc/akSlhprLY4ZAtTWT2E/R5CPrdYDoIgAPCjE6N0NPjZ3VW6PUY5BGxx8BD0GafhZNZZQel1LQ5KGRXSljhYai6FcIIgAOTzmmdOjPKWne32DOhKYAlC2OexhcJprqV151ay5ra2R/z4PS77A/F7XHZzrE4RB0EQMFJYx2JpbtjeWtHnLXIrmbedNg1u3VkO1kDwtojfbpU7d8RfR4Nf2nYLgsCZMWPw1/aOyrmUAJpDPgJeFyGxHJzDnZf3sKUtbAzZMFPIsnltZw8AdET8PGUGoQRBWL9YxW9bzNT3SvG+G7dw655O3C5lWxFOK4Rbd+KwqTXEJvODNlLI8mRy+aL5rx0NfqLJLMlMzlZ1QRDWH2fH4gS9s/VPlaIh4GXvBmOudMCseXBaIdy6cysV4vcYPU3i6RzhAnGwhoHHHeYDFAShupwdi7O5NVTRYPRcguJWch5WzCGVKbYcrA/LaUouCEJ1OTceY0tbeE1fI+DQ8826thwCXhepTJ54JlsUc7D6njgte0AQhOqhtebceLzi8Ya5ODUgva7FIeh120VwpSwHp31YgiBUj+HpFMlMni1taysO1rnHaeebdS0OAa+bRNpovBfyzhcHiTkIwvrl7JiRqbR5rd1KZjM/p2UrrXtxSGaNMaGFdQ5W9aLTfICCIFSPs2aNw1q7lSzLwWnnm3UuDi6SmTyJTI5gQcwh6DVuS8xBENYv58bjuF2K3pbg0huvgoBH3EqOI+B1M53MkMnpOZaDMz8sQRCqx9mxOBuaA3jXuFOqy6XweZw3KnTdi4Pl5wtJKqsgCAWcHY+zpXVt4w0WAY+ROekk1rc4eOZbC1AgDuJWEoR1STaX59TwDFvb1zbeYNEe8XN6NFaV11ouS4qDUuoflFLDSqmDBWsfU0pdUEq9Yv7cWXDfR5VSJ5RSbyilbi9Yv1Yp9bp53yeVWXKolPIrpb5krj+nlNpa2be4MFbZOhRbDgEJSAvCuuaV85NMp7LcsL2tKq/39r1dPH1ilIlYuiqvtxyWYzl8FrijxPontNZXmT/fBlBK7QXuBS4zH/PXSinrrPtp4H5gl/ljPecHgAmt9U7gE8DHy3wvK6bYWpgNSPvcLlxKLAdBWK888cYIbpfi5p2Vm/62GD995Qayec13Dw1W5fWWw5LioLV+Ehhf5vPdBXxRa53SWp8GTgDXKaV6gEat9bNaaw38I3B3wWMeMm8/DNym1rKRSQGFbqVCy0EpRcjnEctBENYpTxwb5prNzTSFvFV5vcs2NLKtPcw3Xu2vyusth9XEHH5TKfWa6XZqMdd6gfMF2/SZa73m7bnrRY/RWmeBKaCkLaeUul8pdUApdWBkZGQVu27gX8CtBGaBnIiDIKw7hqeTHLwQ5ZY9nVV7TaUUP31FD8+eGmM4mqza6y5GueLwaWAHcBUwAPypuV7qil8vsr7YY+Yvav2g1nq/1np/R8fqzb3CdtzBOeIQ9LlIiltJENYdTx4zZrm8dXd1XEoW77y8B63hh8dWf+FbCcoSB631kNY6p7XOA58BrjPv6gM2FWy6Eeg31zeWWC96jFLKAzSxfDfWqggWiEPY55l3n7TPEIT1x4+Oj9DR4OeyDY1Vfd0NTUaxXTSZrerrLkRZ4mDGECx+FrAymR4B7jUzkLZhBJ6f11oPANNKqRvMeML7gK8XPOb95u33AP9mxiXWnELLYa5bKShuJUFYl1yYSLCrM7KmMxxKYbm5nVJ8u+Q8B6XUF4BbgHalVB/wB8AtSqmrMNw/Z4BfA9BaH1JKfRk4DGSBD2qtrXf6GxiZT0HgO+YPwN8Dn1NKncCwGO6txBtbDoWprHPdShJzEIT1yWQiw56uhqq/rt/jQqk6Eget9X0llv9+ke0fAB4osX4A2FdiPQncs9R+rAXFlkPxoQj53Iw5KOdYEITqMBlPVy1LqRCllD3X3gms6wppK+bg87hwu4pNyKDPLXUOguAw8vm19ThrrZmMZ2gOVl8cYLYZqBNY1+Jg+fjmxhtA3EqC4DRS2Rxv+9Mn+ORjx9fsNWLpHNm8piXkW7PXWAwnxTrXtThYbqXCQT8WQa9YDoLgJL760gXOjMX5zsHFq4g/+dhxnjkxWvK+B751mA8//OqCj7XaV9TCrQSzc+2dwPoWB7NCem4wGpyl4IKw3snlNX/75CkAjgxEGZ1J2fels3kGp2YLxx588hTfeG2g5PO8cn6SZ06OLfg6U4kMQM3cSn4RB2fgdSvcLjUvGA1mzCGTo0pZtYIgLML3Dg1yejTGr791B0DRCf6Pv3OUOz/5I8CIGSQyxnTHUsykcgxFkwvGLibjpjjUzK0kMQdHYGQHuEpaDgGvG60hlXXGB7XWTMTS/MJnfszAVKLWu7IuyOTynDNnFAtL8+UD59ncGuJ33rGbxoCHp48bbqNkJsfDL55nPJYmm8uTyWlyeU08XVocYqksmZxmNJYqef9E3HArtYhbaX2LAxgfRqmAdGidTYM71B/lmZNjvN43Vetduejpm4hzz988y61/+kSRO0RYmL6JBHt7GvG6Xdy0o52nToyiteb7h4fsiuJkNm+7gmOp0v+3lkWx0HGfNN1KtYw5OMWdLeKwgDist2lwlq9VWoasLeOxND/9l0/xat8kubymb0Ksh+UwHE3S1egH4M272rkwmeDUaIx/OTDb5zOeztoXc7EFLIcZUxz6J4vFwQpET5mWQ3OwdtlKTrkgXffi8IG3bOPd12yct265mtbLydISh4X+qYTK8OLZCSbiGf77nZcCMDJd2r0hzJJI54gms3Q2BgB4664OPC7F3Z96mqdOjLKlzZjWlkzn7QzDUjGHbC5vu4kHC9ynz50aY/8DP+DsWIyJeIawz43PU5tTo19iDs7hV96yjdsu7Zq3Hlhno0Jty2EBc1yoDEcHogD2d64w60YozfC0cZXf2WBYDpvbQnzlN27iJ/d2sbUtzC/dsAUwrHzL0i91UVfoahoocCudHo2Ry2uODk4bBXA1CkaDs2IOS7bPWK9YbiWnfFBrjbiVqsPRwWk2t4bY3BrCpcRyWA7D5jHqMi0HgCs3NfOJf3cVAI8fHQYMccib2YUzJSyHmQKruFAcJswMpXNjcaN1Ro3SWMFZbiURhwWw3ErrL+YgbqW15OhglEu6G3C7FK1hPyNiOSzJkDn8ptOMOcxl1gWctSfBxNNGGnphZ9VCV1NhVt6kGWc4Nx5nMpGhJVw7cQh4XXYKfbW7ws5l3buVFiK4ztxKUYk5rDnJTI7TozEu6THmBHQ0+MVyWAbDUdNyaAiUvL/Qyrcu5nJ5PS8N3bImmkPeIsth3AxGnx03LIdaBaPBeC95DZlc7eurRBwWYN1aDhJzWDOOD82Q13BJt9EOWsRheQxNJ/G5XTQvkF5q/6+m80XB3LlBaevvnR2RokI4y610fjzOZDxTszRWmI11JrO1/z8UcViA9WY5SLbS2nNk0AhGW+LQHvGJOCyD4WiKjgb/gm4W6381ns4WXczNjZ9Z4rCrK1JUCGe5lfomDLdSrVpngNE+A3DEiGIRhwWQOgeh0rwxOE3A62JLWxgwLYeZlLRoWYLh6dkah1IEffPdSjD/QmfGtIp3dESA2UK4cVMcrOrqWnVkhUIXWe3TWUUcFmDdupVEHNaMo4NR9nQ12LNDOiJ+MjltH3uhNEPRVFGm0lwKL+QKr7gXdCt1GuJgFcJNxjNsbw/b29XWrWSOChW3knOxR/atg5NlPq+JJk230gINy4TVMRxNcvBClEu6Z4fWd5h5++JaWpzhaNKucSjFbE1SvthymBM/m5kjDoNTCfJ5zWQ8zZWbmu3taulWsjpFO8GdLeKwAEqpddO2ezqVRRekAArLJ5HOMTK9uGvo2NA0d//V02RyeX7+TbPV+LY4VDmd9cJkgv7J+miwOLc6uhRul8LvcRHPzI05zLcc3C7FhqYgPreLgakk0WSGvIa9PY14TIuuJVxDt5KDerpJncMiBL3udXGytNJYfW7Xuni/leT+zx3gR8dHaQp6+eOfu5x3Xt4zb5s/+PohUtk8X/61G9nX22Svd9bIcvi9h19DKfjcB66v6uuWg1UdvZhbCYyTajKdKwpaz6TmB6TDPjcul2JDc4C+iYSdqdQW8bGxJciZsXhtLQfTreSEi1KxHBbBSR0S1xLL593dFJAiuBVy8MIU12xuRmvNY2al7lyGoklu3NFWJAwAHRHjhFdtcRiMJovy/J2MVR29mFsJZodzJTM52wKY+12eSeWI+I3r4U2tIc5PxAtadPvY1Gr0aHJEKqsEpJ1N0OecUva1xBKHnqYA8XRuzYe4XyxMxtNMxDO8c18Pl/Y0cno0VnK7qUSmZEuGxqAHn9tVdbfSZDxtdyF1OlZ19JKWg2nlJzI52iKGW2huzCGWyhI2xWFza8ioiLbEIexjsykOtSyCs8Qh5YCAtLiVFmG9zJG2xGFDcxAwTFrrn0hYGEsMtrWH2dYe5tHDQ/O20VobufMlrkaVUlUvhNNaMxnPkNeafF7jctW2RcNS2NXRi6SywuyFnEspWkJG/ci8bKV0sThMxjOcNQcutYS8vPvajTSHvDXryArOavgplsMirJeAdKHlAFIIt1wscdhqisNYLD0vLTWWzpHL6wWbuS1WCPfi2Ql+4k8er2iq63QqSzavyWscn0L77dcH+NsnT9Ic8i7ZDM/6X01kcgR9bsI+T4k6h6ztVrKshNfM4VbNIR/XbG7hd2+/ZA3eyfJxUsNPEYdFCPrWl+XQY1kO6+A9V4LTozFcyjjRbDXz5M/McS1NLjE8ZjHL4eVzE5wbj3NieLpi+zwVnxUEq/jLifz41Bj/8fMv0Rb289lfvm7JJnTW/2oykyPodRPyu+e1gjHcSsbJ14ovvNo3idulaAw4w1KerXOQmIOjWS/ZSlOJDB6Xoj1c2lcrlOb0aIxNrSF8HpddRDU37mAJb+MCV74dDQEuTCRKtpi2grEXzGKt4WiS7x0a5MsvnLezeFbKRIEgODnuYB3Hv3v/fq4qqEFYiMKYQ9DrJuz3FLXoBuN7bbuVzAFBp0ZitIS8Ne+AaiF1DnXC9o4wp0ZjjF3kbZWtgKn1jyMZS8vj9GiMrWYrjE2tIZQqIQ7mlfpCTePec20vsXSW//G1g/Pus4KxVk3Ch774Mr/2uRf58Fde47NPnylrnycKLIcxB4uDJaoLHbe5WDGHRDpHwHQrxUvEHCy3UmPAS4v53LUc7jMXl0vh87ikQtrp3HVVL7m85puvDdR6V9aUWXEwrlpiDrhqcTpaa86MxthmWgwBr5ve5uCClsNCPvNrt7TyW7ft5l9fvsBXX+4rus8KxlricGxohndd0UNjwFPS0lgOk3ViOUwlMnjdyvbBL8VsKmvecCv53PO+x4XZSjAbd2ipYepqKQIelyM6M4g4LMKe7gYu7Wnkqy9fqPWurCnRRIbGoJeQz/jHSYjlsCQj0yli6RzbO2Z78mxrD3NmbE7MYRlXwL/5tp3s6Wrgn587V7Q+ND1rOUwlMozH0lyxsYmQz0OqzDz4yTqJOVgXLMt19wQK3EoBr4uI30MslSWf17x0boJUNkcmp23LAWbjDrVstFcKY1SoxBwcz89evYFXzk8umMN+MRA1/xFDZum+xByW5pSVqdRWLA6nR2JFrTSWshzAaP+wd0PjvMI0y3Lom0jYge4tbWFjCH2Zbgcr5uDzuBifcbY4LBSnKUWowK1kBKQ9xNM5vndokJ/762d4/vQ4AGHfrCWy2aHiEPS5xa1UD/zMlb0oBV+7iK2HKVscJOawXM4U1DhYbG0LM53KFvnyJ+MZfG7Xku6R7qZA0QCaWCrLTCqLUoblYFkk29rDBDzuVVkODQEPHRG/oy2H6AKFgwsR9LrJ5PRsQNrnJpbKcnjAmKHx1PFRAEIl3ErNNRwLWoqAxxlZkiIOS9DdFOCS7kZe65us9a6sGRJzWDmnx2L43C67cBBgW8f8jKWpRJrGZbhHepoCZHLaFhYrU2l3ZwPRZJaDF6ZQZtrsaiyHyXialpCPlrDX8TGHFYlDgUUQ8BnZSrFUluNDMwA8e2oMoMitZIlDq8Msh4DPLams9cLGliAX6qSL5UrRWhNNZmkKegl43CjFvCwPYT5jM2naIz57NgPAphZDKC5MzH5Xphaojp5Lt9kewhp8P2xmKllpnM+cHKOnMUDA616V5TARN/anNexnPO7cIrjViINlOcQzOY6ZNSIHLxjFboUB6R2dETwuxcaWUIX2ujIEPC4pgqsXepuDXJhIXJQTu0amU+Tyms5GPy6XIrROajtWS7SET7w1bLR4KKwlmIwv7yRnWSBW3GHItByu3myIw+GBqF1ot1rLoTnkozXkZTzm3BTtFYuDt1gcQn4PWhtWnM/jwmoXFvHPbtfVGODffucW7tjXXbH9rgRGQLr2/4NLioNS6h+UUsNKqYMFa61KqUeVUsfN3y0F931UKXVCKfWGUur2gvVrlVKvm/d9Upl2tlLKr5T6krn+nFJqa2Xf4urpbQ4SS+eIJi6+K+q5gdWgz0MsneObr/Xz8e8ereWuOZrpZJaGOVW1RnZNcYro1DJnEnebrUus0ZWW5XD1ZuNfS2tmxcHjKj/mYO5PS9jHRMyZlkM+r8uKOdi3TbcSGMft7Zd22ffN7Rm2uS1UZP05gWC9iAPwWeCOOWsfAR7TWu8CHjP/Rim1F7gXuMx8zF8rpaxP7dPA/cAu88d6zg8AE1rrncAngI+X+2bWil7TXdA3Ga/xnlSeuYHVsN9NPJ3li8+f55+ePVvLXXM00WSGxkDxycvtUjQHvUWB3uVaDq0hnz2ABoyYg9/jYqfp+gDY1mZZDuVns0zE0rSEvLSFfcykso7o/jmXmXSWvF48w2suRTEH061k8bNX99q3wz5ntMlYjIDX5YiebkuKg9b6SWB8zvJdwEPm7YeAuwvWv6i1TmmtTwMngOuUUj1Ao9b6WW34Zv5xzmOs53oYuE05pZbdpNc0+a2ZsxcTcwOrIZ+HWCrH0cEo06msjA1dgOlktmSq5dwr8mgis6z5AC6XoqvJXxTxS69mAAAgAElEQVRz6Gz043Yp26rYYrZ8KNdyyObyRJNZmkM+e9rZpAPjDlZV+UpSWee5lUwRUApu2tlGe8Rw+UXqoNtwvdc5dGmtBwDM353mei9wvmC7PnOt17w9d73oMVrrLDAFtJV6UaXU/UqpA0qpAyMjI2Xu+sqxTpwXJpxvOfzb0SE+8+SpZW9/ZjTGptagbVqHfW7Oj8cZNXPgrRYOQjHRZGaeWwkMC2DcdCtlc3mmU9llXwH3NAVnYw7RFF0NhihY37/CauxUGdks0aQh9M0hr52hM+bAWofl1IbMpSgg7XPbIrCxJUjI5+GKjcagpXpoRV83MYcVUuqKXy+yvthj5i9q/aDWer/Wen9HR0eZu7hy2iM+fB5XXWQsfeH58/ztisQhzrb2iP130Oe2MzzAOEkJxWitDcshsIDlYLqVrJPx8sUhYMcchqYNywFgY3MQpWYreg3LYeUnj8KpZ62m5TAxp9bhkVf7+U9feHnFz11JouWIw7yAtPH3rs4GAG7Z08HWtlBNZzUsl3oXhyHTVYT525qP2AdsKthuI9Bvrm8ssV70GKWUB2hivhurpiil6G0O1oVbaWAqQTS5PFdBPq85MxZjW/tsKl/YZ2R5WIjlMJ+4OaNhIcvBOuHa7bqX2bun2xQHrTUj0RSdpuXwM1dt4P6bt9uDYMq1HAr3xxKH8Tm1Dv/n6dN887V+cjWcBrhay8GIORifza5O48Lnl27YwuP/9ZbK7eQaYhX01fIzgPLF4RHg/ebt9wNfL1i/18xA2oYReH7edD1NK6VuMOMJ75vzGOu53gP8m3Zgzmhvc5C+OrAcBiaTpLP5ZV15DESTpLJ5OwsGsK+4rBOfiMN8LPFdLOagtV7xSa6nMUA6l6dvIsF0KmtbDrfs6eSjd15qb+f3uEjn8is+eUzaHWJnYw6FlsPoTIpXzk+iNUwv8wKjHNLZPI8vMG8byhSHOdlKHQ1+fG6XXSeilHJMW+6lsGc61Nh6WE4q6xeAZ4E9Sqk+pdQHgD8G3q6UOg683fwbrfUh4MvAYeC7wAe11tY7/A3g7zCC1CeB75jrfw+0KaVOAP8FM/PJaWxoDtjdMZ1KMpOzK2wt03wx7Eylgv5A1hXX1ZtbCPnc4lYqwbTpLippOYS9pHN5Yumc3XSvaZkzibubjNjCMyeNVg+W5TAXy4JIr9B6sNp1t4S8NJtpt4Uxh387OmxbjRNrGKh+7MgQv/zZF+zCtLmsOubgddMa9vHMR9/muBqG5WCPCq2xOCwZndFa37fAXbctsP0DwAMl1g8A+0qsJ4F7ltqPWtPbHGJkOkUyk7M/PKdReJU/lcjQucBQ9s8+fZqnToxx8652gJKWw6XdDfSNx+3OoMIslvCWjDmYgd6JWHrFvvMNzcbn9cC3jtAQ8PATu9tLbuf3zF5ZFp4Ul2LWreTD43bREvIxWjCr5LEjQ3O2Dc99iopgWV5vDE6zr7dp/n6aw6dCK3hv1pAcmLUirAylesMpo0KdH51xCNY/7uCUc0+WhTGRxeIO//TcOX5wZIi/eOw4Aa/Lbt0AEPIa1wuX9DTQ2ehnyMHvt1Ys5lYq9OVPLjHoZy5Wymo0meX3f+rSJS2HlcYdJuJpXAoazIydzga/bRkmMzl+dHyUvT2NwNqmuFpN5Y4Pz5S8f6XtusFIBbbcMf46CDovhr9e3EqCgVUI5+SMJStHHhYeHt83EefE8AxtYSPlcmtbGFdBhajVfO+S7ka6GgNiOZRgMbeS5csfj6dX7B5pD/sJ+dzctKONn9+/acHtCi2HlRBNZGkIeO3P2+oEC/D86XHi6RzvudbIG5lMrF2Ka8LM4Z87G/vghSmm4pkVt86wCHrdBLyuou9zPWJZDol0bWsdnJ/06xA2NhsZPYVN1ZxG4TyAhVp9PHnM8Gd/5v37+dAXXuayDcVm/S17OumbSLCrM2KIQzSF1rpugnnVYDG3UmuBW2kinibkc+N1L+8azOVSfOn+G9ncFlr0eJdrORSOyQToaghwuN9oaW1dxb91Twd8kzVtrWH50k8UWA7feLWfD33xZX7u6o0l+1Yth+VOjXM6lvU5VuPeVyIOy6S7KYDHpeZN+nISA1MJ3C5FLq8XtBx+eGyYDU0Brt7UzHd/+yfs1gwWOzsjfOxnLgOMxmTpbJ7JeMa+IhZm6xcWtRxiaU4MzxQNA1oOl2+c74OfS7mWgzEms7DxnJ/RmRTZXJ4LEwlCPjdb28IoVTxOtNJY+31uPE4yk+P50+P85y+9ggKeeGOYnuYAbeGVxwtWEn9xMl2mm3e4xskg4lZaJj6Pi63tYY4NlfaTOoGBySTbzeByqWylTC7PMyfGeOueDpRSRPyeRYPrXWYqpbiWiokmM/g8rpLHrjHgwe1SjMfSHO6PsndDY8Vf3+8p03JI5YoqhLuaAuQ1jM6kuTAZp7fZqJRvDHjtTKu1wIo55DWcHJnhDx45xLb2MB/7mcsYi6U5OjBdnlvJ5yZwEQhER4Pxfzdc4/87EYcVsLsrwvE5flIn0T+VZHNriJDPXdJyePncJNOpLG/dvbzqcusKRtJZi4kmsjSWsBrAyKdvCfl4Y3CasViay9ZAHMrNg4+ls0WN56z2HIPRJH0TCTuu1hLyrmkqa2GK5ldevMDp0Rj/4ebt3Hl5DwDZvC475nAxuJYCXjeNAY898KlWiDisgF2dDZwbjztihF8pBqYS9DQHaAx4S2YrfePVfnweFzftLJ0iOZduWxzEcihkukRH1kJaw15+bE4emxvTqQTlWw5z3Uqzn++FyYTdYLIp5FtTt1Iik7P7ef3Tj8/i87i44/Ju2iN+uwdSOeKwrT1clJZdzxjxPrEc6oY93Q1oXRxIcwqJdI7JeIaepiBNQe88y2EmleVfX+rjp6/YsOiJrRDLvJV01mKiySwNi5y8WkI+e9TqpT0NFX/9si2HeW4l4/M9PRpjMp6xJ6K1hLxrmsqaTOdoCnrZ0hYincvz9ku77O/kLaZVW444fPzdV/Cp+66u6L7Wis5Gv1gO9cTuLqNPy7Eh57mWrDTWnqYAjUHPvGylr758gVg6xy/esHnZzxnwumkOeSXmMAfDclg4l8PKNtnSFqJhmUK8Esq2HOa4ldrCRkvwF89OABS4lXxrnMqaI+h1232P7i6Yt3DLJUaD53ISIOqpRcZSdDUEJCBdT2xpC+N1q6KupU7BSmMtZTlorfmnZ8+yr7fR7jWzXHqagpwdc36r8moSTSzuVrJObGsRb4BZy2Glg3oMt9KsOLhdio6In5cscbDcSkEvk2ucyhrwurlxexubW0NFMbCrNzXz6fdew52X11/bi0rS0ehnZDpV09HEIg4rwOt2sb09wnEHZixZfZ82lIg5HB6I8sbQNO+9fsuKr6zetLWFA2cmVtzH52Km1IjQQqxah7WIN8Cs5bCSgTCpbI5MThfNUAYjY8nqx7WpwHKYTmXJ5NbmM0+kDcvh3795Gz/83VuK2mgrpXjn5T32sJ71SleD0YSxlsOYRBxWyK6uiCPdSlbwqqsxQOMcy+GceeV/xTJy6Ofylp3tJDI5Xjo3UZkdvQiIJhcv0rIsB6sVRaXxl2E5xFPGtnNPul1mXMnndtm9iKx2HwvVyqyWwp5QF4sbqNJ0FqSRv3J+kh8dr95wMwsRhxWyu6uBvomE48ZnDk+naA55jTS4oJeZVJa82dJ50BSO7gUa8S3GDTvacCl4+sRoRfe3XjHaoeft/kSl2LehkZ6mwIpdeMtltghu+Vf2M+b3de6YTCtjaUNzwG47YYnDWmUsWTEHYWEKC+E+9sghfv1zL9rjU6uFiMMKsYLSJ0eq51pKZ/OcHl28MnsomrTz1puCXrMnv3FCGIwm8blddqB0JTQGvFy5qZmnRByA2TkHi1kO129v49mP3rZmVeVKKWMa3Aosh1ja+C7MHZNpNfuzgtFgdG2FtWu+l0g7t7OxU+g0LbqzYzEOXpgils7x0LNnqroPIg4rxGqDPRar3uzdr77cx+2feHJRM38omrJNUSuTxoo7DE0ZIyfLNeFv3tnOq+cn18zNUE9YrTMag7X1iRujQktbDlpr/vOXXuH7hwbttZjlVpoTc7BOQlbvMDBSWWHtZjokM/mLptXFWmF15P3+4SGyeU17xM8/PH26qh4LEYcVYrkTZpLV+5CGoynSufyiw4aGo0n7C2XliFsn88Fo0jZTy+HNO9vJa+zCrvWMZTk0+CuforoSjFGhpS2Hc+NxvvryBb71+oC9FlvCrVRoOdgzKdbArZTN5Unn8uJWWoKgz01DwMMzJ8dQCv7XPVcwGc/wpRfOV20fRBxWSMS8Kp+pooLHzWKnhWZJ5POakZmU3QvJcnlY/ZWGo6my4g0WV29uAbA7eK5nrPqRcrqGVhK/17VgzOGZk4aInxqZdUVa4hCeE5De3GpYDNsKKoubrIB0PMPh/igTFbSSk2bWm4jD0nQ2+MnlNXu6Grh1Tyc9TQEOVfF/UMRhhVg+22qad1a7jsEFyukn4mkyOW27CCzLIZo0Zhmv1nLweVw0+D2LDhBaL1jHYLFU1mrg9yxsOTxri8OMnSdvVWyH57iVtraH+cpv3GT3NQLDOna7FK/2TXLXXz3Fp394smL7bX2XL4YGeWuN9T+7f6txcRb2e0hkxK3kWKwrr+kqupXiZjBxIcvBaoxnfZkaC9xK06ks8XSO7qbVjUxsDHoXnBGxnrBcdbW2HAILWA5aa545OYbXrYilc3YLBttyKJFlde2WFtwFrduVUjQHvXzztQEyOV00J2S1WC0/xHJYGuti701bWwEI+dzEq9jXTcRhhbhdirDPXV23Unpxt5LV3sIKltuWQyJr90VajeUAxpWyWA6z9SQdNZ5PvJDlcHJkhtGZFHfs67H/hoVTWReicLTpaAV7/FjfZRGHpbH+Zy1xCHpFHBxPJOBxlFtpxLYcjBNW2OfG7VJMJTKrqnEoxLAcRByGoknaI76iqt5asJDlYMUb3nu90UPLijvE01ncLrXs+crtET9tYR9v2dnO6EzlxMFq1x30yalnKe7Zv5Hf/6lL2WC2NQn63FXtCC2fUBmE/R6ma2A5WFetz5wY5cCZcft++2rWNEOVUjSaV/qWtWHls5dLY8BbVVeaU9Ba87b//QT//Nw5wEwZbljdsawEC1kOz54co7c5yHVbWwl63bblEEvlCPncy05n/tjPXMZDv3IdW9pClRUHK+YglsOS7Oxs4Fdv3m7/HfK5i2ZhrDUiDmXQ4PdUNZXVijkMTCXRWvNbX3qFf/fgj/nayxcAw63UEvLaPXfAuNKfiGeK2mqshsZ16lYamUlxajTGgbOGGA9OJVcttJUg4C1d53BuPM6e7gZcLsW29rBtOcyksst2KQFc2tPIvt4m2iN+JuIZshXqsyQxh/IJej1iOTidSMBTk5jDVCLDufE4I9Mpwj43v20WOg1FU/NO/pdtaOSZE6P0TSTsthqrYb26lfomjNqSvnHj99AqM78qhd/jJlnCcpiIpe1K+O0dYU6NGpZDPJ0tGYxeivbI7EzsSjDrVhJxWClGQFqylRxN2Fe5mMP58Th/9fiJRVvzxtM5O5vk0cNDAHz6F69lc2uIh549w/B0yg5GW7z7mo2MxdJ867WBVccbwLAcpgv6Na0Xzo8bTQvPT8RJZXOMxdIVOZ6rZSHLYTxeKA4R+iYSJDM5ZlI5wmWckK1mfCMVci0lJCBdNpKtVAdEAp6K+d+/9vIF/tf33rCvUEuRyOTsYqUfHBlCKbhqUzN3X93LMyfHODU8Y6e9Wbx1dwftET/TqWxFrnQbzX5NM1W8cnEC1ucyGE3SP2m56GqbqQSm5TDH/5xI50hm8naF846OMFrD2bH4vFkOy6Xd/F6NzVTYchBxWDFGVXyeXJUu0EQcyqDBXzm3kpWHvlhjvXg6y3azgvWFMxPs6IgQ9nu466oNRoO9VHbeCcvjdvFz1xgTtipjORipjestKG2Jg9bwstm2vMsBMQe/1zVvEpzV7qI1bHxW29tnm0SWKw5tphVSqaC0JWhSBLdyQj5rjkd1rAcRhzII+w23UiWmNA2bNQoLiUM+r0lm8nZ7g1xes8+cMLajI8LlvcaMhlLWwbuv2QhAT/PqT2ZWRfB6izv0TcRtl94LZwxxcIJbychWyhd9B624gG05dBrfmRPDM+aI0DLcSqblUClxELdS+VjiUC3XkohDGUQCHrJ5veIZvqWwqpsXEgfLDO9o8NvZJvt6Z4f23HXVBoB5biWAPd0N/M0vXsMvXL/8udELMbdf03qhbyJhD0my0oedEZC2Bv7MfgdnLQdDHEI+DxtbghwbmiaWypVlOTT4Pfg8LkYr6FbyuhVet5x6VkrQ7M5QrYwl+YTKwOrMWgkXy4jpVjplisMH//kl/uIHx+37rauEkM9tp1AWisM9127ivus2ccP2tpLPf8e+nork5Vtupeg6civl85oLEwn2b2nB61YcH57B53HZLa1riZV9VhiUtiwHax4DGMOpTgwbbqWVpLJaKGXMma6Y5ZCRWQ7lYlsOVeqvJOJQBpVqvqe1tt1KZ0ZjzKSyfOf1AX5wZMjexjbDfR7bnbG3YHB9U8jLH/3cFUUnhLXAml+wniyHkRmjVfrmtrBdpdq1irkYlWTWcpi9irS6pxYOddrVFeHkyAypbL7sucxtEV/FLIekTIErG+u4VcuttL6neJeJdQW22qD0RDxDJqdpCnrpm4jz3Kkx8hqOD0+Ty2vcLmVfJYR8bvb1NhFLZ+2r+GoyazmsH3Gw0lg3tQTZ1BLi7FjcEfEGmLUcCltojMczKDXbWwtgd2cDmZwRl5jbkXW5tEf8C/b1WimJdE5qHMrEOm5JEQfnYs10WK1bybIa3rS1lR8cGeIrL/UBxj/8ufE429rD9gSvoM/N792xh1qVGVTqPdcTVqbSxpYQG81hOHPrSWrFQpZDc9Bb1GF1d1eDfbsctxIYhXCH+qfK3NNiZH50+dRVQFopdUYp9bpS6hWl1AFzrVUp9ahS6rj5u6Vg+48qpU4opd5QSt1esH6t+TwnlFKfVE6w2xchUiG30rAZjL5hu9F18dHDQ/YX4I3BaWDWrRTyGn1xCv/xq4nX7SLkc68rt1LfhGE5bGwJssmsM3G25ZCeN7d6Z2cE678pVLY4+BmbSVekADKRyUvMoUxmYw51IA4mt2qtr9Ja7zf//gjwmNZ6F/CY+TdKqb3AvcBlwB3AXyulrG/Jp4H7gV3mzx0V2K81o1JuJavv0XXbDHHI5LSdfXRsyBAHq1y+XH9xJWkMeNeZWylBe8RPwOu2LQeniEMpy2EynqZ1Tuwp6Jvd90iZbqW2iJ9sXldkhngyLZZDuViimqhSIepaBKTvAh4ybz8E3F2w/kWtdUprfRo4AVynlOoBGrXWz2ojafsfCx7jSGwXy2otBzNTaXdXgx1EfOvuDja3hnjDFAcrlXXuYPha0Bj0rKuBP32TcTa1GifWrW1GzUAlakYqQUnLIZaZZzmAEXeA+SNCl4vVX6kSGUuJjMQcyiVUZ6msGvi+UupFpdT95lqX1noAwPzdaa73AoXTsfvMtV7z9tz1eSil7ldKHVBKHRgZGVnlrpePNVx+tZ1ZR6ZTNAQ8BLxuu8ht/9ZWdnc1cGzQshxmU1lrzXqzHE4Ox2xRuGJjE5/6hat5x97uGu+VwUIxh7mWA8AuM+5QTp0DzA42qkTGksQcyqfabqXV+irerLXuV0p1Ao8qpY4usm0pZ7leZH3+otYPAg8C7N+/v2Yd4AJeFy61+phDYYfP/Vta0FrTHvFzSXcDT7wxTCqbmxUHb+3dSg0BT8VSGp2ONShpT7dxYlVK8a4rNtR4r2axrr7/+blzbGgOckl3A+PxNM3h+ZlsV21qxu1S9ryPlWJVSQ9MLdz/a7kk0lLnUC5+jwul6sRy0Fr3m7+Hga8C1wFDpqsI8/ewuXkfsKng4RuBfnN9Y4l1x6KUIlKB/krD0ym7svmjd17Kw79+EwC7uxvI5jWnR2O2f9EJpnhjcP1