diff --git a/module3/exo2/exercice.ipynb b/module3/exo2/exercice.ipynb index 69b1f714a6f50e5a139ca922614258816b7f07e5..9e4474d0ba4413ad1ac1396709506f84e705c0fc 100644 --- a/module3/exo2/exercice.ipynb +++ b/module3/exo2/exercice.ipynb @@ -44,36 +44,1033 @@ "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", - "0 202422 7 11317 7330 15304 17 11 23 \n", - "1 202421 7 9807 6926 12688 15 11 19 \n", - "2 202420 7 13661 10209 17113 20 15 25 \n", - "3 202419 7 10083 6413 13753 15 9 21 \n", - "4 202418 7 13438 9514 17362 20 14 26 \n", - "\n", - " geo_insee geo_name \n", - "0 FR France \n", - "1 FR France \n", - "2 FR France \n", - "3 FR France \n", - "4 FR France \n" - ] + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
\n", + "
" + ], + "text/plain": [ + "Empty DataFrame\n", + "Columns: [week, indicator, inc, inc_low, inc_up, inc100, inc100_low, inc100_up, geo_insee, geo_name]\n", + "Index: []" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "print(raw_data.head())" + "raw_data[raw_data.isnull().any(axis=1)]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
0202422711317733015304171123FRFrance
120242179807692612688151119FRFrance
22024207136611020917113201525FRFrance
320241971008364131375315921FRFrance
4202418713438951417362201426FRFrance
52024177153031121919387231729FRFrance
62024167181381354022736272034FRFrance
72024157249291731532543372648FRFrance
82024147161811254419818241929FRFrance
92024137183221420622438272133FRFrance
10202412712818912816508191325FRFrance
112024117159731240019546241929FRFrance
122024107143011076117841211626FRFrance
132024097143371087117803211626FRFrance
142024087158991199119807241830FRFrance
15202407711294822614362171222FRFrance
16202406712174902015328181323FRFrance
172024057881461101151813917FRFrance
1820240479504656612442141018FRFrance
19202403769484633926310713FRFrance
20202402771254852939811814FRFrance
21202401713305921417396201426FRFrance
22202352711636735415918181224FRFrance
23202351769124227959710614FRFrance
242023507879962151138313917FRFrance
252023497781753621027212816FRFrance
26202348773514749995311715FRFrance
27202347765374277879710713FRFrance
2820234675229297374858511FRFrance
2920234575007267573398412FRFrance
.................................
17181991267176081130423912312042FRFrance
17191991257161691070021638281838FRFrance
17201991247161711007122271281739FRFrance
1721199123711947767116223211329FRFrance
1722199122715452995320951271737FRFrance
1723199121714903897520831261636FRFrance
17241991207190531274225364342345FRFrance
17251991197167391124622232291939FRFrance
17261991187213851388228888382551FRFrance
1727199117713462887718047241632FRFrance
17281991167148571006819646261834FRFrance
1729199115713975978118169251832FRFrance
1730199114712265768416846221430FRFrance
173119911379567604113093171123FRFrance
1732199112710864733114397191325FRFrance
17331991117155741118419964271935FRFrance
17341991107166431137221914292038FRFrance
1735199109713741878018702241533FRFrance
1736199108713289881317765231531FRFrance
1737199107712337807716597221529FRFrance
1738199106710877701314741191226FRFrance
1739199105710442654414340181125FRFrance
17401991047791345631126314820FRFrance
17411991037153871048420290271836FRFrance
17421991027162771104621508292038FRFrance
17431991017155651027120859271836FRFrance
17441990527193751329525455342345FRFrance
17451990517190801380724353342543FRFrance
1746199050711079666015498201228FRFrance
17471990497114302610205FRFrance
\n", + "

1748 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202422 7 11317 7330 15304 17 11 \n", + "1 202421 7 9807 6926 12688 15 11 \n", + "2 202420 7 13661 10209 17113 20 15 \n", + "3 202419 7 10083 6413 13753 15 9 \n", + "4 202418 7 13438 9514 17362 20 14 \n", + "5 202417 7 15303 11219 19387 23 17 \n", + "6 202416 7 18138 13540 22736 27 20 \n", + "7 202415 7 24929 17315 32543 37 26 \n", + "8 202414 7 16181 12544 19818 24 19 \n", + "9 202413 7 18322 14206 22438 27 21 \n", + "10 202412 7 12818 9128 16508 19 13 \n", + "11 202411 7 15973 12400 19546 24 19 \n", + "12 202410 7 14301 10761 17841 21 16 \n", + "13 202409 7 14337 10871 17803 21 16 \n", + "14 202408 7 15899 11991 19807 24 18 \n", + "15 202407 7 11294 8226 14362 17 12 \n", + "16 202406 7 12174 9020 15328 18 13 \n", + "17 202405 7 8814 6110 11518 13 9 \n", + "18 202404 7 9504 6566 12442 14 10 \n", + "19 202403 7 6948 4633 9263 10 7 \n", + "20 202402 7 7125 4852 9398 11 8 \n", + "21 202401 7 13305 9214 17396 20 14 \n", + "22 202352 7 11636 7354 15918 18 12 \n", + "23 202351 7 6912 4227 9597 10 6 \n", + "24 202350 7 8799 6215 11383 13 9 \n", + "25 202349 7 7817 5362 10272 12 8 \n", + "26 202348 7 7351 4749 9953 11 7 \n", + "27 202347 7 6537 4277 8797 10 7 \n", + "28 202346 7 5229 2973 7485 8 5 \n", + "29 202345 7 5007 2675 7339 8 4 \n", + "... ... ... ... ... ... ... ... \n", + "1718 199126 7 17608 11304 23912 31 20 \n", + "1719 199125 7 16169 10700 21638 28 18 \n", + "1720 199124 7 16171 10071 22271 28 17 \n", + "1721 199123 7 11947 7671 16223 21 13 \n", + "1722 199122 7 15452 9953 20951 27 17 \n", + "1723 199121 7 14903 8975 20831 26 16 \n", + "1724 199120 7 19053 12742 25364 34 23 \n", + "1725 199119 7 16739 11246 22232 29 19 \n", + "1726 199118 7 21385 13882 28888 38 25 \n", + "1727 199117 7 13462 8877 18047 24 16 \n", + "1728 199116 7 14857 10068 19646 26 18 \n", + "1729 199115 7 13975 9781 18169 25 18 \n", + "1730 199114 7 12265 7684 16846 22 14 \n", + "1731 199113 7 9567 6041 13093 17 11 \n", + "1732 199112 7 10864 7331 14397 19 13 \n", + "1733 199111 7 15574 11184 19964 27 19 \n", + "1734 199110 7 16643 11372 21914 29 20 \n", + "1735 199109 7 13741 8780 18702 24 15 \n", + "1736 199108 7 13289 8813 17765 23 15 \n", + "1737 199107 7 12337 8077 16597 22 15 \n", + "1738 199106 7 10877 7013 14741 19 12 \n", + "1739 199105 7 10442 6544 14340 18 11 \n", + "1740 199104 7 7913 4563 11263 14 8 \n", + "1741 199103 7 15387 10484 20290 27 18 \n", + "1742 199102 7 16277 11046 21508 29 20 \n", + "1743 199101 7 15565 10271 20859 27 18 \n", + "1744 199052 7 19375 13295 25455 34 23 \n", + "1745 199051 7 19080 13807 24353 34 25 \n", + "1746 199050 7 11079 6660 15498 20 12 \n", + "1747 199049 7 1143 0 2610 2 0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 23 FR France \n", + "1 19 FR France \n", + "2 25 FR France \n", + "3 21 FR France \n", + "4 26 FR France \n", + "5 29 FR France \n", + "6 34 FR France \n", + "7 48 FR France \n", + "8 29 FR France \n", + "9 33 FR France \n", + "10 25 FR France \n", + "11 29 FR France \n", + "12 26 FR France \n", + "13 26 FR France \n", + "14 30 FR France \n", + "15 22 FR France \n", + "16 23 FR France \n", + "17 17 FR France \n", + "18 18 FR France \n", + "19 13 FR France \n", + "20 14 FR France \n", + "21 26 FR France \n", + "22 24 FR France \n", + "23 14 FR France \n", + "24 17 FR France \n", + "25 16 FR France \n", + "26 15 FR France \n", + "27 13 FR France \n", + "28 11 FR France \n", + "29 12 FR France \n", + "... ... ... ... \n", + "1718 42 FR France \n", + "1719 38 FR France \n", + "1720 39 FR France \n", + "1721 29 FR France \n", + "1722 37 FR France \n", + "1723 36 FR France \n", + "1724 45 FR France \n", + "1725 39 FR France \n", + "1726 51 FR France \n", + "1727 32 FR France \n", + "1728 34 FR France \n", + "1729 32 FR France \n", + "1730 30 FR France \n", + "1731 23 FR France \n", + "1732 25 FR France \n", + "1733 35 FR France \n", + "1734 38 FR France \n", + "1735 33 FR France \n", + "1736 31 FR France \n", + "1737 29 FR France \n", + "1738 26 FR France \n", + "1739 25 FR France \n", + "1740 20 FR France \n", + "1741 36 FR France \n", + "1742 38 FR France \n", + "1743 36 FR France \n", + "1744 45 FR France \n", + "1745 43 FR France \n", + "1746 28 FR France \n", + "1747 5 FR France \n", + "\n", + "[1748 rows x 10 columns]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "data = raw_data.dropna().copy()" + "data = raw_data.dropna().copy()\n", + "data" ] }, { @@ -110,7 +1107,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -123,97 +1120,44 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXe8HUXdP/7+nHPuvemVFEgCoQRCgBAgxFAU6RFQQEBjAxWf8PCA3ccf6KOiD1HQR/ABH1AEJPhVqoWOQOgQEy4lpJMb0nvvt50zvz92Z3d22s6edk/u3ffrldxz5szOzO7OzGc+nRhjSJEiRYoUKURkOnoAKVKkSJGi9pAShxQpUqRIoSAlDilSpEiRQkFKHFKkSJEihYKUOKRIkSJFCgUpcUiRIkWKFApS4pAiRYoUKRSkxCFFihQpUihIiUOKFClSpFCQ6+gBFIv99tuPjRw5sqOHkSJFihT7FN5+++1NjLFBcfX2WeIwcuRINDY2dvQwUqRIkWKfAhEtd6mXipVSpEiRIoWClDikSJEiRQoFKXFIkSJFihQKUuKQIkWKFCkUpMQhRYoUKVIoSIlDihQpUqRQkBKHFClSpEihICUOKfYZbNzZgn/OW9fRw0iRoksgJQ4p9hl88e6ZuOpPb6O5Ld/RQ0mRotMjJQ4p9hms2LIHAFBgrINHkiJF50dKHFKkSJEihYKUOKRIkSJFCgWxxIGIuhHRLCKaTUTziOinfvkNRLSaiN7z/50nXHM9ETUR0SIiOlcoP4GI5vi/3UZE5Jc3ENFDfvlMIhpZ/ltNkSJFihSucOEcWgCcwRg7FsA4AJOIaKL/262MsXH+v6cBgIjGAJgM4CgAkwDcQURZv/6dAKYAGOX/m+SXXwlgK2PsMAC3Ari59FtLkSJFihTFIpY4MA+7/K91/j+bRvBCAA8yxloYY0sBNAGYQET7A+jDGJvBGGMA7gdwkXDNNP/zowDO5FxFihQyUn10ihSVh5POgYiyRPQegA0AnmeMzfR/upaI3ieie4mov182DMBK4fJVftkw/7NcHrmGMdYOYDuAgZpxTCGiRiJq3Lhxo9MNpuh8SGlDihSVhxNxYIzlGWPjAAyHxwUcDU9EdCg8UdNaAL/2q+tO/MxSbrtGHsddjLHxjLHxgwbFJjJK0cnAeUmWgHVYsHYHFq3bWaERpUjReZHIWokxtg3AywAmMcbW+0SjAOAPACb41VYBGCFcNhzAGr98uKY8cg0R5QD0BbAl0Z2k6DJIwjl84n9fw7m/ebViY0mRorPCxVppEBH18z93B3AWgIW+DoHjYgBz/c+PA5jsWyAdDE/xPIsxthbATiKa6OsTLgfwmHDNFf7nSwG8yJIcD1N0KaQzI0WKysMlh/T+AKb5FkcZAA8zxp4koj8R0Th4B7llAK4CAMbYPCJ6GMB8AO0ArmGM8XgHVwO4D0B3AM/4/wDgHgB/IqImeBzD5DLcW4rOipQ4pEhRccQSB8bY+wCO05R/yXLNVABTNeWNAI7WlDcDuCxuLClSAABLqUOKFBVH6iGdYp8DY8BvX1yMHz82N75yihQpikJKHFLsc2AA/ue5D3D/jOUdPZQUKTotUuKQYp9DaquQIkXlkRKHFPscUtKQIkXlkRKHFPsMuKdkLTEOby7ZhJ8/vaCjh5EiRdmREocU+xxqyVrp83+Yibte/bCjh5EiRdmREocU+x5qhzakSNFpkRKHFPscUtqQIkXlkRKHFPscaknnkCJFZ0VKHFLsc6glnUOKFJ0VKXFIsc8h5RxSpKg8UuJQo2jasAurt+3t6GHUJFLakCJF5eESlTVFB+CsW14BACy76fwOHkntIfWQTpGi8kg5hxT7DHha8ZQ2pEhReaTEIUWKFClSKEiJQ4p9Dinn0PnAGMOjb6/C2u2pnq1WkBKHFPscUlPWzodVW/fie4/MxjcffK+jh5LCR0ocUuxzSDmHzof2gvdSl27a3cEjScERSxyIqBsRzSKi2UQ0j4h+6pcPIKLniWix/7e/cM31RNRERIuI6Fyh/AQimuP/dhv5GkYiaiCih/zymUQ0svy3mqKzoKvShgv/7w2cevOLHT2MioBboKWEv3bgwjm0ADiDMXYsgHEAJhHRRADXAZjOGBsFYLr/HUQ0BsBkAEcBmATgDiLK+m3dCWAKgFH+v0l++ZUAtjLGDgNwK4Cby3BvZcPby7firWVbOnoYKXx0VVPW2Su3YdXWzi6T75rvthYRSxyYh13+1zr/HwNwIYBpfvk0ABf5ny8E8CBjrIUxthRAE4AJRLQ/gD6MsRnMW933S9fwth4FcCbnKmoBl9z5Ji773YyOHkYKH+n20fnA32kXpfs1CSedAxFlieg9ABsAPM8YmwlgCGNsLQD4fwf71YcBWClcvsovG+Z/lssj1zDG2gFsBzCwmBtK0fmRbiCdD+k7rT04EQfGWJ4xNg7AcHhcwNGW6roTP7OU266JNkw0hYgaiahx48aNccNO0ckQTpJ0J+l8YML/KWoBiayVGGPbALwMT1ew3hcVwf+7wa+2CsAI4bLhANb45cM15ZFriCgHoC8ARcjPGLuLMTaeMTZ+0KBBSYaeooOwdXcrdja3lbXNznzKfHHhemzZ3drRw+gwdFV9Ui3CxVppEBH18z93B3AWgIUAHgdwhV/tCgCP+Z8fBzDZt0A6GJ7ieZYvetpJRBN9fcLl0jW8rUsBvMhqcJb85LG52LSrpaOHsU/huP9+HhN/Pt2p7n1vLMXPnpgfW6/mJgbKs6ntbmnHV+9rxJf/OKsMI9q3wB9fLb7brgoXzmF/AC8R0fsA3oKnc3gSwE0AziaixQDO9r+DMTYPwMMA5gN4FsA1jLG839bVAO6Gp6ReAuAZv/weAAOJqAnAd+BbPtUaps1YjhufjN+8bGhpz2POqu1lGtG+gd2t+fhKAG54Yj7ufWNpbL3aOzaUNqZCgeGNpk3Bxti0YZe1fmdEqpCuPcRGZWWMvQ/gOE35ZgBnGq6ZCmCqprwRgKKvYIw1A7jMYbwdjrZCabP3Z0/Mx59nrsCr/3k6DhzYo0yj6hpozRcAACu37OngkZQX97y+FFOfXoDfft5bZu0lzrF9ESlRqD2kHtJJUeIknrPa4xq27um6cuVi0dLuEYfr/z6ng0eiopRpsWyz5xW8xs/fke+KxIErpFMqUTNIiUNClBrXh1vcpEugeDTkam/alrKpcY8eThO6InHg6Lp3XnuovVVW4yj5YBPkJEiXQbGoReJQCgjJ81TsamnHtx96D9s6CQca3Hu6LGoGnWuVVQGl7umcc+jCh8OS0ZDLxleqMkp5nSHnYG5FDkh3/4xl+Pu7q3HnK0tK6Ll2kJ6Vag8pcUgI2wJ2QSbw5EpXQ7EYNaRXRw9BQSnTIhA1GhpZuWUPTv+fl7X9ZWsnykxJYKkTXM0hJQ4Jkc2Uthh5yCgb57DX0fSzq2HiIQP8v50rskrcnND51hT8yplOQhw4UnFr7SAlDgmRy5b2yMJTornOCwvWl9RHZ0UxsvlqoRRDBRexkgxOSEo8q9QMUie42kNKHBKirsTVmEkV0iWjs2WC43OikEARFRCSTsY5pKgdpMQhIXLZEhejZLaYIjlqka6WQ+eQZE7ww0Wn4xxq8N12VaTEISGymdIeGV/Mne30W02U0w+guS2Pkdc9hb/MXBGUNW3YVdUQJ5kM1zkkFyt1FoU0R7ouagcpcUiIuhI5h1qWm+8r+Mnj88rW1rY9XsTY37zwQVB21i2v4JO/fb1sfQCexdHvNGanK7fswV2vfgjA813QQTdVOCHJdBLWIfSQ7uCBpAgQG1spRRSlWitxxiNdBMlRy6fKuPf51fvewuINu/CpYw/AAf26B+WzV20LPt8/Y7lzf4VOpnJIFdK1h5RzSIi6kq2VkosQOhN2t7Tjf/65CK1+nKQkKDhcwhjDSws3gDFW1bwIcYSLcwVyLdLmuXLoz58/xV5fa+iaq6G2kRKHhCj1pEaBzqFr4rbpi/Hbl5rwcOPK+MoS2h2ow9/eWY2v3PcWHpi1EpffOzO2frlO3tv2tOF7j8zGnlaDaIif9KXyYhjRva35YP50EqlSiK66MGoQKXGoMqiTmrI2t+Vx45PzjXJzDh5ZtS2fnHPIOzyyDTs9h7Hlm3dj7uodifsoFrdNX4xH314VUWyL4JyF7LRWDHE68sfPoj3fuZzg+HqoZdFhV0NKHJKiTLGVOtsSeHDWCtz9+lLcPn2xU/1iaKOLH0C9H5SvNSHxKfV9cDEhGTZrs46guM2dJ0XqPApp/y/z8lt0tpwd+yJS4pAQZQrK2uk4B56gps3leF8kXExYA+LgqNMo19ZqEhspv0sVSt3bOwdpCJ9Pe4Hhv5+cj8vv7XqpUmsNKXFIiFI39dBD2lynk0gKyg4X4tCQTUYcykXKPohJ7WlSIJs4DVd0EsYB8pvYsbetg8aRgiOWOBDRCCJ6iYgWENE8IvqmX34DEa0movf8f+cJ11xPRE1EtIiIzhXKTyCiOf5vt5G/MoiogYge8stnEtHI8t9qeZCG7LYjbq8rRSGfd3j4dTmvg2J0GqVg9krPJNV0/3v8YIry76Xu7aWKlbbsbq1JEY7Lu05RWbhwDu0AvssYOxLARADXENEY/7dbGWPj/H9PA4D/22QARwGYBOAOIuIB+O8EMAXAKP/fJL/8SgBbGWOHAbgVwM2l31plULpYqXMqpF0ROgEmv38XnQM3NXbVOZT74G1qb2+bRxzk2y7d+q20Bj5684v46C9fKm0QZYD8XJLEmUpRGcQSB8bYWsbYO/7nnQAWABhmueRCAA8yxloYY0sBNAGYQET7A+jDGJvBvJ3hfgAXCddM8z8/CuBMKnXWVwglcw5pbKWi4cQ5JBQrcZSLVsdNW9kap9RZXqpYaXdMePjP/+FfeOy91aV14gD58afro+ORSOfgi3uOA8ANyK8loveJ6F4i6u+XDQMgGrGv8suG+Z/l8sg1jLF2ANsBdK6g/T5ckv3si0xFNcYcp3NYuG4HXv1gI4DQZDYW1T6CKJxDeaL8VgpvLtmMbz74XkX7ANT505XzaJvAGMO8NVWM+eVakYh6AfgrgG8xxnbAExEdCmAcgLUAfs2rai5nlnLbNfIYphBRIxE1bty40XXoZUWpdth8MVdZJJ4IjDHc8/pSbNYkmYlD3FZVyb1s0m9ew599P4NiPLDLgaT3Z6o+3TGnRyUV0h25QXfVCAI23PvGMpx/2+uY+eHmqvTnRByIqA4eYfgzY+xvAMAYW88YyzPGCgD+AGCCX30VgBHC5cMBrPHLh2vKI9cQUQ5AXwBb5HEwxu5ijI1njI0fNGiQ2x2WGaXOWZ4syMXbt6Mwe9V2/PeT8/H9R99PfG0ll3SSjXfmUmX6xKA6m5Hci+nkf+W0Rqf2Kil9FZX6z8xZW7F+AFUHldIGFZxrWFElAwIXayUCcA+ABYyxW4Ty/YVqFwOY639+HMBk3wLpYHiK51mMsbUAdhLRRL/NywE8Jlxzhf/5UgAvsk6qseVRXSvpD5AUP/z7HPx5Zhj0bY/v5bzbEAqiFLhkwtuXEbdVl1shXUmxkqjUv/rP71Ssn0caV+Kzd/0rUpZyDioCY44q9ecSlfUUAF8CMIeIuPDxBwA+R0Tj4I11GYCrAIAxNo+IHgYwH56l0zWMMa71uhrAfQC6A3jG/wd4xOdPRNQEj2OYXNptJcfLizbg+IP6o0+3Omu9UmlWnR+WtdqmljZwUcwXPnIQAKDNFycUE2TQVaxUjHhunwgyl1QhXeI9VVKs1FYl0dx/ajjU1JRVRTC1qvRoYokDY+x16Nf805ZrpgKYqilvBHC0prwZwGVxY6kUtu9pw5f/+BZOOmQgHpgy0Vq31PfSUXb4ScDl9fUJiEPSzb6zrv2knIPL5m57VpXkHJJwt6u27kHP+hz696wvS9+ddX6UgmofjVIPaYQbmxhb31i3xEnrYmpZTSNeHSfECRcPRQEAc1dvd7KUiHeCq7HTf5U3IdXKorT2Kvk4kyj1T735pZrwl+gKqFZwwjTZD0Kb6j0xNt9A6S+mPlBI14Ypq24YnDiIYqULbvcyoy276fyqjKvaKJ+fQ7L6Lif/jqKnSUU7cRF5U5SGMC5bdfpLOQfoTfYuuP01jL3hn2XvK8cV0pZTWTUPszrOgZ8YcyWmRNWh1qLSlnsccToE+Xm7PGHbZlDJjaKT2oR0CH774mJM/Pn0ktqots4t5RygXwSmXADlEivZdA7VXJQ6zoF375q8fv2O5kCpHYsqn35cUa7hxD0y1VqptAVfSRFDjb2ifRr/89wH8ZUcUa33knIOSMY+l/Ji3mzaFCS0b7Uo+6ppxnfGr182/uY6iq9Na8TyzbUXvM0FHU2kKh1VddbSLVi4rrikRx39bFJEUe388ynnAHscFzliZSkv5vN3h2kr2y2cQzX941Zt3asWChvWzua2WKuVYnI1F3PircQpmbdZrj262n4OcfPxM7+fAaBYXVFKHWoL3M8hVUhXDbYIkKoFRnlejE2s1OEOQEL3J//iRewso6KxFLlpReXrlWta6qe8PVVW5+BWb/2OZuvvhQLDJb97E//x8cNw9pghZRhZ10aqkK4ikmzGxaa3nHzXjEhZm4O1UkdbfRKQmDC8tniTU72kz3Hx+p16LqdElHuhVfudVWKf2NHchp3Nbc5tfyRG0drcnse7K7bhmr9Uzst6X0Ep+sRScqEUg5Q4IFmAsWLe7a7Wdvzrw2isH5u1UpCPOHlXHY6F63Zafy9m82SM4exbX3Wun0SOXw1rJVE0WW5iVAnjhbE3PIdjbnjOOtbP/H6Gs/UNb6ejgiHWEv72TvHhz1MnuA6AOfm7imLEAntaVP8Ju1iJj2dfJA92FHNHm3Yl02lki9Dylm2T1XT9mxcWh/0o/ZbWne7yfIFh485kEXV192+b67OWbsG6GHFSMB6h7R8/NtdSs/Pju4/MLr2RKsmVUuKA8KReqVAEu1rUfLg2ZqVaCqdyodI0LOlen4SolvvkHa+QlqKPlrV3D1OfWoATp76A7Xvc8zDruGf50RT7rESd3v0zlltqprAhFSt1AJKIcYpZH81tKpdgaybgHJJ3tc8gyUaTyySbpjr/jI506BKHU/ZRaBp8bv46AJ7uwBU2fxfTd1ekiXvKgzDFbnX6S4kDwsnrwjk88vaq2Doykr5MvpF1QqlSUSEAKOEs1YmVTP2VXyFt73vbntbIZlm6WKk8N6AzypDbLtaKrlwRVve25vHzpxdgr0OYmxSlIyUOEBZohTZj3QK2nWQ5G95RIaorKdYqJiZ90r1FR1SrZqqqGeza7aGV1SV3zsDPnpjn1FYojom3bNPhkcaV5h8RHauuHYVzsLZmRrn8du59YynuevVD3PvG0pLb2rSrBdv2JPfP6UiEB6tU51AVTLm/Edf/bQ6AynmraheepX6hwsTKFZXgXIpqM+FaKEohnfgKt3YKBYY3l0TTOj41Z11Y37LQbcEZTf2JuO3FJqXsxYXrA78EkYNx4Qo6mnPg1k7O+cEtGH/jCxj3s+dLbqeaqHZcsi5PHJ6bvx5zVnuhqCt1Ute+TMsb3tdMWWtN/JVE51Bp09K4jdH2a5hKNtkDtr2Pr97XiE/f8SaAqJ5BK1Yqk87B5mSaBPy+Hpi1Aq87+tPUIrbvddcFiai29WKXJw4iKsU5uMhzI79VyQnuH+/aba51m8GT769RC4tAko0mqZgro9M5lHE8HHs0aVTldqa9uSx5w4a2iq0jY/U2T8wlzkutQlp6ah2tkOaHt407W/DFe2bG1K5dzJA4yaRIFdIdgEpRZhd5roiQczCPZ29rHlPub8TI655C47ItxnoL1u4wnpq/9dB72nIbOJdVLIqSKiVcDDoib1RIl8Ck68wyxX2wtb2AG59aoNSJWC9ZTZrjkWT8ClcjDFan5FV1Dh0rVqo1DrVYlBxPqzzDiEVKHARUbu7Fs+wiXJzy/u+lJjw3fz0AYPrCDdo6Ly5cj0/872t41NHCqrnN2yDW72gx9l8u0Vslld5asZKhv2K5tDXb9mLhWjXaqdjP47P1XJZrV+HJPplC2uQAJ9cVOYfP3/0vtb4yHuMwrJDFSsVyEp2ENhSNahPHWOJARCOI6CUiWkBE84jom375ACJ6nogW+3/7C9dcT0RNRLSIiM4Vyk8gojn+b7eRf1QnogYiesgvn0lEI8t/qw6oqkLaYq3koHPY2xae9Ez1lmzYDQBYFBPSguP8214DANzyvDn2fMkEg5LbaifdSrKaJEWm/jgnlPRw+6V7ZuIf76mbv7jv9azPxrbjIl60X69C51cDqOJN0Yrow43eXBEJi8xplEsh/fjs4kJIdBbOoVTUkrVSO4DvMsaOBDARwDVENAbAdQCmM8ZGAZjuf4f/22QARwGYBOAOIuKr5E4AUwCM8v9N8suvBLCVMXYYgFsB3FyGe0uMSs093ass9f2KFjnlWjRL/A3ChlK7Kk6slOxh1WfdGeKvP/Bu0uEAsDwrYazd6vTEIfK+bGKlMisdVE4gWtK0YSdOnPqCsb6uKxefA9mU9bUPilMm76vhZGRP9WLvotqm7bGriDG2ljH2jv95J4AFAIYBuBDANL/aNAAX+Z8vBPAgY6yFMbYUQBOACUS0P4A+jLEZzJv190vX8LYeBXAmdcBM0CkyywGdtYbVlJX7OVgeQaVCfcShI7pNSkfrc+qmHLeH6jbiYsQf4iXzNWInwH2Rl/uAKBMD+US/bJM9d4nuGd316oex/SpxxPbNPb5orNhSnkRYNZ1D2hf3HAdgJoAhjLG1gEdAAAz2qw0DIHrfrPLLhvmf5fLINYyxdgDbAQzU9D+FiBqJqHHjxo1Jhu6E6nIONrGS99c2HvFwXM0TRfl0DpVDfU6d1sXoOF75QK/LsUF8r7/65yJtHddwGi5inCR3ZdM5uLSuq37nK6ovhYxlm6NcVrGmrfso4xARAQPFc0Chn0PtiJUAAETUC8BfAXyLMWbLO6i7c2Ypt10TLWDsLsbYeMbY+EGDBsUNOTEqdRov1lrJtg+LSlfTsGsxgF8w1grm0GjQiJWKy8NRxDVlfORO1kpJdDcycYi5PxdiYtJviJCd1op9Rh0VMaBUNLeVJ9xHTXIORFQHjzD8mTH2N794vS8qgv+XH7NWARghXD4cwBq/fLimPHINEeUA9AVgts+sEEqlDTOWbMbI655ScvbqNmnbqS04fVomgXj6iBt2OWmeViGdRB9dxAJPSuT0nENyFJV7wqVdsb7LIUGDoX26+dcn0TmUpmAuek+SLizWtHVf5RzkPBZF6xxqzQnOl/3fA2ABY+wW4afHAVzhf74CwGNC+WTfAulgeIrnWb7oaScRTfTbvFy6hrd1KYAXWQVV8ufe+iru08RnKfXhPz1nLQBgppTYp9jwGbY6SUJEFBt6uZIntaqLlYqYTsVwki79iPPMSviKtFYyQT6xx+lU1m6P5mso1lpJvs72jEYP7W38rRKzcf4amxCkPJCJYWfyczgFwJcAnEFE7/n/zgNwE4CziWgxgLP972CMzQPwMID5AJ4FcA1jjPNVVwO4G56SegmAZ/zyewAMJKImAN+Bb/lUCbS2F7Bo/U7c8MR85bdSJ1+QrF5qSLcWbOuSTybbIop0oZlti9btxP8KSWY4lmzchYOvfxrPzl2n/CZDF9unZGslhwY+3LgrWpBwNXSrKw/nsLOlHSOve0p7kDChnEea4JBgtWhyb0/JJSFdK78bxZKryHuTL7MRJduhpxIH5/Nuew3LN8db6ZWCsoUP8f9WS6yUi6vAGHsd5j3hTMM1UwFM1ZQ3AjhaU94M4LK4sZQDW3Z7kRhzmkloOykeMaQ3Fq03+wvsbmlH0wZvU5NbSRqVlS8eF+5C1x8AnPsbfVrNt5dvBQC8sGC9pXU+Do08ucgVyhiLnpgtN/feym04ZFCvsK7w2wkH9Q/uwYSsJv9DrLWSpuzZuR4neP+M5fjyKQfbG/CRWFRjZRzKuwsom3TCsRbtBJegH9265KgUJ7ttTxsOUsxfyodyeYjz2685hXRnAX9ROkJg2/dOOlSdPYyxwEzvymlvBXmiZfFUUoV0e9770baoxN+S7Nd7Wrx4QD0cHLR0Tl46uHQv69htE/w7D8/GyOue0v527PB++NSxByQfTxHr6Wk/emqrJaVrGboxYrOfHtXWZiJrJek2kuscirs7hUOxzBibObnLPH97+Vac/Ivp2Jkg0dE1f3nHuW4x4Ou5VNScn0NnAz+x6ya6jXMgAq467ZCIPPvmZxdh1A+fQWt7ISAMvG6kT904HDyk7eKE4ibcbt9pqbvBQSsO9RrvYxcEXt8JLudcnnir+UIhtg19PoewkbeWbcHYG/4ZdU6yifkSHJldNlxXU9YLbn/dq6OplMtyT/PiFdI7pOigcc+1WM5Bvsw293WhT5LglucXYc32Zsxe6R4DbNXWvfGVSoB8uChZ51ArYqXOhsAQKOEDzhB5xEO47r43PVl0e0G2Roi+fZdwyCJ4e64nxiQnCm45kStykzd5/cbh6bnr0Ld7XfDd5flzrkzcTHY2t5ccvO+26Yuxo7kd763a5nRtW4KTX7UWbl0CL3AOeXPneR04inEUdIEt4J8MG+fgkseBH/Dke+tIyE6AxXIA7Qk42HKgy3EOHLrpaUtVnM0QMhTd6LmNd5xiT9eZ7YSZdzBXul1I5JLkJMKbLHYT01l0yWW6xf+NB97FFffOSmQRphvjjmY1TLYyHl1bMdfsbDG3214o4CePzcXvXlkS27cLolFZ41+Erg6XzZeikG5NKO4ods7I11kV0pb54XLC5/Pru4/MdhtcFdBWhuREAHD36+6GEeVAlyMOfKLqNmcbRSfyTiX63AwxfTpEZX3q/bU489cvo1BggYzSxH7vljayYs4hRYsIHHaIN5rKk4hFJ15ryxdiCYw+j3PxR/r2PMO0Gctx0zMLY+smtUxxqa2rk7NwDnUGrlAc2tm3vII7Xop6N8fR7eKJQ/TC/j3rzXVt4laHZ1upnCylQOE8SxYrpQrpikL3fG0TK0Me6dDNTyVmjVTJRSH9vUdmY8nG3WhuzwumrPqx/Nv9jZHviWSYFp1LgssjWLopagposzihfV+wAAAgAElEQVQJ2nHpS1NXFuHpYOMcGpdtwWsJs4gpsYEsMN2XqOMph2Ix4Bw0PV56wgilTK67eMMuLHSM1stRvJ+D9N2yyZdqvdVRMcdsSGLQ4IKa8pDuTLBNMHugu/D3pPbiupc5a9kWfUA+Fm/KKuckjj9JawqLnGAuG0SDxs9AHovLBA+MB4TKbXkW2VrXbndTJvJxX/q7GeFYnK50y+Us9wMAvRtCld6lJ4TBAUxRWb9z9uHaNnXEKVRIOw+t5E2l2Mvl62yPs1SfjlrkHGRrpRocohZdjzhYJphtj81yhbSmjTg2z7ShNgr2+mLffDMqln3Upa90HVMcXK6qzxantFb60nTWni9EVtecVRqrFALOOnJIpKhQgBLWxBVJrJXEMYtXuSiQLxi7v7ZcF1a8zleQ6UZWqXzZcXPGlL8iSV5ta34La+8ctbf1tuULUoj90sZYJcahCxIHy29WBxyi4FSihgOI1pU5AhdRQ3AtY8gHOgd3NC7bEmR84yagNhSvc4ivY7OEenmhF03XRUSgsyxzOcUTSHmX7YUCdrdEA6B9YHFqLBbb9oTPXtwU63L6WFjicxjYswE/+eQYTZuqzf4vLjnG7yNaPnf1dry8SB+xOG5zjxN3xb17k6VR3PoQdSTFchXBGGqPNqAtX3AStboiFStVCLbTeM5irpQhCia/fPJRMmwpnIW+zR4Nohw6vDZO5yCDyBOXfO+R2Vi5ZQ++IZ009eE7ipUfu2/qOsyy5LtW2tEQkNb2gpPMXj6c5QtMGXsSE1VXTJuxPMimJrYe0TlYPMVdZOZfmngQhvXr7vcRbeCC21/HOoMZZ9zdxhHs2IyChsvldkVOrLktH3kPtvVZDp0DY8zoYFkptOYLiRJQ1Qr2vRGXCNv0Mll5AN6JhLOGspjhWw+9F/mubqDubP7GnS2Jk8zUCURt6lML8M6KePv9csV70bZdpqONVqxUYE5OcPIm0V5gyj2XKwmLjM27feIgdNez3sGliNxOvsUbE5T2XuI8iU2tKwppYRyy74J1hC6cg2VHa8sXrCbLlUJbvoA6wXm21PWRhs+oEGzvZbZOfu0jkyE0+C+4RYphL1u/qIshflz8NHnWLa/glQ9CsYDLghbFOH26u/k1msQzcUHIEnnk2k1P4q8P2gnLZEcgrd8F9JyDzPE9MGtF/CAccPFxwyLfA92UcJPd61UuEdDMx4TyaNMjPni/ns51AWDs8L4lWVF9Zvxw46aniJXE7xYuWzH8cBiHOB/kUNlX/7+3MfaG5xxaKS/a8yx68CxZ91Pa9a7ocsRBfDM69tK0oWWIgtAZcaZpcdZMurGIEDkHNxl/+Bp7aE6oOucZU7yX0371srUvl4m5aZd6cpbhMr8DPwehtmyt5Iq2fKGo5D0AsH/fbtbfv3HmqMh3neFCfTR1nxbkyjmweBrSkMvgL1/7iHKdDsP7d8fw/t3jO7agb/c6Y/s2sZL8m/hNFc8mEyudfNOLEW7xhQXJM/uVA635AuqyGfzZfx8ln/xTP4fKIO65mjJbZQho8HMTy5yDDEVhnUCspNSJr+K0Wb4pOaa1FblTuoz5y398y6tbVA9qX39/d3VQ5uTnQCpHodM5JB2HsT/pO9/gxctaDAcKuWlXO31+yjdtmLksoWdD9KBguv+6bKZowhmMh8h5novj4B+/durBePobH8Xwft219QD1Wcn+NUCUuG7a1YK/vrNKqVNttOUZ6rMZ9O7mvY9Sn3W10PWIQ8zvu30z0GH9oiepKOdgT/vnqpAWi01bgm4B2Nox4cG3Vka+FxspMsmpxynbXUxvAHCvwPm05x10DiCl/XaNWMkVLe3q+xY5AXlDz2qoQ+8GvbhPHCfB3domzl8km8k4BYD06vobewkGNUSWeW5xEn3eDx0/rH93jDmgD2665BiMHd5Xqee1E2335UUqJyDfwnYhuKAuz0c10NZeQC4rmMKX2F6VpEpdkDjEPNm9ftRSeWERIdA5xOXNjTvxaMdiWJhvSdY93BIm2k7y6eJyAtchibyzZKcr/3qxmbZ8vLWSjngkVfKL0Fk1NQgKRrk/Uedw1WmH4IlrT8XxB/YP61v6crGBZ0Ibpruqy5BCtEzEOpehkt+VR5D1v9k4h+8/+j6A0Ky4d7c6nHfM/trr5OZ179TGefXpVmf8rZJo88VKHOUy2Kg0uhxxiANX1MpzLJsJbefjXm5SJzkbZBO4T/32dWt/Rgco6XvRMeYT3Iudc4i//lEuEhDqyht13FbKHctKiamvDXznENWWMc958pjhfXHgwB5Buehp/4/3VkfKy2UNr8uoZnrmnkioNHgBi/WtuBhoiJs6D74nc3rye2jQRQi2PEAu1qk22goMddlMLLdnw59mLCvnkJzQ5YhDnFjEppDmEzjuEOoSW0key05DtFE5FIWc19cbj6jgs4P//tz8+ExwOrgewOPCC7s08/tXPlTbdcznMLi3p0Q+cIC3KecLrGh+XHfPorWXaTxM+o2LJXnRE++vDRIK8XL55Ms5WRkhgdH3XZfNKG2Z5jZZfnMFwTw3xHm+X696a5RZIHSmi+PAGzS5wv/2zurId7EJmx9TJdHW7vk5hO8j+bP+0WPzgs814wRHRPcS0QYimiuU3UBEq6Wc0vy364moiYgWEdG5QvkJRDTH/+028mc3ETUQ0UN++UwiGlneW4wi7sHyn+V6IuWP4xzKqZB2cZ4R27l/xnJDnfLMKFedQ2u+UBH2+bTDBztYexK+P+kI/PqyY3H66MEAvHEXayWyt03doDnRAcyZ/xhj0Q1a6l5OtuO1Ff0+5U+NSh0gPqNeLkvOOgebvsAV2YwasXj7njas3b43IBrv33AORg/toyUiYmrXIBKBoryTrpFucGWM30pHxeTz/BxI2D9Ka69aYikXUnofgEma8lsZY+P8f08DABGNATAZwFH+NXcQEef97gQwBcAo/x9v80oAWxljhwG4FcDNRd6LE2KJAwN++sQ8JXb8YYN7CSaK9kZel/weFq3bVdRYAEQS5JhQjskyYkD3yIZngrPXtkUGnaQdINwTzj1qCH77+eOi/RgWfLe6LC45YXiE2yvmMelOpwDQr0f4XmQJDt+wC5KOl5fzMcshFXTOe7oIsqIpq+meetRnNZyDvq6Uw6oo5DKZSNBIAPjYr17CSb94EWCeEUGfbnUg0s9X0Q8gmwnfWWT80ih/+sS8yFqUoxUDwL8+3KyUVRvclJVzLrpAitv3tDmHc6kZPwfG2KsAXGMeXAjgQcZYC2NsKYAmABOIaH8AfRhjM5j3Nu8HcJFwzTT/86MAziT5KFZGuJwe//jGMqWsIZeJUH5bkvtG6TfTS3cZS7kmQlwzuUymrONhKN501ITh/Xv4mejcFdIit1fMcHSyeyC60RIIv7p0rPY3HfXimgVdLCK3mc9CsZKhRve6nNKW6X1kSLXuSgqugxE3Pm4pJCrQvZwo6vW6wHRx4tkdze1B2lsA2LRLjSk2fWHH+DaI2NOaR4/6bKDz2KXx0r7s92/inFtfdWqvljgHE64lovd9sRM3xRgGQLSZXOWXDfM/y+WRaxhj7QC2AxhYwrisiH+uYYVvnTUKI31FYsQUjUUDrMWhLV/A6KG9cf4x+qib1tE4TIRyTJaMo2jBVTQTJ+IvxREo3pQ1RHB6dlQ5PDt3XeS7KTNZhDgQcNn4MIcCQ/jebN7QCucA1cKoWHSvz6gcjYlzgMrlcFw47gCn/vjJX+d5XxDEa948s7+JrIFD110m3uOuFlVMVwvY25pH97pc4HciJ+sCgA/W66ULOpRiXJEExRKHOwEcCmAcgLUAfu2X6+YXs5TbrlFARFOIqJGIGjdu1EeeLBXiBBzYsz4wQZN1DvUGcYOpzR71WRw6qKdSHgeXk3o5DhJZB3NGIjjLHxhjYBaddCKxkmajdYUYSdeF0M5aGmWSzcpmwQhAFn8IXIpO5cDLdFxJYuJguKfuGg7LeIiwWCu5joaLTHSGCKIYLEMU5isxcjLeX9la6dl565S6YpU4E/MKCiSs2NPaju71GfTwravk6MAiXEyu81XyoiuKODDG1jPG8oyxAoA/AJjg/7QKgJiGajiANX75cE155BoiygHoC4MYizF2F2NsPGNs/KBBg4oZurNCGvBM5fhJKJcRrZVYogQwDN7JqZg93IUrKIfoyUW0UJfJOHMpHudQLiV4FHFLPCJWgpuFGUez5PDmEoZajuHDIJ58SLgmOgjZeobIcwaLg0h4TLeVzaicgwk2ayVXYpWzcA7/eHd1sDGTIFYyvZMg+rFQYe5qfdwzXRND+jRo63aQPhrNbQV0y2WR0eShl+GSdbCtSkqHooiDr0PguBgAt2R6HMBk3wLpYHiK51mMsbUAdhLRRF+fcDmAx4RrrvA/XwrgRVbBJKlxG5bIsnWry2KEr6Tt2ZCLiJVaNBYsJhQK+kXmxjmU6SQR04wL8dJxF+bEMqxqijMZ4oYcKm7dSJW8oZo2R7Et2eeBMYHbsexIOs5h3Ih++P8mjXYYKd/Uw+9Pvr8m+JzNqCdls84hphMHcEJ3+/TFym9rtjcHzWQz4bMxmWDrYlPtMZj06uZfraUKzTOGbJaL1cjKHchRarXt1YpYiYgeADADwBFEtIqIrgTwS98s9X0ApwP4NgAwxuYBeBjAfADPAriGMcbf6tUA7oanpF4C4Bm//B4AA4moCcB3AFxXrpvTIW6vvfGp+cHn+izh9snH4Q+Xj8eQPt0iIorWBC+o4FtrKBurw3blQkDKkZcgk4nvyzNXjJaZJnqB6b25467TQRbR6BTOIsSypNZKshuaceNkwLEj+uEvX/sIDugnn/aZVmbKb5kTBVnnwMd31AF94gcKNZ7RtX8J83h4mQulURmlSqoZalJwAjnNYEotipV4X6Y5wK23xd/Fd/r4tacEn3UtmIhDNWlGocCCFLaFAgv0KCaFPIfMhXKIJu3FxkVLiliXQcbY5zTF91jqTwUwVVPeCOBoTXkzgMvixlEuxC0BMT9zLpNB3x51OHuMl3KSIhtNss0tiF+TEC6L1iUURijn1f+eddggPJVDtI4pXlGBMfz4sbna34BkeZmD/rloIoGAgEtuGIuPyeT1oe9Thx51WZx82H5KOWMqQRPRzZc9y5yDLZ+I3D6gcg4iMhlSnpPp/dracX3WJsW93I64ORrnItdfCPNabH14/9DkOglNqyZx+M0LH+C2F5vwlVNGor3AgndNMQp5U8TnTx8/LIiPVkoomCToeh7SCWZTnaR0jio3zdfJQfsKjGlP5i5DcZkILpxDHAHJZOLFSjruZ8MOPXcQp5dJkmwoKVGlyGc3zoGbGbp6KNvGJOpbdMSFnwLln3KGchOsIitK7gSnG6uL3mL6d0+LHXPgHS7I3MWDhXg5D1IoRg0QxxYZUxLiUEWtwz/neREIuFk8H7/OWVCEKbKAeEkxB6ti0OWIQxLUSStDdIKzvWBZBl1gDATC47PXRMp5C0+9v9bYlss8cFFixU0oTyFtb4M0Sms5Cx4HY3ZfEDmUcrNFhyOelL1xxI+TIwyQaicx/N3Kbets0vmYbJZMtmfJuZlyyMZN3WQyGuJgESuZno7LGA8d1MspvwRvj48jmtchBE9YtSNCHKLjDa9Tx10OleW7K7ZijiX5F+BF6zUdcuRIvq5ipXyBIV9QLevE+3zq/bVli3hgQ5cjDkkeqco5+KfQgn3Tlu2QGbzJLXtd8xf86NvRcNq6Oja42D3HcSBZBztVnXWMiQDEDVskVm8t24LRP3rWWDeoKXBuroiKAs31QnNZR9EOLMRB6Eeswz3QbSKnJGMQvdDleZLVRGW1xVYyWw45DSV2zDxGmGitYxoPT1i1RyDMGQPnoGvCdXZ89ZSDjb9dfMeb+KQmyKWII/7rWVz7gD11KgdXGZg8xDkKjOHQHzyNr0t54OX3o4uxVm50PeKQgDrUZVVTQ8B7gbYXLG/EBWawVvL/WsUvJXAOYgYzTkBMJ8Te3XKxfblwFxxJNnDZtyAOotIublMKOAdm5h1GD+0du2HLYD43KIJHgI3oHIQ6/7jmFPTtXley8veEg/rzxoN7kmXVrmKlB6dMtPqvlMs3gCfKclFIC36LYZlhTGIdLo4ybZzyrRw6WE2l6gruyCYGThSRk/YO7oMRt4b4XvCkIE34+7urIgmvqoUuRxyS8A5HS1YjYrKODzeak/DI8n0vAJu5H9vJ32UjMekcxC7jUpsO6dstlkshx/EgQb0k4BttHKf09JxwYYWcg1nUI5rxuvoG6DiHC8Ye4P8WHh7E9gb0rMfoob1jFbK2/fi175+Oy8Z7LkPEBwLVyiWjy+eg2Yy71WU9DsQoVjKPxQYlvHagc6AgE5o4nAi3FWS5E8oiFmj6fg7az+PMxh8U5s4QId/KuUcNxVEH9MGAnvWWO9HDZFrLMXJglPA85c/JOD8HHcH89kOzq6aEFtHliIPrnkWkUn/R8uV3rywxXitPHB4+4LxjhmrHYnvxpVgriScsm0wf8Mwqt+6xhx+wOV3JKCttkE71cU5AGwQT2pBzMNfPZUNdiutJWdceCX0xqSwcT/gQi3lEIwb0EBzKwjZk4rBm214nzoFgN2PW++eoleVq8oGFW2iJm6PRekrQE8WNSazBmGdefP+VE9SLNIOsy2Zw/IH9i5Lfxx22xMCMIkTOSYdaSiHa9YhDCde6etvuac1jy+4w9lKh4G06P/2UZ8l72uHcu9trSLe581AbLvPWdJIW14Iu7HSkbnw3vkLaoSLiiVovQ9pMF8TlihAR8XOw1OHv1PWg7HEO0doRIxqDDiOTiZe5F3NYlzerGUs2O5myEnljtAXlk+FyipUVspxzEK11bKa1QHTui12KQxLrMAYM6tUQ6CziUJf1fEGK2RNM/ggc8jMKjSnsCmnXDI3VMMvtesShBOogmrLG4ZsPhgol7gQ3qHcDFv73JFx56sGRsXA54/iD+uPN687Ak18/Fb/9/PHOfZl0DuLCbo5hg11OzITohmYLhxy3fxw+pFdsfxz8BMm7jnsmv/j0MZrxmGMrZQTZvevOPHvlNiX4opiAx8Q5iBtxqcyVmCt7+eZoLgMijUhI02HG100w6G9dNy3iTs2AGucoIlbScMwil6DTOYjvPMo5sEgd2zSevXJb5Hsuk/HFXMnfRJyFoKJH9McVF3jwrlfVBFcdhS5IHNwmgn6huHEOXj/R73yhdqvLKpOfs+D9etTjgH7dcfSwvsHJ2uWUZlJoiwulR8xJ3eUkIivTbHqXuOdcSi7quGtF57JMRrPTSMhlvVwE767YqmQSs+F9ydQxOPGCYdE6fZh2URQkPqOnv/FRtaEYiH4nk+/6V+Q3b9OXOQdzW65ipU27WrBg7Y7YsamcQyhWCsJnGPdXTmSFjb+gJw7ye3U9UJ986EDU+2H4K8M5mA9sNubgmbl6BTfg5ZThqIIlaxckDiVcK1q+cJwgKb8mn+jFHfz4EWFgQDFkMaCKGvhE0qVKtE2Cq047BN3qMk5+DqOH9gYQOufIcDGflM3w5A1ARNwGHpUV2ytz4hdyEBHtpTpO4bOL42K9TxwuvuNNa8iP/XrZFZehTgr4z0dmA1Bj5YgnZ3E8QwXLMldYjIy0nINOhs/T37oemk775Uu45M4Zmv6incn3HZqyioH3BG5BEw9LRMHwymWdg6u45dBBvYJ+i9lo+f2ZFPYmUW+cQtqGpg1hWO8q0IYuSBxKEiuFli8c915xYqSOqJTkMJqySmKlrOA85yLCKhQ8oqMjDnXZ6KTnk1mcYLpx2yBvRrYgYXGbjctmpGzGwaYSe2mAqM5Bf2Eu6xbahMfjN+sKwvmxzBfzyM9IPDmLzUSS3bj6OVh0QF/4yIFKOyYluuvpuVdDLpJcB/AyCOogi2q4V7i4OYoe0hGxkma8EUJi0jlANS82gffnkl9CxvY9bbj2L55/Q/8e3hy9+dmFeElILFSszsEVxYjCkqLrEYcSaK7oBBdAmouyP8He1jyaNuzCnlbV25NPSn5N9MSrirDkSbxjbzsI0VMKN+NjDPjksWHw3Lhoj/IJaMLIAUodeTNqscTPj5u7Lqenc4+SrLv8v0nM+vht2TgHnuIyDgXNpq7rTPxZFi+IojmxninjnA22Ky45fjhIWt1mhXRUT2LqQybW5x0zFI9cdbK2f7ktzjmIMv4km3KUOOh1Doy5O+0FfiiUPOT9K4s3Br4U+/XywoPf+fISfOW+t4I6JlFvJpOcGOlQjWxwXY446DD7J+fg7svHR8p0ClrRCY5DXtN8E+ZV/vSvZQCAlxaFyYlC2bQHvtmJfer6kpWOvbt5YcRF004xRekVJ48Mx6WxVuKiJrlvAPjMiSPk6krQMN0EvfGio42/iQhs3QsMLy9SEzcN6t2gLFpdqGc+alEOHn2OvngO4Ts5aGA0V3Y2Yx6vGCcrTiGuO/HKm0SGoE12k9W8exlnjB6slOkOO70acshlMwrx0I06ECs5HJrk93HB2AMCcZjcl/yMeEjvaPgMfT/hO4tu/CI+N2GEUs7D1LiA30ucaakOcWbhgHqAGT20T9H96VANt4euRxw0D7Vv9zols5s2Tnwm3GiCMkXWmo/U0TqoGeavGJZXjONkGvr3zj0CILNpZ3ffthzQW5g8enV46nNZUqL4YcXmPVixJUqsjty/Dwb19k5S4gL44sQDlbb47398c5mSc5uPx5QmUre2bhPyCOh0DmI+hy98JDqerCXoYM+G8BmGxEFfNyRKYQU59r5oypmUc7j3y1ERJkj/LEIHPFmspOEc4J+eC/ZYWN549aIipf+CyqXVBfkMDH4OwkcdkZU323Ej+kUu276nDUs27rbqwaIID2RJ91nxuS5avxN/nrlcqSObjv/w/CODa3XzJ6lpaso5VABGiYCTtY7fhsGsDgAG9FQ3R+NY/Cr8RPijC45U2i0wb7HNWbUdL0rJ0rvVZZEhMiq/enerw4vfPQ0fO3yQVgQU8TVwtlZiaG7L42O/eknr0s/H/WZTaOa6WZP4nWOlRGA4NuxswYNvrdSe0nTPVszYFvWm5aJA8yk0axEr3fKZccJ1mk1NgAvnkMtkQgW78FNU5+AGXm/1Njlml/+7rJA2bkreBnmbJlGP2IZsZSMHmOTIMzW8DA/DncnoTVl1fZp0Dt6Io4en7/oGAC8siK4RE/i9yNywC2Q6/sO/q6Hpl22KWvJxJ0DZqCNsMxl1+EcVwmkU74m0j8I0DxTlnaaOTg8gvtNbPnMszhw9BA/MWmGN1RNMbKGXAT3r0a9HKNMVFdJ3vrIEv/rnIv24yW5zfcigXujdkMPqrfpNWB5T+F1Xx7v3O142e4fzcf/quXC8m3apFkCuJ58Zgi8Fv0J3rSiWYZr3I+bgkPckOekOx5mjB2NIn9CKSO718pMOinzX2efLG2A2I2YCM4snXcCj5H71j29FykNla7RR/YmVjBukLH6TIaY5FbvKazgH/oyJQkV03FoUf1bqSgTkhQV6Kzx5DDKxrvPLvHwfbi/BZSOX16QYlVVLpB36FcdvihZcTnRBzsF+WgnqWVg/k0POp48fjm718Y9Ulj60FwqKWEH0qbDZlXs6B5U4iPejy+CmthM77CAG0d5W88Tkz0O0Ax/YU83p6yozFYdlE+tkDZxDROfA24G6Yesg+qRE+/c+yHk7dDGBVM6BAi/YxmWhGEenJ4kDF/Nt22vmzESYxEqmd3/LZ46NfFe5gfBCVYQVbYtzGVnBbNaUKEo22ADM1j9JECE2/reeDTkwFh8rSTc+a1/SrYVh2s2GAXG4/KSRwWfTgaac6HrEwXhaiQdfAKKIhihqzifrCrhcdrKg4JUl0+15przsgHMQskiZxq0TK8mnZ3lCyjoW3eTsUZ+NFpDd6icYkISff/oYReHvyjnMWxMSRp6RT9w0SDiRcYhNR0SBBp2FLYuZ+EsoK+dtywRd6MuHbK2UzXhiwDXb9uLu15cCAH58wRhj/zboxFjid2fOwRA+o3tdVLCgiuPC9s86cojQjxoBl89vUea+J+b0K7Ygh5UQvdFdzTrFe+SX9PKTPCU5ibtYy8mELxu5fx1xiN+BxG0gUwvEgYjuJaINRDRXKBtARM8T0WL/b3/ht+uJqImIFhHRuUL5CX7e6SYiuo38p0FEDUT0kF8+k4hGlvcWozC+Vodnzats3CUGdiM8ee1H8c9vfSxSR54/Pzg/1CfIEyFfYIr8lk+mAtMTh7/6ymQiis0Ep2Nln/z6qQCAX106Fv957hGqWImAGdefiXd/dDa+c/bh+NmFRwVRQE29edFn1bH2616Hs8YMCbKteXXN4z3lsIHBZ1GcdtKhXrmec9C3FYnKahh5j4asthwkm00iaMtrW6ke1OPerJ89Mar8zmU9ncNuYTM6RUo1mkT8zJj6PPhXtR2drJvL3fXtc2cxXahxcV7W5zL4wXmjjWMKdA