diff --git a/module2/exo1/toy_document_fr.Rmd b/module2/exo1/toy_document_fr.Rmd index e3ba02203b1cc1e6726eaff078f4e7239279168f..ac0e6270f8d477e3776b2a8f4d0a2c38e0102cb8 100644 --- a/module2/exo1/toy_document_fr.Rmd +++ b/module2/exo1/toy_document_fr.Rmd @@ -1,6 +1,6 @@ --- title: "À propos du calcul de pi" -author: "Thomas PEROT" +author: "*Thomas PEROT*" date: "7 juin 2023" output: html_document --- @@ -12,24 +12,39 @@ knitr::opts_chunk$set(echo = TRUE) ## En demandant à la lib maths -$\pi$ +Mon ordinateur m’indique que $\pi$ vaut *approximativement* -Ceci est un document R markdown que vous pouvez aisément exporter au format HTML, PDF, et MS Word. Pour plus de détails sur R Markdown consultez . - -Lorsque vous cliquerez sur le bouton **Knit** ce document sera compilé afin de ré-exécuter le code R et d'inclure les résultats dans un document final. Comme nous vous l'avons montré dans la vidéo, on inclue du code R de la façon suivante: - -```{r cars} -summary(cars) +```{r} +pi ``` -Et on peut aussi aisément inclure des figures. Par exemple: +## En utilisant la méthode des aiguilles de Buffon + +Mais calculé avec la **méthode** des [aiguilles de Buffon](https://fr.wikipedia.org/wiki/Aiguille_de_Buffon), on obtiendrait comme **approximation** : -```{r pressure, echo=FALSE} -plot(pressure) +```{r} +set.seed(42) +N = 100000 +x = runif(N) +theta = pi/2*runif(N) +2/(mean(x+sin(theta)>1)) ``` -Vous remarquerez le paramètre `echo = FALSE` qui indique que le code ne doit pas apparaître dans la version finale du document. Nous vous recommandons dans le cadre de ce MOOC de ne pas utiliser ce paramètre car l'objectif est que vos analyses de données soient parfaitement transparentes pour être reproductibles. +## Avec un argument “fréquentiel” de surface + +Sinon, une méthode plus simple à comprendre et ne faisant pas intervenir d’appel à la fonction sinus se base sur le fait que si $X \sim U(0,1)$ et $Y \sim U(0,1)$ alors $P[X^2+Y^2 \le 1]= \pi/4$ (voir [méthode de Monte Carlo sur Wikipedia](https://fr.wikipedia.org/wiki/M%C3%A9thode_de_Monte-Carlo#D%C3%A9termination_de_la_valeur_de_%CF%80)). Le code suivant illustre ce fait: + +```{r} +set.seed(42) +N = 1000 +df = data.frame(X = runif(N), Y = runif(N)) +df$Accept = (df$X**2 + df$Y**2 <=1) +library(ggplot2) +ggplot(df, aes(x=X,y=Y,color=Accept)) + geom_point(alpha=.2) + coord_fixed() + theme_bw() +``` -Comme les résultats ne sont pas stockés dans les fichiers Rmd, pour faciliter la relecture de vos analyses par d'autres personnes, vous aurez donc intérêt à générer un HTML ou un PDF et à le commiter. +Il est alors aisé d’obtenir une approximation (pas terrible) de $\pi$ en comptant combien de fois, en moyenne, $X^2+Y^2$ est inférieur à 1: -Maintenant, à vous de jouer! Vous pouvez effacer toutes ces informations et les remplacer par votre document computationnel. +```{r} +4*mean(df$Accept) +```