diff --git a/module3/exo1/analyse-syndrome-grippal.ipynb b/module3/exo1/analyse-syndrome-grippal.ipynb index 59d72b5b58a3ae26346460dd39e62a39c55243d7..4a0b4c3c3aecc1e86487ebb37a78c2ada2f80937 100644 --- a/module3/exo1/analyse-syndrome-grippal.ipynb +++ b/module3/exo1/analyse-syndrome-grippal.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -28,13 +28,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 41, + "metadata": {}, + "outputs": [], + "source": [ + "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" + ] + }, + { + "cell_type": "code", + "execution_count": 46, "metadata": { - "collapsed": true + "hideOutput": true }, "outputs": [], "source": [ - "data_url = \"http://www.sentiweb.fr/datasets/incidence-PAY-3.csv\"" + "data_file = \"incidence-PAY-25.csv\"" ] }, { @@ -61,11 +70,30 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 47, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "FileNotFoundError", + "evalue": "File b'incidence-PAY-25.csv' does not exist", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mraw_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_file\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mskiprows\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mraw_data\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36mparser_f\u001b[0;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, escapechar, comment, encoding, dialect, tupleize_cols, error_bad_lines, warn_bad_lines, skipfooter, skip_footer, doublequote, delim_whitespace, as_recarray, compact_ints, use_unsigned, low_memory, buffer_lines, memory_map, float_precision)\u001b[0m\n\u001b[1;32m 707\u001b[0m skip_blank_lines=skip_blank_lines)\n\u001b[1;32m 708\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 709\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_read\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 710\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 711\u001b[0m \u001b[0mparser_f\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_read\u001b[0;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[1;32m 447\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 448\u001b[0m \u001b[0;31m# Create the parser.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 449\u001b[0;31m \u001b[0mparser\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mTextFileReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilepath_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 450\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 451\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mchunksize\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0miterator\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[1;32m 816\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'has_index_names'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'has_index_names'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 817\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 818\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mengine\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 819\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 820\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mclose\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m_make_engine\u001b[0;34m(self, engine)\u001b[0m\n\u001b[1;32m 1047\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_make_engine\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mengine\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'c'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1048\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'c'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1049\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_engine\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mCParserWrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1050\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1051\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mengine\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'python'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/conda/lib/python3.6/site-packages/pandas/io/parsers.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, src, **kwds)\u001b[0m\n\u001b[1;32m 1693\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'allow_leading_cols'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex_col\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1694\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1695\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_reader\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mparsers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mTextReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msrc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1696\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1697\u001b[0m \u001b[0;31m# XXX\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader.__cinit__\u001b[0;34m()\u001b[0m\n", + "\u001b[0;32mpandas/_libs/parsers.pyx\u001b[0m in \u001b[0;36mpandas._libs.parsers.TextReader._setup_parser_source\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mFileNotFoundError\u001b[0m: File b'incidence-PAY-25.csv' does not exist" + ] + } + ], "source": [ - "raw_data = pd.read_csv(data_url, skiprows=1)\n", + "raw_data = pd.read_csv(data_file, skiprows=[1,4])\n", "raw_data" ] }, @@ -78,9 +106,73 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
17921989193-NaNNaN-NaNNaNFRFrance
\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low inc100_up \\\n", + "1792 198919 3 - NaN NaN - NaN NaN \n", + "\n", + " geo_insee geo_name \n", + "1792 FR France " + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "raw_data[raw_data.isnull().any(axis=1)]" ] @@ -94,9 +186,976 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
weekindicatorincinc_lowinc_upinc100inc100_lowinc100_upgeo_inseegeo_name
020233735377245289.062255.08168.094.0FRFrance
120233633851232459.044565.05849.067.0FRFrance
220233533169526013.037377.04839.057.0FRFrance
320233432666321057.032269.04032.048.0FRFrance
420233331914413161.025127.02920.038.0FRFrance
520233231464110285.018997.02215.029.0FRFrance
620233131528610705.019867.02316.030.0FRFrance
72023303132058647.017763.02013.027.0FRFrance
82023293111227113.015131.01711.023.0FRFrance
9202328391795703.012655.0149.019.0FRFrance
10202327389995763.012235.0149.019.0FRFrance
11202326390235934.012112.0149.019.0FRFrance
122023253100906739.013441.01510.020.0FRFrance
132023243113087639.014977.01711.023.0FRFrance
1420232331430010661.017939.02217.027.0FRFrance
1520232231830313822.022784.02821.035.0FRFrance
1620232131646012188.020732.02519.031.0FRFrance
1720232031616211963.020361.02418.030.0FRFrance
1820231931690112577.021225.02518.032.0FRFrance
1920231831992915402.024456.03023.037.0FRFrance
2020231732700721779.032235.04133.049.0FRFrance
2120231632787522767.032983.04234.050.0FRFrance
2220231533745530993.043917.05646.066.0FRFrance
2320231434806040671.055449.07261.083.0FRFrance
2420231336485956800.072918.09886.0110.0FRFrance
2520231237275064499.081001.010997.0121.0FRFrance
2620231137463866420.082856.0112100.0124.0FRFrance
2720231037636868243.084493.0115103.0127.0FRFrance
2820230936206254778.069346.09382.0104.0FRFrance
2920230837639168065.084717.0115102.0128.0FRFrance
.................................
199919852132609619621.032571.04735.059.0FRFrance
200019852032789620885.034907.05138.064.0FRFrance
200119851934315432821.053487.07859.097.0FRFrance
200219851834055529935.051175.07455.093.0FRFrance
200319851733405324366.043740.06244.080.0FRFrance
200419851635036236451.064273.09166.0116.0FRFrance
200519851536388145538.082224.011683.0149.0FRFrance
20061985143134545114400.0154690.0244207.0281.0FRFrance
20071985133197206176080.0218332.0357319.0395.0FRFrance
20081985123245240223304.0267176.0445405.0485.0FRFrance
20091985113276205252399.0300011.0501458.0544.0FRFrance
20101985103353231326279.0380183.0640591.0689.0FRFrance
20111985093369895341109.0398681.0670618.0722.0FRFrance
20121985083389886359529.0420243.0707652.0762.0FRFrance
20131985073471852432599.0511105.0855784.0926.0FRFrance
20141985063565825518011.0613639.01026939.01113.0FRFrance
20151985053637302592795.0681809.011551074.01236.0FRFrance
20161985043424937390794.0459080.0770708.0832.0FRFrance
20171985033213901174689.0253113.0388317.0459.0FRFrance
201819850239758680949.0114223.0177147.0207.0FRFrance
201919850138548965918.0105060.0155120.0190.0FRFrance
202019845238483060602.0109058.0154110.0198.0FRFrance
2021198451310172680242.0123210.0185146.0224.0FRFrance
20221984503123680101401.0145959.0225184.0266.0FRFrance
2023198449310107381684.0120462.0184149.0219.0FRFrance
202419844837862060634.096606.0143110.0176.0FRFrance
202519844737202954274.089784.013199.0163.0FRFrance
202619844638733067686.0106974.0159123.0195.0FRFrance
20271984453135223101414.0169032.0246184.0308.0FRFrance
202819844436842220056.0116788.012537.0213.0FRFrance
\n", + "

2028 rows × 10 columns

\n", + "
" + ], + "text/plain": [ + " week indicator inc inc_low inc_up inc100 inc100_low \\\n", + "0 202337 3 53772 45289.0 62255.0 81 68.0 \n", + "1 202336 3 38512 32459.0 44565.0 58 49.0 \n", + "2 202335 3 31695 26013.0 37377.0 48 39.0 \n", + "3 202334 3 26663 21057.0 32269.0 40 32.0 \n", + "4 202333 3 19144 13161.0 25127.0 29 20.0 \n", + "5 202332 3 14641 10285.0 18997.0 22 15.0 \n", + "6 202331 3 15286 10705.0 19867.0 23 16.0 \n", + "7 202330 3 13205 8647.0 17763.0 20 13.0 \n", + "8 202329 3 11122 7113.0 15131.0 17 11.0 \n", + "9 202328 3 9179 5703.0 12655.0 14 9.0 \n", + "10 202327 3 8999 5763.0 12235.0 14 9.0 \n", + "11 202326 3 9023 5934.0 12112.0 14 9.0 \n", + "12 202325 3 10090 6739.0 13441.0 15 10.0 \n", + "13 202324 3 11308 7639.0 14977.0 17 11.0 \n", + "14 202323 3 14300 10661.0 17939.0 22 17.0 \n", + "15 202322 3 18303 13822.0 22784.0 28 21.0 \n", + "16 202321 3 16460 12188.0 20732.0 25 19.0 \n", + "17 202320 3 16162 11963.0 20361.0 24 18.0 \n", + "18 202319 3 16901 12577.0 21225.0 25 18.0 \n", + "19 202318 3 19929 15402.0 24456.0 30 23.0 \n", + "20 202317 3 27007 21779.0 32235.0 41 33.0 \n", + "21 202316 3 27875 22767.0 32983.0 42 34.0 \n", + "22 202315 3 37455 30993.0 43917.0 56 46.0 \n", + "23 202314 3 48060 40671.0 55449.0 72 61.0 \n", + "24 202313 3 64859 56800.0 72918.0 98 86.0 \n", + "25 202312 3 72750 64499.0 81001.0 109 97.0 \n", + "26 202311 3 74638 66420.0 82856.0 112 100.0 \n", + "27 202310 3 76368 68243.0 84493.0 115 103.0 \n", + "28 202309 3 62062 54778.0 69346.0 93 82.0 \n", + "29 202308 3 76391 68065.0 84717.0 115 102.0 \n", + "... ... ... ... ... ... ... ... \n", + "1999 198521 3 26096 19621.0 32571.0 47 35.0 \n", + "2000 198520 3 27896 20885.0 34907.0 51 38.0 \n", + "2001 198519 3 43154 32821.0 53487.0 78 59.0 \n", + "2002 198518 3 40555 29935.0 51175.0 74 55.0 \n", + "2003 198517 3 34053 24366.0 43740.0 62 44.0 \n", + "2004 198516 3 50362 36451.0 64273.0 91 66.0 \n", + "2005 198515 3 63881 45538.0 