7+AWP55t34/N0ztX1q9PpKzvawij7jIDcx5WDSoYZ/5nq3chMHc1BBg0LaoV8bp1YJuHAO9wGYJJVdB2A6Y2wUgOn+dxDRGACTARzlX3MHEfGVdyeAKQBG+f94m1cC2MoYOwzArQBuLvZmXBDnwGQDfyG7msUkJEDfHnU4wjcLFU80QGj21i2nbkC8TluBReS3Yl8Fpj/Zcs9souipSpeHmHMOr3wQmowePsQb72XjR+Ca0w/Tbkh9u9ehf896fOPMUbj8pJGByaNtY9cdaHjb0dO9uRE5j4aMo6RQ6kB04Ygti1FZQ2unaN/yRsIh30pwfaDM1FMHxoCRA3vgqAP6KB70OV/nEBV9RZvRzRXt+AITVD11iBP1eEMOYytx8LwI3euz+OyJI/DIv5+E844ZqpAWRRQqOAHKzzjUOXgHFZMzJq/j3UbYRpviaR7eUxwXKhMGXgaEc80lygCHE3GQlfcicdRc77LXi/OtJsRKjLFXAcjZWJRHxKwAACAASURBVC4EMM3/PA3ARUL5g4yxFsbYUgBNACYQ0f4A+jDGZjDvrdwvXcPbehTAmaSsuvLB9FrdrJV84tCiz20LRE80ALDJt9QRN+1QcenLXrU6B++viXPg2LizBduEUNs9NTGUeIiAxev18X5096Gv4016m0287kTD2+7bPQxjbFtfxx+oj8fP8UOBC7P1K5aLUVlPHz1Y0RfocM5RQ9G3ex1OPWw/jBzYI/RsFrxrdX15+Rz0Y9rd2o4tu1sxY0moaJdrHT1MJX46EKJEjyPIXy3VN5lQyulff3XZWNz1pRNw8H49QUQ4ceQApQ6gHlpEhbzKOUTFfyZuRxy32J28eYt9xW3WgkRRuN5rICAO7fo2dBu5SVcSuc4gxjWJlVw4gYhYqUY4Bx2GMMbWAoD/l3vnDAMg5rxc5ZcN8z/L5ZFrGGPtALYDGIhKoQSdA/c4tdlSiyea9Tuacd+by/xygTggrAOYdA6h7iKJTfOAHmr8Hx4iwNaOfP8mK6s4zsE2Z38tKDj5WFZJVlSjBvfCtacfZm4EYRA3EaIHeFQnEfbHiwf2bMAb151hHfOiGyfhU8cegGyG8P++9hGcOmo/Qazk/VV0DsJYvHhaars8WN9dr4XRN5UDBlFgx28DP/HL7zUIPy71f40f8uGa0w8NyjIZCogMR4/6HM6RvNMzGtGTyYjC46wkzkHwcwDsG7ps9dXclse2vd4B6FeXjvXbCbkU3WYt3rsucyMXgfFx6Yw6AGDpZjW4pIuOw0RARFPeyHhjW4w+72I86pOi3App3YiZpdx2jdo40RQiaiSixo0bVa9aF5itldzFSvaJzU+Pqv15WAdBHd6erHMQT1i2CJDHHyhtIgaxTkEjB9aNyQabbHr00N648aKjrScankMZEE0Qo3bpo4b00irbxGt12LE35J6ip9CQyD741gqvzHDiFyETIDE4nS7LGxA6Gj727mrvWWvaXePPiaGCiWzxh0DS6xwCnQhFuDWO75x9RPA5wzkH4XftZqtRWssblGh+LfvVcKOJMKBktC1RoS1bfZ1684u46ZmFAIBzxqgJs+I264JG9DTQFyXW+eIePr6W9jy+5/tMAHqRri2trzcmW9bB4v0ciAiXHO9lAaxl4rDeFxXB/8tX+CoAYtyF4QDW+OXDNeWRa4goB6AvVDEWAIAxdhdjbDxjbPygQYN0VYqGm1jJ+xuXppIIaFy2BT9+THWO8WtEvrUVWKCwk/sqMGaNiySnOOQt5yJB/LwTv5WoOUVlNZvE/v0/TsH4kQOUSS6GfJBPc6Y+dDB5gfPa42Qi6YM/x5lLtwSndoVL0l6p1pGjicpjPWZYXwCeb4kpNew9fqBGUfyn6z+ZUjr6LG/69Njg8wVj98dAaY5ETqDEOYewDW10AFJPbKrOwcOf/rVcUTZzj+GQkwt/++vVJ2PCwWEsL/neNwlOlPVCXgh/tLGbtc3Cjot7udjq+fnr8ejboZBDtwnb1tFz89YpayRM7qU3Dnl7+RbsdFCIZ4nw9TMOw8Ce9bhw3AGx9UtFscThcQBX+J+vAPCYUD7Zt0A6GJ7ieZYvetpJRBN9fcLl0jW8rUsBvMjKEZnKgHKYssYlOyEAby7ZjLmr7XHvA3vvQgF1Fj8HebF85ZSRSj2OumwG3z7rcPz9P06J1BGdwLRjlvrQEYtAom5h4+V2RC9s8RRWYEzLEZnMSuM2gD7dzGkZAbvC8Z0V9rARQFQuz29fHirfuOpznse17jR40qEDkctEI+nq7syJYJF3tXy9GBcrmyGrjNzLNR0dg07CokuKYxIr/eM91XuXm0XrIhubTsE6Lp9v5qJoVsc5iDola9BFSSEtN6U7xNjEs++s2KZEMvjeOVFOTb5eFwKdQ1xrTRt3YeR+PfH2j87G8P52TroccDFlfQDADABHENEqIroSwE0AziaixQDO9r+DMTYPwMMA5gN4FsA1jDEuoL8awN3wlNRLADzjl98DYCARNQH4DnzLp0pBfC+XHD8c799wDgB3sQrgwjnYGxPFSve9sRSzlm7RLhBu2XDqYVEuSdwIdevqm2eNwpH7h0pNCnQO5jE5OcFl9Mo97/qoTFnXruyLIFpPcVx7hl7fsMGSZwGQxiR84V1GLKCkMZrEfyJEkZrJj0Dc+Ew6B15PVIDqrVccODl/LCJnOV6yjsoQWU+6WfK8bsWgjiYnLbnU5Juj2zu/OPGgSJ0IcTAZdTAoudr5Zh5RSGs6vPuK8QGxfnfFNuOGzolNEE1Zqqc7lNgOKrkM4d/ub4yUHTO8b/CZDAppE8Sunpi9xlyxAogNn8EY+5zhpzMN9acCmKopbwRwtKa8GcBlceMoF8TX0rMhK2y07jqHOLO3uJaC3xlwwxPzAejj1HDLBnmfmPKxQ5QxBW1rNhWuTHTRldjHTbFOcHI74vhEXYJpKNyunqNfj7qINZYMXYTTaMpJr08xSJzMFckiPR0IoVzepHMQ4zh5703/TImAFmEOaf02HK3HmKST+i/JoS6bsafBzGQIT76/NlKmV5iq4hBFN6ThCjjqsqG1jlxHuVX/++L1OzFtxnLtuEW9hG5e79erAd3rsmhtL+C5eeswVtigdePia1oeuq5t2/OM0wV4nIO1SrSvyglRYtEFPaTDh603uzRf60oc4pRLOjtu2c8BCC0bxPkxZv8+EXm1mwkc39TdJ5quWS5+sLH7yniErxFfBJM1RwJZO4BAeSg2p2xi0qmXD/EH543GE9ee6mQzLiaFMekcQsdFXxxoaIsoarev2wCaHaKLcusxG+JCp+g2M6POweC7INYB7BtaaNRhHgPf+G26tpBzYMa0m3xjz2UzxmcQ6BwK0XfLoVvrtuUfN5eSZN3Tjaea6HqB94TP4toOZOZQ2WcO/t5lb00FMXuN7mfdpOILMkJEZKsmh42NUB5rJZBKrBr/6yz07V4XbJSm07T8m6tCOm5tbN7dam2Pj0EUBfAepnzMM+l0sfzgFl/imFSxEsKxMPO7kbP36U6ncn5q05hc6ohil89NkMKVaxox+UPI5aopL+eczOMJTVkLQpnM/Xp/beIbUfQkh47n4M84lyU8ptGDAOGhrD0B5yCO/SefHIOf+tw/EM3mqIMpZDcAfPq4YchkKKIQF/1h4gIhlhtdjzgILyaa19n/a7HX5BuXyXJGbivJWPQ6B/Ll1+Z6CmevG49/WuEbqKmvOHgy7uhZVfYuNtn+y7+5stauWd/ifC/EBa2c+B3NCPmdB5yDpg4QipVkIwOODFHEqKGUw2HctVlBkVyXJfTvEVXc6yRqJlNLU7yksA4fk12MBQA7hSgDskM8b1UW34iBAAPOgQFNG/TOnZw41GUy+PFj87R16nKyQjpe5yASW/kNx80lj8jqn0/PhhyG9486Zz47d13w+ZeXjJUvqSi6nFhJ5AvEuZ0kEmasziGOcxAmNodZ5wDcLThMyZPPVazEWDipdcTB5e5tCsegHQvnIIuVXPqMswzjEBecPDyiaM4LuV9TXoJoGxqFtGb1cDGOp5A26BwQL1ZyQYbslkh8PLxOuyaIo24zk/U+AAAd52D06jePh6+zG59aoJTJ3+WNef++4sYZimb791QdPwHg2jNGAQBG7tczUj7j+tABkhPwtiC9bxQ64xNxSppEixyyn4nMOUTF3Op6Fud/j/rqnuW7HHGI5RxirvdEAvYFGeczoItX/9riTWo94kHKQrbZxIKbvovt8JOYToTlJqLglhbxMuXge0b/m+t+mCTmjantDEU3Gvle5QX9w/PU8ByiQtaUaY33tXZ7M95Zsc2qkBZFky7hGHRoyGUUc2CeiS8cDwXmnoyp9yp///fTDsUYTeyqjMZcyWTKKt/PI/9+ktCOeh8mayWZaxQjCYsHLBNxPf8YL4e6GF24Z302QmS4QjoUK8mcg07nIIrEor+Ja+uUwwZi9k/Oifwu625ebwrXPREpBFfca1zzY5cLXY84CJ9N2cNsyDhwDnEi7HBih6MR2eywHU1iEMvJXGxbHg9DONH0nIOrWCkZ5yAO2EXnIMNU7fpPjI58T6ZziA5SXNDHDOuLfxOswYJrCIJYyTzeDBH++o4nMzZZtWQyhFZB4aw9qTugXkMc5JhR/F3zE6h8MJAJ2H699KdwgvqMlbb8v+K8/sc1p+DEkaGDm56gmnQO0XuLWpyFMOk4dKE6RGc7QAifEZiyRtvQ6xw0g/WRFcZ462fHQYYcW+lL98yKNCUysYyxiAi7Gl7RIrq0zoF7tALhhpGJsTUjUrNJ6eokhZzXGNA7zMgtqzoHHVfgTch8As5BbxLrEatNlrSf8kIfLJxkxTaTmPPpMHZ41CM6Yq0E9ZnJeRVERDhIw6sTYwuFz1FjYSY0YDpEEMLN6LXvn64NceGChlwmVuwWGlF49eLMdk1zlyd6GtKnAet3tARlch0gOj/i5iugnoj5HLZzDj73zaKcinho4Ic/cQ1dL3GFgSlrQe8EpxMrRcxwpd9yGcKhg3pi9P59MLh3N8hYtXUvFhkCYGaIIgRg0fqdkTnkohsrJ7oc58Dxh8vH4zyf7QTCTSGOOGdIDR8sw/UVitNOdFoL+1IdmGTClMTSJm8RhyxcF52w2lZ9YrV1j404RL9f/fFDI9+f/Pqp+NyEEVr/jSSQ2X8brVHybFvESqYhibGF+IlWp6sQ2zIp00VrJRd9hwn1uYw2N3ikL845tOs5B3Vs+nIumhQPHyoXomvPzqkAmjkccA7R5zdQ4GoCLgWhuPTN687AVaeF841vpuK7l8Ohh2Ilr872vVGfGr0TnPcsv/CRA7X3zJh5HnHCsE2zhjIUfT6MRTPUVZtz6HLEgZ8qTWZhcdRZtjTRwlmsFJZpTVk1Nup7pXSG8mLr10M9hXJ5sc3KSvS+PO3wQThXisoJhGa+tnbk8dRLpihHD+uLvt3rS7LQAVRiEFFISz961koR1iLaFpMqayCK3PlGEseBmThMkfvUcR+uqHfgHPh85sRIZ14rrgWjEt3nGsWfTQppW1kSsZL4zsbs3ydiGSeuIZOhBW9XFE+Zkmq15wt4Z8VW3PzswsjvOo4zX/Cs9KZefIwy9oJvzRdnKKITI5PEOTAmW3WlxKGi4BuB/JgDziHmBdRlM1bnHMDBCY7bgwu7Uk6T4EbneMSTB4l1AKBPtxx+duFR+I1GzsnlxfyUJEbA5BDv6caLjlbSiPLxzlq6JdjYdEly3HUgpVEH8bGs2bZXEitFsaO5HYuF5DKyLNsmJgjKBf1PyDnYxUpmX47wsy45kyvqsplY/VfWwDn85JNjcISf8On/Pn+8dmwiSPqrg4tTqS6Pk2m9iMThax89OPIbf/at+YIxRDmnu6JSV28V6M2ZuatV3xKd8UmhEIbYl1vbvrfNiSuWORTAO3SI2w9DNGNgNXI4iOh6xMH/Kz9n1xNcg2bTlBH3DvmCFRf2nla9QlreYFTi4LWVy2Zw+Ukjg1DEch2GkIW+8WIligm+IcQ0Mp1Q3lrmBajjeZ3rDQtNhEl3EeeUFwfxuVz7l3di412JkDd1B8YB7/rB+T7cuMvKOYjPzjQm8bJSToNZSez4mfHDlTpBsMh2rnPwvn/llIPxz29/TBmDTecA2MV3Osg6MJOFV/QaD+K9ySHUD+jryfPXbNsbiJVkrp/fl9iOSU9kCneiEw2KJsHyJb98dpEx6GJ8uwXlUCYe2lLOocIIT+LRB52TAnCZoDtRy4h7hXxv+t8XFgdlH25Uk4rovCllM0E+CW0Thyu22wsF9O9Rp03D+cljwxDArpOwTvMsXDNaFRjDDY/rHZMA4J4rxlvbEJ/COyu24dYXPhB+tL9DWQFsMm8WwU2NX2/aJIiE7BudiXMQ+4hLicrxzTNHqe1kosQh6gfgIc5aSS4zc07xY3ThHFx0Djo/B/lQ1svPR763NY/f+8H5TGKltoivgJooiq8z19wNBcYCrkR3PwUHHx7d3GjLM/RqCOcmY3pT2mqhyxEHDpVzUOWTOojEweSxGGetxCfth5tCgqDrlysBRcgnjoA42Pr0RSJbd7dpRSFAdJNyZV91G5suTak6HG88cjTUWT8IYznqdCciyhtzJl6sFPRbCPMHxImVbNZKHK6EuFuduqnJnINJhAcAT8/xguvpxKZimendF+MAqWtPd7uKjsj/Kz6/EVKyJz7fd7W0Y832Zq9to87B6+AH543WPke+znRLQ6dfe27eOmza2RoZq3w/pj3gvGM8XZ7uMTLGIiHugTDX+398/FAc4JDatpzocsTBpHMIRT32TUdkby89QWXjdW3L0LG2un1EsbKBepLh6yGOcwCAp+asxUZD6GtRFuvMOWhWkxyeQQcT7RncRzT9ixmD5TXZ3uD9X52g1hcNmWK6LQiKfT3nEJaZrJWKSRSvldVnoh60OjNmvmH+30tLjP3lIsRB378uWKTSlwPnoKvDuQD5GtGHo3/POqmOyl2YCBF/D2bCR8YNXcc57G7NC8mLotecdeRgz/vf8Bwnn+iZrDPGInGTvDIo0WPb8wwTRg7A9ydF/Xqqga5HHHjydentyRvdsYYcvmEmKrPyOpZz0Dz1M4WMaUE9Uk+fCueQ4ToHG3GI34BEqyKX+DAAcMcXjtf85iJWiq8TV8W2SY0c2NP4m+xB7LUl9BtDlBjCA0SsKatJrOQ/6lyGjM/rR1LobZOVj7iB6poyyeFNZUaFtAvnoClz4RzktcffQbtFVxAc5kSZvOFe+Roy61M8jnDZJlW0K6832bFRbjGXyfjWStquIiFGxAB7XhmLcN6MeWlLG+o6ZpvuesQhhnMAPC/TB/9tovZ6vh/YNlBXhbSIU0ftp5RliLBbMl2VJyu5jMc+HADRBUqGWfG1Uw8G4D3DTxw9FAfvZ96EbXA5LMcREJv072OHR5MjjR7aO/gcG6LaxNX4RIVgd4ITh503cKF887NxaCMlU2vd88hmKN5b3+FhuyikdRZ2MnS/mPQJHPd95US1L79Km8U7WDbRBdRDF7/3IH+14VFkiLBuRzPueHmJ8pv8fNukiSf3mWdM8QeR+wL0+gQdo9maLyjm4NVC1yUOBp0DABwxtDe6axRXQDhJbQtb/uXxa0+JfNdt5NqQFgRsl5xl9rTqrZWsYiWHDUJULpsIzUmHDgzrlzBhXbOc2ZBE53C04AmvexQ//VRovWXq994v89zPWbTmvXegM04QN3GTnwMfg+0Zyu/MFElXtGbRjV1+l6u2qlnvXJwAdaEoZMhzU9e/+HwuPm4YPn6EyjFziFyBEgHWf3Ri0iSTxzbf0M0+HHrTUkC9X1nsLBOBvB/DKs4kuMAYHnsvmtlNdexkaGkrpJxDtRDaKkXfXs5RIcs3NpusWL5eDvWgZe0NBGO2FNdfPhW76Bxc9Mvi/ZjaKsbKJq4dE+LFSu6IytTVhg8c2CPQH5n65d65jCHwStaZNYvPbstuvSe5m4VZvDiGKOokpVUIS0Pc0axugiIHZNtAAXuOhZ2atpXTvNC8ySw80DkIG7HJEqnVJlbieok4zkHzw1WnefG15PuVFdTy48oXPIGnOeiiV/6Lpxcov8kHHk+sVFDMeKuFLhdbicPGOdg3fu+vLO4REafQ1Z4CY5SbAPCv689UrHiyDhuNS1A9F2slcYwuJr3G8ZRBrJQkm1Y2hjh45f7YDM8qFKuE4gDdMxCbv/1zx+kHFHAO8fMs+K55v7KxgsmnRITO813cVE3uPrwdW4rMTbtUYwfTpg6Y51CQCa7NHDpC5yukWCv5zbfH6hzU8u+fOxq/f+VDhXOQPdLlNnnGRdP05UOUD32A/sDT2r6PipWIaBkRzSGi94io0S8bQETPE9Fi/29/of71RNRERIuI6Fyh/AS/nSYiuo2KiVznCNOm4nJyBtxOveKi/9OVqnWMi5gHUCfekD4NiikeORAHl+6yTpxD+FnnAOcKXfOXHK+3/OLoLZn4JbFkjeMcgPCe4xY1Z/UBA+fgNzC4dwM+IcTuEhF6K5uXn+kULMIl1Lf4Ls8eMwTHH9hfrSO8y7iDhI1z0ImIFLGSMJ44zmGPSBxMIqP2eOspPmbbvBaJwOFDegXvW+YUVLFSFO155jvB6cdk29rkR1tgbJ9XSJ/OGBvHGONeS9cBmM4YGwVguv8dRDQGwGQARwGYBOAOIuI73Z0ApgAY5f+bVIZxaWGaSpnI6cn8Al3MPHmdC8cdgI+OGqT+7kj7FM9Ry8nQLgpz6s7YL4c47nKKlc4ZMwT/c1nUZ0S0Kvr6GYdh+ndPi/yeRKwUseM3DJs/W+Oz8ssLDJjqiwRsOgfbM+dyf7so0LypcsRlJASi78w078RyM3H0T/OW0DEnjhyAIX2i1mDKfYgHDCPn4EHcsE06GFtsKVexkpwM6ucXHwMiQl1WjcAcK1aKVUgbh6uIlQqBWGnfJQ4yLgQwzf88DcBFQvmDjLEWxthSAE0AJhDR/gD6MMZmMO9Yf79wTflhUEiL322HYhemhm+cxsXoyDnwMBU2BOIQS5NJY7IY2W9h3C7Obq7tf2rcAUqZGOr7+AP7Sz4QyRTSeYstfFjujy1GrCSyLDp2nz8j2zPv7dv1JxIr6TgHg+VatCyeI3SyVnKcQnGms+J9mGTpbubQ3l85n0WkDrdWKujN18W2RCskTrSyGTUqsmy9pFVIw0aIjMNVpBp7W/PY05pH727FhXQvFaUSBwbgOSJ6m4im+GVDGGNrAcD/y3nNYQBWCteu8suG+Z/lcgVENIWIGomocePGjUUOWD9RxO82zsFljYQiCncZZxzilGkuSvRSIfYhe6wmayf6XRfSIO59uOhROFxEZnxTixcr6cco17O9jwvHeaFKTN7qgO6krNZxza8dtqEfk4sTnHw/z37ro9p6cfm5xa+6wI2uICIQAa9+YN8HMhTqiGxOcBF/EX9u5TIZRYwkf5efV77ghRCPU0iL+PVlxwbXiljjRxCQ80pXC6UqpE9hjK0hosEAnieihZa6uqfFLOVqIWN3AbgLAMaPH19U/ASTnwPgO8MYYqwkAV/0prUvK7yX/uI8a3v1uQzm//Rc7W98qLYRi78NNOTbdYF4P6WwunyR8kxmp1vMGQH9+zh7jBpZFgAe0PinRDKIWUQLNvDfbQpZwE2sJOcUsLVj+g6o8v/DB/dW6kQ4YpPM3UEnIxePHqrmH9H1oVorhb8PtGSdc0GWCDv9qKWnHa6Kb/l4XPwcRI6ADzGXJSVkN6939+Xjg/Y5ejXk0JYv+NZK5r5EfHTUfphw8AD0qM/iK6ccHPmNB+Psrgn5UQ2UxDkwxtb4fzcA+DuACQDW+6Ii+