diff --git a/module2/exo1/toy_notebook_en.ipynb b/module2/exo1/toy_notebook_en.ipynb index 3ef936148069cd66ac7b72a6a97aee5c5a8a22b3..1e56c2be140ff6ec70152e0565059b97160d201b 100644 --- a/module2/exo1/toy_notebook_en.ipynb +++ b/module2/exo1/toy_notebook_en.ipynb @@ -18,7 +18,7 @@ }, "source": [ "## Asking the maths library\n", - "My computer tells me that $\\pi$ *is approximatively*" + "My computer tells me that $\\pi$ is *approximatively*" ] }, { @@ -43,8 +43,8 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Buffon’s needle\n", - "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get __approximation__" + "## Buffon's needle\n", + "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get the __approximation__" ] }, { @@ -76,7 +76,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Using a surface fraction argument\n", + "## Using a surface fraction argument\n", "A method that is easier to understand and does not make use of the $\\sin$ function is based on the fact that if $X\\sim U(0,1)$ and $Y\\sim U(0,1)$, then $P[X^2+Y^2\\leq 1] = \\pi/4$ (see [\"Monte Carlo method\" on Wikipedia](https://en.wikipedia.org/wiki/Monte_Carlo_method)). The following code uses this approach:" ] },