From d4d5c00cfc36e7c2ba0845a78bf35fb9a1c5a0f2 Mon Sep 17 00:00:00 2001 From: 97205e9c049b0ad47671c9d9993e1696 <97205e9c049b0ad47671c9d9993e1696@app-learninglab.inria.fr> Date: Wed, 10 Mar 2021 13:41:53 +0000 Subject: [PATCH] un premier essai avec jupyter --- module2/exo1/Tutorial.ipynb | 198 ++++++++++++++++++ .../{toy_notebook_fr.ipynb => tutorial.ipynb} | 0 2 files changed, 198 insertions(+) create mode 100644 module2/exo1/Tutorial.ipynb rename module2/exo1/{toy_notebook_fr.ipynb => tutorial.ipynb} (100%) diff --git a/module2/exo1/Tutorial.ipynb b/module2/exo1/Tutorial.ipynb new file mode 100644 index 0000000..802647b --- /dev/null +++ b/module2/exo1/Tutorial.ipynb @@ -0,0 +1,198 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Titre du document" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "2+2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10\n" + ] + } + ], + "source": [ + "x = 10\n", + "print(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "20\n" + ] + } + ], + "source": [ + "x = x +10\n", + "print(x)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Petit exemple de completion" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "mu, sigma = 100,15" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 74.89960859 97.05392203 113.76126226 ... 95.62718321 91.13325255\n", + " 111.59388806]\n" + ] + } + ], + "source": [ + "x=np.random.normal(loc=mu, scale=sigma, size = 10000)\n", + "print(x)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD8CAYAAACYebj1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAEERJREFUeJzt3X+s3XV9x/Hna1Q7/EGEtbDaNmtn6jIgGUrXsZktKotUWSz+YVKySZex1BBcdHE/iibT/dEEnT8SksFSB7NsDtIojibAJhIzY4LghaFtqQ3VVri0o9e5TbYlzOJ7f5xvPzkr5/benvvj3Ht9PpKT8z3v7+d7vp93bttXvz/OuakqJEkC+KlRT0CStHAYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1Cwb9QSmsmLFilq3bt2opyFJi8pjjz32/apaebbbLfhQWLduHWNjY6OehiQtKkm+N8x2nj6SJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNQv+E83SVNbtuG8k+z1689Uj2a80lzxSkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNf7mNWlIo/qNb+BvfdPc8UhBktQYCpKkZspQSLI2yVeSHExyIMn7u/pHkzyb5Inu8Y6+bW5KcjjJoSRX9dUvT7KvW3dLksxNW5KkYUznmsJJ4INV9XiSVwOPJXmwW/fpqvpE/+AkFwNbgUuA1wJfTvL6qnoRuA3YDnwduB/YDDwwO61IkmZqyiOFqjpeVY93y88DB4HVZ9hkC3B3Vb1QVUeAw8CmJKuA86rq4aoq4E7gmhl3IEmaNWd1TSHJOuANwCNd6X1JvpXkjiTnd7XVwDN9m413tdXd8ul1SdICMe1QSPIq4AvAB6rqh/ROBb0OuAw4Dnzy1NABm9cZ6oP2tT3JWJKxiYmJ6U5RkjRD0wqFJC+jFwifq6p7AKrquap6sap+DHwG2NQNHwfW9m2+BjjW1dcMqL9EVe2qqo1VtXHlypVn048kaQamc/dRgNuBg1X1qb76qr5h7wL2d8t7ga1JlidZD2wAHq2q48DzSa7o3vM64N5Z6kOSNAumc/fRm4D3APuSPNHVPgRcm+QyeqeAjgLvBaiqA0n2AE/Su3Ppxu7OI4AbgM8C59K768g7jyRpAZkyFKrqawy+HnD/GbbZCewcUB8DLj2bCUqS5o+faJYkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJzZShkGRtkq8kOZjkQJL3d/ULkjyY5Knu+fy+bW5KcjjJoSRX9dUvT7KvW3dLksxNW5KkYUznSOEk8MGq+kXgCuDGJBcDO4CHqmoD8FD3mm7dVuASYDNwa5Jzuve6DdgObOgem2exF0nSDE0ZClV1vKoe75afBw4Cq4EtwO5u2G7gmm55C3B3Vb1QVUeAw8CmJKuA86rq4aoq4M6+bSRJC8BZXVNIsg54A/AIcFFVHYdecAAXdsNWA8/0bTbe1VZ3y6fXJUkLxLRDIcmrgC8AH6iqH55p6IBanaE+aF/bk4wlGZuYmJjuFCVJMzStUEjyMnqB8LmquqcrP9edEqJ7PtHVx4G1fZuvAY519TUD6i9RVbuqamNVbVy5cuV0e5EkzdB07j4KcDtwsKo+1bdqL7CtW94G3NtX35pkeZL19C4oP9qdYno+yRXde17Xt40kaQFYNo0xbwLeA+xL8kRX+xBwM7AnyfXA08C7AarqQJI9wJP07ly6sape7La7AfgscC7wQPeQJC0QU4ZCVX2NwdcDAK6cZJudwM4B9THg0rOZoCRp/viJZklSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1Ez5O5ql6Vi3475RT0HSLPBIQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSmilDIckdSU4k2d9X+2iSZ5M80T3e0bfupiSHkxxKclVf/fIk+7p1tyTJ7LcjSZqJ6RwpfBbYPKD+6aq6rHvcD5DkYmArcEm3za1JzunG3wZsBzZ0j0HvKUkaoSlDoaq+Cvxgmu+3Bbi7ql6oqiPAYWBTklXAeVX1cFUVcCdwzbCTliTNjZl899H7klwHjAEfrKp/B1YDX+8bM97VftQtn16XNIRRfdfU0ZuvHsl+NX+GvdB8G/A64DLgOPDJrj7oOkGdoT5Qku1JxpKMTUxMDDlFSdLZGioUquq5qnqxqn4MfAbY1K0aB9b2DV0DHOvqawbUJ3v/XVW1sao2rly5cpgpSpKGMFQodNcITnkXcOrOpL3A1iTLk6ynd0H50ao6Djyf5IrurqPrgHtnMG9J0hyY8ppCkruANwMrkowDHwHenOQyeqeAjgLvBaiqA0n2AE8CJ4Ebq+rF7q1uoHcn07nAA91DkrSATBkKVXXtgPLtZxi/E9g5oD4GXHpWs5MkzSs/0SxJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSmilDIckdSU4k2d9XuyDJg0me6p7P71t3U5LDSQ4luaqvfnmSfd26W5Jk9tuRJM3EdI4UPgtsPq22A3ioqjYAD3