Commit 3ee03c2a authored by Konrad Hinsen's avatar Konrad Hinsen

Correction de la version Python de l'exercice Challenger

parent f186adfd
......@@ -449,12 +449,14 @@
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFWxJREFUeJzt3X20ZXV93/H3Zx6AQaZAoJ0kMxAxUCwNSHAEDSYdS2JB\nV8AsEgVrsaRmwhLSZdomUJc1xCRrVRKt2og4UhTsakgUH0g7lkDSq4kRAc1kBrDgFBFmMKAjCheH\neeB++8fZs3Pm3jt3zoW7z2Hufb/WumvOfjj7fO939pzP7IfzO6kqJEkCWDTqAiRJzx+GgiSpZShI\nklqGgiSpZShIklqGgiSp1VkoJLkuyWNJ7t7H8iT5QJLNSTYmOa2rWiRJg+nySOFjwNkzLD8HOKH5\nWQt8qMNaJEkD6CwUquoLwHdnWOU84IbquR04IsmPdFWPJGn/lozwtVcCD/dNb2nmfWvyiknW0jua\nYNmyZS895phjhlLgczUxMcGiRV626WdPprIn07MvUz2Xntx///3fqap/uL/1RhkKA6uqdcA6gNWr\nV9ddd9014ooGMzY2xpo1a0ZdxvOKPZnKnkzPvkz1XHqS5JuDrDfKGN4K9P+Xf1UzT5I0IqMMhZuB\ni5q7kF4OfL+qppw6kiQNT2enj5L8EbAGODrJFuC3gKUAVXUNsB54DbAZ+AFwcVe1SJIG01koVNWF\n+1lewKVdvb4kafa8tC9JahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSW\noSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJ\nahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJanUa\nCknOTnJfks1Jrphm+eFJ/jTJ3ya5J8nFXdYjSZpZZ6GQZDHwQeAc4CTgwiQnTVrtUuDeqnoJsAZ4\nT5KDuqpJkjSzLo8UTgc2V9UDVbUTuBE4b9I6BSxPEuAw4LvA7g5rkiTNYEmH214JPNw3vQU4Y9I6\nfwjcDDwCLAfeUFUTkzeUZC2wFmDFihWMjY11Ue+cGx8fP2BqHRZ7MpU9mZ59mWoYPekyFAbxL4AN\nwD8Hfhy4NclfVtUT/StV1TpgHcDq1atrzZo1w67zWRkbG+NAqXVY7MlU9mR69mWqYfSky9NHW4Fj\n+qZXNfP6XQx8qno2A98AXtxhTZKkGXQZCncCJyQ5rrl4fAG9U0X9HgLOAkiyAjgReKDDmiRJM+js\n9FFV7U5yGXALsBi4rqruSXJJs/wa4HeAjyXZBAS4vKq+01VNkqSZdXpNoarWA+snzbum7/EjwKu7\nrEGSNDg/0SxJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkK\nkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSW\noSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqRWp6GQ5Owk9yXZnOSK\nfayzJsmGJPck+XyX9UiSZrZkkJWSnFxVm2az4SSLgQ8CPwdsAe5McnNV3du3zhHA1cDZVfVQkn80\nm9eQJM2tQY8Urk5yR5K3Jjl8wOecDmyuqgeqaidwI3DepHXeCHyqqh4CqKrHBty2JKkDAx0pVNVP\nJzkB+GXgK0nuAD5aVbfO8LSVwMN901uAMyat84+BpUnGgOXA+6vqhskbSrIWWAuwYsUKxsbGBil7\n5MbHxw+YWofFnkxlT6ZnX6YaRk8GCgWAqvp6kncAdwEfAH4ySYC3V9WnnsPrvxQ4C1gGfCnJ7VV1\n/6TXXgesA1i9enWtWbPmWb7ccI2NjXGg1Dos9mQqezI9+zLVMHoy6DWFU4CLgdcCtwI/X1VfTfKj\nwJeA6UJhK3BM3/SqZl6/LcC2qnoKeCrJF4CXAPcjSRq6Qa8p/Ffgq8BLqurSqvoqQFU9ArxjH8+5\nEzghyXFJDgIuAG6etM5ngVcmWZLkUHqnl742219CkjQ3Bj199Fpge1U9