YDsdNt97urkiN96Q029vDfOAt23j21Bh3fepp3hiaJp3Nl7Qcbr+six99+NayK7u3t4dpCXl58tjqrfVkJidT4MpEKUWoiqNCy/6UlFJhpVSDdRt4B3AQeAR4v7nZ+4Gvm7cfAe5VSvmVUtswAs/Pm66naaXUDWaW0vsKHuNYGiowGW14OlnU9sJlZiLtMd0AbwxOE0/n8LhUzcdSgulWWifZSm/Y4tCwxJa1weN28f+8ay+P/OZbSOfy/OtLxuCnUjEHpZRdxFfua912aRePHR0mU+bQn2zO6AMlbqXVEaxi2+7V+Cq6gK+aWace4J+11t9VSr0AfFkp9QHgHHAPgNb6kFLqy8BhIAt8UGttvcvfAD4LBIHvmD+OJux3r8qtpLUuOaQHYFt7GKWM+b9xBxUNNQY9RJNGw0GHZxsvm385cJ6Xz0+SyuT5vTv22HUMxwanCfvc9K7ipFoNdnZG2Nwa4pFXDGO7lOVQCd6xt4uHX+zjuVPjvGVX+5Lba63Ja+zU69v//EnevrdbxGGVBH3zW7WvFWWLg9b6FHBlifUx4LYFHvMA8ECJ9QPAvnL3pRasxq00k8qSyeZJZ/Ml/cA+j4uOiJ+BqQQK5YhgNBiWQy6viafLa+LmNJ46PsrvPvwazSEvk/EM2zvCfPDWnYBhOezubqgLEbx5VzufN2dcl7IcKvMaHQS8Lh49PLgscfiHp8/wj8+e4Ye/eyvJTI6TIzHOPXUKraVd92oIeT1VmwZXe19FnRIJeMtKZY2ns9z0R4/xtj99Ali44nZDc5D+ySSxdNYRNQ5guNLg4qiSzuU1//Nbh9nUGuTHH72NKzc22VP2AI4PzdgpoE7nJ3Z32Ldb10gcgj43N+/q4NHDQ8tqVX9kIMrZsTjTyYzdXNJq4yGWQ/lU060k4lAmkTLdSof6o0STWbqbgoR9bvb2NJbcbkNzgP6pBIl0zjmWg9V8r46D0lprBqeS/NXjJzg6OM1H7riUgNfN2/d28cr5SYank4zOpBiLpdndXR/icOOONtt9s1ZuJYA7LuumfyppxzcWw6qJGIom7TYxVrq2iEP5BL3u+shWWs9E/J6y6hwOXjB61Dz0y2/i0P97Bzs7S2fD9DQF6Z9MEHeSOATqf6bDp394khv+6DH+7NFj3Li9jTsvN+oWfnJvFwCPHRm2a0z2ODQYPZfGgJerzXRVayjTWnDXVRu4flsrv/+1g3YF/0JY1sLgVMpuE/P7P3UpOzsjdnqwsHKqOUdaxKFMIn5vWTGH1y9M0dHgX7KB24bmIMlMnv6phD3ko9ZY3T4n4vUrDq+cm6S3OciXf+1GPvsrb7JjCnu6GtjYEuQHh4c41B8FYHe3M9NYS/FLN27hXVf02Blva4HH7eIv77uasN/Db33xlUW3LbYcjNtXbmrmB//lrVy9uWWxhwqLUM2AtIhDmUT8bmLp7IqbkR28MGWP9lyMDeZgn/PjcUIOMcOtYUNWT6h6ZGAqyc7OCNdta8XvmT2uSinevtdI13zg20foaPDblcH1wF1X9fIX91695q/T2Rjgvddv5shAlPQCkxDzec2YWSw5GE0yFE3icak1dXmtF6ppOTjjkrQOaQn70BqODk4XDd9ZjEQ6x4nhGe7Y17PktlZeel47o3UGGN053S5Vsd7+tWBgKsG+3tKf1y/dsIWxmTRXbGzi7Xu76iJTqRZYGXbjsbR9wVDIVCJD1rxoGoomiadzdDT419SqWS+EfJKt5HjuvqqXlpCXP3jk4LKyNwAOD0TJa9i3DDEpbPDmlDoHt0vR2eBnoE7FIZXNMTqTpqepdO3C9o4In7zvan715u1sMXsqCfNpt3stzTbiy+by/PkPjjE6kypaH5xKFnUCEFZHwOu2m3GuNSIOZdIS9vGRd17CC2cm+MoysjdgNhh9+cal3UrtYT9et3Gl5RTLAQzX0mB09T12aoFl8fSUuNoVlk9Hw/wurc+fHufPf3Ccb702wIi57ve4jJhDNElHBeaYC8a5IJPTZVeqrwQRh1Vwz7WbuHJTM3/1+Illbf/6hSnaI75lzQRwuZR9heuUgDQYJ9Z6dStZFs9qWkkI0Bae36X1udPjAJwejdnrl/Y0MhRNMTydoqtRLIdKYF0oVsN6EHFYBS6X4m17OjkzFls09/ilcxP86kMv8I1X+9nX27RsX7Z1hRt2kuXQGGRgKrlsV5qTsLqKiuWwOqwurXMtB4CzYzFGzeykfb2NDE8nGY+l6RTLoSJYLuZq1DqIOKySXV0RtIaTIzMLbvPgD0/xzMkx3nPtRj76zkuX/dzWFa6z3Ep+4uncqgcd1YL+ScutJJbDagj73AS8LsZMcUhn87x0bgKAM2NxRmdSeFyK3V0N9szzTrEcKkI150iLOKwSq6XzYkVBQ9NJrtncwgM/e/mKCoA2mEFpJ7mVus0Taz26lgamErSEvI4J8NcrSinaI37bffT6hSlS2Tw7OsKcH48zGE3SNsd9Km6lymBVl1cjY0nEYZVsaQvjdSuODy9sOQxHU2VdOVlXuE6yHCyXTF2Kw2TSFjdhdbRF/LZbyXIp3bN/E9m85tXzk7RH/EVpruJWqgzWhWI1CuFEHFaJ1+1iW3vYHg4zl3xeMzydLGvQyqzl4BxxsK4GayUOH3vkEJ987HhZj+2fStrFhcLq6Ij47BYZz58eY2dnhGu3GJXPJ0dihjg0FoqDWA6VQNxKdcauzoYFLYeJeJpMTtNVxj/Hjdvb+Q83b+O6ra2r3cWKYYlcrWodHnm1n2+/PlDWYwemEkX1I0L5tEf8jMXS5POaA2cnuG5bqz1v27q/zSyadCnD0hBWz6xbScShLtjVFeHceLxkBsGQ2XRsqV5KpQj63Pz3n9rrqNkJPo+L9oiPwRq00BiPpRmPpTk9GiO3wrYliXSOyXhGgtEVoi3iYzyW5tx4nPRc+GMAAA+ASURBVOlklit6m2iP+IiY39X2Bp9dNGlV1gurR7KV6oxdnQ0LZiwNme2KL6aAXHdTgMEKDJtfKdbxTWXz9E8mmEll+fDDr9otoefy8It9nB2LAdBv7u8GsRwqQnvETy6vefrkKAB7NzSilGJrewjA7kvV1RiQTKUKIm6lOsPKWDo+PD/uMGJZDhdRQM6qdag2JwtcdydGZnjq+AhfPtDHE0fnD74/Nxbnv/7Lq/zDU6cBIxgNksZaKawWGj86NorbTFsFbNeSdf/vvGM3//Ude2qzkxchzUEf/+Xtu5fVvHO1OMdfUcdsbQ/jcSmODZWwHEz3y8V09dTd5OfA2fGqv+6J4RncLkUurzk5PGO3aTg1Gpu37fcODQJGY0SAC5NxADaIOFSEtojRQuPpk6Ps6AgTMH3h1kAfqznfzbs6Sj+BUBZBn5sP3barKq8llkMF8LpdbO8I88bgfMthaDpJS8hb1B663ulpCjIZz1RtIpXFyZEZdnVGaAl5OTUa4+VzkwCcKSEO3zXF4Y2habTWHLwQJeL3sLFFxKESWG6j6WS2aJqhNbxKqtDrH7EcKsS+DU08dWJ03vpQNFVWGquT2dxq+JVPjc5w2Ya1N28tTozMcOXGZiJ+D8cGp+2hPKfniMNwNMlL5yboaQowMJVkKJritb5J9vU2StvoCtFekH1U2LL+py7voasxwPaO+hmUJJRGLIcKcVlvE8PTKYbnZPEYHSkvHpcSGA3VAI4MLD4qspIkMzn6JhLs6IiwvSPMS+cmSGRydDX6OT0WKxq69P3DQ2gN//GWHYBRwXtkYJorNzZXbX8vdpqCXjsDaW/P7AWCx+3ihu1ttdotoYKIOFQIK0B0sH+qaP1itBy2tYcJeF0cGYhW7TVPjcTQ2nBb7OiI2D177r6ql3Q2b2cjgRFv2NYe5meu7AXga69cIJ3Lc4WIQ8VwuRRtYSPusNxhV0J9IeJQIYxUPni9b/aEmctrRmYuvnbFbpdiT1dDVcQhn9ecHo1xwkxj3dFhiANAc8jLW/cYAc8zo0bAeSqe4dmTY9x+WTdNIS/djQEePTQEwBXLmKMhLJ/2iJ+epgCtYRn/eTEiMYcKEfF72NYe5mD/FFprjg5O0xbxkcvri85yAMO19L1Dg2it13Sc5kPPnuEPv3GYoNeNUrC9I2wXAl21qdkWitOjM7xlVzuPHR0im9fcsa8bgD3dDfzw2AitYZ8EoyvM7Zd1k82v/dAZoTaIOFSQy3ubeP70OJ9/7hy//7WD/PSVG4CLq8bB4pLuBr74wnmGoqmSc4Qrgdaaf/rxWba3h2kN+2gKegl43WxqCdIe8fMTuzrobPAT8rntdNbvHhykpynAFaab75IeQxyu2Lj8ORrC8vitn6xOSqVQG0QcKsi+DU18/ZV+Pv6do3hcim+82g9cXNXRFrNB6eiaicOLZyc4ORLjT959BT//pk32usft4qnfuxWf22VU5baFOT0aI57O8sNjI9x33WY7K+kSs0W6xBsEYWVIzKGC7DOvVhOZHJ//1evtdL+L0a10iSkOhysUd9Ba87FHDvFnjx6z1774wnnCPjc/dUXPvO0DXrctANs6wpwZjfH40RFS2Ty3X9Ztb3fN5hZ8bhc372qvyH4KwnpBLIcKsq+3kaDXzftu2sL129v4y/uu5ksvnLsoxaEp6KW3OWgHpbXW/Mn33uDOfT1cvrGJaDLDE2+M8K7Le5ZVW/C5H5/ls8+cAYx20G/a1sq3Xhvg7qs3LNl4cFtbmG+/PsBvf+lluhr9vGlri33flrYwr//hOy6qIkRBqAYiDhWkIeDlyQ/faqf43bijjRt3XLw535f2NPL6BSMA/9K5CT79xEkO9Uf5x1+5jj/7/jE++8wZfnxqjAfu3reov//IQJT/+a0j3LqnA5dS/MEjh9BAg9/DL79525L7cdPONv7lxfPceXkPv/LmbXjcxQaxCIMgrBwRhwpzsRW8LcZPXtrJD44M8dzpcR4x4ys/Oj7CsaFpvvJiHx0Nfv75uXNE/B7+253G7OzBqSStYR8+z+wJ/P/75mEaAx7+9z1X4vO4+M9fepWdnRF+/a3