82224.0 116 83.0 \n", + "2006 198514 3 134545 114400.0 154690.0 244 207.0 \n", + "2007 198513 3 197206 176080.0 218332.0 357 319.0 \n", + "2008 198512 3 245240 223304.0 267176.0 445 405.0 \n", + "2009 198511 3 276205 252399.0 300011.0 501 458.0 \n", + "2010 198510 3 353231 326279.0 380183.0 640 591.0 \n", + "2011 198509 3 369895 341109.0 398681.0 670 618.0 \n", + "2012 198508 3 389886 359529.0 420243.0 707 652.0 \n", + "2013 198507 3 471852 432599.0 511105.0 855 784.0 \n", + "2014 198506 3 565825 518011.0 613639.0 1026 939.0 \n", + "2015 198505 3 637302 592795.0 681809.0 1155 1074.0 \n", + "2016 198504 3 424937 390794.0 459080.0 770 708.0 \n", + "2017 198503 3 213901 174689.0 253113.0 388 317.0 \n", + "2018 198502 3 97586 80949.0 114223.0 177 147.0 \n", + "2019 198501 3 85489 65918.0 105060.0 155 120.0 \n", + "2020 198452 3 84830 60602.0 109058.0 154 110.0 \n", + "2021 198451 3 101726 80242.0 123210.0 185 146.0 \n", + "2022 198450 3 123680 101401.0 145959.0 225 184.0 \n", + "2023 198449 3 101073 81684.0 120462.0 184 149.0 \n", + "2024 198448 3 78620 60634.0 96606.0 143 110.0 \n", + "2025 198447 3 72029 54274.0 89784.0 131 99.0 \n", + "2026 198446 3 87330 67686.0 106974.0 159 123.0 \n", + "2027 198445 3 135223 101414.0 169032.0 246 184.0 \n", + "2028 198444 3 68422 20056.0 116788.0 125 37.0 \n", + "\n", + " inc100_up geo_insee geo_name \n", + "0 94.0 FR France \n", + "1 67.0 FR France \n", + "2 57.0 FR France \n", + "3 48.0 FR France \n", + "4 38.0 FR France \n", + "5 29.0 FR France \n", + "6 30.0 FR France \n", + "7 27.0 FR France \n", + "8 23.0 FR France \n", + "9 19.0 FR France \n", + "10 19.0 FR France \n", + "11 19.0 FR France \n", + "12 20.0 FR France \n", + "13 23.0 FR France \n", + "14 27.0 FR France \n", + "15 35.0 FR France \n", + "16 31.0 FR France \n", + "17 30.0 FR France \n", + "18 32.0 FR France \n", + "19 37.0 FR France \n", + "20 49.0 FR France \n", + "21 50.0 FR France \n", + "22 66.0 FR France \n", + "23 83.0 FR France \n", + "24 110.0 FR France \n", + "25 121.0 FR France \n", + "26 124.0 FR France \n", + "27 127.0 FR France \n", + "28 104.0 FR France \n", + "29 128.0 FR France \n", + "... ... ... ... \n", + "1999 59.0 FR France \n", + "2000 64.0 FR France \n", + "2001 97.0 FR France \n", + "2002 93.0 FR France \n", + "2003 80.0 FR France \n", + "2004 116.0 FR France \n", + "2005 149.0 FR France \n", + "2006 281.0 FR France \n", + "2007 395.0 FR France \n", + "2008 485.0 FR France \n", + "2009 544.0 FR France \n", + "2010 689.0 FR France \n", + "2011 722.0 FR France \n", + "2012 762.0 FR France \n", + "2013 926.0 FR France \n", + "2014 1113.0 FR France \n", + "2015 1236.0 FR France \n", + "2016 832.0 FR France \n", + "2017 459.0 FR France \n", + "2018 207.0 FR France \n", + "2019 190.0 FR France \n", + "2020 198.0 FR France \n", + "2021 224.0 FR France \n", + "2022 266.0 FR France \n", + "2023 219.0 FR France \n", + "2024 176.0 FR France \n", + "2025 163.0 FR France \n", + "2026 195.0 FR France \n", + "2027 308.0 FR France \n", + "2028 213.0 FR France \n", + "\n", + "[2028 rows x 10 columns]" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "data = raw_data.dropna().copy()\n", "data" @@ -122,7 +1181,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ @@ -152,10 +1211,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 30, + "metadata": {}, "outputs": [], "source": [ "sorted_data = data.set_index('period').sort_index()" @@ -179,9 +1236,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1989-05-01/1989-05-07 1989-05-15/1989-05-21\n" + ] + } + ], "source": [ "periods = sorted_data.index\n", "for p1, p2 in zip(periods[:-1], periods[1:]):\n", @@ -199,9 +1264,41 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 32, "metadata": {}, "outputs": [], + "source": [ + "sorted_data['inc'] = sorted_data['inc'].astypeype('int')" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEKCAYAAAAvlUMdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXmcHVWZ93/PXfr2ku7sCSELCRCWsCgQAoiKgkBERxzBd+KoRMVBHWdcxlcFZxx8QUbcd3EYjSCigIADgiwxbLIFEvbs+7500p2k977Lef+oc+pW1T2nqm7dvfN8P5/+3Nun6iy36tR5zrOcUySEAMMwDMOUm1itG8AwDMOMTFjAMAzDMBWBBQzDMAxTEVjAMAzDMBWBBQzDMAxTEVjAMAzDMBWBBQzDMAxTEVjAMAzDMBWBBQzDMAxTERK1bkA1mTBhgpg5c2atm8EwDNNQLF++fJ8QYmKx+Q4rATNz5kwsW7as1s1gGIZpKIhoS5R8bCJjGIZhKgILGIZhGKYisIBhGIZhKgILGIZhGKYisIBhGIZhKkKggCGiRUS0l4jecKSNI6LFRLROfo51HLuGiNYT0RoiutiRfgYRvS6P/YSISKaniOhOmb6UiGY68iyUdawjooWO9Fny3HUyb1Ppl4JhGIYpJ2E0mFsAzPekXQ1giRBiNoAl8n8Q0RwACwCcJPP8gojiMs9NAK4CMFv+qTKvBNAthDgWwA8BfFuWNQ7AtQDOAjAPwLUOQfZtAD+U9XfLMhiGYZg6IlDACCGeAtDlSb4UwK3y+60A3u9Iv0MIMSSE2ARgPYB5RDQFQIcQ4jlhvaP5t548qqy7AVwgtZuLASwWQnQJIboBLAYwXx47X57rrX9E0t03jL+8vqvWzWAYhimKqD6YyUKIXQAgPyfJ9KkAtjnO2y7Tpsrv3nRXHiFEBsBBAON9yhoP4IA811vWiOSq25bhn29/Cft6h2rdFIZhmNCU28lPmjThkx4lj19ZhQ0iuoqIlhHRss7OTtNpdc3m/f0AgJww/kyGYZi6I6qA2SPNXpCfe2X6dgDTHedNA7BTpk/TpLvyEFECwGhYJjlTWfsAjJHnessqQAhxsxBirhBi7sSJRW+lUxdkc5ZgiZNOtjIMw9QnUQXM/QBUVNdCAPc50hfIyLBZsJz5L0gzWg8RnS19KFd48qiyLgfwmPTTPALgIiIaK537FwF4RB57XJ7rrX9Eks7mAADEAoZhmAYicLNLIvoDgHcAmEBE22FFdt0I4C4iuhLAVgAfBAAhxAoiugvASgAZAJ8VQmRlUZ+BFZHWAuAh+QcAvwZwGxGth6W5LJBldRHR9QBelOddJ4RQwQZfBXAHEX0TwMuyjBGL0mAEm8gYhmkgAgWMEOJDhkMXGM6/AcANmvRlAE7WpA9CCijNsUUAFmnSN8IKXT4syEgBk2P5wjBMA8Er+RsAW4MxxzIwDMPUHSxgGgAVPcYWMoZhGgkWMA2Acu2zgGEYppFgAdMAqOgxXgfDMEwjwQKmgWDxwjBMI8ECpgFQJrIch5ExDNNAsIBpANT6SraQMQzTSLCAaQCUD4bDlBmGaSRYwDQAtomM5QvDMA0EC5gGIG8iYwnDMEzjwAKmASCoMOUaN4RhGKYIWMA0APlNlFnCMAzTOLCAaQDYB8MwTCPCAqYBsKPIWMAwDNNAsIBpAPIaTP1JmDtf3IqZVz+InsF0rZvCMEydwQKmgahD+YKbn9oIANh9cLDGLWEYpt5gAdMISBWmHjUYhmEYEyxgGgAKPoVhGKbuYAHTANTzdv1ELP4YhtHDAqYBINtEVtt2+FHHTWMYpkawgGkA6llHqOe2MQxTW1jANBD1vBdZHTeNYZgawQKGKQl2wTAMY4IFTANRz0oCv6uGYRgvLGAaiHo0QxF7YRiGMcAChikJ1lwYhjHBAqah4MGcYZjGgQUMUxJsImMYxgQLmAaiHn0winpuG8MwtYEFzAjg7uXbMfebf0WuBkv9OUyZYRgTJQkYIvoiEa0gojeI6A9E1ExE44hoMRGtk59jHedfQ0TriWgNEV3sSD+DiF6Xx35CcoMrIkoR0Z0yfSkRzXTkWSjrWEdEC0v5HY2CSXx87d7Xsa93CMPZXFXb44Q1GIZhvEQWMEQ0FcDnAMwVQpwMIA5gAYCrASwRQswGsET+DyKaI4+fBGA+gF8QUVwWdxOAqwDMln/zZfqVALqFEMcC+CGAb8uyxgG4FsBZAOYBuNYpyEYqxkGctQiGYeqQUk1kCQAtRJQA0ApgJ4BLAdwqj98K4P3y+6UA7hBCDAkhNgFYD2AeEU0B0CGEeE5Ye6H81pNHlXU3gAukdnMxgMVCiC4hRDeAxcgLJaYGcLgywzBeIgsYIcQOAN8DsBXALgAHhRCPApgshNglz9kFYJLMMhXANkcR22XaVPndm+7KI4TIADgIYLxPWSOaet6LjGEYxkspJrKxsDSMWQCOBNBGRB/xy6JJEz7pUfN423kVES0jomWdnZ0+zWMYhmHKSSkmsncB2CSE6BRCpAHcC+AtAPZIsxfk5155/nYA0x35p8EyqW2X373prjzSDDcaQJdPWQUIIW4WQswVQsydOHFixJ9aHwTpL7VQcPiFYwzDmChFwGwFcDYRtUq/yAUAVgG4H4CK6loI4D75/X4AC2Rk2CxYzvwXpBmth4jOluVc4cmjyrocwGPST/MIgIuIaKzUpC6SaSMSNYibBIga4mv5xku23jEM4yURNaMQYikR3Q3gJQAZAC8DuBnAKAB3EdGVsITQB+X5K4joLgAr5fmfFUJkZXGfAXALgBYAD8k/APg1gNuIaD0szWWBLKuLiK4H8KI87zohRFfU39LoKCWiFmM86y8Mw5iILGAAQAhxLaxwYSdDsLQZ3fk3ALhBk74MwMma9EFIAaU5tgjAoiKb3NAERWpxEADDMPUEr+RvAMIKjppoMKzCMAxjgAVMIxEgQViBYRimnmABM5JgAcMwTB3BAqaBMO8UY9mpahlFxjAM44UFTAMQGKZcwygyRVTZ9uTaTnzuDy+XtzEMw9QFLGBGELWIIivVyb9w0Qu4/1XtGlmGYRocFjANRGCYcpXaoa+bzXMMw7hhATOCqMlWMbzUkmEYAyxgGoggAVJLLYLjCxiG8cICpoEIet9YbTa7rH6dDMM0BixgRgBBUWaNAG9zwzAjDxYwDUTQINzIjnaWLwwz8mABM4Ko5SDN8oFhGC8sYBqIwBeOVaUVbsrlgmEBxTAjDxYwI4ha+jFKrZt9MAwz8mAB00gEvNGyJmO0CjAosRgWLwwz8mAB00AYnfhqL7Ja+mBYQjAM44EFzAiitlFkpZrIytQMhmHqBhYwDUTgSv4GHqQbOcSaYRg9LGBGEI24XX+58jMMU3+wgGkggjWYGmzXr+ques0Mw9Q7LGAagKBBvB4GedZAGIbxwgJmBJDfi6x2LxwrfR1MGRrDMExdwQKmgQjci6yBt4phJz/DjDxYwDQAYYfeWm4VwxoIwzBeWMA0EIF7kdVUg6mMiax3KIODA+mSymYYpjYkat2ARuLZDfsQI8LZR4+vdVO0NLKZydTy0657FOmswOYb31PV9jAMUzosYIrgH/9nKQDUbLCr64WWJa+D0ReQzjau0GSYwx02kTUA+S3x9YMt1XAvMirTZpcMw4w8WMCMAJQAytV0u/4S85enGQzD1BEsYBqIeozUyi/y5HUwDMO4KUnAENEYIrqbiFYT0SoiOoeIxhHRYiJaJz/HOs6/hojWE9EaIrrYkX4GEb0uj/2EpN2FiFJEdKdMX0pEMx15Fso61hHRwlJ+x0ihobfrZwHDMCOOUjWYHwN4WAhxAoA3AVgF4GoAS4QQswEskf+DiOYAWADgJADzAfyCiOKynJsAXAVgtvybL9OvBNAthDgWwA8BfFuWNQ7AtQDOAjAPwLVOQTZSCX5lcg1NZDWrmWGYeiWygCGiDgBvB/BrABBCDAshDgC4FMCt8rRbAbxffr8UwB1CiCEhxCYA6wHMI6IpADqEEM8JK5Tot548qqy7AVwgtZuLASwWQnQJIboBLEZeKI1Y6jGKrGxbxbCIYpgRRykazNEAOgH8hoheJqJfEVEbgMlCiF0AID8nyfOnAtjmyL9dpk2V373prjxCiAyAgwDG+5R1WDISIrnYB8MwI49SBEwCwOkAbhJCnAagD9IcZoA0acInPWoed6VEVxHRMiJa1tnZ6dO8+sc0y6+LKLIa52cYpv4oRcBsB7BdCLFU/n83LIGzR5q9ID/3Os6f7sg/DcBOmT5Nk+7KQ0QJAKMBdPmUVYAQ4mYhxFwhxNyJEydG+JmNQyMvtGQYZuQRWcAIIXYD2EZEx8ukCwCsBHA/ABXVtRDAffL7/QAWyMiwWbCc+S9IM1oPEZ0t/StXePKosi4H8Jj00zwC4CIiGiud+xfJtBFNsACpxQvHlHmu1DBlllAMM9IodauYfwVwOxE1AdgI4OOwhNZdRHQlgK0APggAQogVRHQXLCGUAfBZIURWlvMZALcAaAHwkPwDrACC24hoPSzNZYEsq4uIrgfwojzvOiFEV4m/peFp5DBlFi8MM/IoScAIIV4BMFdz6ALD+TcAuEGTvgzAyZr0QUgBpTm2CMCiYtrb6BjfaEn+xytKmbapYQWGYUYevJK/gRjJLxxj9Bx9zYO49r43at0MhokEC5gRRE1emVymunkdjJ6cAG59bkutm8EwkWABMyKwhvlcI4/Rjdz2CAgh8PAbu5Ft6JvGMP6wgBlB8FYxjcN9r+zEp3+3HLc+u7nWTWGYisECpoEItEJxFFnDsOfQIABg54GBGrfEzNKN+9HdN1zrZjANDAuYBsK4kr+GUWRk76nQmNv1/+pvG/GX13dVvd5YnW/vk8nm8A83P4+P/eaFWjeFaWD4lckjiMZeB1Obxn/zwVUAqv8a7Fq+hTQMQ5kcAGDtnt4at4RpZFiDaQDCDkbsg2k86jV6blgKmGRct+1f/fO+nz2N8777eK2bcdjDGkwDECRY8ptdVrwpmrqlqaeOF1oe7E8DAEa3JitXSZHYJrL6lC+2BtOUiAecWZ+8tv1grZvAgAVMJIQQ9hb51a036HgtNZhS18FUjjdd9yiA6pvB/CjXe3QqxWDa2sWpqUE1GKY+YBNZBOp16UKdNisU9TrQVgrVh2oxUQlDJmdpMHEWMEwJsICJQK0WxwXtRdbIYcqHG0qg1ql84fvJlAUWMBGo9ou9wppTGtnJ36gD2ro9Pdi8r6/ofPXug1HNqtf2MY0BC5gI1PLNkX7UNky5Pq9Jpbnwh0/hHd97ouh81fDBDGWyuPel7ZHqOExvJ1Nm2MkfgXozkdnHG3hQaOS2RyHMQstShc+P/roONz2xAaNSCVx00hFF5a3X8GmmsWANJgLS/1nA8xv3408vb69uY5APFa6lZnW4CYhSURqM3z0r9Zqq7WgODqQjl1Gr+3rfKzvw9u88jly9RtQwoWANJgJZw1O34ObnAQB/f9q0ylQcuNCydpQepnx4DSQUwgdT6hXJv866eGo9YfjqPa9hMJ3DYCaL1iYephoV1mAiUG9brNdy25Fy1V2ptterbyhM4F+pbS8lQk1VXavrl5ILPIfSBnMB0xCwgIlArUxRwbP86rcrPxCVWE7pTdGiVqTXG2GitEqdx5SyD2lQX1u581DxhRZBKmENTYOZbEXrYSoLC5gI1MzJb6i2llvF1DvpbH0KGHUz/TSEUs2GYfw8xrrVxEFz7N6XtuOSn/wNS1btid64AJqTlgZTiv+IqT0sYCJQbyYyRU3DlEvNX6HG1+mtsq9XJZ38hNJXcera8Mz6/QCAfb1DJZdvYvq4FgDAlv39FauDqTwsYCJQOxNZ0PFaRpHV6V5k9SpgQpgWy9XNSilG16fUNjJNicoNH8oHU68+NCYcLGAiUG+zYhWRVMt21etK/vpdFGu1y++elctEFuUS+OWhEOeUi1L7NAuo2sICJgL15oPJH29gCVMhwgqYal8728nvc+FKdvKXEkXm065qbNCZ9yuWdhHqbTJ4uMECJgJBnb5Sg1XgK5NrGaZcug5Tclt0hB1gqn3twpnIytOoKPfGr33V0GDyAQqllVOvGuzhAguYCARpMLXq07X1wdQ2v7nccAVXeyDKhylXToNBCS+D881CIc4pE6UKWRYwtYUFTASCBEylOnWwiawi1YaiPvWX8OVW+9Llt+v3MTeVyURWmpPf51hFO1x5tj9i+VJbWMBEIKjTV9vuWy5zQhTq/QEOO0DV40y3ZCe/XVAUE5lap6MrN/oWNMVi2vcvdP46vK+HEyxgIlAzDSboeANvdlm5KLLa1h9Un5+7vFxO/ijFCM03b7nVgDWYxoYFTASCnfxVaoiESrC1l4t63ewy7G681ffBBNdX8l5kJSy0DBOmXA0VptQqWIOpLSULGCKKE9HLRPSA/H8cES0monXyc6zj3GuIaD0RrSGiix3pZxDR6/LYT0gapokoRUR3yvSlRDTTkWehrGMdES0s9XcUQ9DuIxXr1IZyyxfJFZ161WDCUm3zov17fWRAudoU7dr6mMiq0N/K9UI2DlOuLeXQYD4PYJXj/6sBLBFCzAawRP4PIpoDYAGAkwDMB/ALIorLPDcBuArAbPk3X6ZfCaBbCHEsgB8C+LYsaxyAawGcBWAegGudgqzSVN9EFs7mXdsw5fqkXn0wYWor30LL6GHKpZ5TKrzQsrEpScAQ0TQA7wHwK0fypQBuld9vBfB+R/odQoghIcQmAOsBzCOiKQA6hBDPCas3/NaTR5V1N4ALpHZzMYDFQoguIUQ3gMXIC6WKE9Rpyz9r8i+wLja7rFNbef37YCoYRVZadmMTquHk54WWI4NSNZgfAfgKAKfRaLIQYhcAyM9JMn0qgG2O87bLtKnyuzfdlUcIkQFwEMB4n7KqgumFY4qKLbQMKPY/73ujZm8ALD1MuUI+mLpdyR9cX+lO/hJeOKY+Ndeluk7+UvOzhKklkQUMEb0XwF4hxPKwWTRpwic9ah53pURXEdEyIlrW2dkZqqFBBJvIylJNaNRAkskJ7DgwUN3KJfX6HIdtV618MP7LYMrTqCi/zdfJX4WdI8rng6l+x+zqG8ZPl6zj1z2jNA3mXADvI6LNAO4AcD4R/Q7AHmn2gvzcK8/fDmC6I/80ADtl+jRNuisPESUAjAbQ5VNWAUKIm4UQc4UQcydOnBjtl3oIXgdTKQ3G4OSvSG3hKNuOvxWLi6hTH4xaaOlzTk33IlPrYPQly2MVdPKrhZYlO2HK0Jgiufqe1/D9xWvx/Kb91a+8zogsYIQQ1wghpgkhZsJy3j8mhPgIgPsBqKiuhQDuk9/vB7BARobNguXMf0Ga0XqI6GzpX7nCk0eVdbmsQwB4BMBFRDRWOvcvkmlVofpRZNVb2BaVSpuYopYfdnyqvoCxPn01mHLtRRbFyR+q3OLbUiylm8jK045i6BvOAKjf90ZVk0QFyrwRwF1EdCWArQA+CABCiBVEdBeAlQAyAD4rhFDvQ/0MgFsAtAB4SP4BwK8B3EZE62FpLgtkWV1EdD2AF+V51wkhuirwW7TU3V5kJaowz23Yj8kdKRw9cVTkMkr2wQQUIES0Gbn/C72E43vxZZdCNQbwoHUwQ5ksDg6kMam9uag2lPKmzLCUqw72wdSWsggYIcQTAJ6Q3/cDuMBw3g0AbtCkLwNwsiZ9EFJAaY4tArAoaptLoXYmsooUiw/9z/MAgM03vqfovNXayTlq8WHfGFmPUWQlC5gAgfyvv38Zj67co73v+d2UNU5++VkNH0Op16CWAqYcbxRtdHglfwTqzclfD1QiisytYUSrwS+bc/Cpy5X8ZTKKmn7aoyv3yOOaa68WWmryKcGVrYqJrD7D35lwsICJwFDG3wlTqZmdqdR6mCeV/MpkTXaXhlHGchXO21SPPpiSnfyqroCrp/3pflFk9tZEVdBgSsxfCw2GhVoeFjARGJBOPBNV34vMMUpVc41COQka46IOFH75ci4NKVLxkQnngymtUWHNl7prFKbmxvDBlKExTGRYwESgbzjre/xwClNWVOInl8MJH9YHU/WZrgoDDqlhRSHsQkvdwmE7ycfJHxRNWQ5K3+OudhpMo072ygkLmCJIJazLNVAjAVOPlG8dTGFB5Zh9+pXh9sGUVk+xA1m4s0vUYFQpISL0imlBubZx8aNc62BYg6ktLGAioDUplHGwKgXfNyRWkNK36/cvM+pY5v9K4tKDCPJlFXe+HaXlc92qNU/Rm8iUhqWJIqMyLYIMAW922diwgCkC1VUzml7vTKr2XmSJeO1uY7nClIOd/FF9MOGOVXvPq2rsRaZUjaC6dPWE+TnVmEg1sg+GLWQsYIpDdlbdzM0ZulztTp2I1b4rV/onV0KDKUcYdD5/tPP9zVOlmsjC9Qtd2L2PC8amkiYyPw2qGGoSRVbXe25UFxYwRaA6jl6DEdrvlag/bHo1Kf0n+ziatUfD4Sfs3U7+iBXY+cvvgyn1ffR2XYE+GH+Tr+lYRQWMmsxV+b4w5YUFTAR0Mz63BlNdE5kzvVa6TMk+GJ2ZxuWDiVZ+WB9MtRf05X0wPueU6YVjQWhNZOrT51h1BEx17wtTXljAFIHqrFoBU6Y1FXsODRadpx4eopJ9MAFlBhX/p5e344eL1xakh/fBlBqkUH4fTMlbxdjl+BfktzOFrp3qWlUyTDlna0mllVPLZ6MOHsuawwKmCHyd/GXQYO57ZQfO+q8leHGzft9OU6kjtSMXsxDyi3e+ih8vWedbhpdS19mUFDkYxgdTqoCxFysGNMVPTdGe75OvTOQ1qAb0wZRJ+xoJsIApAtv2XCEn//It3QCAFTsORiuggQkc4yJeU/+V/P71B5cdrh4dYc6u9F5kCr2JTDnZzef7/ebvPrIaH/jFM2GbWFh/mfw8tRzkebt+FjBF4afBZF2z2WgdKy6jwUybCJp9MLXvyKVHYQU5+aP6YMzHSvXBuDSgIs1FapLi97vKNT5F2f3bX7MKNpH9/PENeGnrgVDt09cR3A5z3uDJXjYn8JZvLcF9r+yI0Lqw7ahY0Q0DC5gi8FN9nRE/psH2te0HcGgwbSxfhRtnSwgfqtX2FJXwwTgTow62YfciiyJgciUIwFAaTJkc3EGlaMOUffJWwwRUig/GNTExtLF/OIOdBwdxzb2vF1V2OpvDZTc9i+c3mt9WqWpkExkLmEgEazCFeYQQeN/PnsFHfrXUWG48FjOWD/iEKddBP65EE8oTRRbuWKSBDP733Dev7WTwK780wvoxfA9rTWThzVdRzUSlDNJhtgBS6cUWv+vAIJZv6caX73418Fw2kbGACY3zIdVpGC4nv89K/9e2m/0rtgbjsZEFrZYvx5YqQbyy7QC2dfUbj5eswWiFsuN7xHLD76YcxUQWrh5t3lBRZGXSYAJ9MBoNxv40Hwvzm9M+drTnNuzHmt09hjbJuqLcF1c5+vyZiCFwduBEiOwsXyrzyuQRibOf6mYmmQAnf5jZjPLBpD3nBj1j5RiIg3j/zy2Hremtl6XvRWYeyIDoAizsQssoxbtNMdHy+ioPJQvtcJqG1uQbQjCHGUDT2Ryak3HtMb83qYoi6jC1zyrH1K7Kj/714ButNazBhMTZVYIWWuo6VhgBE6vW+4crQMlN9jHFWIejmshC+mAM92f5lm584pYXtTPecmyW6d++SEXmy/Z8muvRCBhZuW7zVNsHE6KBqw0aShCl+HnC+GCUZlVsv8o/osG2TdZgWMCExm0i85/xaTWYKqwZAGo3a6qID8ZpgvIxSXT3DRuPlbrZ5ef+8DIeW70Xuw4WLoB1m2LM9egIc5/KFZkXrMEUpqn+qtvmrpgQ4r+t2xd4jg418Jfq5DflN/k5gwj7jh2gss98o8ACJiTOrqJ18gcstAyjwdizI1MbDB22lqp4uarWFeOcXfo9rB+46VnjsfALLYv/IaVEoYXRLkqdOOTCVAL//hrXaDD5dTDmMmeMawUAjG9rCmyntk1yQhHNBxN8X/x8Q509Q7jt+S2GdoUXrmwiYx9MaIIcukECJow5wfSCqGAnv76d1cB+mMvkkPYUbuN3/Tbt6zMeC7vQ0lS837UvxYcT5nJ5fQnFhqCHNTPptMOsj4nM9sH43JN8yH1E0yHCD+RewiyAVQJGJ0A//bvlWL6lG+88fiKmjW11t6uI7s5hyqzBRCKjcRAGORYrqi6XUHS11lpEKtvxPfJA5WOPD6OB+A3qrgV9RbbPb6W84yTdVxf3v7oTvUOZ6HXAf8Kk+/3qbN8B1H6tcmn3LZqJzP9ZBPLPcExjA1y3x/Ib9Q0VvrlWPce+wSNKOFbhldL1DguYkLjMNQEmMq2PpigTmcEUZmxbdEqOVCpbOYUFOMuMajP3C+F2BxGEL0dXXtQoMj+CZuKrdx/C5/7wMr5692u+dQRV5SdgYlonv3XMLxBL5Yo6sSrFyR9mAaytwWgEjBLYPZpF0fn2BLeLfTAsYELjClMOCOvUHQ/T2crxuuOiB7qSK1Qf/iUNZ3I498bH8NeVe/TF6ExQIWzpQbh2WPCp06jBqHfDaw6XEuUWZpgKmtSo6tfv7dXnr5iTX+Uzl6v6cqkmsmjx4/mvJi1ChSn7+Zj8NrUN87Oq7YPJ5gQWLnoBS312Gag2LGAioNdg8t+DNsMMwuhrMaZH78jlclYGnbLn0CB2HBjAtfev0OfXti3/PepA5WcGCxNmTD6mHmdK5JX8PjjL1Dml1foSs4ksXF1+GrefD8avX8RKNJGF2VDTnDd4YuKnwdh5fRZM+7+QzX1utdjXO4Qn13biX/7wcnUr9oEFTEhEwGDnMpFpnfzlqVt73PW9yJl0iNPDvC+kEs9SUGh4uDL03wGPCcpwf9TwE7QY0TSQrdvTgzte2KprmWyT30CVP6ZbGKjqzBgaH0YQmI5nbBOZrlzrM8w9iWzaDOHrMBFmqxh1zfwEjN+ba8M0q9pOflVfHbxB3YajyEISZK7IBQyGxdhjTXPlSuxFFuYh8Bskiomq8SNoN+XIJjIfM5YIISDUDF4X2OFywhvyv+9nz2AgncU/nDndpQ2E+TnOU7QLPQPMNeF9MIVpflFkYWbotgZSAw3GNeEyajDSRObQE2SdAAAgAElEQVQzGmtN3eqah/hdUX97VFRzdX6zWsEaTEiK0WBKXgdTrImswnuR+WswhW3QEbQCOqjZpZparLrNx4xhyj71+5WtGEhnXZ/e8/1+lfNaDWt3Eig8z5XfPs//2vlpZ74LLX3uiToWPThD1VV83jAaTBgTmXdPQGd7wmkwIU4qI+p31494YQETGmdfCY4iK8wfZiamHMqFM+2AtpXQkd0mJH1B/hqMMsNEb4NVgK7s/Pdy+GC8bXT/Xv/ydWaoMLspq/UgvYNuP0mxr0zWmciygRpMuHuj9xlan9ooMpXPp+B8OK9J6/ZvVEkvHAuh+dphyj6zfb9gnXA+tOpKGNVFyxEsVC5YwITE5Q8I0FBKdfIX1O35DHOul4HhLO54YWvAWhB93jAaTJA5wF6ZbSxHM1sMMEtqy/H8PteaCHh/u/67Dn0UmfO7voBE3HrYhzJuARVmlb2zfL+90EzXJqyzWW8is+rTDcBBgs15jta0GKJNKl/pYcp6ojv5lYAJble1t+tPy3tWR/IluoAhoulE9DgRrSKiFUT0eZk+jogWE9E6+TnWkecaIlpPRGuI6GJH+hlE9Lo89hOSIpiIUkR0p0xfSkQzHXkWyjrWEdHCqL8jLM6uontoskUIIHMdpocxaLbn/K4/91sPrcLV976OJ9d2euoMrsfkRHbWHThgBEQ56LU+x/GQA02BluJzrJitXvRvfTRrR168UWChfDCBJrIgLcH+5luP3qRrfeoGqzDvg8kLIf05Qc+D6i+RFlq6TMb6AvzClPNt0AiYosKUg88pJ35rl2pFKRpMBsCXhBAnAjgbwGeJaA6AqwEsEULMBrBE/g95bAGAkwDMB/ALIlL7eN8E4CoAs+XffJl+JYBuIcSxAH4I4NuyrHEArgVwFoB5AK51CrJKEORwds52goIAAusoMOVoGlEkew8NAQD6h72+gOBBNoxwjDJABx13r5QPbIK2HNd7eiJob7py8u0z16tQZk/vYJWPvgvWDoEAE5mh8fktXYxVuM5zle1zv4oRMEERbibUJM4kIP7y+i7MvPpBdGk2Og2jWT66cjcA/Up+v7y23yuEPcFU95rdPbh7+fbA/MWiJjH1FEUWWcAIIXYJIV6S33sArAIwFcClAG6Vp90K4P3y+6UA7hBCDAkhNgFYD2AeEU0B0CGEeE5Yvem3njyqrLsBXCC1m4sBLBZCdAkhugEsRl4oVQRnRw96o2XU7fptm3nIdF19xnPkEW/fCxOqazJzOOsLMhmoGbE5gEEzgDvzhxSu3svsZwYLo/n51e/Or8+nJpMF61iK1GD0JjL3p+l40GCo12DkdvaarKqf+PXpvPlOfzzI+Z8O0GBueWYzAGDtnsLXAYSZmDyxxtLkE35hyj5CPZwPRp9+8Y+ewv/9Y/AbMYvFL/KvVpTFByNNV6cBWApgshBiF2AJIQCT5GlTAWxzZNsu06bK7950Vx4hRAbAQQDjfcrSte0qIlpGRMs6Ozt1p4TCNVsNdPJH02BMUUFBCkyYoVflLeh7IWZ7vsLRns36128/mIbW6gaioGuueNvsCfnz/LSUnM8xk5lJ05Zi8iu81zCMUuo8Fs1EFm4w1G92aT4/zH5cSoDo3v5qpQdcrwAfjPJt6RaghtEsFX4ajH5SUYyACTcpKhdKy60f8VIGAUNEowDcA+ALQohDfqdq0oRPetQ87kQhbhZCzBVCzJ04caJP8/yxQwDJfwEWoN+jKcwbWoNs6aZZfJiZdD7ZfemCtrgB3L/XJPyCNIxoJjR/rVHR2pR/Y2KBD8bxv7eMMNqbImglv6l16mp7TVxhnMTOKrULLYP8HD6CwM906EzzM136/YasLWD0x4OCQtI5c9sBIBG3hi6dlhHmeVDEfUZjv/Vs6RA226DfWO6tZGwtt44kTEkChoiSsITL7UKIe2XyHmn2gvzcK9O3A5juyD4NwE6ZPk2T7spDRAkAowF0+ZRVMVRfScZivmGdQPQoMpMDMcy6gyBMGoxrkDQ8M862F/gSDFqXqQyTWcrP3u1tg995fhpMgRYRwrRo5/UZhHX1evGauEJpME4BqxmpgzQJPxNZ0Cu+8z6QwmN54eFzT4I0mJDXy9Svmnw0mDD35bjJowAErIPxWftUiolMUcprmxc9vQmLnt7kShtRTn7pC/k1gFVCiB84Dt0PYKH8vhDAfY70BTIybBYsZ/4L0ozWQ0RnyzKv8ORRZV0O4DHpp3kEwEVENFY69y+SaRVDdfREnHyjS4DgwciEKsJkTjGGo4aaS+vVZ7dvST8YONO9M8awW5Prr4nzu/9M1O/6+QkqV6ivp5HFmFKCdhow72VmcPKHGFtcJrKM2RRk6hf5kFrzMe93b5qf4A9lIjOcExhF5iPgLMxvlgzzNKhgF9Nkzjrm/5ybUGcE9Sm/l54Fcd0DK3HdAyvd5dkCJnKxZaeUrWLOBfBRAK8T0Ssy7WsAbgRwFxFdCWArgA8CgBBiBRHdBWAlrAi0zwohVEjTZwDcAqAFwEPyD7AE2G1EtB6W5rJAltVFRNcDeFGed50QoquE3xKI6irJeAwDw+b3RAD6hyfMimbTQ10WE5mtwXhNZPnvpvKdv2c4m0MLCk1SgSYw2wfjrNvxMAcsTg2vwYQvw/l/2CAFJ+7ByDe7JopMffr9Lv9JS9Ag7WfKcmsw5rJ1NYRZC5J38kfzwQxmlAAofpYfRoPpkxuE+k5IAt77FFR/JQWMDnWtqY5sZJEFjBDiaZitfRcY8twA4AZN+jIAJ2vSByEFlObYIgCLwra3VFRnScYJvQEPu3aBVigB467LW7epjDCPoDqn0McfPIg7ByOdqcZqo3/9OhNZ0PY6YTUM92p983neQT4bQkDY7z4J8sEY8qvrXWAiK3LgjBI44rcg0rkNitZE5hMt9dr2g1YZIa61qU/5CZhsTtjmI/MecTC2L4zgtxdyek5warlBWz4NDGfR4vD/eesMuj+6wI1SsJ389SNfeCV/WFSnScRiyOaE74r4yAst7cHMk+5TrpWv8FxT2X5RZDsPDGjzlsUHE2A2DDLj+IVK+2owPtF9QY5uJ7rfF8oHY4cpGzQYn2qLuT76/O66nASF1dsap7efuyZS+nqFEKHNd94yAWDQsW9bsGboH0UWtP2Rt3y/vu49v39Y/5qEsIsxS/HB6MjYAqZ+JAwLmJCojppM6F9A5RwAtU7+YlTrAsOwOm5sXWDZtgbj6XvOMi+76TltXudvK1iRbpcTMNjZ2fSzy6Dr47vwz0dQ+Jk8ghzdQfUX48MpGAhDjC0mbS+fFpTfrAU42+MXLeU9kg6Y4XvLC6MVe6+tS8AY8ofdhNSU37TTQCag7c7zvYuWvecEajAav1opZOztfcpabEmwgAmJ6ivJmAyP9AwYQRpMGBOZGjC8+fOO9DBakD7dVtsLxrkw7TJrEmHf26GbaQaZyPxmucbzPOVkfQbSnHuqayzfOte/3qDLWBi4oR/AXecECODQa290bXdGPWqOmwbgdNb/ngEek6pJg/EZyJ37tgVNPHRaQJhNSE0ReNmAiaLzNw+mTQLGnN9JuX0wYTbwrDYsYEKiOpZa4OUdL4N2Uy5KgzHMwv02NRzX1hRYPuC/FsScJ/+DTA9FlHUubs2jME/QAKsr23vasGPA8Aq5bED9prbq6jLlN6+D8a/PKjNgsAtotJ8vIKyvwXvI6UsyVR/GdOi8n94+6exjwdFmuvfk6NuiEEI4fp9Zg9Hu2OFIM2owIU1k5dZg8iv5y1psSbCACYnqhwmDBqMeGKJg56DRWW8wkdm+GZMPBnm12PxSMr3wKnZXWNNAGVSMbquYbNAAGlqDKWyPwvkQ+0WRGaON5CCidfK7BIw+f/6FZfoQ6bA+mKAwb7/8Wv9N0LotQ39xOqaDzE+A2XfmmpB5znHeM1N+ewueEoIfdOcWE3hSqoms3BpMfjfl+pEwLGBCYkeRJaxL5tVg1MOWjMcCbbdGs4HSVDyH1b9+gkl1quCBvviZtHtWF3HrDzVjdKQFr8UIV77f2oXhbH4Q8DOR6YpfsfMgOnuGjO1zm2KKGwjDhLtmg8xYIbXGYA1GU7ZhHUomhIksjODO+vQpZSKLUYh+pRmkg0Kw/fwsrjVfARrMK9sOaNsUFPWpKLsPZiRuFXM4sK2rH4+ttjYkSMbUwjmvucX6bDIImGyA2u5ML9RgZBmG/ioQ3KlUGaY1NoB5VbOzPYXRUOFma3oTmfO4LlewUPbmLfAZZMyDifOe6DQ5FY6rK9dbb5C48A6E+d9jzhmk4QVpn37v4AkS7qpu7zV7y42PadvnyhvCB+PSYAxaUksyHrziX/us+QtPP5Nq4HIDR4bfPLNJ26a8aVJ72Cbq2z6DyqsjBaakhZaHDRf+8EkMpt0vKPJ2fPV/Ik6B/oag0E3Tug6/GVHg65ahHzCcs/D3velIbd6MS8DoTT1Bz4rO5h1sInN+9xMw5gHDadIpWAdTxJqHoIWWxpX8hrpDLbwN6DNBs3s/E5nf/nLOuk1rNZoSMWOYctB9dbYNKPwdaTmzb2lKBP5GnZM/SMvy03CCfDDO888/YVLBcec51VgH47ReKDMsO/kbDCVcAMsEBuhNZDGyXmDkF/YJmAcX9WC4V5g76jD5YETw6l1bC/IxkYWZbRZuFaPKCTnYOdOKsHf7PYt+5Qz7OIxN11lXVpAGE7RVjncg9NsOX9e+IAGoI+/nCRKe/hqM7ngqHjPe83AaTP67t0/ZGkxTzGiSVf1dt1NA0H31W2QavCu69dmSjKN3yLAOxhYw2sM26YgmMmEQzrYGE6nUysACpkhUFJlOg4nHCLGYXoMJ4+TXhYYKzXEvQogQTn4UlO3937Sth0uDKdjPK9xsTReVFOQDCbWQ0ZPXe41cDmOvgHG1pbDcYH+D/j45MTn5lcDxu2p+s3zAfS11L95Sg7OujqAIOndgR2G/SCVjoUxk5nUwZsGv7llLMm5ezCl/lVaDCXjWfDWYgHuu0tpSCXOYcs5ct5OoCy1NWlZ+oWWkYisCC5giUVFk3s7z0pZupLMCyRjpt1YPiAgC9NtrhHnjpEBw5EjeRFaYV2Hq8E7BY9JgAu3Ndoy+s9xiNBg/AeOjwWRyaJKBGV4BGqRBBdvjw7UP0JnnggeXQCHgaLMKRtDVGWQmClqjNKSZaacSceM9DyNgnFV6r82ww0QWFFQSvL5KU7ePSTXIya/6QVsq7rJs6MoPmnSZBFQQGVfovf9EoNawgCkS9QY8b+dZusnaazMRj+m3Vi9Kg8mnhRnEcjkBKfcCN7ssWMTp+Ne0z5jvXmQGzciL0nyc9uGgMGSTKcCL85BXSKazOft9MX57kWnNSK5JgabeEAOpaSBUbdnQ2avN560/aCFq71C64LjfjsTOtg9pBspADSahf22FN69Ry/G5t8pE1pqMG6+rEnp+b50E9Bq9fxRZuElFa1MCA8aFloXPsY4vRXyrZdo14ct/H5IbhJZ7C5pSYAFTJHFlIjP0nmRcr8GEsUurQchtIvMf5Kzz85qVCVvTKPDBBLfL2XaTYzJAvtj2ZnIJGGi/22Ua2lBYt8gHX2hmw63JuPZYMWaioO1/AmfaBh/Mlv392nzeOrX+AEda71DhYKfrT/lj/hqK655nlL8on9aUiAVGQ8Zjen+kt+3ea5fXYOLGPqnO0R0P2gJI+WB0v8GkHdh5lQbTFNfuqm6dY32afFTNyfyzGuWlY2mD2VfdxzDacbVgAVMkSYMGYx+PxwJfghQ02zU6+U35HD4YI0qD8QoYx3fTojbXQ2c0kfl3al0IZTFbxQSt5E/G9e9dSWdzaFYaTMEg719/McdNs0bVF7zH/TbvzJevr0uXNqSZTftFqjnz6kw1zuutG8yJyDhDV+eZQvYBt1bklc2uMGWTgMkqDabwWXOWrX9VgXU8GSv8Da6dCrQajBQwPj6YoIXRLcn8DsxRIsl0fhcgf5/qyVTGAqZI1KtaTffQ9EIyp7M5aA+nIAHkxTmDN43D5m1owgs+q43RnPzpCD4YZ3MO9BeagJznJe1X6BYu2msJocEETSSDdsg2mRfVOer9Jvb5Bj+bqU7dOU6hpRuo7C3pNXmHHO3xtg1wD65qwHL+3lkTWgNNZMm4WYPx8wE5NRijgFGDqea4c+D300KSicJIOL9NOAGngIlHNpG5N48tXttwjiVpl4nM+r56dw9uX7ql6HIrAQuYIuloTgIwD8aJmF6DGQ5QvZ1lmpzWflE7QbHvwnGuK93xr+k9425HokGDCQzTLfTBBIVgOx/+7d0+piQh0KQEjMaer3ww3uuXEwJEllYV9MbKoEV3unsuhLDbc6DfHeUV5ERXdcZImpo07XMKFd2qcF3knmJgOH++zlmtM72otGvefQKOHN1iNpGpRccJs4Dw228s7dBggkxk3m1mrN+TH/i1/iWhBGBhJFygk18mtTaZNRjdc+yuQ9iBJ1FW85uiyJyThhv/srrocisBC5giGdtqCRjVeQaGs5h59YP2ccsHoxEwTg0m4KFxHg4z082J/ALQoN2R/aKZzA5Vx4zQuNAyoF77HeuOugPClNXhjuYEDg34aDCOB1Y3WDUnDU7+nECcCDGDuWcok7VNerrjQTNRZx5vGLFzIDMJmExOIBGLybVVhcfTAQJGHdfdG/Uuk0SMjD4YJbRtDSabH5hjGvNSvt3W+amE2UTm5+sIpcEo06NmZqM0i5Zk3NV3vXU3J2OFr3AIeu2G0wdjNJGpT5OAyU96opizMi7hrO8Dpj5VbVjAFMmsiW0A8g/tocH8wHf20eOQjBd2WsCz6aKh4ykzkGlho5+j17TNi0Id9nZo9XAnDOHVAFzOzKhbxShThmn9gzaKTJY9prUJPYP6RW3qN5iEyLauAaQSUoPx/PZsTq5dMmxQ6mdeA9x5dE5+Z1p3n1tAOu+rbhC0zskhGSfEYvr2uQSMZqDaK0OXdbdGzb7HtjVpZ+I5IWxndN4cZX0m4gQicz9WbW1KmNfKZAwDo/P/5oT+5X7Oc3TPmtLOxrQmtdqZupfNibjxeSDSazCqLZYPJuer2erXLllv61SBJ1E0GOe9Trv6kSM9yKRQJVjAFMGHz5qBtiZrdx3VeZwd9N0nT0EiHtPahRc59i3SPRRCCKzZ0wPAM3A5ZyuaZ1WdGwvY7FI1yftAqRlQczJu9CP0DWfyM64CH4y7fBMq8sX5EASt8VFVjW5J4pCfgMkKpBKFPpi9PYMAgL+u2mMd02kwMTI6rIcyWTQn48ZNF/1Mh6p8RXe/V4NxDAyG9RTpbA7JRMy4O4RrcPGU8fzG/fZ3rYlMCZjWpFbAZHLCfh2wGtCyjslMnMg8Q1dRWvGY1oTlbbtXExjKWmuXlL9Td2/ygQd6DaYpEUNLU1zrX1LXvqXJLGBMYdjq9LaUNQ5otT8fH4y6hq0yfyQnvyHoxv1sAd2axbfVhgVMERx/RDtinigy58OZSsSQjFHBQL1+b4/rf91g+tAbu+3vruikgFm+vQeabSLTo9rknTGpDupnzugfzmJ0S9J1viLIHGDXoxHIQWHCKskSMGYTWSYnkNJoMP2e0N0CJ7+wTGRkaP9wJodUIoaWpN4c4reFDpAfRJsSMeztGTKaI03mjOGsZSIz7Q5hmf+kllHQ5/Lra3RmU3uW39KkFXC5nLC1N3XP1LVNxmKIGYQekO+TvhqMo73ecN90xjLPKa1cJ0T8NJjBdBYtyThSibjvGp/mpLVYVBeskUro/T/qPqgJl1Y42+uPNG2T7e5oTrh+RzE4nwU/U+vdy7cXXXa5YQETgrcfNxEA8JGzjkKc1HoL65hTBd/S1W9FkXk6/b5e8+xVsXZPXgi5ZyhmZyiQH+BjASYy1c7CPbHyD5tJre4fymKUnHF5B9q8nd+3em24rt9iOyD/28e2NWE4kzM6VTO5HJo1Phj1wP3He06U57nrsBaoWj4YXfPvWrYduw4OojWVQJ9m36kgJ79qy9ETLLPqOsdEI8h/os5piksfkVaDydkatXdwOaKj2f6uG+P70xnfWX5W5M2OXod6fksk00aZ1mfSEFEJuO+Ft08NZy0NRAkYXbcc8gg9JwPDloBpTsa05kf1e1Sfdt4LlwZjiCIjyocae9uezeUDO3R9WvXhdhksVKyAWb37ED766xcK2gtYoerOYeCgj9+yWrCACcG3PnAKnvzyOxCLkb0XmeqUzkHv4+fOtExknsFGOVS/dOFxAIB//9MbruO5nMCP/roOgLWjsfOhUAMyUb4cJ7bZwjaR6R9oNYh4Z7rOB8pkzuhPZ9GaSqA9lcBWz8JAv+1InDhDXe0oG0dTtGG48rxxMrDC5IfJZvU+GHUdp49rtet25RMOH4yPhByVStgvHnPicvL7+GBU/X0OjSqbEzhG+vNMPhjbRGaIIktnBJLxGJoSsYKBSgmcSe0p7b0ZdA7Cull+Nm8iG9L4YPKvrdCZDq3zmnxW+zu1Fu+Lu4YzOTTFY7ZW7r22uZzwXfMxkM6ipSmOZoMGo/K0ekyAgEOjT+o1+owMDFHXpkA4upYjFGS3f3eHtAgU6+R3aqbe/MPZHC45ZQqmj2sBwAKmYZg6pgVHjbcGAzVjVDNaZweb1N6Mpnis4IFQA4vafXXVrkOu4z95bJ39PZWIuWaj6mEd35bCAU2HUYNH0hBFpVAPmncgUuenknGt7wgA+ocyaGuKY9bENvR4ZvKZkBqMO+KqMAJIH6VlHR/XlgIA9BjMZOlcTuuDUVpba1McRDr/U36DUr9FiW2puFaDMS14c5YPAO1ypuxdnzHKx46vykxIDcsURZZMEFLxQgGj+mVrU1yrnQ2ks2htiqM5adZg8iYy94w8HiOkpGlO1/a8k98cZtzvuBZezXQ4I39XUm+G6nNMtLRO/rTlO0slY9rfpgSKepadK+OzdgScvu3KbKomNF7znnOy4Lf+KKqJbPO+Ptf/GY8fLpWI40//fC6A/Bi1obMXv/rbxpr4ZFjAFElbyupYqpO/vsN6KdWvF84FYPlCvJ1ezSTmzRpnldEUdx1XTuhpY1uQSroFjBIMJxzRjgP9aew8MODKq8ZoNcDqnM1CCHvA8Q6yadvmbPbB7O8bxri2JrQk4wUPu3oIg3wwTuFlh5g6fueugwOYefWD+POrO/Nly98yri1AgzFEkam2NifjaE3GC2bK1gMZsyL/fKJu1u/txWOr9xZcH/UAJzR+NwDYL02j7XIwUfUPZ3IYzuQwurXJ/l9H/3AGLU1xxGN6DWs4m7M1GK8WZIfqNiW0wvuVbQesSLGEfsuTbK7Qz6DuRyIWs0OYdW1XfbZdY4Ky2zecRXtzAvEYFWjm6azlg1H5ez333blNvskM1ZKMGTUY1ebWlFuAOr+bnPxq81STiczraPeifF9KgynWyf+9R9e6/le/f++hQew4MIBUMoYJo1I44Yh2ezL42vYD+OaDq7QT1ErDAqZI1KxzxQ5LC/nOw2sAAONHWbPstlThmg01c3jr7Ak4a9Y4nDClwz523ys78IYsSwhIx2S+017682cA5IWTdwbz+BrrTZvNSXNc/T/c/Lwt5EwaTHNSv0AUAPYcGsSk9ma0NMULtiTROe91DDgGkbRt3rDyxii/Wehtz+dXICsNZ2ybNRDrHP0q7FM5u3VboDQn4mjT+FGG5GxUNylwCkylCf1x2TbXOc9tsCK1RrckXQtpFVf9dhkA2NrvDrlYdH+fFT48dUyL3Q4vXX3DeHxNJ1bt6pHrdPQ+mCaDiWxQCo3RLYmCY+lsDmv39GLPoSHs7xvG3p6hAu1wMJ3FxHarT6sBXQlhS4NR5rNC4aQGtgmjmuyyvNzy7Gb0DGa0gr9vOIPmZNwWzN73rjjvo8402T8coMFkPBqMxs+ZSsS0GsxQJotUIp6faHra5txxQndtBm0NJpoP5sI5k13/q7Zfe/8KAMD+XqtvtTcnbMGsLCjeiW01YAFTJCo88VdPb3I55k+ZOhqAZW/vG85iW1feV3HXcmtgSiXimDAq5QpZ/fwdr9jfYzG3iWz3wUH72FHjLTu+M1x3OJPDF+608udXshd22Bfk4A0UCgL1cLc3J7WzwW1d/egfzmJyR8qa7XoFjCzP9PIlxerd+WtlazDyc8KolK2dOPdpymsw1kCl02DUtWqVg4VuBXpzMmYJmAJzhmVSSMZjBTPJf//fvJ/s/73vJADuCD0hBJbI12i3NyfQ1Ve4Xf5Oef+OHGM53NW929dj3f+Z8p7qTH9Pr98HwBrwdNsP9Q9n8MiKPdjbM4RUorD96j5Nam8uKN85KCrtecmqva7f1jecwfi2FOIxsidIStNpbYrb/U23zqTPFjApV1t0NDcVasVbu/px1PhWezLn1WCc/UBnItuyvw9HjmkxajDbuvsRI+CI0dZ9cT4Taaf/yBBZ2JSI2eNAnydSUYXGj2lNavur+q0dLUq45et4cm0nVuw8WJDHiVegqX6hnvHt3ZaFY1QqYT+TKo9qczVhAVMkrY5ZwJfuym+3rSJeTpsxBkA+Ymjtnh5s68qbtca0Jo37asWIbNtvJptzbcF+0pGWAHMO5Pt684Nau23T9TdV7ffYYZXaPKk9haFMrsDU9YTUkN5x/CQr4sjxwOZywja/HBowC5jHVu+xOz5gOaeBvKBRM2XALWDUgz+2VQmYwut2w4OrAMARRu30weRNZDo/ylAmi1QyZkU7eQaq3y/dCgD4yvzj8f7TpgJwO6Odg+acIzuwbo952/3mpNsH1NlrDUJKk93fW2gbd5pn2poSBQL8YRnW3tU3rNdg0lkk44RxbU0Fzl5nWe85ZQqAfP8BIPuBNSAdM7HNXp+l8o1KJTBDCkev0xnIC4QJ8r4ODrvbpjTRE45oR2tToQbTeWgIk9qbMUq2ybsGSrVjTGuyQPAOZbLY1zuMGeNa0WzQYA70pzEqlbAnLrr1RK2G1zUPSrOq1xer2HPIeiaPnqGzWooAABqcSURBVNCmnXQ9usIS6LYGk823b+GiF/CenzxdkEfR1TeMZzfsd6Xd8OAqfPw3L9jPtXp825uT9vNyYCCNRIxcz1a1YAFTJM7t5tX2JE6mj7UePCVUPvyrpa7jY1ubcKB/GLmcKLB9xynvPB3O5uwZ0C8/cob9MPQ6Btm9jpdMKZuuV4PxmpVe3nrAFiKD6Syuf2AlAEtDyuaES1Cs3dODr99nqd6zJ41Cs2c9SDqX1xAG0lmtur/n0CA+e/vLrjSvBuMUMM6tzNWDP16ZyDxC7NBg2japtaUKTYRq4GpOxtHa5DaRPbN+H7bs70dT3N8Hk4iRPanod+R3zlxnjGvDtu5+ow+rKRFDMhazf8//PLUJgDUINSViromCQvmiTpzS4TJ3AJYQVWbYyR0p6YMp1GCak3F0tCTRO5RxCSzV9p/942n4zDuOAaBfFNrRksDkjmZ7QvSVu18DYAmeOVI4Pr2us6DtvcMZpBIxexD1DvLzf/gUAGvhckvS7QMaGM6iZyiDie0ptKes/N6BevUuS+BNHdNS4PtSSwImtaeQ0vgMAeD2pVtwaDCTj1JzrslJZ9GctMymuvvZM5RGR0vSaL5TGszRE0dpBYzqr5NlGLl6ZkwBLE7UZM/JjgMDeHxNpz3B+v7/eRMAawGt2p5oW1c/po5tCVzKUAlYwETgK/OPB6DfnmXCqCakEjF7c0b1psGr330CAGvWlRPA3S9tLxhYiPLO+qF0zh4IxrU12QOos9PuPZQ3oakO5o0UcZrqFGpG+4vH19tpk9qtDr/PYeq57BfP2t9jMcKeQ4Po7BmyH0i1kPHI0ZYvQecj+fr/vmELpS9fbF03ZZtWs0UlPAHY4Z+qvGScMGFUCkSFD6FTYKiFeeq3vbb9gL17wpjWpAw1zp//4V8txdaufqSScSTiMZfm5xxwdh4YtHdq/v5iy8G6sbMXZ97wVwDAFecchZnjW5HOClcAhhrQJ4xK4cyZ41x71Kk2HjG6GUd0NGOxNFMpvnH/Ctv8dusnzixo+4Kbn8c3/mxNDB75wtvRnIgXOMoHlYBpTkAIt1nJqYmo6+3UIlSfndTejEntzdjY2YtcTtiz5EkdKVvo3vpc4a69PYMZjEol7MmCdyKlTIdqHY5z0qKeiYmjUrYG0+u573cu24bRLUnMnNBWsFffM+ss0+LE9hQ6mq3tXJy+kIMDaVvQq8hLp3BWa2h0QhuwJjkdzQmHicwjYA4NoT2VwKT2FHoHM8bgF2U2Vb67vzr6wPq9vbj6ntfwb3e+4sqzeKV1zmWnTyso7+BAGl9813E4UQr+I8e04NBgBtu7+7Gte8Ce+FYbFjAROP+ESQDyds9zjh5vHyMiTBvbgu3dA8jlrPeUvOeUKfj0edZMUZl7vnL3a/j6fZadX62HiDtmy529Q7aJbFQqIX0FhK4+vQZz5syxAICv37fCFjxr9/TYKvdDn38b/uvvTwGQH+Cc5rLx0iG7z1Hmm6W5b4q0VT8tH96NnVagwfIt3QBgm0v2HiqciW9yBCWcOdMKVNjfO4zBdNaezTk1H+cLuA70pzG6pQmxGEEI4ClZP2AN4E7/1UUnHYFxbU144LVd6Oobxvt+9gy27O/H6JYkkvGYZYqRAtG9ot7aeNA5UDhNSt7V0Gv39OD87z9p/3/JKVNw7KRRAIAVO/Ph53+Ufrd/u/A4JOMxJBP5IIrRLUnMPWoskvEYtnb1Y2Nnn2t2esuzm+3vk9qb0ZbKazCdPUNYJq87YO3TNmN8Kzbvy1+3Gx9ajT+8sA0tyTimyYFlS1f+Plxzr6WJjEolbFOPTsBMbE/hzTPG4NBgBjscwrOjOWl8RfdLW7vx+6VbMaY1qY20+uWTG+zv7zxhkstEdnAgjbd953EAlvDVTape2tqN9Xt7cXAgjYmjUth9cNAWrk+v34ev3POa3XYV3q5m8n1DGfu3q98BuCdG3f3DGNVsXRfdurNDg5YGk4zH0JyMFZgfl23pwqSOFNqbLfOd0++nJn9ffNdxtnamgma+eGfe3P6uHzyJO17chntf3mH31SfW7LV3+/ju5adi9fXzC9o2ZUx+ce2ZMijotue2YEd3v702pto0tIAhovlEtIaI1hPR1dWq99iJo1z///pjc13/j29L4aE3dmNDZy/SWYFzjskLoJkT8jOJZZutgeLSN1s2/hgRzjvOEl6PvLHbnnXmVxwLLHpmE/7trlcwmM7aAmbp1y7AqdPG2OXulgLm/lfyIb/HT263o3ruk+mq/OsvPcl2yO52aEW9QxmMa2vCI198OwDgux88VbbDGig/KaOkTjrSmjX9zWEu2dbVjzdf9yjW7e3F9HEt2Phfl9iry+9atg13L99uC59rLjkR8RihvTmBrQ6N66m1na7Z5yvbDtiBFbc9v8UW8Dd/9AwcOaYFLck4tuzvxznfWmLnUeOg0+npHPCeWb8fk9pTeG7jfvzssXU4OJB2+ch+/uHTAQA//dBpAICLpHlHcfqMsThl2mjEY4RP/2457nxxK775wEp89Z7XAQAnT7WujfUiOmvjxuc27neZBQHgY7950b7mXtqbE7YfotMxAVAawjETR2H3oUHbHKQG8ckdKTtSbZfUGl7c3IW10l80YVTKocHk61U+l4ntKUwfa+X/nXy/iNJCAeDyM6yZtPMeXX6TpfVu6OyzX/Q24AjPvvGh/Dbyk9qb0ZJM2MeXOvZPO3JMM1IJayHo9x5di0/dZvW1D938PABg1oQ2nHvsBAyks3YAidMPNmV0i60ZKx/Xoqc34S+vW4P01987x34e1PFXth3AA6/twqlTx6A1FXdtNZTLCXz5j69iy/5+++2xR45uwS7H85LLCWzY24eZ49swTV43pwVBLWk4c+ZYdLQk0NGccE3AdKj+/tjq/AQkFiM7atTJtDF5IXKMHKP++6mN2Nc7jCM6WMAUBRHFAfwcwLsBzAHwISKaU426E/EYnv7qO+3/VQSTQpnHLpSDkdIAAOC4ye32dzWYvHm6JRzmzRqHI0Y3o7Upju8vXosvS5v3uFF5ExIA3PvSDpzw9Ydxz/LtGN2StO25X3+v9fOfXNOJV7YdsG3pF82ZjFiMcNYsS9D9YPFarN59CJ09Qzhtxhh89JyZdhn/KX0uw5kcVuw4hL87dYo901NC6Lo/r3St6P+Xd87GrAlteGbDfhwaTGMwncWKnQftgfqad5+IWIwwqcPK/8Bru1wD6dQxLdjwX5fgY2+ZiZ0HBtDdN4wbH1qNHQcGbCG44MzpAIBP3GINxC9uzkfGqTBgNRN1mjbeffIRACy/wcGBNHI5gW/IkE7Fo9L08L1H1+K06x7FwQHrun3sLTNxntwm6IyjxkJHUyKGVCKOMdJE+dV7Xsevnt5kH1f3uzkZwz0vbceTay0hrDTGj5870z73/T9/Bk+tzQvp6y+1otemjG7Bvt4hrN3TgwOybZM7UrjnM28BkDePvr7joMvn8PenTbMF2VNrO9HVN4wHX9tlH585oQ1tTXHEY4Qt+/uRzuawfEuXHXo/YVSTfW3/+8mNANzh20qTf2b9Pry8tRu7Dg7YfQQAZoxrRTxGeH6TJTicAQGL5aSltSmO3qEMsjmBBxxtO1IOluOkxv/Iij14ZMVu+97e+vF5dmTlS1u6IYTAddKfeP4JkzCxPWULkD2HBiGEwM+kSfhN08fgyrfOspcWqNDey6RwnD6uFZM7mtEzlMHyLVY/W727B3+U2qy0mGJsW5PLJP3Tx9ZjIJ3FhXMmY5bcHmjLfkuADAxnccUia4uXE6Z0gIhwwpQOvCGFzqhUwo5EdXLni9sw/0dP4bfSFPmbj59pH1OWD4XaMQKw+sTfvelI+/93HD+xoOxqUP24tfIxD8B6IcRGACCiOwBcCmBlNSqf5mPTvO2TZ+EChxnltBn5wam9OYkb/v5k13Yx5xwzHo9+8e12p7zklCku04yKX3/12ovwpv/3qJ2+w7Po8hPnzsT1D6zE9xevxfcXr8Vxk0fhhCPa8d8fPQMAMLo1iROndGDVrkOY/6O/AbC2pgEsP8iH5s3AH17Y6nq/zVuOnWB/V+a9FzZ34e3ftUwZiz42Fy1NcUwf14qn1nbi1G/k2wcAX7vkBMw/yRrkm5NxzD/pCDy8YjdufXYzRqUSeP0bF9nnnnfcRPz0sfU47frFdtqPF7wZAPC5C2bjjhe3YXv3gKt9TYkYjj/CGsSnjW1xaR//fsmJ+OTbZgGwQoKHMjkc/bW/uNr3r+cfi9amBL79sDWzzgngspueAwB84PSp9nnOvb0U9332XPu7d7dkAFjypfPsmeZR49qwrWvA1lSUpvr198zBb57ZDMCaQf/z7S8BAB783FvtyMHjJluzUaf2dPen32IPKMpZ/cFfPoer3n60fc6FcyZjjNxm5/alW3G7jIwDgLXffLeVNx7D+LYm3Pb8FtcapOMmj0IqEceMce5+/k+O8s85ejyIgE/csqzgt3/rA6dgwqgUTp8xBv/95EZbQClmS8E7ZUwz7n+1H8c47sv6G95t76Q8fVyr7bP51G3LAQDzTzoCM8a32lrXNx9chW/KaEIAWPQxaxBWpssrb12Gz18wG0OZHE6e2oHff/IsAPnn6lsPrca3HJrVx8+diYMDadz40GpcdtNzeO+pU1zC71Pn5QMjnt2wH5f8+G+YN2ucbdo87/iJto/mP/73DXT2DuPlrXmzptKszpw5Fj9/fIPdn+effAQ+cvYMjG9L4YITJ2HWNX9xmUu/e/mpeOfxk+z/7/3nc7H30CCue2AlXtl2wDWRBYBvX3YK9h4axIlTOvCm6WNQCxpWgwEwFYBz5dt2mVY1Vl8/Hyuvu7gg/ZiJo3DlW62B7egJbS4nNgB8+Kyj8K4TrY7y+386C8l4DMdNbredyd/6wCn2OoPvXH6qbe8e3ZLEpm9dgn+/5ES7rGv/Lq+0ee3ia/f04vSjxrrS7/70OXjXifnFWmrwAoAvvGt2wW9RM3jA2k3au1jrbOl/+pRj4HHyT2872hW98rkLrDp2HRzEhXMmu9p26rQx9qwTAC455QjbfHjkmBZ84txZrrLfdeIkrHHYoq+efyIWnnOU/f+lbz7SLn+u9P842fStS/Cli47HZ95xDP7zvYXK78wJ+RliLEau+7jgzOmuh/bHC05z5f3o2UfZZgrA0oacKJt4LEZY8qXzbFOWYo5jMa7T/KlQJhgAONcxCbj5KWsgX/Kl8zCxPYVkPAadu8QZAfmJt84qOP7w5y0NIx4jLP3aBTh9xhg8/IW32e/WAawZ/K0fn1eQ95mrz8eH5s0AAPs5UJxwRLtrUnH6DLdm+L43HWkLFyAfnu/kF9Js6bUcAFbEpWJMa/5+/XiJtR3TV+efYA/+RGT3R8Xv/+ksTO5oxnEOk7ISLqNSCTzxf99h39ejpQaxctch3PLsZrQ3J/DbT8zDlNEt6GhOYsa4VuzrHcbX//cN3PvSDhwzsc01XlwiQ8QV558wCf9w5gy8Sz4Xf/inswEAc48ai3v/+S344NzprvNHtyQxe7I1gXzyy+90XTd1fe781Dn4hlzHVQsoaIuPeoWIPgjgYiHEJ+X/HwUwTwjxr57zrgJwFQDMmDHjjC1bqvOu6nQ2hz+9vAPzZo5zDVSKTDbnelFWsSzf0oXJHc0FmtT+3iHcvnQr9hwaxLbuAfzg/7zJZbZQLF65B0OZLOafdISrY2ayOcQdO+V6Oy0AHOxPo7t/GEeNb3UJiGxO4DuPrMa2rn5cOGcyLjllimtAUmzd34+H3tiFj5x9VMHir57BNP786i4s39KNr8w/3jbdqbat29uLFzZ1IR4jfOTso7xFA7Bs+eNHNeHYSe2u9KFMFnEiPLNhP9527ARt2Ob3H12De1/agds/eZb2vr28tRu/eGIDvnPZqfYOAwohBJas2oudBwdw2enTCn7b9u5+rNvbi637+3HFOUdpHeUbOnutKCSPxjSYzmJrVz8efmM3Pjh3GqaMLrSp/37pVnztT6/jP987xyU0sjmBjZ29uO6BldjY2YdffPj0ghnt42v24pWtB3DOMeMxbWyLr4bu5fXtB9HRksCvn96Ey8+YViAQu/uG8dS6TsRjhEtOnuK67uo9SARr09HZk933rG8og2fW70MmJ3BwII1LTp6C0VIrAyy/R2fvEJriMXT2DmH2pFEF13Vf7xCe27Afm/f14dPvOMaeyCnS2RzuWb4dJ0zpsM3VALBscxfufXkHpnQ04z2nTsH4tpSr7mxO4JsPrsSbp49BMh7Dm6ePsU17gBWy/OdXd2HN7kM4bnI73nvqkfbiTsWTazsRI8tMfLTHt6t+Xy3Ci70Q0XIhxNzgMz35GljAnAPgG0KIi+X/1wCAEOJbpjxz584Vy5YVqvMMwzCMmagCppFNZC8CmE1Es4ioCcACAPfXuE0MwzCMpGGd/EKIDBH9C4BHAMQBLBJCrAjIxjAMw1SJhhUwACCE+AuAvwSeyDAMw1SdRjaRMQzDMHUMCxiGYRimIrCAYRiGYSoCCxiGYRimIrCAYRiGYSpCwy60jAIR9QDYDcD0XtLRPscAYAaArT7Hg/JX+rhf++q5bUH567ltQce5bZU5Xs9tCzpez20D9O07XgjRrjvZFyHEYfMHYBmAm32OG4/J450Bx4PyV/q4sX313Lag/PXctiq0/bBsWxnaXrfPaj23zdQ+AMv88pj+DkcT2Z8jHgOAAyWUXY3jfu2r57YF5a/ntgUd57ZV5ng9ty3oeD23DQhuX2gONxPZMhFhP51y5a809dw+bls0uG3R4LZFR9e+qG0+3DSYm2ucv9LUc/u4bdHgtkWD2xYdXfsitfmw0mAYhmGY6nG4aTAMwzBMlTjsBQwRLSKivUT0hiPtTUT0HBG9TkR/JqIOmZ4koltl+ir1Dhp57AkiWkNEr8i/Sbr6Kti2JiL6jUx/lYje4chzhkxfT0Q/Id2brmrXtkpct+lE9Li8RyuI6PMyfRwRLSaidfJzrCPPNfL6rCGiix3pZb12ZW5bWa9dsW0jovHy/F4i+pmnrJpet4C21fq6XUhEy+X1WU5E5zvKqsSzWs72FXftooSejaQ/AG8HcDqANxxpLwI4T37/BIDr5fd/BHCH/N4KYDOAmfL/JwDMrWHbPgvgN/L7JADLAcTk/y8AOAcAAXgIwLvrqG2VuG5TAJwuv7cDWAtgDoDvALhapl8N4Nvy+xwArwJIAZgFYAOAeCWuXZnbVtZrF6FtbQDeCuDTAH7mKavW182vbbW+bqcBOFJ+PxnAjkpdtwq0r6hrd9hrMEKIpwB0eZKPB/CU/L4YwGXqdABtRJQA0AJgGMChOmnbHABLZL69sEIN5xLRFAAdQojnhNVDfgvg/fXQtlLb4NO2XUKIl+T3HgCrAEwFcCmAW+VptyJ/HS6FNXEYEkJsArAewLxKXLtyta2UNpSrbUKIPiHE0wAGneXUw3Uzta0SRGjby0KInTJ9BYBmIkpV8FktS/ui1H3YCxgDbwB4n/z+QQDT5fe7AfQB2AVrpev3hBDOQfY3Um38ejlU2yLb9iqAS4koQUSzAJwhj00FsN2Rf7tMq4e2KSp23YhoJqwZ2VIAk4UQuwDroYOlTQHW9djmyKauUUWvXYltU1Tk2oVsm4l6uG5B1Mt1uwzAy0KIIVThWS2xfYrQ144FjJ5PAPgsES2HpVIOy/R5ALIAjoRlrvgSER0tj31YCHEKgLfJv49WuW2LYHXIZQB+BOBZABlYqraXSoUOFts2oILXjYhGAbgHwBeEEH6apukaVezalaFtQIWuXRFtMxahSav2dfOjLq4bEZ0E4NsAPqWSNKeV7VktQ/uAIq8dCxgNQojVQoiLhBBnAPgDLLs3YPlgHhZCpKWp5xlIU48QYof87AHwe1TOjKFtmxAiI4T4ohDizUKISwGMAbAO1sA+zVHENAA7veXWqG0Vu25ElIT1MN0uhLhXJu+RZghlxtkr07fDrVGpa1SRa1emtlXk2hXZNhP1cN2M1MN1I6JpAP4E4AohhBpfKvaslql9RV87FjAaVGQEEcUA/AeAX8pDWwGcTxZtAM4GsFqafibIPEkA74VlLqpa24ioVbYJRHQhgIwQYqVUfXuI6Gypzl4B4L56aFulrpv8nb8GsEoI8QPHofsBLJTfFyJ/He4HsEDawWcBmA3ghUpcu3K1rRLXLkLbtNTJdTOVU/PrRkRjADwI4BohxDPq5Eo9q+VqX6Rr5/X6H25/sGbauwCkYc0grgTweViRFmsB3Ij8gtRRAP4Iy/G1EsCXZXobrMio1+SxH0NG+lSxbTMBrIHlwPsrgKMc5cyVHWEDgJ+pPLVuWwWv21thmRZeA/CK/LsEwHhYwQbr5Oc4R55/l9dnDRyRO+W+duVqWyWuXcS2bYYV7NEr+8GcOrpuBW2rh+sGa/LV5zj3FQCTKvislqV9Ua4dr+RnGIZhKgKbyBiGYZiKwAKGYRiGqQgsYBiGYZiKwAKGYRiGqQgsYBiGYZiKwAKGYeoEIvo0EV1RxPkzybGbNcPUG4laN4BhGGsRmxDil8FnMkzjwAKGYcqE3EjwYVgbCZ4Ga8HpFQBOBPADWAt19wH4mBBiFxE9AWtftnMB3E9E7QB6hRDfI6I3w9oJoRXWortPCCG6iegMWHu79QN4unq/jmGKh01kDFNejgdwsxDiVFivcvgsgJ8CuFxYe7QtAnCD4/wxQojzhBDf95TzWwBfleW8DuBamf4bAJ8TQpxTyR/BMOWANRiGKS/bRH7/pt8B+BqslzYtljubx2FtsaO401sAEY2GJXielEm3AvijJv02AO8u/09gmPLAAoZhyot376UeACt8NI6+IsomTfkMU7ewiYxhyssMIlLC5EMAngcwUaURUVK+Z8OIEOIggG4ieptM+iiAJ4UQBwAcJKK3yvQPl7/5DFM+WINhmPKyCsBCIvpvWLvU/hTAIwB+Ik1cCVgvXVsRUM5CAL8kolYAGwF8XKZ/HMAiIuqX5TJM3cK7KTNMmZBRZA8IIU6ucVMYpi5gExnDMAxTEViDYRiGYSoCazAMwzBMRWABwzAMw1QEFjD/v706FgAAAAAY5G89in0lEQALwQCwEAwAC8EAsAj8eGFKpllqCwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'].plot()" ] @@ -215,9 +1312,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 35, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEKCAYAAADuEgmxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJztvXmYXGWZv38/tfS+pztJZwcSEkggCQmbAoIoAUcBBSTqADOjg6P4VWdxRp2ZnwvigPvgAqKgoDjCuAygAkYIIBgCCSSE7HvS6U6n9/Ra6/v745xTqe6u7q6uOt215Lmvq66uvHXOqfecVNXnPOsrxhgURVEUJRk8mZ6AoiiKkjuoaCiKoihJo6KhKIqiJI2KhqIoipI0KhqKoihK0qhoKIqiKEmjoqEoiqIkjYqGoiiKkjQqGoqiKErS+DI9Abepra018+bNy/Q0FEVRcoqNGze2GmPqxtou70Rj3rx5bNiwIdPTUBRFySlE5GAy26l7SlEURUkaFQ1FURQlaVQ0FEVRlKQZUzREZLaIrBWR7SKyVUQ+ZY9/UUSOiMgm+/GuuH0+JyJ7RGSniKyKG18hIlvs1+4WEbHHC0XkEXt8vYjMi9vnFhHZbT9ucfPkFUVRlPGRTCA8DPyzMeY1ESkHNorIGvu1bxtjvhG/sYicCawGFgMzgD+JyOnGmAhwD3Ar8DLwB+BK4Engw0CHMWa+iKwG7gJuFJEa4AvASsDY7/24MaYjvdNWFEVRUmFMS8MY02SMec1+3g1sB2aOsss1wC+NMQFjzH5gD3CeiNQDFcaYdcZa+ekh4Nq4fR60n/8KuNy2QlYBa4wx7bZQrMESGkVRFCUDjCumYbuNlgPr7aFPiMgbIvKAiFTbYzOBw3G7NdhjM+3nQ8cH7WOMCQNdwJRRjqUoiqJkgKRFQ0TKgF8DnzbGHMdyNZ0GLAOagG86mybY3Ywynuo+8XO7VUQ2iMiGlpaWUc9DUZSTi/X72th5tDvT08gbkhINEfFjCcbDxpjfABhjmo0xEWNMFPgRcJ69eQMwO273WUCjPT4rwfigfUTEB1QC7aMcaxDGmPuMMSuNMSvr6sYsaFQU5STinx7dzPfW7sn0NPKGZLKnBLgf2G6M+VbceH3cZu8F3rSfPw6stjOiTgEWAK8YY5qAbhG5wD7mzcBjcfs4mVHXA8/acY+ngStEpNp2f11hjymKooxJIByhsaufgVAk01PJG5LJnnorcBOwRUQ22WOfBz4gIsuw3EUHgI8CGGO2isijwDaszKvb7MwpgI8BPwWKsbKmnrTH7wd+JiJ7sCyM1fax2kXkduBVe7svG2PaUztVRVFONho6+jEGwpFopqeSN4wpGsaYF0kcW/jDKPvcAdyRYHwDsCTB+ABwwwjHegB4YKx5KoqiDOVQex8A4eiwUKiSIloRrihK3nKozRKNkFoarqGioShK3uJYGqGIWhpuoaKhKErectC2NDSm4R4qGoqi5C2H1dJwHRUNRVHyEmNMXCBcLQ23UNFQFCUvaekJ0G/XZ6il4R4qGoqi5CVO5tSU0gLNnnIRFQ1FUfKSI539AMyrLSWsloZrqGgoipKX9AUt11R1iV8tDRdR0VAUJS8Jhi2hKC30qWi4iIqGoih5iSMaJQU+bSPiIioaiqLkJUHbuigt8GpMw0VUNBRFyUsCMUvDSzASxVptQUkXFQ1FUfKSYDhKgdeD32v9zEXUReUKKhqKouQlwXCUAp8Hny0aGtdwBxUNRVHykmAkQoHPg98r9r81g8oNVDQURclLguEofq/E3FMaDHcHFQ1FUfKSE+4py9LQ9ujuoKKhKEpeEozYgXCP9TMX0piGK6hoKIqSlwTDhgKfN2ZphMJqabiBioaiKHlJMBK1A+FO9pSKhhuoaCiKkpcEwxEKvSeyp3RNDXdQ0VAUJS+JBcI9mj3lJioaiqLkJY57yqd1Gq6ioqEoSl7itBEpiNVpqGi4gYqGoih5ibYRmRhUNBRFyUuGFvepe8odVDQURclLYim3Ggh3FRUNl2nrCWR6CoqiYK2nUeD14PdpGxE3UdFwkTePdLHyjj+x4+jxTE9FUU56guEohXEpt9pGxB1UNFxk97FujIEDrb2ZnoqinPSEIlH88cV92kbEFcYUDRGZLSJrRWS7iGwVkU/Z4zUiskZEdtt/q+P2+ZyI7BGRnSKyKm58hYhssV+7W0TEHi8UkUfs8fUiMi9un1vs99gtIre4efJu03zcck219gQzPBNFObkJR6JEDdpGZAJIxtIIA/9sjDkDuAC4TUTOBD4LPGOMWQA8Y/8b+7XVwGLgSuAHIuK1j3UPcCuwwH5caY9/GOgwxswHvg3cZR+rBvgCcD5wHvCFeHHKNo52DQDQ3quioSiZxMmUis+e0jYi7jCmaBhjmowxr9nPu4HtwEzgGuBBe7MHgWvt59cAvzTGBIwx+4E9wHkiUg9UGGPWGWuF94eG7OMc61fA5bYVsgpYY4xpN8Z0AGs4ITRZx7FuFQ1FyQaCtisqvjW6BsLdYVwxDdtttBxYD0wzxjSBJSzAVHuzmcDhuN0a7LGZ9vOh44P2McaEgS5gyijHykoc91SbioaiZJSYaKil4TpJi4aIlAG/Bj5tjBktPUgSjJlRxlPdJ35ut4rIBhHZ0NLSMsrUJpbm446loWm3ipJJAnGi4cQ0QhrTcIWkRENE/FiC8bAx5jf2cLPtcsL+e8webwBmx+0+C2i0x2clGB+0j4j4gEqgfZRjDcIYc58xZqUxZmVdXV0yp+Q6xhiOOZaGBsIVJaM4MY3C+EC4WhqukEz2lAD3A9uNMd+Ke+lxwMlmugV4LG58tZ0RdQpWwPsV24XVLSIX2Me8ecg+zrGuB5614x5PA1eISLUdAL/CHss6OvtCBCNRRNQ9pSiZJj6m4fUIIlYKrpI+viS2eStwE7BFRDbZY58H7gQeFZEPA4eAGwCMMVtF5FFgG1bm1W3GmIi938eAnwLFwJP2AyxR+pmI7MGyMFbbx2oXkduBV+3tvmyMaU/xXCeUZjsIPm9KKYfb+zDGYGcUK4oyycTHNAD8Ho/GNFxiTNEwxrxI4tgCwOUj7HMHcEeC8Q3AkgTjA9iik+C1B4AHxppnpnHSbc+sr2B/ay/H+8NUlvgzPCtFOTmJT7kF8HtFs6dcQivCXcKJZ5xRXw5AqwbDFSVjxLunAHxej7ZGdwkVDZdwMqcWTa8AtFZDUTJJIktDW6O7g4qGSzR3D1Bd4md6ZRGgGVSKkkmGxjR8Ho+6p1xCRcMlmo8HmFZRRG1ZIaCWhqJkEkc0Ch1LwyeacusSKhou0dIdoK68kOpSK/it62oo2c43/7iTV/ZnZTJi2jii4dRo+D0ebY3uEioaLjEQilDs91Lo81Je6NNaDSWriUYN31u7h9+/MaxWNi8YGtPweUVbo7uEioZLBMNRCv1WM9+asgJ1TylZTfdAGGOgsz+U6alMCMOypzwebY3uEioaLuEsLQkwpbSANk25VbKYzn7rpqazL89FIxbT0OI+t1DRcIlAOEqh37qclcV+ugfCGZ6RooyMIxZd+WppDE259Yi2EXEJFQ2XCIYjMUujpNBHT0BFQ8leHLHIV9EIDCvu0+wpt1DRcImAvYg9QGmBl75AZIw9FCVzOLGMzr78jL0FbXex0//N7/Voa3SXUNFwAWMMwUicaBT66A2qpaFkL122WHT1h4jmYSpqMByNuabAEg21NNxBRcMFQhGDMSf8p6UFPnoDYazu7oqSfTgxjaiBnjy8wQlFBouGT2MarqGi4QInFnyxUm5LCr1EzQm/qqJkG/GxjK48zKAKxmUzgu2eUtFwBRUNFwiErPiFc2dTVmh1nO/VYLiSpcTXZ+RjMDw41NLwina5dQkVDReIX1oSoKTAEo2+oAbDlewkvj4jH2s1NKYxcahouEAgNDgnvLTAclNp2q2SrXT1B6ktKwBOFPrlE4Fh7iltje4WKhouMDym4VgaKhpKdtLVH2JOTUnseb4xzD2lrdFdQ0XDBYa2LCgrtMSjV2s1lCyls++EaOSneyoyPKah7ilXUNFwgUB4cCDciWloIFzJVjr7Q0yrLKLI78lPS2OIe6rA61H3lEuoaLhAYMiCL6WOaGggXMlCBkIRguEoVcUFVBb78zPlVrOnJgwVDRcIDHFPldjuKY1pKNmI446qLPZTVVyQl4HwoZaGz+MhEjVacOsCKhouMHRpSadOQ7OnlGzEEYmqEj+VJf48jWkMTbm1elBpe/T0UdFwgaHuqUKfB4+gTQuVrMQRiapiP1XF/ryMaYQiZlidhjWucY10UdFwgROWhuWWEhGr/5S6p5QsxBGJyhK/FdPIQ9EYCEViN3EAPls0NIMqfVQ0XGBo9hRYnW7V0lCyka74mEaeuqd6g+GYmxji3FPaHj1tVDRcYGhMA6xgeD52D1VynxMxjQKqSgroD0ViNz75QCRqGAhFKbY7M8AJ95RaGumjouECQ7OnwEq77dNAuJKF9AyEEbHa3ZQXWXfj+bQ8cb/dQNRJfQerNTpoTMMNVDRcIDhkaUmAkgKv1mkoWUlfMEKx34uIUGTH4QZC+fNZdW7WnNR30EC4m6houEAgHMHrkViwDay0W60IV7KR/lCEEtt1U+i3PrMDofz5MXVu1kri3FM+O6ahBX7po6LhAkMLicBqWqit0ZVspD8Yochv/aAW+/PQ0rBjiSUF8YFw6/sZ1IXR0mZM0RCRB0TkmIi8GTf2RRE5IiKb7Me74l77nIjsEZGdIrIqbnyFiGyxX7tb7BXfRaRQRB6xx9eLyLy4fW4Rkd324xa3TtptAuFo7I7NobTAq5aGkpXEWxqOeORTINy5WYuPaWjBrXskY2n8FLgywfi3jTHL7McfAETkTGA1sNje5wci4tiI9wC3Agvsh3PMDwMdxpj5wLeBu+xj1QBfAM4HzgO+ICLV4z7DSSChpVGgloaSnTgxDTghGv3B/LkD700Q03AC/j15FPDPFGOKhjHmBaA9yeNdA/zSGBMwxuwH9gDniUg9UGGMWWes5i8PAdfG7fOg/fxXwOW2FbIKWGOMaTfGdABrSCxeGSeYwNIoK/TSGwxrrxsl6+gPRWLpqPnpnhoe03Asje5A/tWkTDbpxDQ+ISJv2O4rxwKYCRyO26bBHptpPx86PmgfY0wY6AKmjHKsrGPoKmFgxTSMOZH+pyjZQv8gS8MOhOe5e6q8yA+opeEGqYrGPcBpwDKgCfimPS4JtjWjjKe6zyBE5FYR2SAiG1paWkab94QQCEdjLUQcnCVfdSEmJduwYhrWD+oJ91T+fE5PBMKHu6eOq2ikTUqiYYxpNsZEjDFR4EdYMQewrIHZcZvOAhrt8VkJxgftIyI+oBLLHTbSsRLN5z5jzEpjzMq6urpUTiktAkNWCQNdiEnJXuKzp5y/A3mUVeTcqMVnTxX6PPi9ooFwF0hJNOwYhcN7ASez6nFgtZ0RdQpWwPsVY0wT0C0iF9jxipuBx+L2cTKjrgeeteMeTwNXiEi17f66wh7LOoLh6KAWImD1ngK0aaGSdQzOnrI+t4E8cqP2Ba2K96K4OKOIUF7kp3tAYxrp4htrAxH5H+BSoFZEGrAymi4VkWVY7qIDwEcBjDFbReRRYBsQBm4zxjifxo9hZWIVA0/aD4D7gZ+JyB4sC2O1fax2EbkdeNXe7svGmGQD8pNKIByNmb8OpbGFmPLny6jkB33BcCwQnp/uqQilBT7srP4YZYU+jWm4wJiiYYz5QILh+0fZ/g7gjgTjG4AlCcYHgBtGONYDwANjzTHTBBPENBzTWM1hJZuIOs38bLHwez14PZJngfDwoHiGQ3mRL696bGUKrQh3gUA4Msw9pXnhSjbiiEN8B9hivze/2ogEIglFo6xQRcMNVDRcYOgi9kBedg9Vcp9ENQxFfk9epYZblsZwJ0p5kZ9utfzTRkXDBQKh4YHwE20LNPCmZA9O7MKJZYC14mS+FfeVFg63NCqKfBoIdwEVDRdIZGlYgTi1NJTswrEo4i2N4gIvgXxyTwUjCS2NsiKfxhhdQEXDBRJZGh6PqA9VyTocS6PYP9g9lVeWRmD0QLi29kkPFQ0XSGRpAFQU+Tmu5rCSRTgxjfhAeJHPm2cxjREsjUJ/bClYJXVUNNIkHIkSiZphKbegKX5K9uFYFPGWRnFBfsU0eoPhhDGNE8kpeiOXDioaaRKMDF8f3KG8SIuJlOziRPZUfIuN/Eq57QtGBllSDjHR0LhGWqhopImzEtjQmAbYeeGaPaVkEf0JLI18immEIlGC4eigDrcOmgbvDioaaRIIj2Zp+PUDqmQV/XYvtEExDX/+uKcS1aE4OO3R1T2VHioaaXLC0tCYhpL9xCyNoRXhedLl1mmL7jQMjSdWO6XfybRQ0UgTZ23lkS2NkKb4KVlD3wgpt/nSsHB0S0PdU26gopEmMfeUN3EgPBQxsW0UJdP0h6y1X7yeEx1gi/xeBsKRvLi56UuwloZDeaHtntJAeFqoaKSJIwhD1wgHvbNRso/+4PBmfkV+L8acyATMZZz1a0oTNSzUlFtXUNFIk1hMYwRLA/RDqmQP8euDO8RW78uDtNu+BIF+B69HKC3wakwjTVQ00mRUS8Mxh/VDqmQJfaHhNQzOCnf5kEHlxDQSBcLBsjb0+5geKhppEozFNDTwpmQ/iSyN4pilkQeiERg5EA5Wcoo2LUwPFY00cVIYixLGNDQvXMkuRoppQH64pxxBSFTcB1barfaDSw8VjTRJVCzloG0LlGyjLxQZtJYGnLjhyYemhZ19QUSgotif8PWSAm/epBdnChWNNIn5ULVtgZIDDIxqaeT+j2lHX4jKYv+glOJ4Sgp8se+skhoqGmmSqNW0g1OBqu4pJVvoC4VHyZ7K/R/Tjr4g1SUFI75eUuCNZVgpqaGikSb9wQgeSdyw0Of1UFLgVUtDyRr6g1GKh1jFRb78Eo2qksSuKXBEI/fPM5OoaKSJs+CLSGJzuFzXJVayiP5gIkvDSbnN/UB4R2+ImlEsjWKNaaSNikaa9AXDCV1TDvEpfn3BMK09gcmamqIMwhhDf2h4TMP5/OaDpdHZF6RqFNEoLfDRF8qPlimZQkUjTfoSBBbjie90e/vvtnPN917SD6ySEQLhKFEzPP7muKfyIXuqvS9ITenI7qniAi+RqPaDSwcVjTTpS1AsFY+VF26Jxgu7WjjS2c/ell6MMUSiKh7K5OHUJ1QUDYlp5EmdxkAowkAoOqql4dzgqYsqdVQ00qQ/FB6xZQHAtIoiDrb1cqC1lyOd/QC8vK+N7z67hyu+/fxkTVNRYhavU3Tq4CRx5Lp7qqMvCDBm9hRY9SpKaqhopMlY7qkrzpxGZ1+Ib63ZBVjrbry0p5WH1h1gX2uvuqqUSaMnJhqDb3I8HqHQ52EgnNs/pO29lmiM5p5yWqb3a9ptyox8i6wkRX8wQl1Z4Yivv21hHeVFPh7f3EhViZ+LF9TxuzcacbSiLxgZ1VJRFLdwLI2yBJ+3Ir+XgRx32XT2We63ZNxTvYHcPtdMopZGmoxlaRT6vFy5eDoA586r4S2nTSHeuNDmacpk4aR+D3VPgb3ka47HNBz3VE3p6Cm3gNZqpIGKRpr0BSPDiqWG8p6lMwA4/5QaLjx1CgCza4oBFQ1l8ugewT0FVq1GrrunOmz31OjFfbZ7KqTfu1QZUzRE5AEROSYib8aN1YjIGhHZbf+tjnvtcyKyR0R2isiquPEVIrLFfu1usavhRKRQRB6xx9eLyLy4fW6x32O3iNzi1km7SV8wPKqlAXDR/Fq+dt3Z3HjubObVlvLzD5/Pv65aBOgi98rkcSJ7aviPapE/94veOhz3VPFodRpqaaRLMpbGT4Erh4x9FnjGGLMAeMb+NyJyJrAaWGzv8wMRcX5R7wFuBRbYD+eYHwY6jDHzgW8Dd9nHqgG+AJwPnAd8IV6csgGnWCrR0pLxeDzC+8+dHXMLXLSglrpyKw7Sq5aGMkk4Vm1ZAkuj0O9lIMdrF9p7g5QX+ihI0NLHIeae0phGyowpGsaYF4D2IcPXAA/azx8Ero0b/6UxJmCM2Q/sAc4TkXqgwhizzljpQg8N2cc51q+Ay20rZBWwxhjTbozpANYwXLwyykAoijGM6Z5KRKyZoYqGMkl0D1hWcaIOsMV+T86n3Hb2BakaJXMKTrintGlh6qQa05hmjGkCsP9OtcdnAofjtmuwx2baz4eOD9rHGBMGuoApoxwra3A+eGO5pxLhiIa6p5TJonsglDCeAXb2VI6LRkdfaNQaDdA6DTdwOxCeqGufGWU81X0Gv6nIrSKyQUQ2tLS0JDVRNxitLfpYOC6CXr3jUSaJ7oFwwswpsFqJ5L5ojN4WHaxCRhGtCE+HVEWj2XY5Yf89Zo83ALPjtpsFNNrjsxKMD9pHRHxAJZY7bKRjDcMYc58xZqUxZmVdXV2KpzR+nF496Vga2jZdmSx6AuERLY3igvxIua0eJXMKQEQoLfAlrNNo7OznU798nQOtvRM1xbwgVdF4HHCymW4BHosbX21nRJ2CFfB+xXZhdYvIBXa84uYh+zjHuh541o57PA1cISLVdgD8Cnssa3AsjVREo9DnwecRDYQrk8bx0SyNfIhp9IZGLexzKC7wDku5PdLZz433reOxTY08uuHwCHsqkERFuIj8D3ApUCsiDVgZTXcCj4rIh4FDwA0AxpitIvIosA0IA7cZY5xP4sewMrGKgSftB8D9wM9EZA+WhbHaPla7iNwOvGpv92VjzNCAfEbps3/wi/3jD4SLCGVFPq3TUCaN7oEQs6qKE75W6PPmdJfbcCRKdyA8ao2GQ6KFmL759E7ae4LMnVLCun1tEzXNvGDMXztjzAdGeOnyEba/A7gjwfgGYEmC8QFs0Unw2gPAA2PNMVPE1gcvHL+lAVZvfxUNZbKwYhoju6cCOeyecjpJVxaPLRrF/uGi0dDRz1mzKlk5t4Z7nt9LTyCcsN2KohXhadGXRkwDrMpczZ5SJoueUUSjyOclGInmbLv+rn6rsC8Z0Sgt9A1LuW3pCVBXXsSFp00hEjW8uj+rnBpZhYpGGjidMlOp0wArGK7ZU8pkEIpE6Q9FRo1pQO62Rx+PaCRyT7V0B6grK2TF3GoKvB51UY2CikYaxALhoyzCNBqlhWppKJPDSG3RHU4sxJTbopFMTKN4SMuUvmCYnkCYuvJCivxels2pYt1eFY2RUNFIg3TqNMCq1dCKcGUyGGkBJgdn9clcbSWSjqXR2m01OqwtszKvls2uYmdzN9EcddVNNCoaadAfjOCREyufjZeyAp+m3CqTgtOscKTgbqHtnsrVojdHNCqSEY0hMY2WngGAWD+4OTUlBMNRjh4fmICZ5j4qGmnQGwxTWuDDbtg7bso0EK5MEk6W3tD1wR1y3j1lr6WRlKUxJHuqxbY0HNGYN6UUgINtfW5PMy9Q0UiD/mAkZdcUOIHwiJrByoSTrHsqkKNranT1hyjyeyj0jf19LCmwalKcpZZbegLACdGYO6UEgEPtWhmeCBWNNBhr1b6xcFwFmkGlTDQnVu0b3dLoD+ZuTCMZKwOsbEdjiLVNaekO4BGYUmqJRn1lET6PcEAtjYSoaKRBMqv2jUasaaH29lcmmNFW7YP8SLlNVjScYlznZq2lO0BNaUGsZbzP62FWdTGHVDQSoqKRBv2hsVftG41Spz16IOTWlBQlIaMtwATx2VP5LxrFMavKOteW7gC1ZYWDtpk7pZSD6p5KiIpGGqTrnirXTrfKJHF8IESBb2Sf/4lAeK66p8JJi8aJhZhs0egJxOIZDnOnlHCwrS8W91BOoKKRBv3BSOyuJRXUPaVMFj0D4dhNSiJiKbc56p463h9KKt0W4hZist1Trd3DRWNOTQndA2E6+9QLMBQVjTToHgiPaO4nQ2mBuqeUyaE3MPpn1bE0AjkqGuNxT9WUWkV8R7sGMMaMYGlYabcH2tRFNRQVjTTo6AtSk0T//pFwgpI9amkoE0xPIBy7SUlEcQ7XaYQjUXoCybunFtWXU+D1sOlwJ8cHwgTDUeqGxDTmxdJu+4hEDau+/QJfe2qHuqtIojW6kpiBUIS+YITq0tRFIxYIH1BLQ5lYxmr17fd68HokJ91TTlv0qiRFo9DnZcnMCl471MGx44OrwR1m11iicbCtj6aufnY2d7OzuZuu/hC3X7MEjye1gt58QC2NFOmwK1Br0hCNslj2lAbClYmlZwz3FECRz5OTgfBY36kkmhU6LJ9TzRsNXTyzw1qpevGMykGvF/m9TK8o4mBbH4fardTbixfU8vD6Q/zjo5sIRXLvOrmFikaKtPdaojHWQvajUeDz4PcKvTna70fJHXoDkZhlOxLWOuG591nsHEcLEYflc6oIhKPc89xezppZyfypZcO2mTOlhINtvRy2ReOr7z2Lz6xayGObGrn3ub3uTD4HUdFIESerYqyF7MeitNAXWzZWUSaK7oGxV6LL1SVfx9Ph1mH5nOrYvtcun5lwm3lTSjjY3sfBtj58HqG+sojbLpvP8jlVPL+rJf2J5ygqGiniWBrpuKfAyqBSS0OZaHoDYcrGWJa4yO/JySVfUxGNGZVFTKsoxCPwnqX1CbeZO6WUlu4AO492M7O6GJ/X+rk875QaNjd05mxH4HRR0UgRJ6aRTiAcrJxxbY+uTCSRqKE/FKGscPQf1Vx1Tx0fR1t0BxHh2uUzef/K2UwtL0q4zRw7GP7yvrbYc4DzT6khFDG8frgjjVnnLioaKeJYGslmbIxEaaFaGkpqtPYE+NufvMLjmxtHTQV1Ei1Kx7I0fN6cbCOSiqUB8LmrzuDO684e8XWn221vMDJINFbOq0EEXjlJ1xHXlNsU6ewLUVHki5msqVJa6NWYhpIS6/e1s3ZnC2t3trBubxv/9b6zEm7nWLIjNSt0KPJ7By1OlCu09QYpK/Ql1RZ9PMytKY09jxeNiiI/Z9ZXnLSioZZGirT3BtOOZ4DVB0dTbpVUaOiwsnrefXY9v9p4OJZFNJQTlsZYopGbKbdtPUGmlKX/XRxKZYk/tuZ4vGiAFdd47VAHwRxdHjcdVDRSpKMvmHY8A6xajT51Tykp0NDRT2Wxn49echqhiOHJN48m3C550chN91QvX3PSAAAgAElEQVR7b5ApLnwXEzHXFovZQ0Rj8YxKBkJRGjv7J+R9sxkVjRRp702vhYiDtci9WhrK+Gno6GNWdTFLZlZwSm0pj29qTLids6TwaA0LwRaNHLyBae0JMGVIGxC3mGP3oJozZbBozKi0gueNXSoaSpJ09oWockE0SgvVPaWkRkNHP7OqixER3rN0Bi/vb6PZbosRT+943FM56G5pm0BL49LT67h4QS0VQ5bJra8qBqCpc/j1zndUNFLEimmklzkFVp3GQChKRNcJV8aBMcYWDesO+Iozp2EMvHpgeHC221mAaayKcH/updxGo8ZyT01ATAPguhWz+NmHzx82Xm9bGk1qaSjJ0B+M0B9Kr1mhg5MGqS4qZTy09wbpD0WYVW3d8Tp/j3aNbGmMJRpFfqsiPJc6uXb1h4hETWx978miyO+lprSAxgTXO99R0UiBWLNCV2IauhCTMn4aOqw7XMfSqCz2U+jzcKw7MGxbJ6aRTCDcGAjmUDO+NrteaqIsjdGoryyiSQPhSjI4ouFOTGPwIveKkgyOaMyusSwMEWF6ZVFCS6MnGKbA56HAN/rXPReXfG3rsURysi0NgPrKYho1pqEkQ0evVYHqRp1GaczSUNFQkqOrL8Rhu0Zjph2QBZhWUcTRBIHwsZZ6dSiyl3zNpbhGJi2NmVVFmj01XkTkgIhsEZFNIrLBHqsRkTUistv+Wx23/edEZI+I7BSRVXHjK+zj7BGRu0VE7PFCEXnEHl8vIvPSma9btMfW0kg/EF7iWBrqnlKSYO2OYyz98h/5+csHqSrxUx6X1TO9omjE7KmxXFNwIubRPZA7NzAxSyMT7qmqYroHwlmT/fiJX7zGLQ+8MuHv44alcZkxZpkxZqX9788CzxhjFgDP2P9GRM4EVgOLgSuBH4iIU/d/D3ArsMB+XGmPfxjoMMbMB74N3OXCfNPGWe2r1oXccOeLqoFwJRmeeMOqxXDSbeNx3FNDA9k9SYqGs3rdse7ccbm09rgXXxwvsQyqLIlr7GvpZTIWFJwI99Q1wIP28weBa+PGf2mMCRhj9gN7gPNEpB6oMMasM9an/aEh+zjH+hVwuWOFZJLGzgFKCrzjbpCWCCcQni13K0r2EokantvZwrvOms41y2ZwxZnTB70+raKIQDgaa+Dn0BNIzj01rcL6EUxkrWQr7b1Bqkv8afeAS4UZtmswWzKoGjr6hlWuTwTpNiw0wB9FxAA/NMbcB0wzxjQBGGOaRGSqve1M4OW4fRvssZD9fOi4s89h+1hhEekCpgCtac47LZq6+qmvLMIN/TqRcqvuKWV0Nh3upL03yJVL6rl66Yxhr0+rsCyFo8cHBiVp9AYi1CbhvjkhGsMzsLKVtt6AK7HFVMgmS6OrP8TxgfAw63MiSFee32qMOQe4CrhNRC4ZZdtEv7BmlPHR9hl8YJFbRWSDiGxoaZn4FbUauwZidxnp4rgNNBCujMWzO5rxeoS3LahL+Pp0+0d/aAaVtT742FZxWaGPskJfwgysTDIQivDPj27mN681EB1SBNvaE5ywFiJjMa2iCBGyov/UkSEp2BNJWqJhjGm0/x4DfgucBzTbLifsv8fszRuA2XG7zwIa7fFZCcYH7SMiPqASGFbyaoy5zxiz0hizsq4u8RfKTZo6+2N3GelS4tdAuJIcz+9qYcXcaipHWGJ4JPdSTxKr9p04RmHWxTRe2NXCr19r4J8e3cwtP3mFcFwdSVtPICkraiLwez3UVxRxuCPzouF0PM5qS0NESkWk3HkOXAG8CTwO3GJvdgvwmP38cWC1nRF1ClbA+xXbldUtIhfY8Yqbh+zjHOt64FmT4XLVYDhKS0/ANUvD5/VQ6PNoIFwZlUjUsKu5h2Wzq0bcZlrM0hjsXupJYn3w+GNkm6WxdmcLZYU+/uOvzuDPu1v57rN7Yq9ZHW4zY2kAnD69nB1HuzP2/g5Diz0nknRiGtOA39p+fR/wC2PMUyLyKvCoiHwYOATcAGCM2SoijwLbgDBwmzHGub3+GPBToBh40n4A3A/8TET2YFkYq9OYrys0Hx/AGJhR6Z6ilxX6tLhPGZUjHf0Ew1FOrS0dcZsCn4cppQWDajWcpV6TyZ4Cy8W1PosWFzLG8NzOY1w0v5aPXHwq2xqP891nd3P5GVNZOL2cjr5QRtJtHRZNr+ClPfsIRaL4MxCMd2jo6KekwEv1CFaom6QsGsaYfcDSBONtwOUj7HMHcEeC8Q3AkgTjA9iiky04/sv6KnfcU2DVaqh7ShmNva09AJw2tWzU7aZVFMVSwuFEVl6ylsbUiiKOdQ8QjRo8k5G/OQa7mnto6hrg0++w3M5fvGYxj29u5Mk3j+K15zd/jGsykZxRX04oYtjX0svC6eUZm4fTJn8ykku1InycNNmme72LlkZpgU8D4cqo7D1mi0bd6D+Q0yuLYp9ROFFT5NRgjMX0ikJCERNrlZNp1u60QqJvO91Kwqwo8jN/ahlbG4+zo8lyCy2aXpGx+TnvvePo8YzNARjU8XiiUdEYJ07bgBkuWhqlunqfMgZ7W3qpKvGPmV46b0op+1p7YllGDbZlPDPJGFwsLpIFtRpbG7v4/to9LJ9TxfS4xJPFMyrZ1nic7U3HKfR5OGUUl91Ec2pdKQVeD9ubMhvXONzRx+xJCIKDisa4aeocoKrEHyvKc4OSAm/OFffp+h+Ty76WnjGtDIBF08sZCEU51G5l0zipmDOT/EGZVpkdBX4dvUFuvv8Vygt9fPcDywe9tnhGBa09AV7Y3cLC6eUxN1Um8Hs9zJ9axvamzFkaXf0hugfCamlkK42d/a66psByT+VS9tRf9rSy7Et/5L4X9mZ6KicNe1t6Oa1u7Dtqx6/uZPQc6ezH5xGmlidnGWdLgd/Ggx209Qb5xvuXDvsxXDzDcgntau5hUQbjCA6L6ssz6p6azHRbUNEYN41dA7H1gd2itNCXM4HwnUe7+ejPNhKIRPnqH3bwq40NY++kpEVXf4jWngCnJmFpLJhWhoj1/wSWr3tGVXHSd+NT7dhHptNudzZb8z9rZuWw186YcSKGkcl4hsMZ0ytoPh6gvTczcaDXD3UCVvrvZKCiMQ4iUcPh9j7XFb200JszKbdf+f02Cv0e/vjpSzh3XjV3Prkj01PKe/a1JBcEB6uX2ZyaEnY2W3e+Rzr6ko5ngOVuqS0rSNk99eqBdu5+ZndK+8azq7mbmVXFg7r4OlQU+Zlj91haVJ95S+NMW8S2NnZl5P2f39XCrOriUdOx3URFYxQGQhEOtvXG/r3nWA89gTBLRymwSoWSAh99OWBpdPWHWLe3jetWzGJebSlvXzSN1p4A3QOhsXdWksIYwx2/38a3/riTvS097G3p4Zt/3AXAwmnJ/UAunFYeszSOdPYnHc9wmDellF3NqQV2v792D99as4v+NBM7dh7tHjWF1XFRZYOlsWSGZQ1tOTL5ohEMR1m3t423nV43Kem2kH7Dwrzm3uf38oO1e3nhXy9jemURrx/qAGD5nOox9hwfNaV+ghGrO6kbnXMniud3tRCOGt55xjSA2N3e4fZ+zpyRvfPOJTYd7uRHf94PwN125XOR38NX33sWc6YkF+hcNL2cZ3Yco3sgxLHuwLgsDYAVc6v5yUsHGAhFYqv5JUN/MMK6vW0A7G/tjd2Bj5dQJMq+ll4uXTh1xG2uO2cWFUVjZ5NNBpUlluXzZgZE47VDHfQEwlxy+sS3T3JQS2MUXt7XRjAS5eH1BwHLd1hV4mdekl/eZJlTY5mVh9r6XD2u26zZ1syU0oKYaDqi4WTqKOnz8PpDlBZ4eerTF3PXdWdxx3uX8OSnLuGD589J+hgLp1cQiRpe3N2KMclnTjmcM7eaYCQ6bnfLun2tBMJWX6h9djFiKhxs6yUYibJw+sjuuHecOY27rj875fdwm7NmVmbE0nh+Vws+j/CW06ZM2nuqaIxAOBJl82HrQ/CL9YcYCEV47VAHy2dXuW4GOnnm++NcYdlGMBzluR3HuPyMqbGg6glLQ0XDDbr6QjyxuZFrls9k0fQKbjx3Dh86f+646xDOsP38j2w4DMCscVoa59g3BRsOdIxrv7U7WmJLxu5vSf2zvPOoJTinJ+mOywaWzKzkcHs/HZMYDDfG8KdtzayYW50w9jNRqGiMwI6j3fSHIty4cjZtvUHueW4ve1p6Yl8oN3F+fA+2Zq9orN/fRncgzDvjFv6pLPFTUeRTS8Ml/m/TEQLhKB88L3mrIhGn1pVx0fxanttpLRMwXkujrryQeVNK2HgwedEwxrB25zEuml/HjMoi9qXxWd7Z3I1Hkgv8ZwtOltebkxgM39zQxe5jPVy7fObYG7uIisYIOPGL2y6bz8ULavnvZ3ZjjPvxDIDiAi/TK4o4kMXuqTXbminye7hofu2g8TlTSlQ0XOLprUdZMLWMJQnSTMfLv165EACR1FrenDO3mo0HO4YtHTsSe1t6aOjo5+2LpnJKXWks4ysVdh49zrwppeOKp2SaJTOt+M1kuqj+d8Nhivwe3n12/aS9J6hojMhrhzqpKy9kdk0x999yLtedM4vaskKWzk7/C52IebUlHMhS95RjBl+8oI7igsFf5Dk1Khpu0NUXYv3+dt555jRXjnf2rCquXjqD0+rKKPCN/2u+Ym41bb1BDiZ5I/PsDqtH1KUL6zi1tox9Lb1JC0480ajh1QMdLJvjbobiRFNVUsBpdaV8/9k93PnkjgnvmDAQivD45kauWlI/qa4pUNEYkY0HOzhnjhW/KPB5+Ob7l7L+85dP2H/QvCmlg9J7s4mtjcdp7BpI+IM2u6aEho6+SW0rYozhnuf2sjvFtNBs5Lldx4hEDe9wSTQAvnHDUn7z8bektO/ZM60f7a2NyVU6r93RwqLp5cyoKubUulK6A2FaesZfVb7jaDftvUHeelrt2BtnGT+8aSWXnF7Hvc/v5YVdE7uC6HM7j9E9EOb6FbPG3thlVDQSsG5vG4fa+7jw1MEZCRPZ42bulFJae4JZWfPwx23NeAQuXzQ8BXJuTSmhiJnUBnfbm7q566kdfP63W1K6m81G1mxrpraskGWz3LvDLvB5qEjxJmfBtDK8Hkmqp1L3QIhXD7THUmSdyvV9KQTD/7K3FYC3zs890Zg/tYxv37iMAp+HP+9undD3emlPGyUFXs47pWZC3ycRKhpDCEeifOmJrcysKmZ1mgHJ8eCk8SbrDpgo+oMRHnn10KAlNdfYGRqJ1mKOpd2mOe/x9N76w5YmAF490DHhX063SSRy4UiU53e2cPmiqVmxhgVAkd/LqbWlSYnGS3taCUcNb7dvKpzK5D3Hxh/X+MveNk6tKx3U1TaXKPJ7OW9eDS/umVhLY92+Ns6dV5ORhZ9UNIbwyIbD7Djazb//1RmTGoibZ3/RMh3XeGJzI//26y383v5hPtzex/am4yP62mOZX2nM+8ktTSz78pqkTHpjDH/Y0sR582qYWVXMN9fsyhlr42BbLxfdtZan3mwaNL6t6TjdgTAXLciuu+sz6iuSEo3/e72RiiIf59hxiJlVxcypKeHe5/fS1Z+85RyKRFm/r21Saw4mgosW1LKruWfCOgUf6x5gz7EeLszQdVLRiGMgFOG//7SblXOruWrJ9LF3cJG5tqWRTn67G7x+2Moa+/nLVkHjn7Y3AwxKtY1nVnUxlcX+caVnxtPVF+I/H9tKMBzl60/vHFMAdhztZl9rL9csn8E/XHoamw93sulwZ0rvPdn89592c6Szny8+vm2QZeXUQ6yc535mXjqcOaOCxq4BOkdZkGnT4U6e2nqUv33rKfjsu16PR/jO6mUc7Rrgc795I+n3e6Ohk95gJCfjGfE4GYYvTpAV/PI+azneoe7zyUJFI46frTvIse4An1m1cNL6uDiUFPhYNL08tlJZpnj9UCdej/DqgQ52HD3Omm3NzJ9aNmKBmccjXHBqDev2tSX9HntbTtyF3fnUDjr6gvzdW09hy5Euvvb0Tr70xFbWbGse5CJz+PXGBjwCqxZP59plMyj2e/nlK4dTO9lJZHdzN7/ddISL5tdy9PgAP3x+X+y1jQc7mFlV7HrL/XQ5o95KIx1pgSFjDHc9uYMppQX8/SWnDnrtnDnV3HbZfP6w5WjS6bcv7WlDhIzdQbvFmfUVTCkt4JkdzRNy/HV72ygv9MX6b002Kho2PYEw9zy/l4sX1HJ+hhT86mUzeO1QZ8baifQFw+xq7uaD582hwOfhX/53c1JpoBeeOoWGjv6kKsMD4Qjvv3cdf/3j9bx5pItHXj3ELRfO4/PvWsQptaXc89xeHlp3kL9/aAPvu+cvDIRONL7b39rLg+sOcO3ymdSWFVJe5OfqpTN44o3GrF3EyhjDY5uO8JGHNlDi93L3B5bzV2fV86M/76OzL4gxhg0H21kxN7usDDhRWT6Si+re5/exbl8bn7x8QcI1yFefNxuAJ988mtT7vbSnlcUzKqgqyXw/qXTweITrV87iD1uO8sr+9kGvbTzYztodqd8YRqKG53ce4/xTa2KW3WSjomHTGwhz3rwa/umdp2dsDu85ewYAT7zRmJH339LQRdTAZYvq+M93n0lfIIJXhKuXzhh1vwttd0Iy1sZTbx6lrTfI7mM9fOBHL1NW6OOTl8/H5/Xw84+cz28//ha2fXkVX7vubN5o6OILj22N7fvlJ7ZS6PPy2asWxcZWnzebvmAk5k7LNn792hE+9ctNFPu93HfzSmpKC/h/l8+Pzbmho5/m44Gsc00BTC0vorasgPtf3M9N968f5KN/bNMR7npqB1cvncFNF8xNuH99ZTHnzKni9280JXw9nv5ghNcPdfKWHHdNOXzq8gXMrCrmc795I3bdnnqzidX3vcxHf76RY92pxTv+tL2Zxq6BjKTaOqho2EyrKOLem1ZMSMV3ssyuKWHl3Gr+7/UjGQnuOrGBpbOquOmCuTz7L5ey4/YrY26KkTh9WhlTSgt4ee/YovHwy4eYO6WEd59dT/dAmE+8fX7sznJmVTHL51RT6PPy/nNn84nL5vPIhsM8sbmRl/a0snZnC5+6fMGgVeiWza7isoV13PnkDh5adyDlc58IjnUPcPvvtrFybjW//+TFsTTSRdMruHRhHT956UDsBiEbLQ2AG8+dTXmRjz/vbo0tuNXY2c+///ZNzptXwzduWDpqxte7zqpnW9NxDozRVmTDwXaCkWjOB8EdSgp8fPV9Z7G/tZcL/+sZVty+hn/4+WucPq2ccCTK/S/uH9fx+oJhQpEoD/7lADMqi3jHGe7V84wXFY0s433nzGL3sZ6MpJJuOtzJ7JriQam1yaSAiggXnDqFtTuPjdoeeldzN68caOeD583hjmvP4ivXLuGWt8wbcft/fOfpnDWzktt/t407n9xBfWURN104+K5WRLjnr1fwzjOn8f89tpWXxxFbmWi+8rvt9Ici3HX92cNqfD56yWm09Qb52lM7qSktyIp1IRLxmVWLeOrTl7BibjVPbG7EGMO//3YLkajhm+9fOma1+VVnWS0u7vvzvlFvhF7a04bfKxmpO5go3nZ6Hc/+86Xcdtl86/P57jN59KMX8u6zZ/DzdQdHTTCIZ39rL5d87TlW3L6Gv+xt40MXzM2YawpUNLKO61bMZFZ1MXc+uYPoJFZZA2w+3Mmy2and8X7s0tMo8Hl47w9e4rFNRxJuc/czuyn2e7lh5WwqS/z89QVzKfSNnNbs9Qi3X7uElp4AW4508cnLFyRMgy7ye7l79XJmVRfz77/dQiCc+QWt3jzSxeObG7n14lMTNt674NQavvuB5fzwphU8/elLJrRw1A3ec3Y9O45284XHt7J2ZwufWbWQ2TVjLxEws6qYv3nLPH6x/hCf+dUbCYtXjTE8t/MYy2dXU1KQX0v8zKst5Z+vWMid153N3110CqWFPj5+2Wn0hSJ8509jr3DYfHyAm+5fT9QYLj9jGktnV/GBSawfS4SKRpZR6PPyL1csZFvT8UmNbRw7PkBj1wDLUlyVcMnMSp761CWcM6eaf/nfzfzkJcsP/qEfv8ydT+7guZ3H+N0bTXzk4lPGtXDOstlV3HrxqSybXTWqH7e4wMvt1y5hb0vvuE3/ieDrT++kqsTPrW87NeHrIsJ7ls5g1eLp1JUPL5rMNt51dj0egYfWHeQdZ0zlb0axEIfyhfecySffPp9fbWzgbV9/jueGZAhubuhix9Furlk+euwsX1g0vYKbLpjLg+sOxBqjJqKtJ8CHfryejt4gP/3bc/n2jct47La3ZnzhKRWNLOTqpTM4o76Crz+9c9Luml+34xmpigZAdWkB9920ktk1JXzpiW3W8rgDYX785338zU9epbrEPyw1Mxk+964z+O3H3zJm9etlC6dy2cI67v/z/kFZV27x590tNHX1j7ndI68e4vldLXzsbael3MYj25habvnR508t41s3LhtX5bqI8E9XLOSJT1xEVbGfr/x++yBX1S9fOUSx3ztmwkU