WvSXIxsBW4pNvm1iTndNvcBmwHNnSP099TkjRiU4ZCVX0V+MFp5S3A7m55N3BNX/3uqnqhqo4Ah4FNSVYB51XVw1VVwJ1920iSFohhrylcVFXHAbrnC7v6auCZvnHjXW11t3x6XZK0gMz2heZB1wnqDPXBb5JsTzKWZGxiYmLWJidJOrNhQ+G57pQQ3fOJrj4OrO0btwY41tXXDKgPVFW7qmpjVW1cuXLlkFOUJJ2tYUNhL7CtW94G3NtX35pkeZL19C4oP9qdYno+yRXdXUfX9W0jSVoglk01IMldwJuBFUnGgY8ANwN7klwPPA28G6CqDiTZAzwJnARurKoXu7e6gd6dTOcCD3QPSdICMmUoVNW1k6y6cpLxO4GdA+pjwKVnNTtJ0rzyE82SpMZQkCQ1hoIkqTEUJEmNoSBJagwFSVJjKEiSGkNBktQYCpKkxlCQJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkpplo56AZte6HfeNegqSFjGPFCRJjaEgSWoMBUlSYyhIkpoZhUKSo0n2JXkiyVhXuyDJg0me6p7P7xt/U5LDSQ4luWqmk5ckza7ZOFJ4S1VdVlUbu9c7gIeqagPwUPeaJBcDW4FLgM3ArUnOmYX9S5JmyVycPtoC7O6WdwPX9NXvrqoXquoIcBjYNAf7lyQNaaahUMCXkjyWZHtXu6iqjgN0zxd29dXAM33bjne1l0iyPclYkrGJiYkZTlGSNF0z/fDam6rqWJILgQeTfPsMYzOgVoMGVtUuYBfAxo0bB46RJM2+GYVCVR3rnk8k+SK900HPJVlVVceTrAJOdMPHgbV9m68Bjs1k/5Lm16g+MX/05qtHst+fREOfPkryyiSvPrUMvA3YD+wFtnXDtgH3dst7ga1JlidZD2wAHh12/5Kk2TeTI4WLgC8mOfU+f19V/5jkG8CeJNcDTwPvBqiqA0n2AE8CJ4Ebq+rFGc1ekjSrhg6Fqvou8EsD6v8GXDnJNjuBncPuU5I0t/xEsySpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTGUJAkNYaCJKkxFCRJjaEgSWoMBUlSYyhIkhpDQZLUGAqSpMZQkCQ1hoIkqTEUJEmNoSBJaob+Hc2a3Lod9416CpI0FI8UJEmNoSBJagwFSVLjNQVJC94or9Mdvfnqke17FDxSkCQ1hoIkqTEUJEnNvIdCks1JDiU5nGTHfO9fkjS5eQ2FJOcAfwm8HbgYuDbJxfM5B0nS5Ob77qNNwOGq+i5AkruBLcCTc7EzP1ksSWdnvkNhNfBM3+tx4FfmeQ6SNG2j+s/lqG6Fne9QyIBavWRQsh3Y3r38rySH5nRW82sF8P1RT2IO2d/ittT7g0XSYz429Kan+vu5YTae71AYB9b2vV4DHDt9UFXtAnbN16TmU5Kxqto46nnMFftb3JZ6f7D0e5xpf/N999E3gA1J1id5ObAV2DvPc5AkTWJejxSq6mSS9wH/BJwD3FFVB+ZzDpKkyc37dx9V1f3A/fO93wVkSZ4W62N/i9tS7w+Wfo8z6i9VL7nOK0n6CeXXXEiSGkNhDiV5TZLPJ/l2koNJfjXJBUkeTPJU93z+qOc5rCR/mORAkv1J7kry04u9vyR3JDmRZH9fbdKektzUfWXLoSRXjWbW0zdJf3/R/Rn9VpIvJnlN37pF31/fuj9KUklW9NUWVX8weY9J/qDr40CSj/fVz67HqvIxRw9gN/D73fLLgdcAHwd2dLUdwMdGPc8he1sNHAHO7V7vAX53sfcH/AbwRmB/X21gT/S+quWbwHJgPfAd4JxR9zBEf28DlnXLH1tq/XX1tfRucPkesGKx9neGn+FbgC8Dy7vXFw7bo0cKcyTJefR+eLcDVNX/VtV/0Ptaj93dsN3ANaOZ4axYBpybZBnwCnqfOVnU/VXVV4EfnFaerKctwN1V9UJVHQEO0/sqlwVrUH9V9aWqOtm9/Dq9zw/BEumv82ngT/j/H5ZddP3BpD3eANxcVS90Y0509bPu0VCYOz8PTAB/k+Rfkvx1klcCF1XVcYDu+cJRTnJYVfUs8AngaeA48J9V9SWWSH+nmaynQV/bsnqe5zbbfg94oFteEv0leSfwbFV987RVS6K/zuuBX0/ySJJ/TvLLXf2sezQU5s4yeod4t1XVG4D/pnfqYUnozqtvoXdI+lrglUl+Z7SzmnfT+tqWxSLJh4GTwOdOlQYMW1T9JXkF8GHgzwatHlBbVP31WQacD1wB/DGwJ0kYokdDYe6MA+NV9Uj3+vP0QuK5JKsAuucTk2y/0P0mcKSqJqrqR8A9wK+xdPrrN1lP0/ralsUgyTbgt4Dfru5kNEujv9fR+4/LN5McpdfD40l+lqXR3ynjwD3V8yjwY3rfgXTWPRoKc6Sq/hV4JskvdKUr6X1F+F5gW1fbBtw7gunNhqeBK5K8ovsfyZXAQZZOf/0m62kvsDXJ8iTrgQ3AoyOY34wk2Qz8KfDOqvqfvlWLvr+q2ldVF1bVuqpaR+8fyTd2fz8XfX99/gF4K0CS19O7seX7DNPjqK+kL+UHcBkwBnyr+6GdD/wM8BDwVPd8wajnOYP+/hz4NrAf+Ft6dzgs6v6Au+hdI/kRvX9Arj9TT/ROTXwHOAS8fdTzH7K/w/TOOz/RPf5qKfV32vqjdHcfLcb+zvAzfDnwd93fxceBtw7bo59oliQ1nj6SJDWGgiSpMRQkSY2hIElqDAVJUmMoSJIaQ0GS1BgKkqTm/wBCIgT51XdlJQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "plt.hist(x)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Utilisation d'autres langages" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext rpy2.ipython" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAMAAABKCk6nAAAC9FBMVEUAAAABAQECAgIDAwMEBAQFBQUGBgYHBwcJCQkKCgoLCwsMDAwNDQ0ODg4PDw8QEBARERESEhITExMUFBQVFRUWFhYXFxcYGBgZGRkbGxscHBwdHR0eHh4fHx8gICAhISEiIiIjIyMkJCQlJSUmJiYnJycoKCgqKiorKyssLCwtLS0uLi4vLy8wMDAxMTEzMzM0NDQ1NTU2NjY3Nzc4ODg5OTk6Ojo7Ozs8PDw9PT0+Pj4/Pz9AQEBBQUFCQkJDQ0NERERFRUVGRkZHR0dISEhJSUlKSkpLS0tMTExNTU1OTk5PT09QUFBRUVFSUlJTU1NUVFRVVVVWVlZXV1dYWFhZWVlaWlpbW1tcXFxdXV1eXl5fX19gYGBhYWFiYmJjY2NkZGRlZWVmZmZnZ2doaGhpaWlqampra2tsbGxtbW1ubm5vb29wcHBxcXFycnJzc3N0dHR1dXV2dnZ3d3d4eHh5eXl6enp7e3t8fHx9fX1+fn5/f3+AgICBgYGCgoKDg4OEhISFhYWGhoaHh4eIiIiJiYmKioqLi4uMjIyNjY2Ojo6Pj4+QkJCRkZGSkpKTk5OUlJSVlZWWlpaXl5eYmJiZmZmampqbm5ucnJydnZ2enp6fn5+goKChoaGioqKjo6OkpKSlpaWmpqanp6eoqKipqamqqqqrq6usrKytra2urq6vr6+wsLCxsbGysrKzs7O0tLS1tbW2tra3t7e4uLi5ubm6urq7u7u8vLy9vb2+vr6/v7/AwMDBwcHCwsLDw8PExMTFxcXGxsbHx8fIyMjJycnKysrLy8vMzMzNzc3Ozs7Pz8/Q0NDR0dHS0tLT09PU1NTV1dXW1tbX19fY2NjZ2dna2trb29vc3Nzd3d3e3t7f39/g4ODh4eHi4uLj4+Pk5OTl5eXm5ubn5+fo6Ojp6enq6urr6+vs7Ozt7e3u7u7v7+/w8PDx8fHy8vLz8/P09PT19fX29vb39