baQ4tnSZ50452nvtvP7k2b1IQ1ikiDkLZ3H11Lx//7lE+/cRJXj43wQ3bW3nu9Di//rkXmU5l+T+//Ca+9soFHnzyFDfvaqcx4OWev3mWnZ0R/uYXr2VzW4iDF6Z45uQYH33nJfZAmL97//4avzNBEEQchLIJeN289/otfOrxEwB88Nad+D2n+eGxES7pbuDaLS3s623imZNjfOQrr6MUtIZ99E3Eeddf/ohP/Lur+Nor/UT8Hu67fnON340gCIU4JltJKXWHUuoNpdQJpdRHar0/wvL4pRu34HEpuhsD3LSjnfuu22yvK6UIeN38r/dcQf9UgqFokk//4jV860M3s6k1xAceOsA3X+vnF67fTGPAW+N3IghCIUrrlY1bXJOdUMoNHAPeDvQBLwD3aa0PL/SY/fv36wMHDlRpD4XF+NyzZ2iL+Lnz8h601jx1YpSbdrQXjYb8lwPnaQx67TTTZCbHH3z9EI8eGeJbH3qLDOERhCqhlHpRa72k79Yp4nAj8DGt9e3m3x8F0Fr/0UKPEXG4OMjntbTRFoQqslxxcIpbqRc4X/B3n7lWhFLqfqXUAaXUgZGR+aMhhfpDhEEQnIlTxKHUGWKeSaO1flBrvV9rvb+jQ8YPCoIgrBVOEYc+YFPB3xuB/hrtiyAIwrrHKeLwArBLKbVNKeUD7gUeqfE+CYIgrFscUeegtc4qpX4T+B7gBv5Ba32oxrslCIKwbnGEOABorb8NfLvW+yEIgiA4x60kCIIgOAgRB0EQBGEejiiCKwel1AgwCUwtsElTmfctd5u1fP7VPnc7MFrm49dy31f7+LXet9U+/2LHfTmPr9VxWevnX8vHr/aYr+a1nXxcFrq/HQhrrZeuBdBa1+0P8GCl71vuNmv5/BV47gNr8b7q5L2X/fgKPP+Cx30t33s9f58r8N5Xdcxredxr8X1ezvGyfurdrfSNNbhvudus5fOv9rnLfd3lPr+T3/tqHl+J78VqHr8ev8+Veny5z72a13b6cVnVcatbt5KwMEqpA3oZvVOEyiLHvfrIMV8ZKzle9W45CKV5sNY7sE6R41595JivjGUfL7EcBEEQhHmI5SAIgiDMQ8TBRCk1s8T9TyilxLdZQeSY1wY57rWh3o67iEMds9SXTVgb5LhXHznm1UfEoQCl1C1KqW8W/P0ppdS/r+EuXfTIMa8NctxrQz0ddxGHOkcpFVFKPaaUekkp9bpS6i5zfatS6ohS6jNKqUNKqe8rpWRQc4WQ41595JhXFxGH+icJ/KzW+hrgVuBPlVLWZL1dwF9prS/DaDXy7hrt48WIHPfqI8e8ijimZbdDyFIsmIFa7cgKUMD/r5T6CSCPMXu7y7zvtNb6FfP2i8DW6u/ektTjMQc57rWg3o851NFxF8uhmLPAXqWUXynVBNxW6x1aBu8FOoBrtdZXAUPMfuFSBdvlcObFQD0ec5DjXgvq/ZhDHR13px7AqqKU8gAprfV5pdSXgdeA48DLtd2zZdEEDGutM0qpW4Ettd6h5VDnxxzkuNeCujzmUJ/HXcTB4DLgJIDW+sPAh+duoLW+pcr7tCjWlw34PPANpdQB4BXgaE13bPnU3TEHOe614CI45lCPx329t89QSv068CHgt7XW36/1/iwXpdSVwGe01tfVel9WSr0ec5DjXgvq+ZhDHR/39S4O9Ui9ftnqHTnu1UeOee0QcRAEQRDmIdlKgiAIwjxEHOoApdQmpdTjZhXoIaXUb5nrrUqpR5VSx83fLeb625VSL5pVpC8qpd5W8FzXmusnlFKfLCgiEuZQ4eP+gFLqvJIeQYtSqWOulAoppb6llDpqPs8f1/J91SXLnScqP7X7AXqAa8zbDcAxYC/wJ8BHzPWPAB83b18NbDBv7wMuFDzX88CNGAVF3wHeWev359SfCh/3G8znm6n1+3LyT6WOORACbjVv+4AfyXd9ZT8Sc6hDlFJfBz5l/tyitR5QSvUAT2it98zZVgGjwAagFXhca32Jed995uN/rapvoE4p97hrrVMF6zNa60g197ueqcQxN+/7C+Cg1vozVdr1ukfcSnWGUmorxtXSc0CX1noAwPzdWeIh7wZeNv9ZeoG+gvv6zDVhCVZ53IUyqNQxV0o1Az8NPLaW+3uxIUVwdYRSKgJ8BSOtL7pUuEApdRnwceAd1lKJzcR0XIIKHHdhhVTqmJsFdF8APqm1PrVGu3tRIpZDnaCU8mL8s3xea/2v5vKQaWJj/h4u2H4j8FXgfVrrk+ZyH7Cx4Gk3Av1rve/1TIWOu7ACKnzMHwSOa63/fO33/OJCxKEOMH2pfw8c0Vr/WcFdjwDvN2+/H/j6/23vDkKsquI4jn9/zmpyExQtXORGhKTFQEiJoSIUtGuhiBpRIBGI4HakhYUbXbsJZqGLFtlaF4GoWIgFIigu2mmgUNAmwVCGv4tznkl3RufBe6by/awe951zuefy4M+597zf6e1fBU4D81X186hxn47/neS9fs5PR300NKn7rpWb5D1PcoSWx3Rw2tf9MvKF9Asgyfu01RbXaFHFAIdoz2JPAW8Ct4CdVfVXkq+AeVqw18iHVfVH2h61J4BZ2mqlA+WPYEkTvu/HgD20hQG3gYWqOvxMBvICmdQ9p61Q+p2WvzR6B3G8qhamPoiXhMVBkjTgYyVJ0oDFQZI0YHGQJA1YHCRJAxYHSdKAxUFaRpLFJFeTXE/yQ5JXxuy/kGTDGO0/S3J8/CuVJs/iIC3vXlXNVdXbwH3gy5V2TDJTVfuq6sb0Lk+aHouDtDIXgXUAST5J8kufVXybZKYfv5vkmySXgU1Jzvc/HZJkd99z4HqSo6OTJvk8yW9JLgCb/4dxSUuyOEhP0cPbPgKuJXkL2AVsrqo5YBHY25uupsVCv1tVPz3Wfw0tFG47MAdsTPJxzwj6mlYUPqDtWyA9F0xllZY3m+Rq/3yRlvnzBfAO8GtPCp3l3xC4RVpg3H9tpO0/8CdAku+ALf27x49/D6yfwjiksVkcpOXd67ODR3ow3Mmqml+i/T9VtbjE8SflTZtfo+eSj5Wk8ZwFdiR5Ax7tbbz2KX0uA1uTvN7fT+wGLvTj25K81mOqd07zwqVxOHOQxlBVN3oS6I9JVgEPgP3AzSf0uZNkHjhHm0WcqapR5PRh4BJwB7gCzEx3BNLKmMoqSRrwsZIkacDiIEkasDhIkgYsDpKkAYuDJGnA4iBJGrA4SJIGHgJinI5tshDC4AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "sorted_data['inc'][-170:].plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n", + " for y in range(1991,\n", + " 2022)]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "year = []\n", + "yearly_incidence = []\n", + "for week1, week2 in zip(first_september_week[:-1],\n", + " first_september_week[1:]):\n", + " one_year = sorted_data['inc'][week1:week2-1]\n", + " assert abs(len(one_year)-52) < 2\n", + " yearly_incidence.append(one_year.sum())\n", + " year.append(week2.year)\n", + "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD8CAYAAACLrvgBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG61JREFUeJzt3X+MXeV95/H3x4wzA9QmYxgT/wDsKg6KISnEV7a7yXZL3NpmU2GjQjIbGkaLJTfApqRaCezACi24ElSrTWtFYbFCwUD44bpFeLt4yWA2qrd1bI8DKRjiziQQ4+Aww44DJpKnjP3dP+5z6zuT8cy58+vec+fzkq7uud85z3Of4+OZ731+nHMVEZiZmWUxrdoNMDOz/HDSMDOzzJw0zMwsMycNMzPLzEnDzMwyc9IwM7PMnDTMzCwzJw0zM8vMScPMzDJrqHYDxtsFF1wQCxYsqHYzzMxy5cCBA+9GRMtI+9Vd0liwYAEdHR3VboaZWa5I+lmW/Tw8ZWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmY1Znu90/wxQf30H38RLWbYnXIScOszmze1cn+N3vZ/EJntZtidajurtMwm6ouvWsnff2n/vX143sP8/jewzQ2TOPQpqur2DKrJ+5plHG33vJs9+1Xcc0Vc2maXvy1bpo+jTVXzGX3HVdVuWVWT5w0yrhbb3k2e2YTMxob6Os/RWPDNPr6TzGjsYHZM5rOWMYflKxSHp7C3XqrH+9+0McNyy7hy0sv5ol9h+kZIRmUf1DadO2nJqmVlmeKiGq3YVwVCoWo9N5T3e+fYNNzr/O9g7/gxIenaJo+jVWXfYw7v/DJYT+lmeXV4A9KJf6gNHVJOhARhZH28/AUo+vWm+WZ5z9stDw8lVTarTfLM39QstFy0kge/MrpXtmmtZdXsSVmk8MflGw0PKdhZmae0zAzs/HnpGFmZpllShqS/lTSQUmvSnpSUpOkWZLaJXWm5+ay/TdK6pJ0SNKqsvgSSa+kn22WpBRvlPR0iu+VtKCsTFt6j05JbeN36GZmVqkRk4akecCfAIWIuBw4C2gFNgC7ImIRsCu9RtLi9PPLgNXAtyWdlap7AFgPLEqP1Sm+DjgWER8Hvgncn+qaBdwNLAOWAneXJyczM5tcWYenGoCzJTUA5wBvA2uArennW4G1aXsN8FRE9EXEG0AXsFTSHGBmROyJ4uz7o4PKlOraDqxIvZBVQHtE9EbEMaCd04nGzMwm2YhJIyJ+Dvw34DBwFHgvIr4HXBgRR9M+R4HZqcg84K2yKo6k2Ly0PTg+oExE9APvAecPU5eZmVVBluGpZoo9gYXAXOBcSX80XJEhYjFMfLRlytu4XlKHpI6enp5hmmZmZmORZXjq94A3IqInIj4E/hb4N8A7aciJ9Nyd9j8CXFRWfj7F4awjaXtwfECZNAR2HtA7TF0DRMSWiChERKGlpSXDIZmZ2WhkSRqHgeWSzknzDCuA14EdQGk1UxvwbNreAbSmFVELKU5470tDWMclLU/13DioTKmu64AX07zH88BKSc2px7MyxczMxsS3hR+dEW8jEhF7JW0Hfgj0Ay8BW4DfALZJWkcxsVyf9j8oaRvwWtr/1og4maq7GXgEOBvYmR4ADwGPSeqi2MNoTXX1SroX2J/2uyciesd0xGZm+Lbwo+XbiNiU1/3+Cf7Tky/xrS9f6Rv2TQG+LfzQfBsRs4z8jY1Ti28LPza+y61NWf7GxqnJt4UfG/c0bMryJ86pq3Rb+Gdu+Sw3LLuEng/6qt2k3HBPw6Ysf+Kcuvz9OaPnpGFTmr+IyKwyXj1ldckroswq49VTNiHyckGUV0SZTQwPT1lFav2CKK+IMptYHp6yTPJyQVT3+yfY9NzrfO/gLzjx4Smapk9j1WUf484vfDL3w1QecrOJ5OEpG1d5WZ5azyuiPORmtcDDU5ZJnv4Y19uKKA+5WS1x0rDM8vLHuN7W4O++/aozDrmZTTYnDcus3v4Y50WeenlW/5w0zHIgL708q39ePWVmZl49ZWZm489Jw8zMMnPSMDOzzJw0zKooL/fyMitx0jCrIl/lbXnjJbdmVeCrvC2v3NMwq4K83MvLbDAnDbMq8FXellcjJg1Jl0p6uezxvqSvS5olqV1SZ3puLiuzUVKXpEOSVpXFl0h6Jf1ssySleKOkp1N8r6QFZWXa0nt0Smob38M3q57SVd7P3PJZblh2CT0f9FW7SWYjquiKcElnAT8HlgG3Ar0RcZ+kDUBzRNwhaTHwJLAUmAu8AHwiIk5K2gfcBvwAeA7YHBE7Jd0CfDoiviqpFbg2Ir4kaRbQARSAAA4ASyLi2Jna6CvCzfLB3w9SWybqivAVwE8i4mfAGmBrim8F1qbtNcBTEdEXEW8AXcBSSXOAmRGxJ4qZ6tFBZUp1bQdWpF7IKqA9InpTomgHVlfYZjOrQV45lk+Vrp5qpdiLALgwIo4CRMRRSbNTfB7FnkTJkRT7MG0PjpfKvJXq6pf0HnB+eXyIMmaWQ145lm+ZexqSPgJcA/z1SLsOEYth4qMtU9629ZI6JHX09PSM0DwzqyavHMu3SoanrgZ+GBHvpNfvpCEn0nN3ih8BLiorNx94O8XnDxEfUEZSA3Ae0DtMXQNExJaIKEREoaWlpYJDMrPJNpqVY75yvnZUkjT+A6eHpgB2AKXVTG3As2Xx1rQiaiGwCNiXhrKOS1qe5ituHFSmVNd1wItp3uN5YKWk5rQ6a2WKWQb+RbNaVenKMc9/1I5Mq6cknUNxbuE3I+K9FDsf2AZcDBwGro+I3vSzO4GbgH7g6xGxM8ULwCPA2cBO4GsREZKagMeAKyn2MFoj4qepzE3AN1JT/iwiHh6urV49ddpdz7zCd/cd5oalF7Pp2k9VuzlmFRs8/1Hi+Y/xl3X1lL+EqQ6N5hfNyx+tFnW/f+KM34/u/6fjy1/CNIWNZqLR3X+rRb5yvvb4hoV1qJJfNC9/tFrn70evLU4adSrrL9ru2686Y/ffrBY8+JXTIyab1l5exZYYOGnUray/aO7+m1klPKcxwfKw7NU3zjOzrLx6aoJ52auZ5UHW1VMenpognmA2s3rk4akJUumy1zwMY5mZOWlMkEonmH2dhJnlgYenJlCWZa8exjKzPPFE+CiM5y03fJsEywPfZqb++TYiE2g8h5J8nYTlgYdPrcTDUxWYqKEk3ybBapWHT20wD09VwENJllW9DOf4//zU4eGpCeChpKmtkmXR9TKc4//zNpiHpyrkoaSpqzwRnOnq/noczvH/eSvn4SmzEVTypVYezqmfobmpxsNTlhu1fjV8JVf3ezinfobmbGgenrIJk/UTZ5Zhn2qqNBFM1eGcehyas1/n4SmbMCPd4Xc032VeLX/8WActM5oGJILy7ywxD83lne9ya1WT9RNnnr410N8eNzIPzU0NntOwcZd1DsB/ZOqPv9Cr/rmnYeOukmQwVcf/61W1e2ReuTXxMvU0JH1U0nZJP5b0uqTfljRLUrukzvTcXLb/Rkldkg5JWlUWXyLplfSzzZKU4o2Snk7xvZIWlJVpS+/RKalt/A7dJlLWT5wPfqXAprWXs3juTDatvdzzBDYmXrk18TJNhEvaCuyOiO9I+ghwDvANoDci7pO0AWiOiDskLQaeBJYCc4EXgE9ExElJ+4DbgB8AzwGbI2KnpFuAT0fEVyW1AtdGxJckzQI6gAIQwAFgSUQcO1NbPRFuNvXkaVFFrRq36zQkzQR+B3gIICL+JSJ+CawBtqbdtgJr0/Ya4KmI6IuIN4AuYKmkOcDMiNgTxUz16KAypbq2AytSL2QV0B4RvSlRtAOrR2qzmU0tlX5Tpo1eluGp3wR6gIclvSTpO5LOBS6MiKMA6Xl22n8e8FZZ+SMpNi9tD44PKBMR/cB7wPnD1DWApPWSOiR19PT0ZDgkM6snXlQxebIkjQbgM8ADEXEl8CtgwzD7a4hYDBMfbZnTgYgtEVGIiEJLS8swTTOzeuWVW5Mjy+qpI8CRiNibXm+nmDTekTQnIo6moafusv0vKis/H3g7xecPES8vc0RSA3Ae0JvivzuozPczHZmZTSnVXrlViTyv8hqxpxERvwDeknRpCq0AXgN2AKXVTG3As2l7B9CaVkQtBBYB+9IQ1nFJy9N8xY2DypTqug54Mc17PA+slNScVmetTDEzs9zK8yqvrNdpfA34blo59VPgP1JMONskrQMOA9cDRMRBSdsoJpZ+4NaIOJnquRl4BDgb2JkeUJxkf0xSF8UeRmuqq1fSvcD+tN89EdE7ymM1M6uqerg/l+89ZWY2SWr5/ly+NbqZWY2ph1Vevo2Imdkkyvutczw8ZWZmHp6qZ7X+TXdmVr+cNHIoz8v1zCzfPKeRI/WwXM/M8s09jRzxTdnMrNqcNHKkHpbrmeWN5xAHctLIGd+UzWxyeQ5xIC+5NTMbwlT7YicvuTUzG4PRzCFOhaEsJw0zsyGMZg5xKgxlecmtmdkZZL3lx1RaDu85DTOzMarlu9dm5TkNM7NJMpWWw3t4ysxsHOT97rVZeXjKzMw8PGVmZuPPScNyZSqsgzerZU4alitTYR28WS3zRLjlwlRaB29Wy9zTsFzwbeHNaoOThuXCVFoHb1bLMiUNSW9KekXSy5I6UmyWpHZJnem5uWz/jZK6JB2StKosviTV0yVpsySleKOkp1N8r6QFZWXa0nt0SmobrwO3/PFt4c2qL9N1GpLeBAoR8W5Z7M+B3oi4T9IGoDki7pC0GHgSWArMBV4APhERJyXtA24DfgA8B2yOiJ2SbgE+HRFfldQKXBsRX5I0C+gACkAAB4AlEXHsTG31dRpmZpWbjOs01gBb0/ZWYG1Z/KmI6IuIN4AuYKmkOcDMiNgTxUz16KAypbq2AytSL2QV0B4RvSlRtAOrx9BmMzMbg6xJI4DvSTogaX2KXRgRRwHS8+wUnwe8VVb2SIrNS9uD4wPKREQ/8B5w/jB1DSBpvaQOSR09PT0ZD8nMzCqVdcntZyPibUmzgXZJPx5mXw0Ri2Hioy1zOhCxBdgCxeGpYdpmZmZjkKmnERFvp+du4BmK8xXvpCEn0nN32v0IcFFZ8fnA2yk+f4j4gDKSGoDzgN5h6jIzsyoYMWlIOlfSjNI2sBJ4FdgBlFYztQHPpu0dQGtaEbUQWATsS0NYxyUtT/MVNw4qU6rrOuDFNO/xPLBSUnNanbUyxczMrAqyDE9dCDyTVsc2AE9ExP+WtB/YJmkdcBi4HiAiDkraBrwG9AO3RsTJVNfNwCPA2cDO9AB4CHhMUhfFHkZrqqtX0r3A/rTfPRHRO4bjNTOzMfCt0c3MzLdGNzOz8eekYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpllThqSzpL0kqS/S69nSWqX1Jmem8v23SipS9IhSavK4kskvZJ+tlmSUrxR0tMpvlfSgrIybek9OiW1jcdBm5nZ6FTS07gNeL3s9QZgV0QsAnal10haDLQClwGrgW9LOiuVeQBYDyxKj9Upvg44FhEfB74J3J/qmgXcDSwDlgJ3lycnMzObXJmShqT5wBeA75SF1wBb0/ZWYG1Z/KmI6IuIN4AuYKmkOcDMiNgTEQE8OqhMqa7twIrUC1kFtEdEb0QcA9o5nWjMzGySZe1p/AVwO3CqLHZhRBwFSM+zU3we8FbZfkdSbF7aHhwfUCYi+oH3gPOHqcvMzKpgxKQh6Q+A7og4kLFODRGLYeKjLVPexvWSOiR19PT0ZGymmZlVKktP47PANZLeBJ4CPi/pceCdNOREeu5O+x8BLiorPx94O8XnDxEfUEZSA3Ae0DtMXQNExJaIKEREoaWlJcMhmZnZaIyYNCJiY0TMj4gFFCe4X4yIPwJ2AKXVTG3As2l7B9CaVkQtpDjhvS8NYR2XtDzNV9w4qEypruvSewTwPLBSUnOaAF+ZYmZmVgUNYyh7H7BN0jrgMHA9QEQclLQNeA3oB26NiJOpzM3AI8DZwM70AHgIeExSF8UeRmuqq1fSvcD+tN89EdE7hjabmdkYqPiBvn4UCoXo6OiodjPMzHJF0oGIKIy0n68INzOrA93vn+CLD+6h+/iJCX0fJw0zszqweVcn+9/sZfMLnRP6PmOZ0zAzsyq79K6d9PWfvoTu8b2HeXzvYRobpnFo09Xj/n7uaZiZ5dju26/imivm0jS9+Oe8afo01lwxl913XDUh7+ekYWaWY7NnNjGjsYG+/lM0Nkyjr/8UMxobmD2jaULez8NTZmY59+4Hfdyw7BK+vPRinth3mJ4JnAz3klszM/OSWzMzG39OGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmY2YNCQ1Sdon6UeSDkr6ryk+S1K7pM703FxWZqOkLkmHJK0qiy+R9Er62WZJSvFGSU+n+F5JC8rKtKX36JTUNp4Hb2ZmlcnS0+gDPh8RvwVcAayWtBzYAOyKiEXArvQaSYuBVuAyYDXwbUlnpboeANYDi9JjdYqvA45FxMeBbwL3p7pmAXcDy4ClwN3lycnMzCbXiEkjij5IL6enRwBrgK0pvhVYm7bXAE9FRF9EvAF0AUslzQFmRsSeKH7H7KODypTq2g6sSL2QVUB7RPRGxDGgndOJxszMJlmmOQ1JZ0l6Geim+Ed8L3BhRBwFSM+z0+7zgLfKih9JsXlpe3B8QJmI6AfeA84fpi4zM6uCTEkjIk5GxBXAfIq9hsuH2V1DVTFMfLRlTr+htF5Sh6SOnp6eYZpmZmZjUdHqqYj4JfB9ikNE76QhJ9Jzd9rtCHBRWbH5wNspPn+I+IAykhqA84DeYeoa3K4tEVGIiEJLS0slh2RmZhXIsnqqRdJH0/bZwO8BPwZ2AKXVTG3As2l7B9CaVkQtpDjhvS8NYR2XtDzNV9w4qEypruuAF9O8x/PASknNaQJ8ZYqZmVkVNGTYZw6wNa2AmgZsi4i/k7QH2CZpHXAYuB4gIg5K2ga8BvQDt0bEyVTXzcAjwNnAzvQAeAh4TFIXxR5Ga6qrV9K9wP603z0R0TuWAzYzs9FT8QN9/SgUCtHR0VHtZpiZ5YqkAxFRGGk/XxFuZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZWWZOGmZmlpmThpmZZeakYWZmmTlpmJlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpk5aZiZ1bDu90/wxQf30H38RLWbAjhpmJnVtM27Otn/Zi+bX+isdlMAaKh2A8zM7NddetdO+vpP/evrx/ce5vG9h2lsmMahTVdXrV3uaZiZ1aDdt1/FNVfMpWl68c900/RprLliLrvvuKqq7XLSMDOrQbNnNjGjsYG+/lM0Nkyjr/8UMxobmD2jqart8vCUmVmNeveDPm5YdglfXnoxT+w7TE8NTIYrIobfQboIeBT4GHAK2BIRfylpFvA0sAB4E/hiRBxLZTYC64CTwJ9ExPMpvgR4BDgbeA64LSJCUmN6jyXA/wO+FBFvpjJtwF2pOZsiYutw7S0UCtHR0ZH9X8DMzJB0ICIKI+2XZXiqH/jPEfFJYDlwq6TFwAZgV0QsAnal16SftQKXAauBb0s6K9X1ALAeWJQeq1N8HXAsIj4OfBO4P9U1C7gbWAYsBe6W1JyhzWZmNgFGTBoRcTQifpi2jwOvA/OANUDpU/9WYG3aXgM8FRF9EfEG0AUslTQHmBkRe6LYvXl0UJlSXduBFZIErALaI6I39WLaOZ1ozMxsklU0ES5pAXAlsBe4MCKOQjGxALPTbvOAt8qKHUmxeWl7cHxAmYjoB94Dzh+mLjMzq4LMSUPSbwB/A3w9It4fbtchYjFMfLRlytu2XlKHpI6enp5hmmZmZmORKWlImk4xYXw3Iv42hd9JQ06k5+4UPwJcVFZ8PvB2is8fIj6gjKQG4Dygd5i6BoiILRFRiIhCS0tLlkMyM7NRGDFppLmFh4DXI+K/l/1oB9CWttuAZ8virZIaJS2kOOG9Lw1hHZe0PNV546AypbquA15M8x7PAyslNacJ8JUpZmZmVZBlye3ngN3AKxSX3AJ8g+K8xjbgYuAwcH1E9KYydwI3UVx59fWI2JniBU4vud0JfC0tuW0CHqM4X9ILtEbET1OZm9L7AfxZRDw8Qnt7gJ9lPP5acwHwbrUbMc7q7Zjq7Xig/o6p3o4HJueYLomIEYdqRkwaNnkkdWRZJ50n9XZM9XY8UH/HVG/HA7V1TL6NiJmZZeakYWZmmTlp1JYt1W7ABKi3Y6q344H6O6Z6Ox6ooWPynIaZmWXmnoaZmWXmpDHBJP2VpG5Jr5bFfkvSHkmvSPqfkmam+EckPZziP5L0u2Vlvi/pkKSX02P2EG834SRdJOn/SHpd0kFJt6X4LEntkjrTc3NZmY2SulL7V5XFl6Rj7ZK0OV2/k+fjyeU5knR+2v8DSd8aVFfuztEIx5PXc/T7kg6kc3FA0ufL6prccxQRfkzgA/gd4DPAq2Wx/cC/S9s3Afem7VuBh9P2bOAAMC29/j5QqIHjmQN8Jm3PAP4ZWAz8ObAhxTcA96ftxcCPgEZgIfAT4Kz0s33Ab1O8XcxO4OqcH09ez9G5wOeArwLfGlRXHs/RcMeT13N0JTA3bV8O/Lxa58g9jQkWEX9P8YLFcpcCf5+224E/TNuLKd5mnojoBn4J1MTa7JKYnLseT5rxOp7JbfXwKj2miPhVRPxfYMA3/OT1HJ3peGrJKI7ppYgo3ULpINCk4l03Jv0cOWlUx6vANWn7ek7fX+tHwBpJDSregmUJA++99XDqUv+XagwTDKaJu+txVYzxeEryeI7OJK/naCR5P0d/CLwUEX1U4Rw5aVTHTRS/zOoAxa7pv6T4X1E86R3AXwD/SPFWLAA3RMSngH+bHl+Z1BYPoom96/GkG4fjgfyeozNWMUQsD+doOLk+R5Iuo/gldX9cCg2x24SeIyeNKoiIH0fEyohYAjxJcVyciOiPiD+NiCsiYg3wUaAz/ezn6fk48ARVHBLRxN/1eFKN0/Hk+RydSV7P0Rnl+RxJmg88A9wYET9J4Uk/R04aVVBasSFpGsXvP/8f6fU5ks5N278P9EfEa2m46oIUnw78AcUhrmq0fTLuejxpxut4cn6OhpTjc3SmenJ7jiR9FPhfwMaI+IfSzlU5RxM5y+5HQLEncRT4kOKngnXAbRRXS/wzcB+nL7JcAByiOCn2AsW7TkJxNcgB4J8oToL9JWnFThWO53MUu7//BLycHv+e4jct7qLYM9oFzCorcyfF3tQhylZ2UJzkfzX97Fulf4c8Hk8dnKM3KS7Y+CD9P12c83P0a8eT53NE8cPlr8r2fRmYXY1z5CvCzcwsMw9PmZlZZk4aZmaWmZOGmZll5qRhZmaZOWmYmVlmThpmZpaZk4aZmWXmpGFmZpn9f/2Yi6a8X2tzAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "yearly_incidence.plot(style='*')" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2020 221186\n", + "2021 376290\n", + "2002 516689\n", + "2018 542312\n", + "2017 551041\n", + "1996 564901\n", + "2019 584066\n", + "2015 604382\n", + "2000 617597\n", + "2001 619041\n", + "2012 624573\n", + "2005 628464\n", + "2006 632833\n", + "2011 642368\n", + "1993 643387\n", + "1995 652478\n", + "1994 661409\n", + "1998 677775\n", + "1997 683434\n", + "2014 685769\n", + "2013 698332\n", + "2007 717352\n", + "2008 749478\n", + "1999 756456\n", + "2003 758363\n", + "2004 777388\n", + "2016 782114\n", + "2010 829911\n", + "1992 832939\n", + "2009 842373\n", + "dtype: int64" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "yearly_incidence.sort_values()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAAEICAYAAACQzXX2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEaZJREFUeJzt3XuQZGV5x/Hvwy7owgCiC0MFMEPQGImrImPwUsFZsCwV1BJNvCCBlGZNeSNmUxZJqWgSlcRgaSxIakWUEuOoYEoB46Wio+IF2VXLFQlqBBGIRGJAl6Cw8uSP9wyZXXd2zlx6pp/N91M1Nae7T/d5nj7dv3P67dPdkZlIkmrZa6ULkCTNn+EtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJU0OpB3fDatWtzbGxsh/PuvPNO9ttvv0EtclnYw3Cwh+FgD0tvy5Ytt2XmwXPNN7DwHhsbY/PmzTucNzU1xcTExKAWuSzsYTjYw3Cwh6UXET/oM5/DJpJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUN7EM6kn7V2FlX3De9cd12zphxepBuOOekZVmOlo973pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUUO/wjohXR8Q1EfGtiPhARNx/kIVJkmbXK7wj4jDgVcB4Zj4CWAU8f5CFSZJmN59hk9XAmohYDewL3DKYkiRJc4nM7DdjxJnAm4C7gE9l5qm7mGcDsAFgdHT02MnJyR0u37ZtGyMjI4uteUXZw3Co2sPWm++4b3p0Ddx61/Isd91hBw7kdquuh5mGrYf169dvyczxuebrFd4RcRBwKfA84Hbgw8AlmXnxbNcZHx/PzZs373De1NQUExMTcy5vmNnDcKjaw9hZV9w3vXHdds7dunpZlnvDOScN5HarroeZhq2HiOgV3n2HTZ4MXJ+ZP87Me4CPAE9YTIGSpIXrG943Ao+LiH0jIoATgWsHV5YkaXd6hXdmXgVcAnwN2Npdb9MA65