{ "cells": [ { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "# On the computation of $\\pi$" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "## Asking the maths library" ] }, { "cell_type": "markdown", "metadata": { "hideCode": false, "hidePrompt": false }, "source": [ "My computer tells me that $\\pi$ *is approximatively*" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "3.141592653589793\n" ] } ], "source": [ "from math import *\n", "print(pi)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Buffon’s needle" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Applying the method of [Buffon's needle](https://en.wikipedia.org/wiki/Buffon%27s_needle_problem), we get **the approximation**" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "3.128911138923655" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "np.random.seed(seed=42)\n", "N = 10000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "theta = np.random.uniform(size=N, low=0, high=pi/2)\n", "2/(sum((x+np.sin(theta))>1)/N)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Using a surface fraction argument" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A method that is easier to understand and does not make use of the sin function is based on the\n", "fact that if $$X ∼ \\mathcal{U}(0, 1)$$ and $$\\mathcal{Y} ∼ \\mathcal{U}(0, 1)$$, then $$\\mathcal{P}[X^2 + Y^2 ≤ 1] = π/4$$ (see \"[Monte Carlo method]\"(https://en.wikipedia.org/wiki/Monte_Carlo_method)\n", "on Wikipedia). The following code uses this approach:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ " %matplotlib inline\n", "import matplotlib.pyplot as plt\n", "np.random.seed(seed=42)\n", "N = 1000\n", "x = np.random.uniform(size=N, low=0, high=1)\n", "y = np.random.uniform(size=N, low=0, high=1)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "hide_code_all_hidden": false, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.4" } }, "nbformat": 4, "nbformat_minor": 2 }