"Mon ordinateur m'indique que $\\pi$ vaut approximativement"
"Mon ordinateur m'indique que $\\pi$ vaut approximativement"
]
]
},
},
...
@@ -49,13 +36,8 @@
...
@@ -49,13 +36,8 @@
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {},
"source": [
"source": [
"## En utilisant la méthode des aiguilles de Buffon"
"## En utilisant la méthode des aiguilles de Buffon\n",
]
"\n",
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :"
"Mais calculé avec la __méthode__ des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme __approximation__ :"
]
]
},
},
...
@@ -88,13 +70,8 @@
...
@@ -88,13 +70,8 @@
"cell_type": "markdown",
"cell_type": "markdown",
"metadata": {},
"metadata": {},
"source": [
"source": [
"## Avec un argument \"fréquentiel\" de surface"
"## Avec un argument \"fréquentiel\" de surface\n",
]
"\n",
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n",
"Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction\n",
"sinus se base sur le fait que si X ∼ U(0, 1) et Y ∼ U(0, 1) alors $P[X^2 + Y^2 ≤ 1] = \\pi/4$ (voir\n",
"sinus se base sur le fait que si X ∼ U(0, 1) et Y ∼ U(0, 1) alors $P[X^2 + Y^2 ≤ 1] = \\pi/4$ (voir\n",
"[méthode de Monte Carlo](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80) sur Wikipedia). Le code suivant illustre ce fait :"
"[méthode de Monte Carlo](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80) sur Wikipedia). Le code suivant illustre ce fait :"