Ik7UbvAbfMPBs4e4C1SJJ68hOWklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklRQ7/COiAdExCUR8W8RcW1EPH6QhUmSZrd6HvO+A/hEZj43IvYB9h1QTZKkOfQK74g4ADgeOAMgM+8G7h5cWZKk3YnMnHumiEcDm4BvA48CtgBnZuadO823AdgAMDo6euzk5OQOt7Nt2zZGRkaWpvIVYg/DoWoPW2++477p0TVw610rWMwS6NPDusMOXJ5iFmjYHkvr16/fkpnjc83XN7zHga8AT8zMqyLiHcBPM/N1s11nfHw8N2/evMN5U1NTTExMzLm8YWYPw6FqD2NnXXHf9MZ12zl363xGLodPnx5uOOekZapmYYbtsRQRvcK77xuWNwE3ZeZV3elLgMcstDhJ0uL0Cu/M/BHww4h4WHfWibQhFEnSCpjPa7ZXAu/vjjT5PvCHgylJkjSX3uGdmd8A5hyHkSQNnp+wlKSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSCDG9JKsjwlqSC5hXeEbEqIr4eEZcPqiBJ0tzmu+d9JnDtIAqRJPXXO7wj4nDgJOCCwZUjSeojMrPfjBGXAG8B9gf+LDNP3sU8G4ANAKOjo8dOTk7ucPm2bdsYGRlZbM0ryh6Gw2J62HrzHUtczcKMroFb71rpKhbHHnZt3WEHLvi669ev35KZ43PNt7rPjUXEycB/ZuaWiJiYbb7M3ARsAhgfH8+JiR1nnZqaYufzqrGH4bCYHs4464qlLWaBNq7bzrlbez0Fh5Y97NoNp04s6e3tSt9hkycCz4yIG4BJ4ISIuHhgVUmSdqtXeGfmn2fm4Zk5Bjwf+ExmvmiglUmSZuVx3pJU0LwHejJzCpha8kokSb255y1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBRneklSQ4S1JBfUK74g4IiI+GxHXRsQ1EXHmoAuTJM1udc/5tgMbM/NrEbE/sCUiPp2Z3x5gbZKkWfTa887M/8jMr3XTPwOuBQ4bZGGSpNlFZs7vChFjwOeBR2TmT3e6bAOwAWB0dPTYycnJHa67bds2RkZGFlHuyrOH4bCYHrbefMcSV7Mwo2vg1rtWuorFsYddW3fYgQu+7vr167dk5vhc880rvCNiBPgc8KbM/Mju5h0fH8/NmzfvcN7U1BQTExO9lzeM7GE4LKaHsbOuWNpiFmjjuu2cu7XvyOVwsoddu+GckxZ83YjoFd69jzaJiL2BS4H3zxXckqTB6nu0SQDvBq7NzLcNtiRJ0lz67nk/ETgNOCEivtH9PX2AdUmSdqPXQE9mXgnEgGuRJPXkJywlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqSDDW5IKMrwlqaCh/Nnnlfx178X86vNiLGfPG9dt54wZy6vY8849SP/fuOctSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQUZ3pJUkOEtSQX1Du+IeGpEXBcR34uIswZZlCRp93qFd0SsAs4DngYcDbwgIo4eZGGSpNn13fP+HeB7mfn9zLwbmASeNbiyJEm7E5k590wRzwWempkv6U6fBhyXma/Yab4NwIbu5MOA63a6qbXAbYsteoXZw3Cwh+FgD0vv1zPz4LlmWt3zxmIX5/1K6mfmJmDTrDcSsTkzx3sucyjZw3Cwh+FgDyun77DJTcARM04fDtyy9OVIkvroG95XAw+NiCMjYh/g+cDHBleWJGl3eg2bZOb2iHgF8ElgFXBhZl6zgOXNOqRSiD0MB3sYDvawQnq9YSlJGi5+wlKSCjK8Jakgw1uSChr68I6IEyLiyJWuYzGq91C9/ml7Qh/2MByGoYehfcOy++6USeB24F7g7Mz83MpWNT/Ve6he/7Q9oQ97GA7D1MPQ7HlHxOERccCMs54HXJqZx9PurBdExONXprp+qvcwn/ojYlefuh0K1dcD2MOwGOYeVjy8I+LhEfFx4ErgLyNi+guvfg7s201/iPbdA48bxtCo3sNC6s8hfMlWfT2APQyLCj2sSHhHxH4zTj4auCkzx4DPAH/Xnf8T4BcRsX9m/gT4DjAKjC1jqbOq3sNu6v8sv1r/SFf/dxmS+qdVXw9gD9jDgixbeEfEQRHx3oi4GjgnIg7utlaPBL7Y7c19DLg9Ik6i3Sn7A+u6m/gu7du/7l6umndWvYfd1L9uRv0f3UX9j+xu4jsrWf+06usB7KG7CXtYhOXc8z4e2A48nfYthX8BHNDVcOiMl+EXAS8Evgr8jPYDEGTml4ETgJ8uY807q97DbPWvokb906qvB7AHe1iszFzSP1oQvBT4HO27vdd2538IeFU3fSRwTnf5Y2njSqu6y0aAH3e3cxhwLfAK4D3A+cC+S13zntZD9fr3pD7swR4G9TeIPe+TgWcCbwQeD/xtd/6ngSd00z8EvgA8LTOvpm3x1gNk5jbgKuCxmXkzcBptTOlHwGsz838GUPOe1kP1+vekPuzBHgai748x7GD6aIOIeCztpcQXgCsy8xfAbwLfz8zPRMT1wFsj4inAFuDZEbE2M2+LiO8Cd0bEg4F3Ai+KiENo3xX+X7SXJ2TmZmDzIvvc43qoXv+e1kfXiz34nF42897znnEHHQ9cSDt05snAW7pZ7gW+ExFrMvN62suLR9LGiW6hHScJ8EvaS5C9gEtpX8t4KnAssCkz711wV3P3sKrr4Um0lz2leujqyoiYoOg66Po4oHofEfGg7v8TgPcW7eGQiHhQRIzTxnYr9rBP5ef0gvQZW6Ed1/jHwD8BfwTsDfwJ8PLu8oOAbwLH0O6Ec4Cx7rKTaXfA2m56K3AgbZD/48A+M5az16DGh4D9gJfQVshG2psS1XrYH7iC9n3qAK+uVP+Mx9LpwL/SPuxQqg/+71PJv0cbE52i/V5rtcfSfsAZtGGDO4CTCvawN/Ay4DLgH4CHAGdW6mExf3PueUfEocDlwATwPtpg/im0caPtAJn538BHgVd1D4ZDgId3N/F54EnA3Zl5OfBu4BLgPNpW/p7pZeXg9lT3o4XFCcC7gKcAz6G9KXFvhR46a4D7AUdFxFrgKNpeQon6I2Jv4BrgucBbM/M53UXHzFj+UPeRmRkRBwK/D7w9Mycy8zranlmJHiLiIbQhhROB1wI3AzfS3rAr83gCXk57Tr+d9pu6p3Snf1moh4XrsXVbQ/ul+OnTZ9AG+08Hvjrj/F8DbummX0776OhB3fUvAx48Y961y72VAh4wY/o1tBV6arEeTgfeCrwOeDHwDODqKvV3y/0IcOpO5z0PuKpKH7S9vb/qpqf3xE+p0gMtoO834/SFtA3qs6r00C3zMuAPuukXA6/sHktlntOL+esz5v1z4KvdgevQXoYcl5kX0fYADwXIzFuAayLiuMw8D/ge8EHajxdfmZk3Tt9gZt7WY7lLKjNvj4gDIuK9tGGTtbSVd1REjA5zDzPu+72Af6ftvZ6QmZcBRw57/Tu5EDg7Is6NiKmIeD3wFdpvpB7S1TbsfdwG/G5EnApsiYiLaHt7v9W9IhrqHjLzl9nexJsesw/aFy1dRlsPJZ7TwL8Ap0fEh4E3AI8CvkXr4eCurmHvYeHmsZWb3sO4CDizm34f8Dfd9AOBC+i2ZLTxqEcA91/pLdROfbyM9vJwE20M/EvA62kP4KHuAfgwba/pQNrxqq+lPVhfV2wdfJL2YYgjaE+kM4EvF1oPD+3q/XvaXtwLgbfRjgN+DW0jO9Q97NTP14FTuumLKz2nu+fwhbSdsTcAZwPXdY+vUuthvn+9jzbJzIyIw4FDaVs8ujuLiLicNqa8KrstWWbek5nfysyf913GcsjM87O923w+bZzyH2kvoT7GEPcQESO0Pb53AZ+gvVN+HPAC4KCIuIwhrn8nz87MN2fmD4E30w7jeicF1kPnRtrHoVdnG1e9vDvvctobshV6ICKmn/9X0t7sA3hTu6jM4+loYCrbXvN7aDs3H6DOY2nh5rmVewbtC1r2pm3xnkq7s14IPGalt0Tz7OUI4FPAg7rTLwKOWem6dlPv/Wmvei6gvdE0AXxqxuVDXf9u+vp12ptJD6zUB+3j0Vu66QfQXkEcU6mHrtZ9aRvOU3Y6/9Rh76HLnj8FLuhOr6XtWB5ZbT0s5G9eP8YQEV8EfgO4gXZs5Bsz85u9b2CFdUcJnEjb2BxNGzo5LzPv2e0Vh1D3IYJTgMnM/NFK1zMfEXE/2ob/NOC3aYd5nZ+Z21e0sHmKiDfRng/H0HYEzs62J15KRFwHvD4zPzj9OY6VrqmviDiK9jy+m7Yu/hn462yfiNyj9Q7v7jCvs4HrgYuze8OjkohYTft+g1/Qeij30ikiVgH3VnqC7UpEvJR2mOb7Kq6HaRHxMOAHFXuY8YG7R9PeBN9e8XHV7cg8FPhSZt610vUsl6H9GTRJ0uxW/Jd0JEnzZ3hLUkGGtyQVZHhLUkGGtyQVZHhLUkGGtyQV9L8Giii4LM1vYwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "yearly_incidence.hist(xrot=20)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb deleted file mode 100644 index 0bbbe371b01e359e381e43239412d77bf53fb1fb..0000000000000000000000000000000000000000 --- a/module3/exo2/exercice.ipynb +++ /dev/null @@ -1,25 +0,0 @@ -{ - "cells": [], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.6.3" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} -