/f4+Pj5+fn6+vr7+/v8/Pz9/f3+/v7///+WLN6DAAAXMElEQVR4nO2deWAUVbaH4Y0zvPGJqDg4oujgE0d4M+NbTDqk01kIYUsMssqmLLKp7CAYQBYViCKo7AIjghJkkV2RLYAgSAIigRAEJOyEJSGGrH3/eVUdGDrdTXVX1721nP59f9wOVbdOHfPZldruPdUYIE01oxMAYoFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HE0SD4chowAV+VihK8tONsYDy248IEfxL8toAb3bULLs7OzCnzXgzBpkCz4HOta9R58uE/drvquQKCTYFmwbEjrkvtxT6Jnisg2BRoFvxAueuj5CHPFRBsCjQLfibd9bGpkecKCDYFmgWvfyjmtWH9oh/e5LkCgk2B9rPo60snjJy4vMBrOQSbAg6XSZXkeS6AYF24clF5vWbBRxx1O5yVPmt4roBgHchrmdQu5oRSD82CbSkZk+rnQLAxdNrB2NF4pR6aBd9XwdiGBufdBP/wnovEvgEmCYInSm4Sryv00Cy4wU6pWdzo5B3Bpze5SE4KKEWgBZfghCKFHpoFr6i5TG7rVvdcMaCd322BVgbPZmxtB6Ue2s+ic8/I7ZX5nsshWAeKh9vtvZWO0Pwuky54LoBgU8BNsNdZNASbAs2CL98Cgs2JZsHVf1eJV08INgWaBQ8ZW/mJb7A50Sy4LDHT9QnB5kTcwwYINgXcBHsBwaYAgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiSOurA4EmwJxZXUg2BSIK6sDwaZAXFkdCDYF4srqQLApEFdWB4JNgbiyOhBsCnCZRBxcJhEHl0nEEXCZ9FWsi8ejtWUGuIDLJOLgMok4uEwiDsrqEAdldYiDsjrEQVkd4qCsDnFQVoc4KKtDHLxVSRwIJg4EEweCiQPBxIFga3My9b2fFTtAsKXZEr1qQ8vFSj0g2NJEX2OsJMyp0AOCLU3UZwnx09tcVOgBwZbmqf6Fxe/+Gd9gsjSM376nfYNShR4QbGmiDr01fHdrr+cAbkCwpWkp6ctrrNQDgi3NMduocbY9Sj0g2NqUpG8uVOwAwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4kAwcSCYOBBMjKw+L35Q7PZvCKbFQXvG5U9bub3DA8G0ePmo1PTLuLMAgsVwuKU9cp4B+21SIjVTV91ZAMFCuGE7yUq7r/LfkTfD1ktNi1N3FkCwEDZNkJrz7fXf8XX72wtbT3FbAMFCWJMqNVdfMGDPZRsWZLv/G4KFkBd5g7Hxc41Og0GwKL4Lf8k+TGnEgV5AsCjOlBidgQtM6U8cTOlPHEzpTxxUPvPBbxVGZ8APTOnvxaHYZrYh5UZnwQtM6e9JiS2XsdRUo9PghYAp/X+a7SKmhcbUDGL/IKkpjTM6DV7wuQ6uyHW7TspOc9G8lYa0DCRzIINgN4456nQ6/p9/qJ3uucKqh+jSiBOMTZxmdBq80CzYMfXQuLrL2Mb/9VxhVcHsSLO4iBQy59GaBT/FmPOBys+qWFawdJ5ldAIc0Sz42VNs/z2n2KWnPVdYWDAlNAteWqvhI4ue7FhvkucKCDYF2s+iz2zPZwenfuu1HIJNAR4XCqL8xA2jU3ABwWLYEPZy3OtmOBWHYCFcshcxNnmm0WkwCBbE6vel5lqS0WkwCBbEd+Ol5mxHo9NgECyIQls2u9llndFpMAgWxbHkaPvnRichA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAsKVxLmjaZKpS4TMItjbvD/qtZMobSj0g2NLY5ZdGolG7kCxRcoPahXRplcPY5UilHhCsF1fXbbrJPWiObeTbth+UekCwTmyNmDzOdox72JIdm39T7ADBOhGWz9gvBoyohWB9qJy3Mkr/HUOwPpRES02ZXf8dQ7BODHinMK/nHP33C8E6UT6r2QvLVW5