+8ZlVC5leUcQnfvF6wnqOrv4QNz/wCofb+7j/b87lbBfby6SLikYW4vEIn71qEQ0d/fxi/aFJec/NhzvxeSTt3O/KEj8Pf+R8vnPjMp77zKU89omLePofL+F9y2fy5WuWpPwjmmzdzK12rOC3ryd2kaXKL9Yf4qb7X+F9P/jLqKnF97+4n3/79RYuOb1u1HhNLvLdDy7nqU9dnPL/4VmzKvn4ZfPZc6wnVqDWEwjz+OZGrl46Y9K7tWaS8iI/3//QOXg9wl/fv57bHn6NXc3dNHX1s73pOH/301fZ1dzND29awQUZKgEYCcmVFgzJsnLlSrNhw4ZMTyNtjDF86Mfr2d50nC9evZh3nVU/oX1mPvijl+keCPPE/7towt5jMjDG8J7vvUhfMMIfP31JWgHDUCTKf/1hB7uau/nL3lbOnVfDjqPdlBX6ePQfLuRgWy8/eekAi2dUsGx2FRsOdPC9tXu4asl0vrN62ajxmpOVgVCE87/6DBfNr+UbNyzlYw9v5LmdLTx221tZmoaVm6sMhCLc98I+vr92T2ypXLDied//4HKuXDJ5a2WIyEZjzMoxt1PRyF52N3fz0Z9tZF9rL9evmMU3blg6Ie8TiRqWfumPvHf5TG6/dsmEvMdk8uSWJj728GusWjyN//irM9lypIv/eeUQs2tK+PLVi5MWkv96cjs/fH4fS2dXsWBqGV++ZjF7j/XywR+/TEWRn9aeAEV+L8cHQjhfo+tXzOLO952V0eyWbOcrv9vGj1/cT2mBl75QhK++96yMB3czTUNHH3/Z00Y4aqgs9rNwehnzp07ucrcqGnlCNGr4z8fe5JevHubFf7ss6VYTwXCUJ99s4vRp5WPWWexq7uaKb7/AN29YynUZLBpyk5+8tJ8vPbEt9u/askJaewK8Z+kMvvreJSO6QowxvLinlT/vbuW+F/bxofPncMd7zxq0zWuHOrj5/leYU1PCzz9yPmC1RgmErDqDbOlUm6209QR44KX9HO8P8/ZFU7ksQct9ZfJR0cgjDrf3ccnX1/LxS0/jM6sWJbX9J37xGpsbrJqJKxdP5+s3nJ3wh/JY9wD/+MgmXtrTxtp/uXTEHlO5yEt7WjnQ1ssptaWcf8oU7nthH3c9tYPSAi/vO2cWN184lwXTTtzNdQ+E+OLj2/j1aw14PcLFC2q5969XJEzzbesJUFbkUxeUkjfklWiIyJXAfwNe4MfGmDtH2jYfRQPg7x/awIYD7Tz3mcuoLB45YNjRG+TaH7xEe2+Q269ZwsG2Pr777G7mTy3jRzevjOXWt/UEuO+FffzilUMEw1G+dPXiSV0/JFNsPtzJg+sO8Ls3mgiGo1x46hQW1Zez8WAHWxuPEzWGT759Af/wttOGLW2rKPlM3oiGiHiBXcA7gQbgVeADxphtibbPV9HYeLCDG3+4jjlTSrjj2rNYNL2cajtfOxo1iMDuYz38x/+9yaZDnfzPrRfEWlO8sKuFjz/8GsFwlOtWWM3+fvbyQY73h7hqST2ffseCQXfcJwPtvUEeefUwP3/5IK09AZbNruK8U2q4/IxpaaUdK0qukk+icSHwRWPMKvvfnwMwxvxXou3zVTQAXt7Xxsd+vpGOPquqtrrEj9/roaUngEeESNTg8wjfuGEp1y6fOWjfpq5+vvH0Ln6/pZGBUJRz51Vzx3vP4vSTTCyGYoyxrpsGrpWTnHwSjeuBK40xH7H/fRNwvjHmE4m2z2fRAMv99PrhDva19LKvtZdwJMr0iiIixlBXVsi7l86gNsGyrA7GGPqCEUoKvJO+ZoiiKNlLsqKRC41eEv2yDVI6EbkVuBVgzpz89stXlxbw9kXTePvY8fCEiAilCdY+UBRFSYZcsMkbgNlx/54FDGrKZIy5zxiz0hizsq6ublInpyiKcjKRC6LxKrBARE4RkQJgNfB4huekKIpyUpL1fgpjTFhEPgE8jZVy+4AxZusYuymKoigTQNaLBoAx5g/AHzI9D0VRlJOdXHBPKYqiKFmCioaiKIqSNCoaiqIoStKoaCiKoihJk/UV4eNFRLqBnUOGK4EuF9+mFhi+RmPquD0/N4+n1y67jqfXL3X02o1MLVBqjBm70M0Yk1cPYEOCsfsm+j3SPJ7b83PteHrtsu54ev302rl+vPFcm5PFPfVEpicwBm7Pz83j6bXLruO5TbafbzZfv2w/1wm5dvnontpgkmi6le3vka/otUsPvX6po9duZMZzbfLR0rgvT94jX9Frlx56/VJHr93IJH1t8s7SUBRFUSaOfLQ0FEVRlAlCRQMQkdkislZEtovIVhH5lD1eIyJrRGS3/bfaHn+niGwUkS3237fHHWuFPb5HRO6WPF/pyOVrd4eIHBaRnkydz2Tj1vUTkRIR+b2I7LCPc2cmz2sycPmz95SIbLaPc6+9zLSSCDdTvHL1AdQD59jPy7HWJD8T+BrwWXv8s8Bd9vPlwAz7+RLgSNyxXgEuxFo86om5ScYAAAPvSURBVEngqkyfXw5duwvs4/Vk+rxy7foBJcBl9vMC4M/62RvXZ6/C/ivAr4HVmT6/bH1kfALZ+AAeA96JVSRYb4/VAzsTbCtAG1Bob7Mj7rUPAD/M9PnkwrUbMn7SiMZEXD/7tf8G/j7T55Nr1w7wY6Wq3pjp88nWh7qnhiAi87DuSNYD04wxTQD236kJdrkOeN0YEwBmYq006NBgj50UpHntTnrcun4iUgW8B3hmIuebTbhx7UTkaeAY0A38aoKnnLOoaMQhImVYpumnjTHHk9h+MXAX8FFnKMFmJ0V6mgvX7qTGresnIj7gf4C7jTH7JmKu2YZb184YswrLMikE3p5gVwUVjRgi4sf64D1sjPmNPdwsIvX26/VYdyHO9rOA3wI3G2P22sMNWGuYOwxbzzwfcenanbS4fP3uA3YbY74z8TPPPG5/9owxA1jLSV8z0XPPVVQ0ADvD6X5guzHmW3EvPQ7cYj+/Bctn6pj/vwc+Z4x5ydnYNoW7ReQC+5g3O/vkK25du5MVN6+fiHwFq0ndpyd63tmAW9dORMriRMYHvAvYMfFnkKNkOqiSDQ/gIiw30hvAJvvxLmAKll94t/23xt7+P4DeuG03AVPt11YCbwJ7ge9hF1Dm68Pla/c1LGstav/9YqbPL1euH5ZVa4DtceMfyfT55ci1mwa8ah9nK/BdwJfp88vWh1aEK4qiKEmj7ilFURQlaVQ0FEVRlKRR0VAURVGSRkVDURRFSRoVDUVRFCVpVDQUZZIRkX8QkZvHsf08EXlzIuekKMniy/QEFOVkQkR8xph7Mz0PRUkVFQ1FGSd2c7ynsJrjLcdqyX0zcAbwLaAMaAX+xhjTJCLPAX8B3go8LiLlWJ18vyEiy4B7sVqb7wX+zhjTISIrgAeAPuDFyTs7RRkddU8pSmosBO4zxpwNHAduw6okvt4Y4/zg3xG3fZUx5m3GmG8OOc5DwL/Zx9kCfMEe/wnwSWPMhRN5EooyXtTSUJTUOGxO9C/6OfB5rIV91tiLNXqBprjtHxl6ABGpxBKT5+2hB4H/TTD+M+Aq909BUcaPioaipMbQ/jvdwNZRLIPecRxbEhxfUbICdU8pSmrMERFHID4AvAzUOWMi4rfXbRgRY0wX0CEiF9tDNwHPG2M6gS4Rucge/5D701eU1FBLQ1FSYztwi4j8EKub6neBp4G7bfeSD/gOVtfU0bgFuFdESoB9wN/a438LPCAiffZxFSUr0C63ijJO7Oyp3xljlmR4Kooy6ah7SlEURUkatTQURVGUpFFLQ1EURUkaFQ1FURQlaVQ0FEVRlKRR0VAURVGSRkVDURRFSRoVDUVRFCVp/n9DiB6AhVTQvwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "sorted_data['inc'][-200:].plot()" ] @@ -252,10 +1372,8 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, + "execution_count": 36, + "metadata": {}, "outputs": [], "source": [ "first_august_week = [pd.Period(pd.Timestamp(y, 8, 1), 'W')\n", @@ -274,7 +1392,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 37, "metadata": {}, "outputs": [], "source": [ @@ -298,9 +1416,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 38, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAD8CAYAAABQFVIjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAG2JJREFUeJzt3X2Q1dWd5/H3BxubjEEFBMOD2myFZaLJro5daMp9ELMCmUmJ2TFZRjdSNVbhGFPlrFOrUGHLbGR2ZGsrzrBWHK1oxsQHdDOxZMcgQYSKM8sCzaqjaJjGDYOMxG4WFEwVPWn57h/3tN6+dje3u899/ryqbt17zz3n3MPh3vvt8/D7/RQRmJmZjdeEWjfAzMyagwOKmZll4YBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmlkVbrRtQTeecc050dHTUuhlmZg1l9+7dhyNi+qnytVRA6ejooKurq9bNMDNrKJL+vpx8nvIyM7MsHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUOpEz7ETfPWB7fQcP1HrppiZjYkDSp1Yt6WbXfuPsO757lo3xcxsTFrqOJR6NH/1Rvr6T374/NEdB3h0xwHa2yawd80Xa9gyM7PR8Qilxl68YyHXXDyLSRML/xWTJk5g6cWzePHOhTVumZnZ6Dig1NiMMycxub2Nvv6TtLdNoK//JJPb25gxeVKtm2ZmNiqe8qoDh9/v44bLLuD6Befz+M4D9Hph3swakCKi1m2oms7OzvC5vMzMRkfS7ojoPFU+T3mZmVkWDihmZpaFA4qZmWXhgNJAfDS9mdUzB5QG4qPpzayeedtwA/DR9GbWCDxCaQA+mt7MGoEDSgPw0fRm1ggcUMpQD4vhA0fTP/31K7jhsgvofb+vZm0xMxuKj5Qvw+qnX+WxnQe4YcH5rPny5yrQMjOz+lXukfJelB+BF8PNzMrnKa8ReDHczKx8ZQUUSfslvSrpZUldKW2qpM2SutP9lKL8qyTtk7RX0uKi9EtTPfskrZOklN4u6cmUvkNSR1GZ5ek9uiUtL0qfm/J2p7Knj787BvNiuJlZ+UYzQlkYERcXzaOtBLZExDxgS3qOpAuBZcBFwBLgu5JOS2XuB1YA89JtSUq/CTgaEZ8G7gXWprqmAncBlwELgLuKAtda4N70/kdTHdl5MdzMrDxlLcpL2g90RsThorS9wJURcUjSTGBbRMyXtAogIv4k5dsEfAvYD2yNiN9M6b+Xyt88kCcitktqA34JTKcQmK6MiJtTmQeAbcB6oBf4VET0S/p8Kv/haGgoPn29mdno5T59fQA/lbRb0oqUdm5EHAJI9zNS+mzgraKyB1Pa7PS4NH1QmYjoB94Dpo1Q1zTg3ZS3tC4zM6uBcnd5XRERb0uaAWyW9PMR8mqItBghfSxlRqprcGMKAXAFwPnnnz9UFjMzy6CsEUpEvJ3ue4CnKaxnvJOmukj3PSn7QeC8ouJzgLdT+pwh0geVSVNeZwFHRqjrMHB2yltaV2nbH4yIzojonD59ejn/XDMzG4NTBhRJZ0iaPPAYWAS8BmwABnZdLQeeSY83AMvSzq25FBbfd6ZpseOSLk+7u24sKTNQ13XAC1FY3NkELJI0JS3GLwI2pde2pryl729mZjVQzpTXucDTaYdvG/B4RDwnaRfwlKSbgAPAVwAiYo+kp4DXgX7g1oj4INV1C/AXwCeAjekG8BDwQ0n7KIxMlqW6jki6G9iV8n07Io6kx3cC6yWtAV5KdZiZWY341CtmZjai3Lu8zMzMRuSAYmZmWTigmJlZFg4oZmaWhQOKmZll4YBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWTigmJlZFg4oZmaWhQOKmZll4YBiZmZZOKCYmVkWDihmZpaFA4qZmWXhgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWTigmFlD6Tl2gq8+sJ2e4ydq3RQr4YBiZg1l3ZZudu0/wrrnu2vdFCvRVusGmJmVY/7qjfT1n/zw+aM7DvDojgO0t01g75ov1rBlNsAjFDPLppLTUS/esZBrLp7FpImFn61JEyew9OJZvHjnwuzvZWPjgGJm2VRyOmrGmZOY3N5GX/9J2tsm0Nd/ksntbcyYPCn7e9nYeMrLzMatWtNRh9/v44bLLuD6Befz+M4D9Hphvq4oImrdhqrp7OyMrq6uWjfDrOn0HDvBmp+8wU/3/JITvz7JpIkTWHzRp/jm73zGI4gmIGl3RHSeKl/ZU16STpP0kqS/Ss+nStosqTvdTynKu0rSPkl7JS0uSr9U0qvptXWSlNLbJT2Z0ndI6igqszy9R7ek5UXpc1Pe7lT29HL/LWaWl6ejDEa3hnIb8EbR85XAloiYB2xJz5F0IbAMuAhYAnxX0mmpzP3ACmBeui1J6TcBRyPi08C9wNpU11TgLuAyYAFwV1HgWgvcm97/aKrDzGpkYDrq6a9fwQ2XXUDv+321bpJVWVlTXpLmAI8AfwzcHhFfkrQXuDIiDkmaCWyLiPmSVgFExJ+kspuAbwH7ga0R8Zsp/fdS+ZsH8kTEdkltwC+B6RQC05URcXMq8wCwDVgP9AKfioh+SZ9P5T8cDQ3FU15mZqOXe8rrT4E7gJNFaedGxCGAdD8jpc8G3irKdzClzU6PS9MHlYmIfuA9YNoIdU0D3k15S+syM7MaOGVAkfQloCcidpdZp4ZIixHSx1JmpLoGN0ZaIalLUldvb+9QWaxJ+RQdZtVVzgjlCuAaSfspTDVdJelR4J001UW670n5DwLnFZWfA7yd0ucMkT6oTJryOgs4MkJdh4GzU97SugaJiAcjojMiOqdPn17GP9eahU/RYVZdpwwoEbEqIuZERAeFNY0XIuLfAxuAgV1Xy4Fn0uMNwLK0c2suhcX3nWla7Liky9PurhtLygzUdV16jwA2AYskTUmL8YuATem1rSlv6ftbi5u/eiMdK5/l0R0HiCgcE9Gx8lnmr95Y66aZNbXxHCl/D3C1pG7g6vSciNgDPAW8DjwH3BoRH6QytwDfA/YBbwID3/CHgGmS9gG3k3aMRcQR4G5gV7p9O6UB3AncnspMS3WY+RQdZjUyqiPlI2IbhV1WRMT/A74wTL4/prAjrDS9C/jsEOkngK8MU9fDwMNDpP9fCluJzQYp95iInmMn+MYTL3Hf9ZfU/fESjdRWa10+l5c1pXKOiWikNZZGaqu1Lp96xVpO6XmnBtTjadAbqa3WvLKfesWsWTTSGksjtdXMAcVaTiOdd6qR2mrm09dbS2qk06A3UluttXkNxczMRuQ1FDOzYfi0PJXhgGJmLcfbsCvDayhWl3wgn1VCtS5V3Ko8QrG65L8grRK8DbuyPEKxutKKf0F6NFY93oZdWR6hWE0Mtyjain9BejRWXb5UceV4hGKjluMv6uIf0TVf/tyH6a30F2QrjsbqwQNf+2j365prP3auWhsHBxQbteGCQTnK+RFtlQP5XrxjIWt+8gY/3fNLTvz6JJMmTmDxRZ/im7/zmVo3zWxMHFCsbDn+oi7nR7RV/oJspdGYtQavoVjZcqxv+Ed0sEaaz/fBgHYqHqFY2XIFg1aZ0ipHI43GxjPVaa3B5/KyUbn5h11MnzxpUDAo/lG05uNrsli55/JyQDGzEfUcOzHsulerTlW2Gp8c0syy8LqXlctrKGZ2Sl73snJ4ysvMzEbkKS8zM6sqBxQzM8vCAcXMzLJwQDEzsywcUMzMLAsHFDMzy8IBxWwcfMJEs484oJiNg6+2aPYRHylvNga+2qLZx3mEYjYGOa4NY9ZsHFCsIdV67cInTDT7uFMGFEmTJO2U9IqkPZL+c0qfKmmzpO50P6WozCpJ+yTtlbS4KP1SSa+m19ZJUkpvl/RkSt8hqaOozPL0Ht2Slhelz015u1PZ0/N0iTWCeli7aKSrLZpVwylPDpl+9M+IiPclTQT+GrgN+LfAkYi4R9JKYEpE3CnpQuAJYAEwC3ge+KcR8YGknans/wZ+AqyLiI2Svg78s4j4A0nLgC9HxL+TNBXoAjqBAHYDl0bEUUlPAT+OiPWS/hx4JSLuH+nf4pNDNj5f7Mms+rKdHDIK3k9PJ6ZbAEuBR1L6I8C16fFSYH1E9EXEL4B9wAJJM4EzI2J7FKLYD0rKDNT1I+ALKZAtBjZHxJGIOApsBpak165KeUvf35qY1y4qp9bTiNb4ylpDkXSapJeBHgo/8DuAcyPiEEC6n5GyzwbeKip+MKXNTo9L0weViYh+4D1g2gh1TQPeTXlL6ypt+wpJXZK6ent7y/nnWh3z2kXl1MM0ojW2srYNR8QHwMWSzgaelvTZEbJrqCpGSB9LmZHqGpwY8SDwIBSmvIbKY43FF3vKy1ugLZdRHYcSEe9K2gYsAd6RNDMiDqXprJ6U7SBwXlGxOcDbKX3OEOnFZQ5KagPOAo6k9CtLymwDDgNnS2pLo5TiuqzJPfC1j6Zy11w70t82Vo4X71g47DXjzUajnF1e09PIBEmfAP4N8HNgAzCw62o58Ex6vAFYlnZuzQXmATvTtNhxSZenNZAbS8oM1HUd8EJaZ9kELJI0Je0iWwRsSq9tTXlL39/MRqGa04iNtE7TSG2tF+WsocwEtkr6W2AXhTWUvwLuAa6W1A1cnZ4TEXuAp4DXgeeAW9OUGcAtwPcoLNS/CWxM6Q8B0yTtA24HVqa6jgB3p/fdBXw7pQHcCdyeykxLddSEP3jW6Kq1BbqR1mkaqa31wteUz2D106/y2M4D3LDgfNZ8+XPZ6zdrdI203buR2lot5W4bdkAZB3/wzMrTc+zEsOs09bZDr5HaWi3ZjkOx4Y3mmAhPi1mt1fIz2EjbvRuprfXGAWUcRvPB83ys1VqtP4ONdKqaRmprPfGU1zjd/MMupk+eNOiYiOJtrZ4Ws1rzZ9DGy2soQ6jFubwabT6259gJvvHES9x3/SV12T4bvUb7DDaTZvk+eQ2lTjTafGytp0Usv0b7DDaTVvs++YqNVdAIpwrx6TeaWyN8BptJq36fPOVlgKdFzHJqtu+Tp7xsVDwtYpZPq36fHFBazEjHInirpFk+rfh98pRXi/FpYsxstMqd8vKifIto1UXC8WqWbZ9m1eAprxbhS+eOTatt+zQbD49QWkSrLhKOlUd0ZqPnEUoLacVFwrHyiM5s9DxCaSG+dG75PKIzGz0HFLNh+Ohys9HxtmEzMxuRj5Q3M7OqckAxM7MsHFDMmoAvMV197vOPc0AxawI+ALP63Ocf50V5swbmy/tWXyv2uRflzVqAD8Csvpx93mzTZg4oZhVWyR8NH4BZfTn7vNmmzXxgo1mFFf9oVOKSAT4As/rG2+fNeq44r6GYVUgrzrXn0AqXDGi0SwR7DcWsxry+MTbNNg00lGadqvSUl1mFNOuPRqU06zTQcJpxqtIBxayCmvFHo1JevGPhsNNAzagZz/7tgGJWQc34o1EpHtE1Pq+hmFnd8EXg8qvmsS7e5WVm1sRWP/0qj+08wA0Lzh/ztvVsu7wknSdpq6Q3JO2RdFtKnypps6TudD+lqMwqSfsk7ZW0uCj9UkmvptfWSVJKb5f0ZErfIamjqMzy9B7dkpYXpc9NebtT2dPL7Rwzs0YwntHF/NUb6Vj5LI/uOEBEYZNDx8pnmb96YwVaWlDOlFc/8EcR8RngcuBWSRcCK4EtETEP2JKek15bBlwELAG+K+m0VNf9wApgXrotSek3AUcj4tPAvcDaVNdU4C7gMmABcFdR4FoL3Jve/2iqw8ysaYxnC3Uttq2fclE+Ig4Bh9Lj45LeAGYDS4ErU7ZHgG3AnSl9fUT0Ab+QtA9YIGk/cGZEbAeQ9APgWmBjKvOtVNePgPvS6GUxsDkijqQym4ElktYDVwHXF73/tygELDOzhpZjC3UtNjmMalE+TUVdAuwAzk3BZiDozEjZZgNvFRU7mNJmp8el6YPKREQ/8B4wbYS6pgHvpryldZW2eYWkLkldvb29o/nnmpnVRK7RRbU3OZS9bVjSJ4G/BP4wIo6l5Y8hsw6RFiOkj6XMSHUNTox4EHgQCovyQ+UxM6snuUYX1d62XtYIRdJECsHksYj4cUp+R9LM9PpMoCelHwTOKyo+B3g7pc8ZIn1QGUltwFnAkRHqOgycnfKW1mVm1vAacQv1KUcoaS3jIeCNiPhO0UsbgOXAPen+maL0xyV9B5hFYfF9Z0R8IOm4pMspTJndCPz3krq2A9cBL0RESNoE/JeihfhFwKr02taUd33J+5uZNbxGPCi2nBHKFcDXgKskvZxuv00hkFwtqRu4Oj0nIvYATwGvA88Bt0bEB6muW4DvAfuANyksyEMhYE1LC/i3k3aMpcX4u4Fd6fbtgQV6ChsAbk9lpqU6rA4020WDzKw8PrDRsstxIJWZ1Y9yD2z0ubwsm1Y7W6yZDeZzeVk2vv6HWWtzQLFsfLZYs9bmKS/Lytf/MGtdXpQ3M7MR+ZryZmZWVQ4oTcTHf5hZLTmgNJHxnOrazGy8vCjfBHz8h9lgPcdO8I0nXuK+6y/xLsMq8gilCfj4D7PBPFqvDY9QmoCP/zAr8Gi9tjxCaRKNeKprs9w8Wq8tj1CaRCOe6tosN4/Wa8sBxcyais/WUDs+Ut7MzEbkI+XNzKyqHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUMzMLAsHFDMzy8IBxczMsnBAMTOzLBxQzMwsCwcUMzPLwgHFzMyycEAxM7MsHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUMzMLItTBhRJD0vqkfRaUdpUSZsldaf7KUWvrZK0T9JeSYuL0i+V9Gp6bZ0kpfR2SU+m9B2SOorKLE/v0S1peVH63JS3O5U9ffxdYWZm41HOCOUvgCUlaSuBLRExD9iSniPpQmAZcFEq811Jp6Uy9wMrgHnpNlDnTcDRiPg0cC+wNtU1FbgLuAxYANxVFLjWAvem9z+a6jAzsxo6ZUCJiJ8BR0qSlwKPpMePANcWpa+PiL6I+AWwD1ggaSZwZkRsj4gAflBSZqCuHwFfSKOXxcDmiDgSEUeBzcCS9NpVKW/p+5uZWY2MdQ3l3Ig4BJDuZ6T02cBbRfkOprTZ6XFp+qAyEdEPvAdMG6GuacC7KW9pXR8jaYWkLkldvb29o/xnmplZuXIvymuItBghfSxlRqrr4y9EPBgRnRHROX369OGymZnZOI01oLyTprFI9z0p/SBwXlG+OcDbKX3OEOmDykhqA86iMMU2XF2HgbNT3tK6zMysRsYaUDYAA7uulgPPFKUvSzu35lJYfN+ZpsWOS7o8rYHcWFJmoK7rgBfSOssmYJGkKWkxfhGwKb22NeUtfX8zM6uRtlNlkPQEcCVwjqSDFHZe3QM8Jekm4ADwFYCI2CPpKeB1oB+4NSI+SFXdQmHH2CeAjekG8BDwQ0n7KIxMlqW6jki6G9iV8n07IgY2B9wJrJe0Bngp1WFmZjWkwh/8raGzszO6urpq3Qwzs4YiaXdEdJ4qn4+UNzOzLBxQzMwsCwcUM7MG1nPsBF99YDs9x0/UuikOKGZmjWzdlm527T/Cuue7a92UU+/yMjOz+jN/9Ub6+k9++PzRHQd4dMcB2tsmsHfNF2vSJo9QzMwa0It3LOSai2cxaWLhZ3zSxAksvXgWL965sGZtckAxM2tAM86cxOT2Nvr6T9LeNoG+/pNMbm9jxuRJNWuTp7zMzBrU4ff7uOGyC7h+wfk8vvMAvTVemPeBjWZmNiIf2GhmZlXlgGJmZlk4oJiZWRYOKGZmloUDipmZZeGAYmZmWbTUtmFJvcDfD/PyORQuL1zv3M68GqWd0DhtdTvzqod2XhAR00+VqaUCykgkdZWzz7rW3M68GqWd0DhtdTvzapR2gqe8zMwsEwcUMzPLwgHlIw/WugFlcjvzapR2QuO01e3Mq1Ha6TUUMzPLwyMUMzPLomkDiqSHJfVIeq0o7Z9L2i7pVUn/U9KZKX2ipEdS+huSVhWV2SZpr6SX021GDdt5uqTvp/RXJF1ZVObSlL5P0jpJytnOzG2tWJ9KOk/S1vT/uEfSbSl9qqTNkrrT/ZSiMqtSv+2VtLgovaJ9mrmtddOnkqal/O9Luq+kror1aeZ21lN/Xi1pd+q33ZKuKqqr4t/7UYmIprwB/wr4LeC1orRdwL9Oj38fuDs9vh5Ynx7/BrAf6EjPtwGdddLOW4Hvp8czgN3AhPR8J/B5QMBG4It13NaK9SkwE/it9Hgy8HfAhcB/BVam9JXA2vT4QuAVoB2YC7wJnFaNPs3c1nrq0zOAfwH8AXBfSV0V69PM7ayn/rwEmJUefxb4h2r051huTTtCiYifAUdKkucDP0uPNwO/O5AdOENSG/AJ4B+BY3XYzguBLalcD/Au0ClpJnBmRGyPwqfsB8C19djW3G0aoo2HIuL/pMfHgTeA2cBS4JGU7RE+6p+lFP6Y6IuIXwD7gAXV6NNcbc3ZphztjIhfRcRfA4Ou9lTpPs3VzkobQztfioi3U/oeYJKk9mp970ejaQPKMF4DrkmPvwKclx7/CPgVcAg4APy3iCj+4fx+Gvb+pyoNKYdr5yvAUkltkuYCl6bXZgMHi8ofTGnVMNq2Dqh4n0rqoPDX3Q7g3Ig4BIUvNIVRExT66a2iYgN9V9U+HWdbB9RLnw6nan06znYOqMf+/F3gpYjoo7bf+yG1WkD5feBWSbspDDX/MaUvAD4AZlGYSvgjSf8kvXZDRHwO+Jfp9rUatvNhCh+aLuBPgf8F9FMY7paq1va90bYVqtCnkj4J/CXwhxEx0mhzuL6rWp9maCvUV58OW8UQadn7NEM7oQ77U9JFwFrg5oGkIbLVdNtuSwWUiPh5RCyKiEuBJyjMQUNhDeW5iPh1mp75G9L0TET8Q7o/DjxOdaYYhmxnRPRHxH+IiIsjYilwNtBN4Yd7TlEVc4C3S+utk7ZWvE8lTaTwRX0sIn6ckt9JUwQDUy89Kf0gg0dOA31XlT7N1NZ669PhVLxPM7Wz7vpT0hzgaeDGiBj43arZ9344LRVQBnZqSJoArAb+PL10ALhKBWcAlwM/T9M156QyE4EvUZjiqUk7Jf1Gah+Srgb6I+L1NDw+LunyNDS/EXim0u0cS1sr3afp3/8Q8EZEfKfopQ3A8vR4OR/1zwZgWZqTngvMA3ZWo09ztbUO+3RIle7TXO2st/6UdDbwLLAqIv5mIHMtv/fDyr3KXy83Cn8tHwJ+TSGS3wTcRmFHxd8B9/DRgZ2fBP4HhQWv14H/GB/tAtkN/G167c9Iu2pq1M4OYC+FRbznKZwBdKCeTgof+jeB+wbK1FtbK92nFHbtRKr/5XT7bWAahU0C3el+alGZb6Z+20vRLplK92muttZpn+6nsIHj/fRZubDSfZqrnfXWnxT+UPtVUd6XgRnV+t6P5uYj5c3MLIuWmvIyM7PKcUAxM7MsHFDMzCwLBxQzM8vCAcXMzLJwQDEzsywcUMzMLAsHFDMzy+L/A9t1yP3IuE0bAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.plot(style='*')" ] @@ -314,9 +1455,57 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 39, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "2021 743449\n", + "2014 1600941\n", + "1991 1659249\n", + "1995 1840410\n", + "2020 2010315\n", + "2022 2060304\n", + "2012 2175217\n", + "2003 2234584\n", + "2019 2254386\n", + "2006 2307352\n", + "2017 2321583\n", + "2001 2529279\n", + "1992 2574578\n", + "1993 2703886\n", + "2018 2705325\n", + "1988 2765617\n", + "2007 2780164\n", + "1987 2855570\n", + "2016 2856393\n", + "2011 2857040\n", + "2008 2973918\n", + "1998 3034904\n", + "2002 3125418\n", + "2009 3444020\n", + "1994 3514763\n", + "1996 3539413\n", + "2004 3567744\n", + "1997 3620066\n", + "2015 3654892\n", + "2000 3826372\n", + "2005 3835025\n", + "1999 3908112\n", + "2010 4111392\n", + "2013 4182691\n", + "1986 5115251\n", + "1990 5235827\n", + "1989 5466192\n", + "dtype: int64" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "yearly_incidence.sort_values()" ] @@ -331,9 +1520,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 40, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEKCAYAAAAyx7/DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAE6lJREFUeJzt3XuQZGV5x/Hvk10uC8MtWRl0QcZbjMjKbVCRiLNoeWFRo1KCgrqUuJgoEFwrWSmVqCHiBVNqvGS9lyJTCiQqGC+BDCoaZBfUFVfRglVYBAQEXSDCypM/3jOhazOz07tMT/fb/f1UTVV3n9N93uftnl+f855z+kRmIkmqx590uwGSpK1jcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqM78TL7pw4cIcGRnpxEvP6O6772bnnXfuyrJ7xaD3waDXD/ZBjfWvWbPmtsx8WDvzdiS4R0ZGWL16dSdeekYTExOMjY11Zdm9YtD7YNDrB/ugxvoj4pftzutQiSRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyHTkBR5rJyMqLO/baKxZvYtk0r7/+7KUdW640V1zjlqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkirTVnBHxOkRcU1E/DgizouIHTvdMEnS1GYM7ohYBJwKjGbm/sA84LhON0ySNLV2h0rmAwsiYj6wE3BT55okSdqSyMyZZ4o4DTgLuBf4RmYeP8U8y4HlAMPDw4eMj4/PclPbs3HjRoaGhrqy7F5RQx+s3XBXx157eAHccu/U0xYv2q1jy+0lNXwGOqnG+pcsWbImM0fbmXfG4I6IPYALgGOBO4EvAudn5ueme87o6GiuXr26/RbPoomJCcbGxrqy7F5RQx+MrLy4Y6+9YvEmzlk7f8pp689e2rHl9pIaPgOdVGP9EdF2cLczVPIs4PrM/E1m3g9cCDztoTRQkrTt2gnuXwFPjYidIiKAZwLrOtssSdJ0ZgzuzLwCOB+4CljbPGdVh9slSZrG1AOBm8nMM4EzO9wWSVIbPHNSkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKtPWFXDUnzp5pXVJneMatyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklSZtoI7InaPiPMj4qcRsS4iDut0wyRJU2v3YsHvB76WmcdExPbATh1skyRpC2YM7ojYFTgCWAaQmfcB93W2WZKk6URmbnmGiAOBVcBPgAOANcBpmXn3ZvMtB5YDDA8PHzI+Pt6RBs9k48aNDA0NdWXZvaLdPli74a45aM3cG14At9w79bTFi3ab28Z0yaD/H9RY/5IlS9Zk5mg787YT3KPAfwOHZ+YVEfF+4HeZ+ZbpnjM6OpqrV6/emjbPmomJCcbGxrqy7F7Rbh+MrLy4843pghWLN3HO2qk3JtefvXSOW9Mdg/5/UGP9EdF2cLezc/JG4MbMvKK5fz5w8LY2TpL00MwY3Jl5M3BDRDy+eeiZlGETSVIXtHtUySnAuc0RJdcBJ3auSZKkLWkruDPzB0BbYy+SpM7yzElJqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqTLuXLpP6Qr9e2X5zKxZvYllT66Bc2X6QuMYtSZUxuCWpMga3JFXG4JakyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVabt4I6IeRFxdURc1MkGSZK2bGvWuE8D1nWqIZKk9rQV3BGxN7AU+HhnmyNJmklk5swzRZwPvBPYBXhjZh49xTzLgeUAw8PDh4yPj89yU9uzceNGhoaGurLsXtFuH6zdcNcctGbuDS+AW+7tdiu6q7UPFi/arbuN6YIac2DJkiVrMnO0nXnnzzRDRBwN3JqZayJibLr5MnMVsApgdHQ0x8amnbWjJiYm6Naye0W7fbBs5cWdb0wXrFi8iXPWzvjR7mutfbD++LHuNqYL+j0H2hkqORx4QUSsB8aBIyPicx1tlSRpWjMGd2a+KTP3zswR4Djg0sw8oeMtkyRNyeO4JakyWzUQmJkTwERHWiJJaotr3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyhjcklSZwb4Udo8YmeWrra9YvKlvr+AutWPthru68j+w/uylc7Ic17glqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZUxuCWpMga3JFXG4JakyswY3BGxT0T8V0Ssi4hrIuK0uWiYJGlq7VwseBOwIjOviohdgDUR8c3M/EmH2yZJmsKMa9yZ+evMvKq5/XtgHbCo0w2TJE0tMrP9mSNGgG8B+2fm7zabthxYDjA8PHzI+Pj47LVyK2zcuJGhoaGtft7aDXd1oDXdMbwAbrm3263onkGvH3qjDxYv2q1ry771jru6Uv9DqXnJkiVrMnO0nXnbDu6IGAIuA87KzAu3NO/o6GiuXr26rdedbRMTE4yNjW3180ZWXjz7jemSFYs3cc7adkbB+tOg1w+90Qfrz17atWV/8NwvdaX+h1JzRLQd3G0dVRIR2wEXAOfOFNqSpM5q56iSAD4BrMvM93W+SZKkLWlnjftw4BXAkRHxg+bvqA63S5I0jRkHgTLzO0DMQVskSW3wzElJqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5IqY3BLUmUMbkmqTM9dCvuhXm19xeJNLOujK7ZL0uZc45akyhjcklQZg1uSKmNwS1JlDG5JqozBLUmVMbglqTIGtyRVxuCWpMoY3JJUGYNbkipjcEtSZQxuSaqMwS1JlTG4JakyBrckVcbglqTKGNySVBmDW5Iq01ZwR8RzI+JnEfGLiFjZ6UZJkqY3Y3BHxDzgQ8DzgP2Al0XEfp1umCRpau2scT8Z+EVmXpeZ9wHjwAs72yxJ0nQiM7c8Q8QxwHMz86Tm/iuAp2Tm6zebbzmwvLn7eOBns9/ctiwEbuvSsnvFoPfBoNcP9kGN9e+bmQ9rZ8b5bcwTUzz2/9I+M1cBq9pZaCdFxOrMHO12O7pp0Ptg0OsH+6Df629nqORGYJ+W+3sDN3WmOZKkmbQT3FcCj4uIR0XE9sBxwJc72yxJ0nRmHCrJzE0R8Xrg68A84JOZeU3HW7btuj5c0wMGvQ8GvX6wD/q6/hl3TkqSeotnTkpSZQxuSaqMwS1JlTG4NxMRiyJiUbfb0S0R8eiIOD0ijux2W7rB+ge7fqijDwzuRkSMRMRlwNeA90TE07vdprkWEX8JfJPymzSvjYi/7nKT5pT1D3b9UE8fDHRwR8SOLXcPBq7MzMWUQx9PjYjFzXxTnT1avYg4MiIe1dwO4EjgzMx8DXAOcFREjLVM7yvWP9j1Q719MHDBHRG7RsRHI+Ja4L0RsW8z6UXAr5rb48AvgJMmnzbHzeyoiNgvIn4E/APwqYg4MstxofsBewFk5hXAd4ETJ5/WjbZ2gvUPdv1Qfx8MXHADzwV2pLxB9wFvjYgFlM2j5wNk5h+A84GnN/cf6E5TZ0dE7B0Ru7Y8dCxwQWYeQfmSenlEPA74PE0fNP4N2D8idqi5D6x/sOuH/uuDvgzuKOZHxKsj4tsRcVpEPKaZ/FjgvszcBPwz8FvgBOAbwMMj4k+b+a4FboiIw+a8gFkSEU+IiK8C3wHeHhGTP8f7P8BOze0vADcDSylrF3/WshVyB+VXHg+Yu1bPHusf7Pqhf/ugL4O72eR5BvBK4N3ADsDHmsk3A7c236A3UN6Ux1DeyJ/w4E/Tbgfc3jxejYjYueXugcCNmTkCXAq8t3n8DuAPEbFLZt4B/Bx4BKXW7wJvaObbHvgjsL7zLZ8d1j/Y9cNg9EFfBHdEHBYR74qIZc39AJ4AfC0zv5KZ7wb2jYinARso37RPaJ6+DhhqHvsXys6I51NCfxj44ZwWsw0iYo+I+HREXAmcHREPa/pgMXB5RERmfhm4MyKWUrYmdmmm09zfE3iAshWyZ0R8DDgP2JSZt851TVvD+ge7fhi8Pqg+uCPiicBHgN8DL42IN1DqWgT8vmVP8KeBl1OCeBPwtObxqyh7ku/JzG8BK4FlwOHAOzLzgV7amzyNIyg1HUXZgXIGsCvlR8H2ygd/kOYzlD74PqW/ngeQmd9rXmN+Zq4DTgauAf4pM0+k91n/YNcPg9YHmVnNH2XN+CTK5s/85rH3Aac1t0eBDwDHAM8Cvt7y3H0om0xQgvpqypV6DgK+BDy8Zd7odq3T1D+P8oG6jDKks7B5/AvAqc3tRwFnN9MPpYztzWvpv980r7OIsrXxeuBTwIeBnbtdo/Vbv30w8181a9wRcQBlB+ILgTOBNzeTNlCuiwnlG/Jy4CXAJcBeEfGkiNguy3j2hoh4emZeSvnZx3cBFwLnZeavJ5eVzTvcg44GXgC8DTiMMn4P5YiYyS2IG4BvA8/LzCspax9LADJzI3AFcGhmbgBeQRkOuhl4c2bePUd1bCvrH+z6wT4A2rt0WVdExEHA3Zl5bfPQk4FrM3NZRBwMnBURo8AE8JyI2Ckz74mIHwIvpRyL+XngNcAHIuJeYC1wffN6HwU+n5l3zV1VM2vG4jIiDqVs0n0buDjLIYp/DlyXmZdGxPWUMzyfDawBXhQRCzPztoj4OXB3RDwS+CBwQkTsSbl60e2UzUQyczWwes6L3ALrH+z6wT5oR8+tcUfEYyPiO5Qx6bdGxCubSQ8A65u156somziHAffw4KE8APdTNoX2oqxV/7h5rcuA2zLzRihr1T0c2kcAn6Ts4X4W8M5mlgeAayNiQWZeT+mDJ1HG6m6iHJsKZS/4PMr7ewGlH44HDgFWZQ8dj9oqIuY19T+Dsuk6aPUvaOofYwDffygnyA16H7Sl22M1wM7AYS33jwbe39x+CuXbcF/gVZTNo0XNtGMo49mT0y5rHt+RMkyysOU1DwK273at09S/E/BaHtw62A74W+B1zfQ9gB81NRxLGbsbaemrVZQrWh9N2aLYjTKG/9XWmoE/6XatW3j/T6L8c62g7FAamPqbtu0CXEy5uhTA6QNW/07N//AllJNiBq4Ptvavq2vcEXEGcB3w1YgYbh5+DuXYarKccvp94BTKMZj7UI65hjKWfSDlaJDPAL+NiM9Sdjr+DPi/sarMvDoz7+t8RVsnIvYCLgLGgM9Sdqa8mLIlsQkgM39L2Xl6KmUcb08ePJTxW5Tj1e/LzIuAT1DO+PwQZe/5/ZPLyh5cw2iOt72E8k/2MeDZlP0Th1LWrPq6/hYLKOcaPCYiFlI+4/Og/+uPiO0o+6aOAd6TmS9pJh00OU+/98E26fI37RhlM+fjwIrmsTdQxrMm59kPuKG5fRbw9pZpVwIHNbd3oBwKdGi3vw23ov4FwFNa7i+j7Gx5FfD9lscfAdzU3H4d5RTdPZrnfwV4ZMu8C+ei7bPYB7u33P47yj/n8YNSf9PmVwHvAd4CvJpyyvWVA1T/hcDxmz12LHDFoPTBVvdZl9+wyUN0juXBoY7dgTuBHVvmu5LyDbw78EXKptF/UL5Rd+h2Jz6E+mPyr7l/cEs/3E45/nRy3m9Ohjzwj5QjbG4H/r7bdcxCP+xK2Q9xC/D25v7twHA/19/yvp9IGS57MXBu89ht/V5/S21HU06AOYdysMFbKUOgdwB7DkIfbO1fV4dKMvOPzc3/BHaJiAMy807KuPbJLbNeBezSTDuFMhzy78DyLHuaq5SNlodOo6x9QBmfOx0gyu+n/BKYPGTxbZQtk0WZ+a45am7HZObvKENiT6XsVH4pZbjr5Cj6sv6W9/4oylDRJcDeEfFmyg735TAQ7/9FlKO9bqccnvdE4K8on4HX9vNnYFv1zFXeI+LDlPHqNzZHVfwNJcD3oJxYc1RL0PediNibMj53SmZeG+VHsZZTPsSLgB9kL57BNcsi4kDKl/b3KOOY+1MO4erL+iNiiDJMsgOl3r+gnDByBmVN/HH0cf2TJg/nbW4fQPnsX045Jb2vPwPbopeC+0DKUSLPpHyA76Gcfn4v8NHMvKaLzeu4KL+P8gzgTZQxzxspm4bHAj/Ncghk34uIfShfYC/LzNsj4gTgmsy8ustN64goF/P4V8pOtPMoh7GdkZnPbqb3df1TifLLfB8Hjs3MOwaxD2bSS8F9HOWQuHuAd1D2MPfPXuAZRMTlwKMpv0J2E/C2zPxRVxs1RyJiN8oX9sspO6NXAR/KzPu3+MQ+1Jww8mJgPDNv7nZ75kpE7ED5rfzJoZKPAB/O8vPL2kxPBHdEPIly+vn5lJ0zVf2U6kPVHBJ1JmWc73M1j9tvi4iYTxke+QOl/oF6/6GcfAQ8kL3wD9klEXEy5TDQzw7iZ2Br9ERwS5La13OnvEuStszglqTKGNySVBmDW5IqY3BLUmUMbkmqjMEtSZX5XwHKcVej17E2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "yearly_incidence.hist(xrot=20)" ] @@ -341,9 +1553,14 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, "outputs": [], "source": [] } @@ -364,7 +1581,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.1" + "version": "3.6.4" } }, "nbformat": 4,