H83+NVXARghXD4cwBq/fLimvCIITFktLLjN29hFnJGLOc1nMhQEUpt4yADjxsQnXrdcxnjKXLvNiyvzjh81VNuf0Pw0TfgIV4j34xr2QQfeTJYInz5+WFEe5fW5jOKEN3Jgj4gvRjDWbPzmF27qdrFT3Nt34eS4UUGTEEbc1B+HTpEsbmjXfWI0ztIQzIguzeHQY6rhyn3K47aJlUxzyPVsJhK1K04+yDAeCjgH88EgyhEExCGj6hx4Pe4XdNjgMMXrGaMHY1dLuzZXQ9C29H1gz3qMGNAD8382CRMPic7dZp+bKUW/VwqK7pWIehJRb/4ZwDkA5gJ4HMAVfrUrADzmf34cwGQiaiCig+Epnmf5oqedRDTRt1K6XLim7Ag5B7MM990V24zXu4SGDmK9W2Y5X9hNG1SXfY4rThoJAOhvOe3P+NCLz+IqYejdrXhmMbKwy+AE15YvoM4hVLrJqkd+uqZFJF5v1gPp2wz78n6RHZdkhGIlc51uDtYn4rNedtP5WjFes5AFTvQCFyE+EpdXZvaQdkMcxxMxKzYSB3Iy3xQvN6U/FUVGpnkkcw6iH4q83r/90HsAgDq/c64PqMsS+navw/LNewAAf3xjmbEvEbZ1y63idNGPq4FSxEpDAPzdn0w5AH9hjD1LRG8BeJiIrgSwAsBlAMAYm0dEDwOYD6AdwDWMMW6rdjWA+wB0B/CM/68iCHUO5jrLNps37J0tek9KEfykapvfby/3Tvo623AOfn3/Hmbi4HKAF+d3KQlDxIXtwjmYNsHATLDAImaU5n7dxqfTXQBRxW8c52C8L7/4vZXmgwMQEh+7H0wy4mCCyMWaCKN4CHIxhHDVOZgg73Vyny7vgtezPEKvbRdLrEzoRW4yAMgQsGLLXuF7qHOQOYcVW7zNn2/YPJJCW5455QKXh2mLAt3SnreOu9Iomjgwxj4EcKymfDOAM9UrAMbYVABTNeWNANQMNBWATecg19Fh7up4CyJ+QrFPfocNwl9YtkinTptITFhnV4h9uWw0nx0/QlsuLmQXImO8R6nYyDmIDn4xpqwuPh428A3bFP3WtS2X3FOiLNo0bvHRuZzGXayVuPewDrLY1cZJ2HR79bmMlcB6fenHF+0vNL+1cQ4iTDoHMdEWn7fiOyiGONhEUC8sWA/A7b1VAl02fEYCY5fE4JTetnG7JJbni8fOOSQ7YZbCOYhry2X8Pzx/jLY8KneOn4LGjU/+bhiSmxOcX9dwX/KmabIgcZHuudRxeU9TLz4m+GyW34flLl7tplPqZoHDvf4TRxqvV4lD9Peot7ptHPFj3Sts1qamdjS3B1y6CwEVx5XNENoECvTB+p3K+Hiblxw/PEIcvqFJzuS1He1shyGmk9efp5MqyvKmDOi64TMqSB34hCmVc+ALvkeD2VrB5QSfLxNxyCbc1I1OTsIQnIikw8YHmN+pU2gQsr8zeQhG4uCwkl3quLwnURnqwvG4xOgxzUsbJyRCSdxThM5BHsetn1UEFEXBHAhROWYA8NafGFlXVFqLZrgL/3sS6rIZPPl+qI860GDqLXcl6o1MKMX4oxR0PeLgsDJLZeO4GMN+MnIQp2RC2WdcHRsKEU/T2OpOfZWSzzapeMqVcxjUR283H7FWirl/c1+y7Fzf9Hl3tgAAEZBJREFUUJxOQsRVHzOLZ5I+XhedgxvnoK/jsokB8cvL9d1zU+mxw/vi4uPsoVUAOEkCTH4hskMnd0aTdQ78+h9dMAZD+4ZOmdz6zE2nE63D9Qom9KjP4jiNpVo10GXFSraDmYv37/fOOdz4W7MvK7WH4XAQpzjYzDsppIV1bTuRXv+J0UZ2WL62FCWZeOt1LsTBkdv52aeO0paLweZM9/9/LzUBABqX6U2C5ctKsT0PEhXZ3mtC6qBLfwlE58dmi/EDh+m9NvubmCn7IUecqberWCnJhusKE3GQE0CFaWApojDmn486wODj4TBP5duxeXgDnnlsR6HrEQcHhbSLR6JtDUxf6Ll2zNFEXuRw2RT5BmGbdC4T0lWsdNVph+I7Z5uJXiR6Zym6i8jp0V0xL0MewkCDx60oAjA9L75vmDY3+TKTZZTJpFSEzZyaI+nzHWS494MEX5BWixl2GNLDxDl4xEGXsVBEHOcgPn9bXX4y3xtnspQAJssgOW8zJyJy+Axu1moS84iEzBw1WOYc1DH95WsfCT6b5lk10AWJgz3OCgDcdMlY429BOw592cIbuJwMAzm4pa7LJiJO1KQhFyJ9CbPFxVbfhEgOZQcOxKhsFRba5SfpnaA4fnnpWAzr193Ihf3v5HEAzH4g8kZukt9/4SMHWscRabNEjlCEadzDhKT0tki6/BeT6Okk30Fr1JBe2t854uaF6BVtm4o8ZefCdTuNdf7j44cGn02E9ttnhYcdEwGVxcj8gFCXyUT8HIIMgAYCWoyp8A/OU5X7YhyxjvKOBrqgziEQK1nq2EzS+GninKP04RtE1OVKY4ldfDJcDpgiQejTvTxOcKUkIBEXSCmmrOJJMO7E+pnxI/AZg2ktEIoWTO3Iw/zPSUdo67l4EocJ7811knIOLoeNBstGw2/bxDlccfJInDd2fwzu3U37O8d+vRqwzHcE06FnQw7jD+qPxuVbrTk5XDbaIxy4NPF2Tj5MTcULqARRDPHN59iidTuxYJ1nxm6as0kOfABwzxXjceaROq/28HO3DuQcuh5xMERlFWGbmPN+ei6a2/LoZzEv5XCx6Pn30w41/uYifjj3qKGYuXQLHr7qJGMdLlb6/qQjStrUxedSjthKcpsu/YoQwzXH5VKOA98UjcIAYcy9G3LGoHEuezpPp9mj3rz8kuocXGB7Z9zevp/hYEREsYQBiG60E0YO0Nbh92aj5z0c9H7i+jL6Ofh92UTFMnEY7nNbuSyh2c8Xce5vXg1+dwlgaII4TtM7FtdHyjlUESHnYBPVmK/vVpc1Kv+KwSGDehp/6+OLCkTnGxlfOWUkLjpuGAZYQmxwIlNqQMFKcA4uJr1G4iDIa+MUe3HgC9uocxDrOojCPjfBzKXwgGo9LafCSlgvfnGiWfT2xy+fiL+9u9oaqsUFfIrc/rnjcL4h2RG/NSu352BVKE5nXewpIJzzB/SLJw6fOHoobv/ccYHYKJdRQ3YDZqW9uKeYRu/iBCjO944kDl1W51BOSxEZXBZainwfAE4fPRjD+nW3irCIyEoYxHGUavkhXl5amtDycA6i3bkt6YsLOJEyjSbqm2ExLfYr2va2z544ArkM4RxNyk65nXJiSB/zyf/00YPNaU2LQF02E2tIwBw0d7/74vHG38TQM6b5yJ+jTVTMdQ6ZDEXebVYTspuX6yDmhPj/2zvzICnqK45/3u7CKvfhIrCcHhERcBdQJKAQKiigFYg5xAsUK4jR8kjKqDFWUmUSNYfGgxRSCVROQ6wkFYhXNBWtiiZBqaCCiIhaEUNiiIoclkjVyx/9a7aZme7p3e6Z6d59n6qp6f3Nb377nTc9/fq933Xa6OIFIP3/0dZO+YEWR1paqfpEppUS/jBbhvcDosN4v+MuakjosP49ePrGWYm0QDDHnexzBU/mJM6hvau7hn0fU0YP4JFN/waSRw7+xTzOBjRRI83i3BWfNLQvr347epn2SjiHaiCBCWTl6sSZDNj3yPAbH38k06De4ftC+BfjqPPVf62wD8SLHIrPq7DPFuy8HjGw9CS4XoFUYpzNl9LMUrSXLhg5eM9RP72kd9j7/LRBRN70K3PGcMXMYzlnwtBE/ysO/kmfNFWR1iS4YEQVZ3XXsDvQOz/fcug4aeTgj+OPGm3TtuZO+Tpx7oqj8NtJ4oRrga87akFF/8Y7yjn4L3WPGNQxcaSXSrrrvJbQOr6MKIfu38QVRvoNJbYJBUL3dC7lSArpGVjtoHB+hU9W+hzydealQNhOcEGS3rRNP66JQb0buWJmeGdznyO6ccOcMVVZq93vkE6eVkrnbjZ4IY8VOYTUCYbcSTuk/aGgJ7uorxRlV26l7a44YUbxULQ0u8RoljwQ9a3OGuN9puEDwvsB/HRO1DyYU0YN4OVb5zAtZBSS935PSdTvzH+t8BRqqCteshugsb70BdvXPG98eLoweGMxvH/5JTYK52BUky6bVooi6UWwqXcj62/+ZEpqkuOf9En7UpKm23w+CqSAksxzCJI0rTRmcB8eXDb1UEqwFL6Kd/YfCK3ziTGDGNizO5dNH51IT/+e3Vl31fSy8wqySpRvXDJtFOe2Nkd2fl9+xjFcu2Zj0YZOhZRNu7hzNmpPBD86KxyMUF9X5+0JXVAeFjn474+7/E5YVBj8nYVFF9WgyzmHOGmlWu28VGkSj1byN8RJ6CPaGznE+X9JnQN4d6JR+CmG9/aHr6TZ1LuRDbfMTqwFYPywvqm0U038Gb+Nkak3KTsqakFrM/Nbhibe//ygO9eiLtgfutGAz2zfdVh5N7d8xo53PzisPKytOeMGc/6pI/hyxNI6cajLiHPonFfBCOKsrdTZuP6sE1h4ynAWtDYnasc/aUcNjL6bK0fwQh5n+Yyo3eLWLPX2jI5aGqKrc/aE0kNKK4E/X6JPjL0NypHUMUBbujFq4Mc2t11r4eKC/oTX13cdvvlXWATe2FDPbeeOD50DE5dgRFFuJGIl6XKRw9xxg/nY0b0SjdPPGwN6do+1JEg5utXXseKiiYlXiQz2D0R1uL5x+9ll2xrpHNWE5vzdZafB8gsmsnP3B2XrLL+gOnpuOftEvrFu82HLidcSvx8gahDBkL7hQ3x37T3AolXrU9V098KWyEgmOJClllmMLuccRg7seeiCUoo4C6d1ZeaMS34XGlxsbMro6FROOQb3PYKHrp7OsU3Vuxg9uCx8Nnq1qWZUEIePH3cUf7xuRq1lHMLvkD4YMWDhC2ccQ12dsGTa4f1Ej7ph0kH8SDUJ81uSRfDVIjPOQUTmAHcD9cCPVPX2amt45ZtzKzIztauxZulpkRHBnHGD+e5jW4F0xnGfNLS6UUPStJpRPfxNd3o1hqe5Ghvq+eLM44rKC9NHr982L5VUVxx+ffnUsns9VJpMOAcRqQeWA7OBHcCzIrJWVV+qpo68jSnPKlOOKT071Kead/mVoJadhEb7mDtuMHeddzLzQpbyiKL3EQ2H7YBXLccAcGrCiDoNsnI1PBV4VVVfU9UDwK+A+TXWZFSQp66fyRNfyk76weiciAifbh3WoT7Gq2e1bXx15th8zjdJQiYiB6AZeDPw9w5gSkhdoxMQ1e+TVX544cTEW8ga+WFBazMLWpt5fdc+jg7ZgrYzkxXnUCpeKxqbKCJLgaUAI0bE31TFMNKgI6kJI/+Um4jXWcnKbdAOILjG8TDgX4WVVHWlqk5W1clNTU1VE2cYhtHVyIpzeBY4XkRGi0h3YCGwtsaaDMMwuiyZSCup6kERuQp4DG8o6ypV3VxjWYZhGF2WTDgHAFV9GHi41joMwzCM7KSVDMMwjAxhzsEwDMMowpyDYRiGUYQ5B8MwDKMIKdzlKC+IyB5ga8jLI4B/lmmiL7A7Q3XS0pympmrq7qya02zLbJ28Ttx6WdOdpubBqlp++WlVzeUDeC7itf/GeP/KjNVJRXNedXdWzXnV3Vk151V3mpqjrp3BR2dNK70Xo866jNVJS3PcelnT3Vk1p9mW2Tp5nbj1sqa72teQXKeVnlPVye19LavkUTPkU3ceNUM+dedRM+RTd1zNcevlOXJY2cHXskoeNUM+dedRM+RTdx41Qz51x9Ucq15uIwfDMAyjcuQ5cjAMwzAqRC6cg4isEpG3RWRToOxkEfmriLwoIutEpI8r7y4iq1358yIyM/CeSa78VRG5Ryq871+Kup8Uka0istE9BlVQ83AR+bOIbBGRzSJyjSsfICKPi8g299w/8J6bnE23ishZgfKq2DtlzZm1tYgMdPX3ish9BW1l0tZlNGfZ1rNFZIOz6QYRmRVoK6u2jtLcflvHGdJU6wdwBjAR2BQoexaY4Y6XALe64yuB1e54ELABqHN/rwem4m0u9AgwNye6nwQmV8nWQ4CJ7rg38AowFvgOcKMrvxG4wx2PBZ4HGoHRwHagvpr2Tllzlm3dE5gOLAPuK2grq7aO0pxlW7cCQ93xOOCtHNg6SnO7bV3xLyVFQ43i8Ivs+7T1mQwHXnLHy4GLAvX+hLdH9RDg5UD5+cD9Wdfd0S82Rf2/B2bjTTgcEjhpt7rjm4CbAvUfcz+cmtg7ieas2zpQ7xICF9os2zpMc15s7coF+B/ezUTmbV2ouaO2zkVaKYRNwKfc8edo20nueWC+iDSIyGhgknutGW/HOZ8drqzatFe3z2oXDt5SqTC2EBEZhXc38nfgaFXdCeCe/bC01P7fzdTI3gk1+2TV1mFk2dblyIOtPwP8Q1U/JD+2Dmr2aZet8+wclgBXisgGvJDrgCtfhfeFPQf8AHgGOEjMfaqrQHt1A1yoquOB093j4kqLFJFewG+Aa1X1/aiqJco0orxipKAZsm3r0CZKlGXF1lFk3tYichJwB3C5X1SiWqZsXUIzdMDWuXUOqvqyqp6pqpOAB/DyxqjqQVW9TlVbVHU+0A/YhnfhHRZoouQ+1RnUjaq+5Z73AL/ES5NVDBHphncy/kJVf+uK/yMiQ9zrQ4C3XXnY/t9VtXdKmrNu6zCybOtQsm5rERkG/A5YpKrbXXGmbR2iuUO2zq1z8HvbRaQO+Bqwwv3dQ0R6uuPZwEFVfcmFX3tE5DQXUi3Cy+FlWrdLMx3lyrsB5+ClpiqlT4AfA1tU9c7AS2uBxe54MW22WwssFJFGlw47HlhfTXunpTkHti5Jxm0d1k6mbS0i/YCH8PqmnvYrZ9nWYZo7bOtqdKSk0BHzALAT+AjPc18GXIPXe/8KcDttnbyj8DpstgBPACMD7Ux2RtkO3Oe/J8u68UZ7bABeADYDd+NG1lRI83S8MPkFYKN7zAMG4nWSb3PPAwLvudnZdCuBkRvVsndamnNi6zeAd4C97pwamwNbF2nOuq3xbtz2BepuBAZl2dZhmjtqa5shbRiGYRSR27SSYRiGUTnMORiGYRhFmHMwDMMwijDnYBiGYRRhzsEwDMMowpyDYVQAEVkmIovaUX+UBFbvNYxa01BrAYbR2RCRBlVdUWsdhpEEcw6GUQK30NmjeAudteJNWlwEnAjcCfQCdgGXqOpOEXkSbz2sacBaEekN7FXV74lIC95M+B54E6eWqOq7IjIJb02t/cBfqvfpDKM8llYyjHBOAFaq6gS8pdavBO4FPqve2lirgG8F6vdT1Rmq+v2Cdn4K3ODaeRH4uitfDVytqlMr+SEMoyNY5GAY4bypbWvU/Bz4Kt4mKo+7FY/r8ZZH8VlT2ICI9MVzGk+5op8AD5Yo/xkwN/2PYBgdw5yDYYRTuLbMHmBzxJ3+vna0LSXaN4zMYGklwwhnhIj4juB84G9Ak18mIt3c2vmhqOpu4F0ROd0VXQw8parvAbtFZLorvzB9+YbRcSxyMIxwtgCLReR+vBUw78XbUvQelxZqwNuYaXOZdhYDK0SkB/AacKkrvxRYJSL7XbuGkRlsVVbDKIEbrfQHVR1XYymGURMsrWQYhmEUYZGDYRiGUYRFDoZhGEYR5hwMwzCMIsw5GIZhGEWYczAMwzCKMOdgGIZhFGHOwTAMwyji/yHhsLr/luaBAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "sorted_data['inc'].plot()" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEKCAYAAAD5MJl4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl4JGd97/t9u7p679a+jaTZF8+Md4/tMdjYxIBtIJiwnYEEOPeQmEMMJwl5kgtJTg65N07gnCTk+IJ9D1swCQdjDME2YMA7tjG2Z2yP7dk8i2ZGGmkktbbeq7u63vNH1Vtdvapb6qUk/T7Po2ekUnVNqbuqfu/3tzLOOQiCIAjCiqPVJ0AQBEHYDzIOBEEQRBFkHAiCIIgiyDgQBEEQRZBxIAiCIIog40AQBEEUQcaBIAiCKIKMA0EQBFEEGQeCIAiiCGerT2CpdHd3840bN7b6NAiCIFYUBw4cCHPOexbbb8Uah40bN2L//v2tPg2CIIgVBWPsTDX7kVuJIAiCKIKMA0EQBFEEGQeCIAiiCDIOBEEQRBGLGgfG2DBj7AnG2BHG2CHG2B8Z27/AGDvHGHvF+Hqn5TWfZ4ydYIwdY4zdZNl+BWPsNeN3dzLGmLHdzRj7vrH9ecbYxvr/qQRBEES1VKMcVAB/yjnfCWAvgNsZY7uM332Zc36p8fUzADB+tw/AbgA3A7iLMSYZ+98N4DYA24yvm43tnwAwxznfCuDLAL60/D+NIAiCWCqLGgfO+QTn/CXj+yiAIwAGK7zkVgD3cs4VzvkIgBMArmKMDQAIcc6f4/r4ue8AeK/lNfcY398P4EahKgiCIIjmU1PMwXD3XAbgeWPTpxljrzLGvsUY6zC2DQIYtbxszNg2aHxfuD3vNZxzFcACgK5azo0gCGKlcuDMHA6PR1p9GnlUbRwYYwEAPwTwx5zzCHQX0RYAlwKYAPCPYtcSL+cVtld6TeE53MYY288Y2z89PV3tqRMEQdiaLzx4CP/0yLFWn0YeVRkHxpgM3TB8l3P+IwDgnE9yzrOccw3A1wFcZew+BmDY8vIhAOPG9qES2/NewxhzAmgDMFt4Hpzzr3HO93DO9/T0LFr9TRAEsSJIZbJIZrKtPo08qslWYgC+CeAI5/yfLNsHLLv9DoDXje8fBLDPyEDaBD3w/ALnfAJAlDG21zjmxwA8YHnNx43vPwDgcSMuQRAEsepRNY60qrX6NPKoprfSmwF8FMBrjLFXjG1/AeDDjLFLobt/TgP4JABwzg8xxu4DcBh6ptPtnHNhEj8F4NsAvAAeNr4A3fj8K2PsBHTFsG95fxZBEMTKIa1qK884cM6fQemYwM8qvOYOAHeU2L4fwIUltqcAfHCxcyEIgliNqJoGxWbGgSqkCYIgWkwmy5HOknEgCIIgLGSy9nMrkXEgCIJoMWQcCIIgiCJUcisRBEEQVjjnUDUOJUPGgSBWHFmN499+c8Z20p9Y+WSyekkXKQeCWIEcHJvHX/34dTxzgtq2EPUlYxiFrMaR1exT+0vGgSCqIKHodZyRpNriMyFWG2o2ZxDspEzJOBBEFYi+N9FUpsVnQqw2rO4kMg4EscJICeOgkHIg6ouq5QyCkrVP8z0yDgRRBTnlQMaBqC/kViKIFUyK3EpEgyC3EkGsYIRxiJFyIOpMnnKwUTorGQeCqIJkWr9pya1E1JsMKQeCWLlUijkcHJ03lQVB1AoZB4JYwZTLVpqJKbj1q8/iP337RTIQxJLIUECaIFYu5QLScwn951+fnMGffP+VotcRxGKoWWsqKxkHglhRpMq4leKGkhhs9+JXb1BrDaJ2KFuJIFYwIuYQU1RwnnMDCOMw0OZBykY3NrFysGYr2WlUKBkHgqiCZCbXHC1piS3EDOPQFXAhq/E8FwFBVAMFpAliBWMNNltrHeJpYRzc+n42urmJlUFGo4A0QaxYrMYhYjEOMaNba7ffVbQfQVRDRrUqB/tcP2QcCKIKUpksPLJ+u1gzluJKgXIg40DUiLXxHlVIE8QKI5nJoieoG4CYpdYhrqhwMKDdJwMAUjYb9UjYnzTVORDEyiWZ1tBjqINonltJhd/lhEeWAJByIGpHpYA0QaxcFItyKHQr+d0546CoWfz01Ql86H8915LzJFYeGSqCI4iVSzKTRW/QAyBfOcSVLPxuCW6nfispGQ0Hx+bxwsgspbUSVSHaZ7gkBykHglhJZLIaVI2ju4xbKWBRDik1i4SR3mqn4CJhX4Ry8LslMg4EsZIQcQS/W4LfJRUoB+FWchj7akgY6a0UnCaqQc1yOBjgkck4EMSKQlREu2UJQY+MmJKLOcSEcXDmAtKJtL6/YqOcdcK+ZLIanJIDbqfDVmqTjANBLIJiKACvLCHoceYrh3SBWymjIZEh5UBUTybL4ZIccDkp5kAQKwqhHIRxyK9z0APSObdSFkkj5kDKgagGXTmwlWccGGPDjLEnGGNHGGOHGGN/ZGzvZIw9whg7bvzbYXnN5xljJxhjxxhjN1m2X8EYe8343Z2MMWZsdzPGvm9sf54xtrH+fypBVM+djx3H9144CyAXc/DIDgQ8ckH7jPxUVj0gbbiVSDkQVaBqGmTJoWcrrTC3kgrgTznnOwHsBXA7Y2wXgM8BeIxzvg3AY8bPMH63D8BuADcDuIsxJhnHuhvAbQC2GV83G9s/AWCOc74VwJcBfKkOfxtBLIlUJouvPnECDx0cBwAk0znl0Bt0Y3IhBUBf8aVVDQGX00xlTWU0c38qiCOqIa1yyA5dOdhpQbGoceCcT3DOXzK+jwI4AmAQwK0A7jF2uwfAe43vbwVwL+dc4ZyPADgB4CrG2ACAEOf8Oa43xP9OwWvEse4HcKNQFQTRbJ47NQNF1cwpb9aA9IZOH85HUkims2ZfJb/bCcaMm9uqHGzkIiDsi6ppkJ0OuJzSyi2CM9w9lwF4HkAf53wC0A0IgF5jt0EAo5aXjRnbBo3vC7fnvYZzrgJYANBVy7kRRL148ugUAGAungaQCyx7ZQkbuv0AgLOzCTP2EHA7AQAeY+WXMGMO9rnRCfuiZjmcDrZyi+AYYwEAPwTwx5zzSKVdS2zjFbZXek3hOdzGGNvPGNs/PU0jGYnG8KQx7nMukQbnPC/msKHTBwA4MxNHXBH1D4ZxkCU9IJ0htxJRPemsHnNwOx0rr2U3Y0yGbhi+yzn/kbF50nAVwfh3ytg+BmDY8vIhAOPG9qES2/NewxhzAmgDMFt4Hpzzr3HO93DO9/T09FRz6gRREyPhOM7MJDDY7oWiakhaHvZel4SNXbpyODOTUw5+tx5S88gSoopqtkMg5UBUg2oYB9dKq3MwfP/fBHCEc/5Pll89CODjxvcfB/CAZfs+IwNpE/TA8wuG6ynKGNtrHPNjBa8Rx/oAgMe5dVAvQTSJl8/OAQBuubAfADCXyJgKwCtLaPPJaPPKOD0TN2MOpltJdmA+kTaPRcqBqIZMlkOW7OdWclaxz5sBfBTAa4yxV4xtfwHgiwDuY4x9AsBZAB8EAM75IcbYfQAOQ890up1zLu6STwH4NgAvgIeNL0A3Pv/KGDsBXTHsW+bfRRBLYjKiAAB2D4YA6HGHpOlW0hXCxi4fzs4m8gLS4vczsZxxIOVAVIOokLZbncOixoFz/gxKxwQA4MYyr7kDwB0ltu8HcGGJ7SkYxoUgWslkJIWA24mhDj22MJdImwFpka66ocuPl0fnSgSkJUxGUuaxqAiOqIZMVoPXJdnOOFCFNEFYmIqm0Btyo8Onz4SejafNEaEiu3pDlw/n5pJYSOqprkI5uGUH5uK5vkvUPoOoBlXjKzPmQBBriamIgr6gBx3G2M/5RAbJdBZeWTL32dDlh8aBo+ejAHIBabdTyru5STkQ1ZBWNTgdeoV0JsuhafYIt5JxIAgLk4ZyaPPqxkEoh3zjoLucDpyZgywxuJ0iWyn/drJTtSthX1SNw+XUiygB+8wBIeNAEAacc0xGFPSFPHBKDrR5Zcwl9IC0x2IcLhpsw9beAEbCcdOlBCBvH4CUA1EdmayuHNxkHAjCnkSSKtKqhl5jVnSHTzZSWbW8B79HlvDd378aG7t85nQ4fTspB6J21Gwu5gDANkHpalJZCWJNMBnVM436Qvqs6A6/y2yhUfjg7wt58MCnr0UkmQtAi4E/ANDmlZEi5UBUgV4hrdc5APYxDqQcCMJApKHmlIMLs/E03piMmqmtVtq8MoY7c9ut6qLT7yLlQFSFtUIasE99DCkHgjAQBXCmcvC58PTxaWSyHNdsWbwPpPAZA6QciMV58tgU+kIeZLLcHPYD2Ec5kHEgCIMpw63UG8rFHESfpL2bFzcOQjm4nQ74XBIpB6Iif/3AIVw4GEImq+ljQsmtRBD2ZCqiIOhxwufS10wdfr0Qrj/kwcauYrdSISIu4XNJ8MiSbdwDhD1JpLMIR9PmmFC3sbiwS5YbGQeCMJiMpEyXEgCzSnrv5k5UM3tK3Nw+YzIcNd4jKqFkspiKpqBxQJYcZhuWqGVGeSsh40AQBpORlBmMBmBWSVcTbwBybiUvKQeiClJqFueNJAjZqKsBkJcB10rIOBAE9AK40bkk+ttyyuGKjR14x64+vH1Xf1XH8DhzbiW3MTKUIEqR1TgyWW7235IlZhqHBZsYBwpIEwSAsbkkpqMKLhtuN7f1Bj342sf2VH0MUznIkuFWIuVAlKZw4eB0OBDy6o/jhYQ9jAMpB4IA8MKIPnhwz8bOJR/D7SwMSJNyIEpTuHCQnQ64nRI8ssM2yoGMA0EA2H9mFkGPE9v7gks+hqcoIK2BBhoSpShcOMgOPeGhzSsjkiLjQBC24cXTc9izoQOSY/GspHJYA9Iic8kuTdQIe1GkHIwahzavTMqBIOzCbDyNE1OxZbmUgPw6B7fNWiEQ9qIwzdkp5ZQDGQeCsAn7T+vxhiuXbRyKlQPVOhClKFw0uPKUA9U5EIQtODkdBwDsWhda1nFEV1af7DTTWqmFBlGKYuWgXy8hr0x1DgRhF87NJ9Dmlc0K1aUS8Dhx1aZOXLa+3XatEAh7IYyDKLyXya1EEPbj3FwSg+3eZR9HcjDc98lr8JbtPWbMgWodiFKI66IvqBddWgPSMUWFaoNEBjIOxJrn3HwSgx3LNw5WPKZyaP1NTtgPoSiHjOvOahwAIJJqfdyBjAOxpuGc1005WDGzlSggTZRAxKLEosSarQTYo4UGGQdiTRNJqoins+YKrl6QciAqIQZBiUWJq0A5kHEgiBYzNp8AgMYpBwpIEyUQymFjlx+Anv4M6NlKgD2MAzXeI9Y05+aSAFD3mAMFpIlSvDEZRXfAbWYrvfuSAbT5ZGzpCQCArdp2k3Ig1jTn5nXjsK7OysFDqaxrnpfOzuGOnx7O2/aRr/8GX3n8BFJqFg6md/C9aXeuJTy5lQjCJozPJ+GRHegyRoLWC1IOxCOHJ/H1p0fMRnoxRUU4lkY4pkDJaPDIUtGEQTIOBGETzs0nsa7dW9UY0FqgIjgimdY/e+G6nDBUaiSVQUrNmurSikeW4HI6yK1EEK2mEWmsAKh9BlFsHBb0kaDRlIpURjOvkULsUiVNxoFYs3DOcXY2Ufc0VkDvleORHQjHlLofm1gZJIyg8/iCMA76v9FUBoqqmeqykBVjHBhj32KMTTHGXrds+wJj7Bxj7BXj652W332eMXaCMXaMMXaTZfsVjLHXjN/dyQwdzxhzM8a+b2x/njG2sb5/IkGU5lQ4jrlEBpcMtS++8xK4elMXnnxjetUP/Hl1bB6js4lWn4btKFQO4/NW5ZA141KFrBjjAODbAG4usf3LnPNLja+fAQBjbBeAfQB2G6+5izEmzOPdAG4DsM34Esf8BIA5zvlWAF8G8KUl/i0EURPPnZwBAOzd3NWQ479tVx/OzCRwcjrWkOPbhT/87kv44sNHW30atkOkq44ZsYbzhlspkswglSkdcwCALr/LFopzUePAOf8VgNkqj3crgHs55wrnfATACQBXMcYGAIQ4589xfRn1HQDvtbzmHuP7+wHcyOodHSSIEvzm1Az6Qx5s6PI15Pg3XtALAHj0yFRDjm8HNI3j/EIKx6eirT4V25FI6/2Rxg3jINxL8XQWyXR55dAX8mAqugKMQwU+zRh71XA7dRjbBgGMWvYZM7YNGt8Xbs97DedcBbAAoORSjjF2G2NsP2Ns//T09DJOnVjrcM7xm1Oz2Lu5s+6ZSoJ17V7sGgjhsSOTDTm+HZhLpKFqHKfDCVt0ErUTSSMZQbiVhHIAgJl4uqxy6Au5MZ/ItHxQ1FKNw90AtgC4FMAEgH80tpe6y3iF7ZVeU7yR869xzvdwzvf09PTUdsYEYeHkdAzhmNIwl5LgrRf04MCZuZbf6I1CrHDTWQ1jxkOQ0EkaymEqqkBRs5hYSJkzQ6ajijlWtpBeo433dIvVw5KMA+d8knOe5ZxrAL4O4CrjV2MAhi27DgEYN7YPldie9xrGmBNAG6p3YxHEknhhZA5A4+INgp6AGxoHEunVbRwA4FR4dcdWaiWZycJluI6OT8YQU1Rs79PbZMQUtaxy6A25AQBT0VTJ3zeLJRkHI4Yg+B0AIpPpQQD7jAykTdADzy9wzicARBlje414wscAPGB5zceN7z8A4HG+2tM7iJYzGdFvvOHOxsQbBKu9GM66uj05FW/hmdiPRDqLzd16Yz0xp3x7X9D8faWYAwBMRlqrHBZtvMcY+x6AGwB0M8bGAPw3ADcwxi6F7v45DeCTAMA5P8QYuw/AYQAqgNs55+Ku+BT0zCcvgIeNLwD4JoB/ZYydgK4Y9tXjDyOISkRSGQTdTkiOxuY+CNfBai2GE6vboNu56rOyaiWVyWJLbwBHz0ex/4yuVK3GoXzMQRiH1iqHRY0D5/zDJTZ/s8L+dwC4o8T2/QAuLLE9BeCDi50HQdSThWTGbI/cSNzO1T3XYSqiIOh2YudAiIyDhUxWQybLsaXbDwcDfnlIT0q4oH9x49DhkyFLrOUZS9Sym7A9Y3MJBNxOtPvq1xwvklSbZBxEA77V61bqCbmxucePRw6v3qysWkkan3fIK+MfPngJHj86BcYYthoxB6C8W4kxht6gx/7KgSBaSSqTxXu/+izevLUb/3PfZTW99nQ4juFOX0nXUSSVQcjT+Mt/1SuHaAo9ATe29ARwb3wUc/E0Ourc4XYlkjISELwuCe+7fAjvu1zPx7HGnsopB0APSk+1OOZAvZUIW/Pw6xMIx9J47uRMyTYU5xdSuPrvHi1yacwn0nj7l5/CgwfPlTxupEluJTPmsEoD0lNRBb0hjxnYF/Mx1joiO81bYADcTsnMYCqnHACgL+hZmdlKBNEs/u03ZwHoD6HRWf3Bk0ir+MbTp6BmNYyE45iMKDg+mW8cZuNpZLIcI+HSPX+iKRUhTxNjDqswIM05x1REQW/QjQ6ffeYQ2AHhVio0DgDM624x5dDqbCUyDoRtOTwewYEzc/jgFbokf9FIB7zvxVH87U+P4ODYvLkiL/Tpi5XbdJnVl64cmuBWMpRDahUqh3g6i2Qmi96g24wHzSfIOAAW5eAqZRz0666icgh5sGD0YOKc46GD402PW5FxsDEPHRzHd5473erTaBnPj+iN8T77ju0IepxmOuBPXp0AoN+AYtJaYZGZ+LmU3zarcUQV1Zy61Ujcq3iuw5QRMO0NudFuKIf5ZLqu/8d9+0fx2thCXY/ZDFIVlEPQMA4VlUNQL4Sbjio4FY7jM997Gb9scsCfjINN+YdfHMNnvvcy7nzsRKtPpWXMxNKQHAx9QQ+u2NCB/adnMbGQNI1EKqOZykE0ORMkLK0LCokaYxub4VbKzZJehcbBeG97gx7T0NZbOdzx0yO498WzdT1mMxDtun2uYnUarMKtZK11EO9ps6fDkXGwIcfOR/GVJ06gzStjLpGGpq3NgvFwTEGn3wWHg+HKjZ04PhXLaw2dymTNFVqynHKwuJXemIziW8+MIJLUDQelsi6PnHFwwyNL8MiOusccFDWLjI0a+qlZDV//1alFP08x6MfrKn7ECndmJbdSp5HxNRNPI67o16v4t1mQcbAhR89HAAA37+5HVuPmgPK1RjimoMu4Sd5zyTps6PLhgVfGzRsnlcmaK/JEmZhDOJZG1jCuPzwwhv/nJ4dx3nCHUCrr8piL6y4k8Xm0e12YT9TXrZRW9WIyu/Di6Tnc8bMj+PXJcMX9RCprKXUQdC+uHISqjaVUxIRxaHJ/LjIONuTkdBwOBlyxQe+EPhOv7w23UgjH0ugxfK/DnT489tnr8bWPXoE7jXqHlKqVVQ6iI2ZW45g13j+xqj1mGN9mKofVmMoq3BzifWz3yXV1K6lZDRrXDYRdELMZUovEkIRbs7RbScQcyj9+A8Y+McViHEg5ECenY1jf6UN/m+53nF2zxiGnHAB9LvM7dvfjkuE2AICSyQWkC42DdZUlXEvCOBw5rw+maUbMweFgcEmOVakcFpIZ+FwSZEl/jLR5ZczX0a2UNtxJaRu5lcQc6MWMvZjlUDogrV93QlWWwu/WfxdTVNMoFMbVGg0ZBxtyciqGLT2BnN8xtjaNw0wsje6Au2i7kOO6W8kISJdxKwE537hpHCaEcmhOgwC307EqYw6RVCYv40tXDvW7VoVisFPMYdwY2LNY9plQrqXUQTXKQRTLRVMqYin9WDGF3EprmqzGcSocx5beALoCunFYi8ohrqhIZrLoDhYbB1lyQHIwJPOUQ0G2kkWCT0fyjcMxQzk0I5UV0GsdVqNyiCTzCwn1mEMdlYMNjYOY5raYmklmsvDKUskpg1du7MRVmzrNjKRyhDxORFMZxIxrO0FupbXNubkk0qqGLT1+dPiEcWj9PNlmI9RSV5k+PR6nA6lMLuZQVOeQySJoTN0qdCsl0lk4GOAv4Q9uBG6ntCrrHCKp/ELCdr/uVqpmHIumcfxg/6gZ1C6FMKgZ1T4BaRFzWFQ5ZLIlC+AA4KKhNtz3yWsqBqQBIOB26jGHlAhIk3FY05yY1le1W3oC8MgS/C5pTQakp2O6QSylHADdtZTKlC+CS6az6PC7EPI4i9xKgO73dTR4loNAVw6rz620kMwUKYe0qi0arAWAXx6exJ/d/yp++NJY2X3E6lyxkXKYEG6lRT7PRDpbMt5QCwGPE7GUakllJbfSmkZM09rSo7f27Qy41qRbKSyMg7+SccgVwRUFpBUVPpeE3pAHUxFFr4pO5VZezYo3ALpyqOaBudIoFXMAFq+S5pzjzseOAwBGZ0v3vgIsbiWbuOQSadVcYCzmJkxVUA7VEnTLeszBMAqkHNY4RyYi6PK7zLbHnX73mjQOwq3UHSztVnLLDqRUS8yhIOArZH1v0I3JaMqsivYZN2wzMpXMc3WuTuVQOBOjvcoq6ceOTOHwRAQOBozOle/iareYg1ANQPn02oVEBiemYkiks+a1tlQCHieiioqYor+flMq6hvm335zBj14+h+t39JjbuvyuhmcrKWrWzKW2C0I5dJaNOUhQrNlKJZSD3+VEn6EcxIpvhzGJq/nGwR4PuHqhaRzRgpkYbb7qjMMPDoxioM2DG3b0VlYOWZsZh/mccSj3ed711An8zl3PIpZSF40pLEbQ7URMyZjupAS5lVYv//FfXsCev30Ev3/P/iI3yMnpGP7qx6/jty7oxd/9zkXm9k5/491K//3nx/CRr/+mof9HrczEFIQ8zrK54B45PyBdlK2UNpRDyI2paK4/za6BEIDmupU8srTqjEMsrULjKFAOuiFfqOBW4pzjwJl5XLOlC5u6/RibS5YNYOeUgz0C0qLGASgfc5iOKoimVByeiNQl5hDNq5BWqwr21wsyDk1C0zh+fXIGAMOjRyZxaDy/0+SYIa9vf+uWvBVHl2EcGnlRnJmJ43Q43rDjL4VwLF02GA3kAtLW9hnW9yiRzsLvkjDY7kUmy81hQDsN49CsNFbAUA6rrM6hsDoasMQcKiiH0dkkwjEFl6/vwHCHF8lMFuEyylgYB7sYVuFW6g26y2YricyieriVgkZAWhgHjS9emV1PyDg0iemYgrSq4bcvGQAAjM7ly2nhEw8WuDs6/S6ks1pD3T6RpIpISjV7ENmB6ZhSNhgNGMZBzTXe4zz/IaIrByfWtXkB5ArfhHFoqltpFSoHs3mhp1RAurxxeOms3lH38vUd5vS4wntBoNgu5pBEd8CFoMdZNoPKep8uWzm4Zagax1w8bbZhaWZQmoxDkzhr+Fb3bu4CAHOqmUDcbMGCZnDC595I15Lwxze7JXAlZmJK2WA0YHUr5RsEQTKtZyutaxfGQU8RHurw4vf2rseNO/sadObFrEblsGAqh9z16pUluCRHReVw4Mwc/C4JO/qDOeNQJu5gu5jDQgr9bZ6KdSvWjLjlZiuJ/kqqxtEb0hdKzQxKk3FoEuIG2NobQG/QXXRDlJsxIKqkC2sdOOd4313P4scvl56RXAui62s9++IslazG8dUnTuD0TALDHb6y+3mcktk+QzLqFZKmiuBIZHJuJcDSMsMj42/fexGu2dLV4L/Ecq6rsEI6UuJ6ZYyhzSdXjDm8dHYOl65vh+RgGOrQP5tT03F8+n+/hANnZvP2tVu2UjSlot3rgqtC9lk9lYM12N8X1Kupm1nrQMahSQilMNjuxXCnr0hKR1IZSA5W5KfsNFwrswV+2Zii4qWz83jhdP4NtRTEKrDe7ZaXwg9fGsP/+MUx3Ly7H3/41q1l93MbdQ6pjGamUIqgdCqjgXPA63Ii5HWahYQuyVGxn02jcBuGbDUhVGZh7KbdK2MuXnqRkUirOHo+isvX692GfS4nugNu3PPcafzk1Qk8eWw6b39rQLqZgdhyJNNZeGSpYvZZNKViwGiYuWzl4LYYB6PVRiSVwY9eGquY5VUvyDg0idG5BPpC+lCU4Q5vkVspmlIR9DiLerF0G8rhhBFQFYj01kkjSHZwdB7ffnYE975Q29SsTFYz3TF2UA6jswk4GPCVj1xWMWjskR1GV9asWRMi/g7hl/W79d42wrUU8sole900mtWYyhpJlR6Y1OF3YbbMImMkHEdW42bcBwCGO72mG6pQHactq3M7dGYVtTNuWSpb5xBTMrh2azckBzPnai8Vq3EQbqWRcByfve8gnj59jayEAAAgAElEQVReeZ5EPSDj0CRGZ3NukuFOHyYWknlyWRiHQgbbvXjTli589fETmIzk8qxFHcD5SAqcc3zsWy/gCw8dxud+9FrefothjTPYIeYQTakIuIuNZCEeWULSyFbqMAKhwjiINGEh64VxaGti+qoVt1OCqnGoNnjA1YuFZAaMwexfJegOuDATK90LTCgKa78scU84Hayoz5LVINghnTWZzsIrO8oa+0xWV7LrO3144PY3Y9+Vw8v6/wKeYuUgmkYOGi65RkLGoUmMzSXNANxwhw8azy+qiSQz5oQoK4wx/N3vXIR0VsPfPHTI3C7S/yYjCuYTGSwkM+aKrLCGohIRSwCt3vN/l0IklSnK2CqFx3jgAjAbFCYLlIMYtJIzDs3LULIiXFl2WP3Wi0gyg4DbWdSfqsvvLtsLbMZoICniaADw7osHsO/KYVy+vqOEcrAYBxsoL9FptVzMQaSxBjxOXDjYBr97eYsRazynz1AOb0zmEisaDRmHJpBWNUwsJDFsfKBDnfq/1rhDNKWWLcza2O3HviuH8eiRKdP3KpTDTFzByIxeo7C9T+/HVIsLw9qMzg7GoZyCKsQaOxAZXfG0iu8+fwbhqP6Q8RkDUwbb9VVXq4xDbo506x9w9aKwr5KgK6C37S6lkoQy6LC4W96xux9ffP/F6CrRQyzPONjAsOpuJaeRfVZ8PiIYHVimURDkxRyMgLQwDiLRopGQcWgC4/NJaBwYsigHID+Fb7EV83CnD2lVM1f6IubAOfDy2XkAuWZ9tYxVtLqSFmuY1gyiqUyVxiEX7BO+3RdGZvGX//46vveiHnfxFbmVWmQcZDFHevUEpQtnOQi6jOFMpeIOswndFVXKF1+qE4C1lqDVqiurcaRVDV5ZgtsplTyfSJlapaXiz4s56MZBjM5dbmuOaiDj0ASEQhBGYaDNA8nBipRDpYeimKU8bcwmCFv8uiIFcHOPH0BtDyFxQQN607BWo78PVbiVLMpBxBwOj+vpqi+d0Qut7OJWMudIryblkMyUVLpdlumFf/aDg/js918xfzcbV9Dulc3U48LXzSfSeYWY+cqhtTEHkW3mdTnK1q0It1I1i5tqcDkd5rXT6XdBlvT3rRmqASDj0BTEgBDhJ3RKDqxr9+RlLEVSmYpVu72GrJyK5NxJ4h578fQcQh6nOVKzFuUg3ErdAbctspWqdyvlVk4iW0nUMog2Bzm3UqtjDsZY09WkHMpcr1bj8OLpWTw/kku1notnyjZS7PC7oPF8N6f1Oq7lmm4ECUuSQ7mAdL3dSkBOhfjdkrnYaUa8ASDj0BRE9bNoLwDoD3sRoNM0jpii5hW9FCJS2cTgmnA0jc2GG2k6qmCow5dbodYgwcW5bejy5d2YraJat5K1IZ+oc4gXBOJFzUh/mweXDrfjsg0ddTzT6lmtyqF0zEG/TsMxBefmkxhfSJqr7pm4UtY45DoB5BRxJmufmIP4G6x1DoW1F6ZxqJNyAHQVIksMbqdkGp2hCsWh9WRR48AY+xZjbIox9rplWydj7BHG2HHj3w7L7z7PGDvBGDvGGLvJsv0Kxthrxu/uZEauImPMzRj7vrH9ecbYxvr+ia0nalw01rGUbV7ZfBjH0io4L84Zt9IbFMbBcCvFFWzvC5hSc7jTC9cSHkILyQxkiaE/5Gl5ERznvGq3krXAyOdylixuEystWXLgx7e/GW/d0Vu/k60BYchWU61DVFFLZuOIupwjExGjeA0YM9ynlZRDl1HsaW1Pn6ccWmwckqZbSTJjSIWurkid3UqArkKEURCLHTsph28DuLlg2+cAPMY53wbgMeNnMMZ2AdgHYLfxmrsYY+IuvhvAbQC2GV/imJ8AMMc53wrgywC+tNQ/xq7EjNx9a9pfu1c2s4NEULjSRRVwO+GVJUybykFBT8BtupusyqGWG0m4B9p9csuVQyqjQdV4dW4lZ+7S9cgO0xDs6Aua25fbFbNeuA3DtZoC0oqqlQyKhjx6TOGV0Xlz2+mwbhxmE+lFlcOcZYGSV+fQYsOaLHArAcWfpxlzKJGSvlSCHqdphH3Gv82ocQCqMA6c818BKOzRcCuAe4zv7wHwXsv2eznnCud8BMAJAFcxxgYAhDjnz3Fdi32n4DXiWPcDuJG1ooy1gcQVFX53/o0U8spmADhqrjjKX1SMMfQE3ZiKKmbWUlfAbeY/D3V4cyvUGlo1LBjugXafbqxa2aagXGfaUlgfTG6nZBa83bRbb6gnSwyyZA+vqcf4XFZLKqtmZO6UUmsOB0On34XXzuVa0p+eiYNzvbtoR5mq4VI9xOwUkLYqB1OhFxismKK3wKlni5Z17V6zs3DAeIYMN8k4LFX/9HHOJwCAcz7BGBN6fRCAdWrMmLEtY3xfuF28ZtQ4lsoYWwDQBaCoPpwxdht09YH169cv8dSbT0xRi4JU7T4ZUUWFmtVM47BYG+neoBtTEcWMVXQH3OhvyykH11KUQzKDoFdGu9cFVeOIp7N1DajVgtmSocaAtEd2mG6mi4baMdjutdVku9WmHMRDsdwgpi6/y1S4fpeEMzMJRFIqVI2XVQ4iHmftIaaoGhxMn2OQzrb2vTONQ55yyL/Pqq3ur4X/9tu7oBqGUajjwXabxBxqpNS7witsr/Sa4o2cf41zvodzvqenp6fULrYkqqgIFDz4RRA1klKrcisBMKeaCb9sV8BlupWGO71LCnyKwGKbOf83d3POJ9LYX4fGftWSUw61FcF5ZMl0IW3q9uGC/iD8NnEpAasvIJ0LzpZ+fIisue6AG1t7Azg9EzdrGMoZB7dTQtDtLFIOwqWSVlusHNKWmINhFAszqGJVZtrVQtAjm9l4IY+M7oB72Q39qmWpxmHScBXB+HfK2D4GwNpQZAjAuLF9qMT2vNcwxpwA2lDsxlrRxFKZoh40Yt7uQjKDqFI8VasUvUEPpqKKWePQHXBhS48fHtmxdOWQ0rOkSs3//fIjb+Aj33geWpOGAFXjXhPkuZVkB7yyBMb0YsE/eft2fOE9uxt2nrWy0gLSZ2biFQc/ib+jXCGWcBENdXixoctflXEAgM6CKul0VjPvm1ZnK1UTc4iW8BDUk9vfugV3fvjShh2/kKUahwcBfNz4/uMAHrBs32dkIG2CHnh+wXBBRRlje414wscKXiOO9QEAj3M79OetI3ElWxRzEPN25xPpsoN+CukJuhFNqeZI0e6AG//hyvV49LPXI+B2wiUtXTmYSsYSlH76eBhpVUOsSdOnojVke3ic+TEHv1uf+uZ2SrhwsA3v2N3fsPOsFbHCXgltu+cTabztn57CT14dL7vPYspBGIDhTh82dvlwbi6JKaMZZEXj4HflB6QtyqHlxsHiVirMCnxjMoonjk1VnYa9VDb3BPCmLd0NO34hi/4ljLHvAbgBQDdjbAzAfwPwRQD3McY+AeAsgA8CAOf8EGPsPgCHAagAbuecizviU9Azn7wAHja+AOCbAP6VMXYCumLYV5e/zEboMYf81bBQCfPJTNXuFFElLYq9ugJuuJwOM+/ZKTkgOVjV/lnOORaSGYS8stnSQBTCjc8nccqYK72QqFygVwuJtIq3/9Ov8KX3X4xrt+Vf6LUEpN1yfrbSH1y3ueKQmVaykpRDOJZGJstxbj5Zdh9RzOcpE3MQbiWhHDQOHBzTA9QVjYPPZRYwAvYyDqZBtLiVxOd51xMn8ItDkxju9DaterkZLGocOOcfLvOrG8vsfweAO0ps3w/gwhLbUzCMy2ql1IpCBOAiyQyiKRVup6NsgE8gah0eOjiOwXZvSb96uaZgpUhmslA1bqayArlxpM+eyOUDWFtsLJdwNI1z80k8dypcwjhUrxzcTgdE3M8lOZo62a1WXGXcEHZEBPKFmi2FyLpyl1EOokp6qMNrtnR59MgkgMWVwyGjBQqgu5X6zJiDjdxKosuucU4z8TSSmSzemIzhgv5Q2WOsNOyR67eK4VzPACp0K+UCwJmq21SL4HMkpeLPb95RMivC5XRUHXNYsEzz6rS0PQAKjEOFB0WtiFWnyH23Ek3pjdkCrsWNA2MMbqcDHqfUkgE+tSA5GGSJrQjlIHL1oxUWBOYquly2kqkcfLh0uB2XDLXhxFQMbqej4uhMEXMQXmVdORjB3xansiYyWTM92nTfGteyNU5Xz+roVkPGocGkMhqyGi9yKwnjsJDM6EHhKgbRiBYalw634z2XrCu5j0tyVL3Ksq7UZcmBDp+McEwB5xzPnpzBtt6AeY71QjxYRgyXFWDMfE6riKRUBFzFMwLK4bGs4uyOZ4WMChVGwTrnoxAzlbXMg/66bd3485t34JrNXWCM4XO37ASgK4pKhrwn4EY6q5mLkbSqmfdNq91KYkQoYE1N1s/J2s24MPFkJbN6/hKbIjKRClcUsuSA3yXpyiFZnXLo8rvwZzftwE27+8veZO4ahtnHRVsPY3XWHXBjOqogHEtjOqrg1kvW4fhUrK5uJXFuojAKAP7s/lfxxNEpXLutu6aAXrmVqx0JeJymMbYzUdOtVIVyKGOYPbKEP7whN//7mi1duOXCfrN5XTnMzsOxFNp8smEcjFYVLVZdKWPQD2CNIRnKIZ6B08GgarxlNUKNYPX8JTYlrugXUKkVRbvPhflkGuPzSXMWQyUYY7j9rVsr7lOLcsj5UfVz6w64EY4pOG8EBS8wJsvVc3yoeLAk0llMRxU88Mo47j+g10f++uQMOmuYu1vPStRG0xVw5bVZtyvCrVRpQSA+w8ViZFa+8pHLSxY0WbF2Ht7aG4SS1eB1OcFY65TDN58ZQYdPNudHA7m6lbSqIZPVEFVU3LCjB08em25otlKzWTl31wpF3GylmpS1eWWEY2mcnklgu6Un0HJwO6WqA59iJScKyLqDhnEw0g639gbAWL2NQ+4mf/H0HL7486N4y3a9oHE6qtSmHGSpKUNP6kF3wJ3XVM6uCHVT6TMXCQ+1GGfJwRZ1F1o7D3Out+hwOR2QJUdLYg6cc9z1xAnc++KoMT9av9as7TNEvOGG7T34/C0X4JaLBpp+no1i9Zg5m2K6lcoYh4Oj88hqHNv6FlcO1eAq02u+FIlMgXEIuBCOpXF+QU9jXNfmQdDtrOh/rhWr3/1rT59CVuP4i3degKlICkfPR2syDm5Z0kfhrQC6/G68YQyHtzMxZfGYg5nKWmfD3GPpPCx6KbmdjprUcD2ZjCiYiacRiip68oOcrxyUjGamT3f4Xbj10sGyx1qJkHJoMJWmQ1k7oW7rrZdyqN44JI3iNtHtsTvgRkxRMRJOwOlg6Aq4EfLKDXErAcDB0Xls6PJhR18Qezfrqai1jFgcCHnM3lJ2Rxheu9d3xqqIOeSUQ32NQ9Ctt16fjipmxp1LckCWWEvcSofG9dqMyUgqTzlYYw5zhnIo11BwJUPGocHE05XdSgDgYLkRn8vF5ax+lWW6lYyLvsdIQXx9fAG9QTckB8ubO1EPUsa5CWMpgut7N3fmba+Gf/jQJfjHDzWvncBy6DYycaI2aghYCuFWUlStbHZVLpW1vo8PxpjZIkZcw8Kt1BrjoNdcJNJZhGOKqbBliYExPeYwZ9QFkXEgakYoh5JuJaPwbGOXv26rsFqUQ8LSTAzIyfrD4xFzRR7yyPXNVjIeLDuNYiHRYvuqTV3G8PnqlYN1EIrdEf2GwtHWB6VfP7eAV8fmS/7OmlEVSWXwz4++gRNTsbx9UmoWkoPB2YCW6KLzsNU41FK7U0+EcgCAsbkkPMZ9whiDS3LkxRxquW5XCmQcGoxYKZZaEQvlUK94A6BL3nTVAWkVDpbzoYq2BzFFNY1DvZWDMFzXbuvGlh4/LhvWhwh2+l34+kf34KN7N9bt/7IT4r21dh1tFf/vTw7jrx84VPJ31lbnp6bj+OdHj+MH+0fz9klltLqrBoE+sySVMw5G0ZmIQXDOzWmIjebQeMSs9lY1nlfAJxZh85aYw2qDjEODiSsqnA5mPoCtiOZ79cpUAmqrkE6ks/C5cv3nu4O5C7w/pPeICXmd9a2QzmTBGPCZ39qKRz97fV4Gy9t29a2YGEKtmMNsbJDOOp/ImM0bC4kZrVyAXA+vQuWgqNmGZYn1ioFWRn8wM1vJWPA8d3IG1/z94xiv0PupHiwY79H1O3KjAfKMgyyZMQeng9mqRXy9IOPQYGIpfdZuqaK1nHKon3GoqbdSOps3SlPM8QWA/jb9+3q7lVKZrNEXidm+7UU9EcphOpbGj14aw/OnZlp2LpFUBuGYUjKmEE1lzOZxRyf07KoT0wVupUzpEaH1oDfkQTSlmtlSLqcDspOZyuHcfBJZjZvDhBqFcClZ545b5yiYyiGRRruvcuX3SoWMQ4Op1OP9osE27BwI4epNnXX7/2pXDrkL3uV0mAar3xhN2OaVkUhn6xYQbOSDxc6I3lXTkRT+649fx+f//bWWZS6JTCRrB1RBVFGxzjAOR87rymF0NpFnSISBbwQi7nXOUDaFAWlxHskGtyL5yWsTcDsdeMv2HrOew3rdipTxuXgGHasw3gCQcWg4laZDre/y4eE/ug59ofq5UmpRDol0Ft6CJnfdhvtjQASkS8x5WA6pTHZFtb2oF7LkQLtPxgunZxFPZ3FqOo7fnGr+TCs1qyFuJCIUumY454gpqqkcjhl1GRrP74WVymhl+yotF2EchNvLLeXXOSSbYBxiiooHXj6Hd108gDavbFZu58ccJCgZPeawGjOVADIODSeeVkumsTaKSsrhT+87iD+//6D5czKj5ikHIHdz9oeEcdDPvV6FcEqZwfRrgS6/C/tPzwHQ0yG/+/yZpp+D9XM8VxB3SKSz4BymclCMCmUgP+6gxxwa8xn2msZB79orspWEckimDQWxSJ+m5fDQwXHE01n87tX6nPo+o3LbV+RWymI+kVmVmUoAGYeGE0s1dnRgIW6nhKzGoRYYCE3j+OWh83mr1UK3EpDzjYtWBtbusfUglWlcMNPudAfcUDUOv0vC7169Ab84dN7Mk28WVgVYONBHpLH2BN2QJd2HvmdDBxgrMA4ZrWHqT6zSxwrcSmLBk8jo57hYE7/l8P0XR7GjL4jL13fknVOpbKW5RJqMA7E0oora1B7v5eZIH5+KIaqoODeftKzCskX99XcOhLCjL2hWgYoJcAdH53HXkyeW7SdPqY1zSdgdYXgvHGzD3s1dyGQ5xhcam3VTiDW5oNA4iNYZQY/T/Nw39/gx3OHLC0qnGqgcuvwuyBIzjZFuHBgyqn7dCcXQKLdSNJXBq2PzuOnCXOdjsVDyuErEHBIZcisRSyOuqE3t8V5ujvSBM7o7I6txTMzrgchSLq8/vGELfvZH15k/C+XwxYeP4r///JjZLmCpNDKYaXdEPOeS4XYz8yVVw7zveiDSkiUHK4o5COUQ8DjNWNO6di+29gZw0qIc9M+wMQbe4WC4Zku3abj09hkWt5JhFBo1G+OV0XloXFdMglLKIeB24nQ4jrSqmSN2Vxtr8y5tEpxzzCcy5o3WDMwRhtnSxgEAzs7q/txkOpuXngfo1Z+SpfZAnLu4Ka0D4JeCsobdSmJC2sVDbWYRWbMHAAnlsKXHX9Y4BN1OhAy1O9juxZYeP06Fc/M39Iyzxj063m3pbFpYIZ3M5FRvI9h/eg4OBly2vt3cJmIOVuNw+1u3mmNqKVuJqJmYokJRNbNnUTMQyqGwv9JLZ+ewe53esuLMrJ55kkhnzb5K5QgVNMJbro9cURtXXWt31nf6IDkYLlvfYVEOTTYORszhgv4QxudT0LScm1BUR1uVw2C7F30hD9KqZsadGh03uml3vxnzcDlFhXS+UUg06H07cGYOO/pDeQ0gd/QHITkY1rXnsgovHGzD92+7Bns3d+Jyi8pYTazNu7TBPHF0CpORlFmoY608bjTCn2+d6TAbT2MkHMc7LxqAS3Lg7GwCnHMkM8UB6UI8sgMbu3z4bWMs6ewyjcNaDki/++IBPPrZ6zHY7jXfg0bn6xcilMPOgRDSWQ3heK6YLNdBWDYXBevavWYGW9iYR6FnnDXuM2zzybh2azcAwC1JRoW0UA76OTZCOahZDS+fnctzKQHA7nVteP0LN2FzwUCuHf1B3HvbNXXtcGAnyDjUGUXN4ve/sx/fembEvJl6As1rCZEbfp5TDqLa87L17Rjq9BpFTRo4R1GdQyGMMTz+pzfgc7dcAGD5bqVGuyTsjFNyYFO33n1XuCgaHXMYn0/iz+8/aBqFSFKF5GDmfHBrOqvYJ+B2IuR1QnIw9IU8ZuW8aP3RjLjRH1y3GTfs6EHAmG8uKqSFUWiE4jp6Pop4Oos9G4uVQKH7dS2wMlpariCmIgqyGsfYfLJFyqHYOIjVfl/Ig/WdPpyZSSAhZjlUcdE7HMwc3zkbX2ZAuoF9eVYS4nNqtFvpiWNTuG//GPpDHnz2HTsQSWUQ8jixo19f7f7m1CwuM1I2TbeS24lbLx3EujYvJAfLdZQ15lEoTcg4e9PWbrzJUA+ykxXHHBrwvr06pi+iRArrWmdtLuEaiAjyTcwnzZnBzYw5uEvEHERb4TavjA2dPpydSRSNCF0Mr0uCR3bUQTms3WwlKx65OTEHUS/wrWdPYzaeRiSpJ0gMd/pwxYYO/OilMXDO8czxMM7OJOB3SZAcDHs3d+EzN24DYO0oq5iLjmaqPxFz4JznzSCvNyPhGNxOh1khvtYh5VBnxPzliQU95iA5WFPzoEspBxFIbDMeClFFNY2YbxG3kpVOn2tZMQf95l6bvZUK8TbROAQ9TsQUFd94+hQiKdWMJ7zv8kH85b+/jj+7/1Xcf2AMQC4zx0qHTwZjunIwp8A1sQWKS3KAcz0NWyjeRrxvI+EENnb5F511vVYg41Bnxo0agslICucjKXT5XU292FySftOmC4yD36UH9tZ3+gDo/lWgeuUA6D3rl5OtJFwDZBz0XkuSg9XdPfKD/aPYORDChYNtAPQ2FBcPtYFz4OnjYbidDrMlyrsvWoe/efAw7j8whrft7MXFQ+0ljYNTcqDD58JMTGnY/OhKyIbSzGS5GXNoRED6zEy8bhMZVwOk7+vMeaPiVeP6RLXuJrqUgFyFtDVbSe//oquXjUZAVPTqryXQ1ul3YXYZbiURfCW3ko5XluoekP6bhw7j/3/qpPnz2FwSQ+0+7BoI4Y3JKOYSaVM5tPlkvP+KQVw02IZ/3ncZ/suN2/Afrlxf8rj6DOxcm+9mfoayxVWaalDMQdM4zszqyoHQobu0zoxb2iC/MRk10wCbhbhpC5WDyFtf3+kDY7n5uDUpB9/ylIMYEUrKQccjO5b0kNM0jv/7/ldxcDR/1Kea1RBTVByf1KuZU5kspqMKhjq82NEfhKJqGAnH82pX7njvRXjw029etP9Xl9+NmVjafDg38zN0GTUPyUw2F5ius3IYX0girWrm4okg41B3zi+kzHbXqsZbphzyjUMa7YZx8MgS1rV5cWyydrdSp395MYdWPFjsjEeWluQ7D8cVfH//KH5+6HzedpFtdCocQyarmS0ohjq92DmgF0BqPNdpF9Az0aoZVNMVcGEmnjbPt5kBaZEZZU2GqLdyODOjdw3Y0OWr63FXMmQc6szEQiovFa5VyqEwIN1maeGxqdtvGo9aAtIdPhciKXXJg39y/mq67IBlGIeo/pAs1/4ik+U4MxM3M5WGOnzY2huACH0VVr1XQ3fAjXDMmq3UPAMvFjYThsvW2YBYjZhXsYmUgwndpXVEUbMIxxRs7wuaM2VFs7VmUUo5zCeKjYOgNuUgm8dbCooZcyDlACw95iBSpAvnMVjbqh87HzNnIgx16BXZ4nNfSq+v7oBLH99p/B/NNPAdxhS9c0ayR4ffVXe30ulwHB7Zgb7g6pxhvhSW9Qkzxk4zxl5jjL3CGNtvbOtkjD3CGDtu/Nth2f/zjLETjLFjjLGbLNuvMI5zgjF2J1uhA1mnIvpNO9DuwYCRK9185VDcPmMhmT+QxOpXrSUgLW7SpdY6kHLIxyM7lvSQmzFaXhQqB2s77jcmoxibS0KWmNlV9IJ+3bVkdStVi2gaKFxVzTTwIhV8wvi/O30uKKqGrFa/MaunZxLY0ElprFbqcZe+lXN+Ked8j/Hz5wA8xjnfBuAx42cwxnYB2AdgN4CbAdzFGBNX2N0AbgOwzfi6uQ7n1XTEzTrQ5jHjDs02DqJhmVAOqUwWiqrlrRY3G8ZBcjCz3UY15Kqkl2gcKCCdh0eWTINZC8KtdD6SyhvqJNxKDpYzDuvavWaX3QuMquiluJW6zNV70jj3JioHn3ArCeWg/1yvWgfOOU5Nx7Cxm+INVhrxCd8K4B7j+3sAvNey/V7OucI5HwFwAsBVjLEBACHO+XNc7wn8HctrVhSiAG6gzYt1bYZyaHJAmjFmDiIBcq6GUsrBJ0tVBSMFpnJYsnFofgGVnfEs062kcWAymmucZ+24eux8FCenYhjqyFX7itqHpSRJdBuLHOHKaqZyEC5RsfjqNK7DesUdvv70KZwKx3HN5q66HG+1sFzjwAH8kjF2gDF2m7Gtj3M+AQDGv73G9kEAo5bXjhnbBo3vC7evOEQBXH+bx5zD22zlAORGGAL5rTMEQx1eOB2s5mZi4qZcaq1DKzJd7MxSA9LTsZxBsLqWxHzoKzZ04FQ4jsMTEezdlHvg3bCjB/fethcXD7XV/H92G833xkzl0Dzj4JQcCHmc5tQ80zjUIe7w3MkZ/P3DR/GuiwfwsWs2Lvt4q4nlVki/mXM+zhjrBfAIY+xohX1LLVF5he3FB9AN0G0AsH596WKdVnJ2NoEOn4yA24kPXzWMoQ5vS6ZEuUspB2/uPGTJgeHO2iW0UB9LVw7kVrLilR1VGYeHX5vAkYkIPvuOHQD0NhZBtzOvDQqgj7gEgPdfMYTDExF84tpNuOXCfvP3jOk9k5aCaL536JzenK7ZXUo7/C6LctANVT2Uw5NvTEF2OPAPH7iE4g0FLGsJxzkfN3W1Y1sAABTQSURBVP6dAvDvAK4CMGm4imD8O2XsPgZg2PLyIQDjxvahEttL/X9f45zv4Zzv6enpWc6pN4SRcMzs+d4b8uD9Vwwt8orG4JElvHh6FgfOzOX1VbKya10IvTWqGrdTQtDtxGREWXznEgiDRRXSOh5ZquoB99Cr4/jqkyfNgHM4qpguIusc6EhSH0l76XA7fvipN+GdFw3U5DashN/txN7NnbhyYyf+575LFy2aqzftPpfZtrvTWKTUQzmcDscx3Oldky25F2PJdyljzM8YC4rvAbwDwOsAHgTwcWO3jwN4wPj+QQD7GGNuxtgm6IHnFwzXU5QxttfIUvqY5TUrilPTcVvkSf/5zRdgLp7Gh/7Xc2YVbXvBKMO/f99FuPv3rqj52BcPt+HF07NLOi+z9QIpBwAilXXxB9xCMoOsxvH8Kf19D8cUrO/0od0nF7iVMgh6GvfQvve2a/C92/bi1kub7/XttFy/HXWMOZyZoZYZ5VjOEq4PwDOMsYMAXgDwU875zwF8EcDbGWPHAbzd+Bmc80MA7gNwGMDPAdzOORef7qcAfAN6kPokgIeXcV4tIaaomIoqtjAO77lkHe7/1JuQ1Th++toEgOLc9pBHNn23tXDdth4cPR/FVCS1+M4W5uLplrR7tjNuIyAtZjOXQ6i/Z0+EoWkcM/E0uoMuDLZ7zTgXALMd92rE2tm4q05uJc45Ts/EqWVGGZa8zOCcnwJwSYntMwBuLPOaOwDcUWL7fgAXLvVcms1vTs3gX54dQVzJ4i/ftRM7B0IYmdYrLLfYpKvjxi4f+kJujITjcDB9aHw9uG5bN774sN7hczG32fi8nko5sZDEtV96AhuMvk61pM+uZkTb7sXGbkaSeqD52RNhzBsqosvvxrp2faqfIGppx73asMbuRCrrct1KU1EFqYyGjdQyoyR0l9ZIKpPFH937MvafnsPzIzO4b7+egHUqrDc729QdqPTypsEYw1VGpkrIK9ct2LazP4TugAtPH5+uuN/xySje9MXHceDMHM7MJJDVOE6F4/A4a0ufXc0IBbXYQ24hmYFLcuD4VAyHjYaJ3UE3Btu9GJtLQjOKwRrtVmolotbB5XSY8Y7lGgfRMmMDuZVKQsahRu7bP4rJiII7P3wZ9m7uwjPHwwD0eANj9mrcddWmTgC53jT1wOFguHZrN54+HjYfSqUQjcxGwnHMxHLZTeRSymFOg6tQCKdpHJFUBm/Zro/M/MEBfTHSHXDh8g0diCkqnj6hX4OR1Op1K7UbLlCvLJmKa7lupTMz1E+pEnSnVslcPI0fHhjDV584gSs3duBNW7pw3bZuHJ+K4fxCCiPhOAbbvbZK07zaMA6FmUrL5W27+jATT+PeF0fL7iNqIaajitnuIeh2Ul8lC+ZDrsIKOKqo4BzYu7kLF/QH8eBBPZGvJ+DGzbv70R1w4zu/Pq3vm1IRWuXKwStL8LiWPkXv6PmIWeF/eiYBWWJmNwMin9V5JTWAv/zxa/jZa+cR8jjxuVt2gjGGa7f2ADiKZ06EccqSxmoXtvYE0OGT676afOeFA3jTlrO446eH8Zbt3RjqKFZLohZiOqogmZbAGHDH+y7K85GvdYSKqlQlLaqeQ14Zn7x+M/7k+wcB6FXOLqcDH7l6Pf6/x4/jzEx8VQekResWryunHGqdIz0ZSeFddz4DiTG8/4ohTEdTGO70wUkxsJLQu1Ilo7NJvHlrF17+63fgig16L8EL+oPoDrjw45fP4dR03OxZZBccDoa/ufVC3PaWzXU/7pfefzE0Dtz15MmS+4jVWTimIBxPo9PnwnsuWYfb37q1rueykqnGrWStU3n3xeuwrs0Dp4OZavB3r14PB2O459dnoHGs2piDCEh7ZX3crSzV3rb7sSNTyGocN13Yj++9cBaPHpmiNNYKrM4rqQFMRlLYOdBjNjEDcv73H78yDsnBcM0W+/Vmec8l6xpy3OFOfUbAREFnUMGsRTkoarbpQ49WAqZxqLACthoHWXLgv757F54fmTUTDPpCHly4LoRHjuiDf1ZrtpLIUBLFah5Zqjkg/eiRSQx3enHnvktx4boQ/v7ho2QcKkDGoQqyGkc4pqAvVOyb/Pw7d+LmCwdwzeYutPlW541Zjg6/C7NlZjuItt7hmIJ0VjPbLxA5vFUoh0hBhfstFw3glosG8va5cmMnvvHMCIClzWpYCXRYlIP4t5aYQ1xR8cyJMH7v6g1gjOGT12/B+k4fLhlub8j5rgbIrVQFMzEFGkfJdhN9IQ9uvrB/zRkGQK9atfZZOnY+iqv/7lGMzSVyyiGmYCammPMAiBweMyBdPuZQrv2JlT0bO83vV6tbySNL8MgO8z3zuqprPSJ4+ngYaVXD23b1mttuuWjAbJBJFEPGoQqmjLbIvSWUw1qmw+/KMw5PHJvCZETBa2MLpnGYT2QwGVHMeQBEDlM5VHjIVWcccmNpV6tbCdAro4Xx88pSTQHpn78+gTavjCsthpSozOpcZtSZSaNVRK2N6lY7nT4XooqKtKrB5XSYfZzG5pKYjafhkR1IZTQkM9mWtC63O2YR3CLGwelgFce5dgfc2Nzjx6np+Kp1KwHAP37oEjN21eaVMV9l6/iYouLnh87j/ZcPQabMpKqhd6oKhHIoFXNYy4gGaOImFcZhZCaOSErFtt6guS8ph2LcVSqHNq+8aFX5lRv0FfFqrXMA9FqPrb16unh30J1XXFmJh1+bQCqj4X2Xr8gxMS1j9V5JdUQoB8q4yadw+M+4McbxtTG95//2viBeM/r/U8yhmGrdStUUMX7oymHE02peg7rVTLfflTf0qBI/eukcNnT5cPn6jsV3JkzIOFTBVFRBp98FF80hyKPDMlP6rNEuozfoxtHzev+f7X25osBuylYqQpYYHKxyEdxCMoNgFcbhig0dZv3NWqA74EY0pUJRsxWr7mdiCn4zMoP/8lvbqKdXjay5p91zJ2fwhQcPLdom2cpUJEXxhhJ0mjOlM3hldB5OB8Pbd/WZQ1m29+fcSqS6imGMwbvIwJ9IlcphrSGU6OwiUwmPno+Cc1AgegmsOeNw7HwE3/71aYSr9FcCunKgTKViRGHSbCKNg2Pz2DkQMn3CALCuzWtml1CdQ2kWmyMdSalkHEogrqdwtPJ9/MZkFACwvd9erW1WAmvOOIj2vGdn41W/ZiqioI+UQxHCrTQXT+PoRBS7BkIYtvRZ6vDL6Am44ZUl+FzkwSyFxxj4Uw495kDvXSFCiYbjleMOb0zG0O7Tr0OiNtaccVhvtNQ+M5PQU9xeP1+0D+fc9JtnNY7pmILeEF1chciSA0GPEyenY5iJp7GtL4ChzlxRUYfPhe6gG91BUg3l0NN9SysHznnVAem1hohhLZax9MZkFNv7ghRvWAJrzjgMdXjBmG4cvvf8WfznfztQ1Cn00SNTuPmfn8arY/OYjaeR1TilsZah0+8yZxtv7wuaHVqDHidkyYGbd/fj3Rc3pr/TaqDD58LEQun+VPF0FlmNk3EogakcKmQscc4N40AupaWw5vSq2ylhXZsXZ2biECHpMzMJDHfm3CGPHZkEABwej8BhrDgoIF2aDp8Lrxj1Ddv6Agi4nejwyeYD7T9du6mVp2d79m7uwt1PndQH9RRUN1dTHb1W8bn0dhozFYzDZERBNKVie1+w7D5EedaccgCA9Z0+nJlNmCMXR+dyyoFzjqfe0EdgnpyO4eS0Pv6TRgmWRmQsBd1O9BvqarjTZ24nKnPdtm5kNY7nTs4U/e7bz+rN9OjhVgxjDF1+d8XEEjMYTe/fklhzygHQR3n+9LUJxBV9cPtZi1vp+FQME0Yx18npOCSH3jt+i80G+dgFEZTe2hcw/bp/9a5drTylFcVl6zvgd0l4+vg0btrdD0CfDPfLw+fxjWdG8Ht71+MyKt4qSXfQXdGtRMZheaxJ47C+y4doSjV/tsYcnjqmq4bL1rfj5HQMWY1ja2+QCuDK0Gmks26zpLCK2dXE4ricDlyzpQtPG7PIz84k8NtfeQYLyQy29PjxF+/c2eIztC/dfpe5kLOiaRx3P3US//LsCPpCblKxS2RNPvE2dOZcRBu7fBidywUEn3pjGtv7ArhuazdGZxN4/dwCdvbTyqMcor+StY8SURvXbevBmZkETofj+NnrE1hIZnD3716Ohz5zLaUAV6A7UFo5/Or4NP7HL45h50AId//eFS04s9XB2jQOXbmMmr2buzBmKIdEWsULI7O4fnsPtvQGoHFgJp7GzoFQK0/X1ojZvtsoI2TJ3LhTnzHwk1fH8eSxKVzQH8QtFw2QYViEroALs/E0NC2/28GDB8cR9DjxjY/voX5Ky2BNGgdR67BrIIThTh9m4mnEFRXPn5pFOqvh+u29eTGGCwZoVVyOy9Z34OKhNlxKE7WWzFCHD1dv6sS9L45i/+k53LCjd/EXEegKuKFqHJFUbhphKpPFLw9N4ubd/RV7LhGLsyaNQ8gjY0uPH9du7TZTWEfnEnjqjWl4ZQl7NnZgU3fO9UTKoTw7+oN48NPXmgPgiaXxvssHMTaXhKpx3LCjp9WnsyIQhXBW19KTx6YQU1S851KqrVkua9I4AMAv/vgtuP2tWzHcoVf0js4m8dQb07hmSxc8sgS/24l1bR70BN3UNI5oOLdcNAC304Gg27mmuqsuB9HH68uPHjddSz986Ry6Ay5cs7mrlae2KlizTk2nMRFKKIcnjk1hJBzHx6/ZYO5z3TZawRHNIeSR8Z+v3wIANK2sSnava8Pnb7kAf//wUfSHPPjwVcN45PAkPvNbW837m1g6a9Y4CLr8LvhcEv7382fhdjpw484+83df+sDFLTwzYq3xJ2/f3upTWHHc9pbNmFhI4ZvPjODJY1PwyA78xzdtbPVprQrWvHFgjOGj12zAQiKDT16/Ja+NBkEQ9oYxhr96104cOx/Fc6dm8H+9eSNNHawTa944AMDnb6FCI4JYqTglB77ykcvw9adH8AfXUS+vekHGgSCIFU9XwI3P3XJBq09jVWGbqA1j7GbG2DHG2AnG2OdafT4EQRBrGVsYB8aYBOCrAG4BsAvAhxlj1L2NIAiiRdjCOAC4CsAJzvkpznkawL0Abm3xOREEQaxZ7GIcBgGMWn4eM7YRBEEQLcAuxqHUgFdetBNjtzHG9jPG9k9PTzfhtAiCINYmdjEOYwCGLT8PARgv3Ilz/jXO+R7O+Z6eHqpeJgiCaBR2MQ4vAtjGGNvEGHMB2AfgwRafE0EQxJrFFnUOnHOVMfZpAL8AIAH4Fuf8UItPiyAIYs3COC9y7a8IGGNRAMcq7NIGYKGO/2U9j9cNIFynYwH2/lsbcTx6/5YOvXf1oZ7vY7P+ZnHOGzjni/vlOecr8gvA/kV+/7U6/391O95i597Kc1shx6P3j967lhyvEe9js/7mWs/ZLjGHRvCQzY9XT+z+t/6f9u4vxKoqiuP490djgmiZkTJSMQ9RRBKZPSQZ/QEJhV4qqIicjKIgKN+yCApKSEkxfWgSMvpP9EeSBEWiJAuDIvMPY4oSSEhRmH+pl1YPew9d5s5YM55zzzkzvw9czp19z2zWWlxm3bPn3n3rXDuof751rl/dc61z7QbUMucmLyt9GxHXVR3HaDQ59jpw/UbPtStGE+s40pibfOWwruoAzkKTY68D12/0XLtiNLGOI4q5sVcOZmZWniZfOZiZWUncHAog6RJJn0vql7RX0hN5fJqkrZIO5OMFeXy+pO8k7c7HW1vmWibpsKSTVeXTaUXVT9IkSZsk7cvzvFhlXp1Q8HNvs6Qf8jx9ebfkcaHIOrbMuVHSnk7nUpgy3uY13m5AN3Btvj8F2E/aenwFsDSPLwWW5/uzgZn5/izg55a5rs/znaw6r6bVD5gE3JLvnwt8CSyoOr8m1C7/fF4+CvgIuKfq/JpYxzx2B/AusKfq3EZdk6oDGIs34BNgPulDet15rBv4cYhzBfwOTBw0Pm6aQxn1y4+9DDxcdT5Nqx0wgfR2yLurzqeJdQQmA9tzc2lsc/CyUsEk9ZBeVXwDzIiIIwD5OH2IX7kT+D4i/upUjHVWVP0kTQVuBz4rM946KaJ2krYAvwIngA9LDrmWCqjj88BK4HTpwZbIzaFAkiaTLseXRMTx/3H+VcBy4JGyY2uCouonqQt4D1gTEYfKiLVuiqpdRNxGeoU8EWhbRx/rzraOkq4BLouIDaUG2gFuDgWRNIH0pHonIj7Ow79I6s6Pd5NekQ2cfzGwAVgUEQc7HW/dFFy/dcCBiFhdfuTVK/q5FxF/knZFHlffxlhQHecCcyT9RFpaulzSF53JoFhuDgWQJOA1oD8iVrU8tBHozfd7SeuYA0sem4CnIuKrTsZaR0XWT9ILpI3HlpQddx0UVTtJk1v+CHYBC4F95WdQD0XVMSJeiYiZEdEDzAP2R8TN5WdQgqr/6TEWbqQnQQC7gJ35thC4kLTmfSAfp+XznwFOtZy7E5ieH1tB+vKjv/Pxuarza0r9SF8SFUB/y/hDVefXkNrNIH2vyi5gL7AW6Ko6v6bVcdCcPTT4H9L+hLSZmbXxspKZmbVxczAzszZuDmZm1sbNwczM2rg5mJlZGzcHsxJIelTSohGc39PoHTxtzOmqOgCzsUZSV0T0VR2H2dlwczAbQt58bTNp87XZpC2cFwFXAqtIO2/+BjwQEUfyFglfAzcAGyVNIe2s+1Leb6ePtKX4QeDBiDgqaQ6wnrRB2/bOZWf237ysZDa8K4B1EXE1cBx4jPTJ4bsiYuAP+7KW86dGxE0RsXLQPG8CT+Z5dgPP5vHXgccjYm6ZSZiNhq8czIZ3OP7dN+dt4GnSF7tsTVvxcA5wpOX89wdPIOl8UtPYlofeAD4YYvwtYEHxKZiNjpuD2fAG7y1zAth7hlf6p0Ywt4aY36w2vKxkNrxLJQ00gnuBHcBFA2OSJuT9/IcVEceAo5JuzEP3A9si4g/gmKR5efy+4sM3Gz1fOZgNrx/olfQqaVfOtcAWYE1eFuoCVpN2MT2TXqBP0iTgELA4jy8G1ks6nec1qw3vymo2hPxupU8jYlbFoZhVwstKZmbWxlcOZmbWxlcOZmbWxs3BzMzauDmYmVkbNwczM2vj5mBmZm3cHMzMrM0/1tlxCjwM5xYAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "sorted_data['inc'][-200:].plot()" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "ename": "AssertionError", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAssertionError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mweek1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mweek2\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfirst_september_week\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfirst_september_week\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mone_year\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msorted_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'inc'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mweek1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mweek2\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0;32massert\u001b[0m \u001b[0mabs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mone_year\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m52\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m<\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0myearly_incidence\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mone_year\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0myear\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mweek2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0myear\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mAssertionError\u001b[0m: " - ] - } - ], + "outputs": [], + "source": [ + "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W') for y in range(1985, sorted_data.index[-1].year)]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ - "first_september_week = [pd.Period(pd.Timestamp(y, 9, 1), 'W')\n", - " for y in range(1985, sorted_data.index[-1].year)]\n", - "\n", "year = []\n", "yearly_incidence = []\n", "for week1, week2 in zip(first_september_week[:-1], first_september_week[1:]):\n", - " one_year = sorted_data['inc'][week1:week2-1]\n", + " one_year = sorted_data['inc'][(sorted_data.index >= week1.start_time) & (sorted_data.index < week2.start_time)]\n", " assert abs(len(one_year)-52) < 2\n", " yearly_incidence.append(one_year.sum())\n", - " year.append(week2.year)\n", - "yearly_incidence = pd.Series(data=yearly_incidence, index=year)" + " year.append(week2.year)" ] }, {