
toy_notebook_en

March 28, 2019

1 On the computation of π

1.1 Asking the maths library

My computer tells me that π is approximatively

In [1]: from math import *

print(pi)

3.141592653589793

1.2 Buffon’s needle

Applying the method of Buffon’s needle, we get the approximation

In [2]: import numpy as np

np.random.seed(seed=42)

N = 10000

x = np.random.uniform(size=N, low=0, high=1)

theta = np.random.uniform(size=N, low=0, high=pi/2)

2/(sum((x+np.sin(theta))>1)/N)

Out[2]: 3.1289111389236548

1.3 Using a surface fraction argument

A method that is easier to understand and does not make use of the sin function is based on the
fact that if X ∼ U(0, 1) and Y ∼ U(0, 1), then P[X2 + Y2 ≤ 1] = π/4 (see "Monte Carlo method"
on Wikipedia). The following code uses this approach:

In [3]: %matplotlib inline

import matplotlib.pyplot as plt

np.random.seed(seed=42)

N = 1000

x = np.random.uniform(size=N, low=0, high=1)

y = np.random.uniform(size=N, low=0, high=1)

1

https://en.wikipedia.org/wiki/Buffon%27s_needle_problem
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Monte_Carlo_method


accept = (x*x+y*y) <= 1

reject = np.logical_not(accept)

fig, ax = plt.subplots(1)

ax.scatter(x[accept], y[accept], c='b', alpha=0.2, edgecolor=None)

ax.scatter(x[reject], y[reject], c='r', alpha=0.2, edgecolor=None)

ax.set_aspect('equal')

It is then straightforward to obtain a (not really good) approximation to π by counting how
many times, on average, X2 + Y2 is smaller than 1:

In [4]: 4*np.mean(accept)

Out[4]: 3.1120000000000001

2


	On the computation of \pi
	Asking the maths library
	Buffon's needle
	Using a surface fraction argument