ztE1UwhaN+4Vg83JFOuvOa5rhv6MSEGxevpwhNfsGawsCweZl9hKpyemhLQgEm5cjiRWMpXyhLQgEG0b+kjnKv3w2L3JgwiCNewlM8GlXq3jP0wsIVuZY2CeLm/9Tuc+NDKUHRQERmOBnXXurpSoyBCuTnMNYWXix/47aCETwgjrVa0j8m7rp/SBYGddty/6HRO8moG+wM+myxHV1kSFYmSb5txuhBHaILtrJCidPUTdtDAQr823TA6feGih8N4EJ7jiEdY3tqs4YBPthf79uX4gvvBOY4Ccqbta86qyvKjIEm4LABNd3rnUwZ13ffVBWx8wEJrhT3KPLWYrPKdxRVsfcBCa4ZNlOxqZd8tUDZXXMDcrqeLNt7PTLRufAjUAE179cvxJfPeiV1Rn96tYvns8xOgteBCJ4X9m+Snz1IFdW50KC1BwxwyR1XBBQVmfpcy7qxGhMzSDSU+TWgPcfxRDQIfoWT9y1W56P25hW/Qafk19ePm7R5L0JRHBm5oTOG/euSfrAV4+MLuxwwz/8/n+8Xtq3qmA2eODeNeGHjc6CF4Edov8h31IrfcZXj/9awBwflJdPtXuusKxgtn7oe2eNzoEbgQl+7LzUnHnEV497y1g9563SOlWwrmBSBCZ4Yq1WXRNrjfbVIyrV2X0LY3P/23MFBJuCAM+is2ZOnHHAZ49fGz/m+Pe/13va68k1BJsCDi/dnVi5YMV+7/oTEGwK8FalGMoX9hl7TrlL1vD+a8QnAsFiaJt6ZEPYCaUe22N2HhowSngiECyE/X2kZl8/pS5N5QesMQVKXXgAwUJY9rHU3Gyq1MV1M/S1n0RnAsFCONJBajYNVeqS9CtjFTb+87J4AMGBcPaM2i0G9173kU1xWMLhsH+uSp6tMmzFCbVDHSDYP7lxHV6K/VXlRjumLCpS7pE3Z6ra19732boltlWeVccTCPZP0gHGfm5pdBYS5WGXGFupbjgaBPulLFZu44WPIvLP4b5yq+5RNQT7xemQ25hyo/Ng7FRXqSmPVrUNBPun7wLGPu9ldBYyTXaw8pEfqdoEgv1TNCwqaoi6U5tASO/aeo7Kw8KFbo7ID9QNd4Fgo1iTdDzvvd7CdwPBRhFXKDXNroneDQQbhZkGgAcFBCvTNouxkrAS0buBYD7kpl9QucXJ8Elz4pYJScYdCObCkMSUpuNVblO0eonqW9zqgWAerB4iNd13Gp2GLyCYB0P3Ss037xidhi8gmAfvrpeaxbOMTsMXEMyDk5Gn2NEItadZugDBXDjQOqrjUZXbLEuIHe/nkTEHINgoPnuloHxhB+G7gWCjiJHvcbwgfK4ICDYK163KvsKHqUKwUXSVLq0Kn/cxwRhfIJhlfZWpx26urPm2yinVRfugcRFeM5twB4IHd/yoZ2fvsXO82dw4dYIt231J+d7vhI9rgGC2TR5f8u7nwvcj1y48YcCrmSEvePI6qTnUX/RuzrkuiFC7UH8WyTcY1wq/jVwiv5qJ2oUGkG/bWrrPJn7SlUETCi51nyt8N16EvGB2fmBsH8WBvHwon92i9Urxu/ECgokDwcSBYOJAMHEgWBA/frxc+CuxgQDBYnjr5bTJjYUPWwgADoJRdcWb7DZSs36E0WkwDoJRdcUXrll2ihKMToNxEIyqK77Y95rUZIgfO+gfVF0RgjNpxultNq9J0g1As2B6VVcCINUWlVSlLsuaSEf0FvcFpTM7Dz+lb1K+0SyYXNWVAJg3rIIdbex2FXSgeSG7FvOLcRndHQFVV35Jc9Hc668yGZrJ8zkMcasyNHar1KyYZlA6inC6DnafF3ffey4imgedlNlpIn95R+66s8D189opRuWjhGbBR1zUPnLEcwXhQ/QU6bt62eb2Ct2OTuWsNFH4xKLBoFlwtTrPStzz7LOeKwgLLu/vaBO5133JrLD2zy8xKh1FNAve+vfRNxmr472CsGDpqtCzEmvFefHFvINC+9/g4jENN4WcYOvA4yQrO7pTbe+lEGwK+JxFL0zyXgbBpgCPC31QKGTi0SJDng9