Org Mode Template for an IEEE Conference Article

John Doe, John Smith, and Jane Doe

CONTENTS

1
Abstract—Reproducible research has become increasingly im-
portant, just like parallel architectures so we propose a novel
experimental study of a parallel implementation of the quicksort
algorithm that builds on reproducible research technology.

INTRODUCTION

With the advent of parallel architecture, it is tempting to
propose parallel implementations of classical operations. In
this wonderful article, we report the performance gain of the
well known quicksort algorithm, whose parallelization seems
natural.

CONTEXT

Quicksort (sometimes called partition-exchange sort) is an
efficient sorting algorithm, serving as a systematic method for
placing the elements of an array in order. Developed by Tony
Hoare in 1959 with his work published in 1961 [1]], it is still
a commonly used algorithm for sorting. Quicksort is a divide
and conquer algorithm. Quicksort first divides a large array
into two smaller sub-arrays: the low elements and the high
elements. Quicksort can then recursively sort the sub-arrays.
We propose to sort the sub-arrays in parallel on two threads
and to bound the recursion level.

RELATED WORK

Well, this is such a brilliant and novel idea that none
has worked on this cutting-edge topic. Parallel architecture
barely existed in 1959, when Hoare proposed the sequential
version of this algorithm [[1]. Some colleagues mentioned some
obscure parallelization of the partitioning phase but it is too
complex to implement and certainly too costly to provide any
performance gain.

METHODOLOGY

We used a Dell Latitude 6430u with 16Gb of RAM run-
ning a Debian with Linux 3.14.15. The CPU is an Intel(R)
Core(TM) 17-3687U CPU @ 2.10GHz comprising two physi-
cal cores and hyperthreading. The performance frequency
governor was used. We used FCC 5.3.1 with the follow-
ing compilation flags: ~g -Wall -02 -pthread -1rt.
Since we care a lot about reproducibility of our research, all
the sources and detailed information regarding our experiments
are provided on Githubl[l]

We used the wonderful Org-mode format [2] to both doc-
ument our experiments and create a replicable article that
can be obtained on |Github as well. We could have used the

1Or figshare, or zenodo, or whatever platform you prefer!

Ipython approach [3] but we dishonestly ruled it out because
we wanted to be in full control of our C experimental setup
and did not know how to properly use it to write a replicable
article.

Finally, it is important to explain that each measurement was
repeated five times and the set of experiments was absolutely
not randomized, which may compromise the validity of our
observations and conclusions.

EXPERIMENTAL RESULTS

As we can see in Figure [I] to benefit from the parallel
version of our quicksort implementation, significantly large
arrays (over a million entry) are required. Of course, it is
difficult to conclude from so few measurements and a better
experiment design would be useful.

o |—=— Sequential execution
S -2- Parallel execution
~+- Default Libc execution
o
L7
3 o
S o
" o
D A
o T
S {4 <+ +
S T T T T T

1e+03 le+04 le+05 1e+06

sdf$Size

Figure 1. Comparing performances of several implementation of the quicksort
algorithm

CONCLUSION

Exploiting parallel machine can be quite difficult and te-
dious. From our experience, such architecture are useful only
when processing sufficiently large data sets. As a future work,
we intend to consolidate our study with more experiments.

ACKNOWLEDGMENTS

This work is partially supported by the FOO and BAR
projects. Experiments presented in this paper were carried
out using our own experimental testbed with support of our
university.

REFERENCES

[11 C. A. R. Hoare, “Algorithm 64: Quicksort,” Commun. ACM, vol. 4,
no. 7, pp. 321—, Jul. 1961. [Online]. Available: http://doi.acm.org/10.
1145/366622.366644

[2] E. Schulte and D. Davison, “Active document with org-mode,” Computing
in Science & Engineering, vol. 13, no. 3, pp. 66—73, May/June 2011.

[3] F. Pérez and B. E. Granger, “IPython: a system for interactive scientific
computing,” Computing in Science and Engineering, vol. 9, no. 3, pp.
21-29, May 2007. [Online]. Available: http://ipython.org

https://github.com/alegrand/M2R-ParallelQuicksort/blob/master/journal.org
https://github.com/alegrand/RR_webinars/blob/master/1_replicable_article_laboratory_notebook/replicable/article.org
http://doi.acm.org/10.1145/366622.366644
http://doi.acm.org/10.1145/366622.366644
http://ipython.org

	References