DsBcHo1s0HsRd8enmCbGddRiq4gkEe1IivyT94WTeYZseZGz1q7yj+geCPflxMLs9CThHrr0gtxi6YgIODJCakiaco+a77sxDsAkobZzDnOPUzbodAK12Mfb5G7yj+oeY4DV9hqq9I3wluUGzKk9us1tE297mfl/qQnuHvZ/4SXW8oCV49Os/74n/TtUm+Q/0+GZwzarP5sWUZzCm6AMpwUXy37j8OFXbDJAHZQ9oJSQfM0BKcLarcoa6M5kEeZLYVV4vHJGBlODSsDLGcluo2masTWo6dBKTkAkgJZjNb7ViYbi6s6yKx58fE1v7hsodXTnm8Re18Ij6MpMXj4uf+4WYYJY1fa7a6o0VE1uOUHmXuLRLyx7h29yXTIrsHTFTXZAbycmvROxXt00QEBOsD+PnM1ZgK7yz4Lue0v8o7X5UFaT/OunaySb8OwzBQRBXKjUp6XcWjNgtNesnqQriOhfsle2vm1YgOAhayH+yB2bcWTBevvZO+1hVEIf85e0ofPYXCA6CJb1L2P4otxGVWXF57Jz9tKogU9+qYFuacc7MGwgOhrl2R6dc9wXbmjia7b1bb984UyMdPYXPJgzB1IFg4kAwcSCYONQFl2fs8XgIm7P9ijGpGANxwWftr71p2+22oKzDS2Mc8w3LR3+IC26XydgVm9uCqbMYq0gwxdh7fSAu2HU/sLPbHYhk+fg880uD0jEA6oLl+4HN3B4G9pTrk72t7q0eS0Nc8LRBJc753dwW7G52me2OVP/s1rLQElw0PqZplXHYznmxjnFVTqO3trD3Pue+4ES3qA5V3hHIHxHdfK37gvKP4+KmCy9wJAhagjvNLy/srW7e/Cu2AyynsduU787mK51X265265IytqR0ohmmJQwGUoKvy29IlkWr2mbhp1LzjVt59mPdpSbf/cWuSLmxm3QEvz9ICT4uu1H5VuUU+Wh88PU7C3aNlBqn486CUtd7uAkGvLTOA1KCK54vYCzjJVXbfP+K1IxOu7OgIKKEsY0D3brE/8rYGd6j0fSClGC21TZ6kP28YhfnzmVVZ6Qb22pC277uC1ZEvt0vPt9twWHbmyNth7glqS+0BLMbW/cpjxApShj0cVLVGctyv/GoqnNtc2bVP7jFu3YWc0nPAIgJ9stE+SrqBTNMA6sToSY4SZ5mf7Y55ywTQqgJ7ntQakZuNzoN/Qg1wYfsPxeviLXqbakgMLHgWVH2Xp4zBmrnp1eajsn3340M5hU87/VStq2JRe8fmQfzltWJk0eEdc/x2w8oYt6yOg75yztI/PA74pi3rM6QlYxdDzdFeTgrY96yOoXJbfradmqL4YOSZdN/ULvN2blzz3BPRCfMXFbnbFap1hBeXLdPWd5jqLpttkR+tijKq6qMRQi1sjop8pP8l35WtY39GmMFjcXkIxwBZXWWPueiTozG1ISQKJ8xzFmsZpPK58GuUjoWhNt1sNfUGOb8Br+xR2oG7vLbz50I6SKwPFxMPsLRXlbHUbeDPEy9hucKcwo+Ebb51IxW6m6fzOt4OKuLyilWTINmwbaUjEn1c0wi+FzbqIjhymdmuSO7zlR77ra1T+/NwSdlLJoF31fB2IYG580hOF66Apo+Wv/9mhjNghvIl6qLG500g+AL7eW2ykt35ft3W/TsiBOaBa+ouUxu61b3XGGA4NOd5dZd8Bn762+Gf697IiZC+1l0rusmzxWvIZlGHKLt0n/NV+6zbrc7IKVm1RNgLpj3caE3RXNHfqk8M9yxuKS4Lu6HZK/RhSGHhQQXRM7Z9W6Sn7n/rlUdV+Y1ujDksJDgVPlVuZT1qraZNrDY+Wk3//3oYiHBPeWXXVe/r2ob56dxUeMtOuiEDxYSnCqPyx+9jnNU6lhIcEHEpz9MaaV5/t2K6zySsQwWEsx+mzl0sebSJePDkhqH0GvRlhLMg8+HOVl+pPg5QE1DqAnuII89/HCl0WnoR6gJds0CnLrG6DT0I9QEr+pVxs5HXDM6Df0INcFsRnh0k1B62TrkBDMWWqNhQlBwaAHBxIFg4ugluDCr8G4dNVCcFVr3HYNAJ8EfRvaNVPccKBDSbL2bDAitcybV6CN4V2cnc76cfvfOQfGrXGJu3ELOUYmhj2BX6bf0lOCD+WTJHKk5q25iu5BDH8FTV0nNOnXFG/3ztXzQP/oq56jE0EfwiagL7GK08q7Uk2/LYTeSeR/4iaHTSdbuZo4EdSO+AuHoi/bYr7lHpQWug4kDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxDGx4BUJjlGhPLKXD+YVnNYp37nMaw5boBLzCo6Xh/V2DqFa3WIwr2DX9BpD9mkLAswruO8Wxm6Gh/TofB7oJThzSabK7a/G9hvTWN2MHMAbnQT36j6zR3eV7z86M7cV+O8FlNFH8Oo3pSZlRfDBQLDoI3i0PGnCbqtWSbc0+gie9ZnUfPFR8MFAsOgj+Gr49pvp4V6TwgPx6FT57NzAhAFnVSUG+GDeymeACwIqn1360UWHZK25AQ4IqHy2fbiL2B7aMgNcEFf5bOknQaYEeCKu8hkEmwIBlc9uAcGmQNx1MASbAggmDgQTR5zgjX+LVeRPDzwogHvvFxG15n0iot5/r4ioD9Su8mtuoHwDUYNgf4gpdjNmq4ioi+aKiPr9myKiXmyrpjcEu4DgIIBgCA4CCIbgIIDgIIBg4oK7nhERdZyQabOWeNVW5cGeUSKiXm6vprdAwWJeiS3UXDjLFyXFIqI6RUzAq/IXK1AwMAMQTBwIJg4EEweCiQPBxIFg4kAwcUQJLq5Wo0aNNnxjlg2tLtcF3tDwwfjzvKPyzvfrZ+63Z3PPtTKqqlxFCT5fm3/MxDG/k1Rcr/192agXeUflnG/u/TsrRjl453orqqpcRQk+Wp9/zEwmq0iLlyTX4HdrsTIq53xz0xjLeJR3rreiqspVlOA9f3Y8HJvNO6qsYsJr0g91eIaWowrId1I7AbnKUVXlKkrw4V5Hbo7wGu2iFVnFyGHSD0+qnfHFX1T++W58MldArnJUVbmKPIsu/QPvEcOyion9pB8ezuEcVYZrvosb5AjI1RVVJuBcRQk+d1g6M739m+OGHHB5JGNn/uhjQLqmqLzzXdVIPnnmnWtlVFW5ihK8/vGT5W/9H++o8n9VQe3NZX268I7KOd+rdU/KH5xzvRVVVa7CDtHvPvpQ/EmuEfNq1JAuAC+wb//6YAt+s4Hcjso33/nVpUvVGnmcc70dVU2uuJNFHAgmDgQTB4KJA8HEgWDiQDBxIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBbmQKGG9jNBDsBgRbnZJOf3miY9Hehv0d/0hnbE2jv8Rc+tfHO3X/NgGCLc6yOGfF4J2Z1daz9U+zMw8eZKlJtz+yap2r6AjBFmfHo2tvSkfiWoyVVb80O46xG78vvfUxsxVjGyHY6qTZa75cmFlP+une7En31qtXr9a5Wx8TuzK2F4KtT17M5Mz/cLKb1S4vqqzGeOtjRpL01xiCLc60MU5ntymZ96Sxz/7KLvwpm+3tf/vjQK2zZckQbHEuNX/siTY3Mp8a/HSDnYytbfTUczv+9ZHyyDMfPGF0gvwJLcGVULzcvSsQTBwIJk4oCg4pIJg4EEwcCCYOBBMHgokDwcSBYOJAMHEgmDgQTBwIJg4EEweCiQPBxIFg4vw/C6hxe08+0jwAAAAASUVORK5CYII=\n" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%R\n", + "plot(cars)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/module2/exo1/toy_notebook_fr.ipynb b/module2/exo1/tutorial.ipynb similarity index 100% rename from module2/exo1/toy_notebook_fr.ipynb rename to module2/exo1/tutorial.ipynb -- 2.18.1