A5BkEXBIVf2gqj4+3ROq\naneSy4BbgMXAdVV1T5JLmuXXVNXXkvxvYCMwAVxbVXc/x99JkvQsDRoKtwE/C4w304cCfwb81ExP\nqqr1wPpJ866ZNP37wO8PWIckqUODnj46pKr2BALN40O7KUmSNCqDhsJTSU7bM5HkpcD2bkqSJI3K\noKeP3gZ8IskjQIAfBt7QWVWSpJEY9MNrdyZ5MXBiM+u+qtrVXVmSpFEY+MNrwMuAFzbPOS0J0336\nWJJ04Br0w2sfB34c2AA808wuwFCQpHlk0COF1cBJVVVdFiNJGq1B7z66m97FZUnSPDbokcLRwL3N\n6Kg79sysqnM7qUqSNBKDhsKVXRYhSXp+GPSW1M8n+THghKq6rRm8bnG3pUmShm2gawpJfgX4JPDh\nZtZK4DNdFSVJGo1BLzRfCpwJPAG9L9wB/D5lSZpnBg2FHc33LAOQZAm9zylIkuaRQUPh80neDixL\n8nPAJ4A/7a4sSdIoDBoKVwDfBjYBv0rvOxL29Y1rkqQD1KB3H00AH2l+JEnz1KBjH32Daa4hVNWL\n5rwiSdLIzGbsoz0OAX4J+KG5L0eSNEoDXVOoqm19P1ur6n3AazuuTZI0ZIOePjqtb3IRvSOH2XwX\ngyTpADDoG/t7+h7vBh4EXj/n1UiSRmrQu49e1XUhkqTRG/T00b+baXlVvXduypEkjdJs7j56GXBz\nM/3zwB3A17soSpI0GoOGwirgtKp6EiDJlcD/qqo3dVWYJGn4Bh3mYgWws296ZzNPkjSPDHqkcANw\nR5JPN9OvA67vpiRJ0qgMevfR7yX5HPDTzayLq+pvuitLkjQKg54+AjgUeKKq3g9sSXJcRzVJkkZk\n0K/j/C3gcuA/NrOWAv+9q6IkSaMx6JHCLwDnAk8BVNUjwPKuipIkjcagobCzqopm+OwkL+iuJEnS\nqAwaCn+S5MPAEUl+BbgNv3BHkuadQe8++oPmu5mfAE4E3llVt3ZamSRp6PZ7pJBkcZL/U1W3VtVv\nVNV/GDQQkpyd5L4km5NcMcN6L0uyO8kvzqZ4SdLc2m8oVNUzwESSw2ez4SSLgQ8C5wAnARcmOWkf\n670b+LPZbF+SNPcG/UTzOLApya00dyABVNW/neE5pwObq+oBgCQ3AucB905a79eAm+gNuCdJGqFB\nQ+FTzc9srAQe7pveApzRv0KSlfRud30VM4RCkrXAWoAVK1YwNjY2y1JGY3x8/ICpdVjsyVT2ZHr2\nZaph9GTGUEhybFU9VFVdjXP0PuDyqppIss+VqmodsA5g9erVtWbNmo7KmVtjY2McKLUOiz2Zyp5M\nz75MNYye7O+awmf2PEhy0yy3vRU4pm96VTOv32rgxiQPAr8IXJ3kdbN8HUnSHNnf6aP+/76/aJbb\nvhM4oRkjaStwAfDG/hWqqh0/KcnHgP9ZVZ9BkjQS+wuF2sfj/aqq3UkuA24BFgPXVdU9SS5pll8z\nq0olSZ3bXyi8JMkT9I4YljWPaaarqv7BTE+uqvXA+knzpg2DqvrXA1UsSerMjKFQVYuHVYgkafRm\n830KkqR5zlCQJLUMBUlSy1CQJLUWVChsG9/B3z78PbaN7xh1KZI0K9vGd7B91zOdv38tmFD47Iat\nnPnuv+BN136ZM9/9F9y8YfKHqyXp+WnP+9c3vv1U5+9fCyIUto3v4PKbNvL0rgme3LGbp3dN8Js3\nbfSIQdLzXv/71zNVnb9/LYhQ2PL4dpYu2vtXXbpoEVse3z6iiiRpMMN+/1oQobDqyGXsmpjYa96u\niQlWHblsRBVJ0mCG/f61IELhqMMO5qrzT+GQpYtYfvASDlm6iKvOP4WjDjt41KVJ0oz6378WJ52/\nfw36JTsHvHNPXcmZxx/Nlse3s+rIZQaCpAPGnvevO770V3zx3Fd2+v61YEIBeolrGEg6EB112MEs\nW7q48/ewBXH6SJI0GENBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJ\nLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJrU5DIcnZSe5LsjnJ\nFdMs/5dJNibZlOSvk7yky3okSTPrLBSSLAY+CJwDnARcmOSkSat9A/hnVXUy8DvAuq7qkSTtX5dH\nCqcDm6vqgaraCdwInNe/QlX9dVU93kzeDqzqsB5J0n4s6XDbK4GH+6a3AGfMsP6/AT433YIka4G1\nACtWrGBsbGyOSuzW+Pj4AVPrsNiTqezJ9OzLVMPoSZehMLAkr6IXCq+cbnlVraM5tbR69epas2bN\n8Ip7DsbGxjhQah0WezKVPZmefZlqGD3pMhS2Asf0Ta9q5u0lySnAtcA5VbWtw3okSfvR5TWFO4ET\nkhyX5CDgAuDm/hWSHAt8CvhXVXV/h7VIkgbQ2ZFCVe1OchlwC7AYuK6q7klySbP8GuCdwFHA1UkA\ndlfV6q5qkiTNrNNrClW1Hlg/ad41fY/fArylyxoWim3jO9jy+HZWHbmMow47uPPnzWf2ZPQ2P/ok\nj/9gF5sffZLjVywfdTkLyvPiQrOem89u2MrlN21k6aJF7JqY4KrzT+HcU1d29rz5zJ6M3js/s4kb\nbn+If3/ybn79v3yBi15xLO867+RRl7VgOMzFAW7b+A4uv2kjT++a4Mkdu3l61wS/edNGto3v6OR5\n85k9Gb3Njz7JDbc/tNe8G770EJsffXJEFS08hsIBbsvj21m6aO+/xqWLFrHl8e2dPG8+syejt+Hh\n781qvuaeoXCAW3XkMnZNTOw1b9fEBKuOXNbJ8+YzezJ6px5zxKzma+4ZCge4ow47mKvOP4VDli5i\n+cFLOGTpIq46/5T9XiB9ts+bz+zJ6B2/YjkXveLYveZd9Ipjvdg8RF5ongfOPXUlZx5/9KzvmHm2\nz5vP7Mnoveu8k7no5S9k01du57Zff7mBMGSGwjxx1GEHP6s3sGf7vPnMnoze8SuWs+XQpQbCCHj6\nSJLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLU\nMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQk\nSS1DQZLUMhQkSa1OQyHJ2UnuS7I5yRXTLE+SDzTLNyY5rct6JEkz6ywUkiwGPgicA5wEXJjkpEmr\nnQOc0PysBT7UVT2SpP3r8kjhdGBzVT1QVTuBG4HzJq1zHnBD9dwOHJHkRzqsSZI0gyUdbnsl8HDf\n9BbgjAHWWQl8q3+lJGvpHUkAjCe5b25L7czRwHdGXcTzjD2Zyp5Mz75M9Vx68mODrNRlKMyZqloH\nrBt1HbOV5K6qWj3qOp5P7MlU9mR69mWqYfSky9NHW4Fj+qZXNfNmu44kaUi6DIU7gROSHJfkIOAC\n4OZJ69wMXNTchfRy4PtV9a3JG5IkDUdnp4+qaneSy4BbgMXAdVV1T5JLmuXXAOuB1wCbgR8AF3dV\nz4gccKe8hsCeTGVPpmdfpuq8J6mqrl9DknSA8BPNkqSWoSBJahkKcyjJg0k2JdmQ5K5m3pVJtjbz\nNiR5zajrHKYkRyT5ZJL/m+RrSV6R5IeS3Jrk682fR466zmHaR08W7H6S5MS+33tDkieSvG0h7ycz\n9KTz/cRrCnMoyYPA6qr6Tt+8K4HxqvqDUdU1SkmuB/6yqq5t7kI7FHg78N2q+s/NmFhHVtXlIy10\niPbRk7exgPeTPZrhcbbS+6DrpSzg/WSPST25mI73E48U1JkkhwM/A/w3gKraWVXfoze8yfXNatcD\nrxtNhcM3Q0/Ucxbw/6rqmyzg/WSS/p50zlCYWwXcluQrzdAce/xaMwrsdQvpEBg4Dvg28NEkf5Pk\n2iQvAFb0fR7l74AVI6tw+PbVE1i4+0m/C4A/ah4v5P2kX39PoOP9xFCYW6+sqlPpjf56aZKfoTfy\n64uAU+mN6fSeEdY3bEuA04APVdVPAk8Bew2hXr3zlwvpHOa+erKQ9xMAmlNp5wKfmLxsAe4nwLQ9\n6Xw/MRTmUFVtbf58DPg0cHpVPVpVz1TVBPAReqPHLhRbgC1V9eVm+pP03hAf3TMabvPnYyOqbxSm\n7ckC30/2OAf4alU92kwv5P1kj716Moz9xFCYI0lekGT5nsfAq4G7Jw0F/gvA3aOobxSq6u+Ah5Oc\n2Mw6C7iX3vAmb27mvRn47AjKG4l99WQh7yd9LmTv0yQLdj/ps1dPhrGfePfRHEnyInpHB9A7RfA/\nqur3knyc3qFeAQ8Cv7qQxndKcipwLXAQ8AC9uycWAX8CHAt8E3h9VX13ZEUO2T568gEW9n7yAuAh\n4EVV9f1m3lEs7P1kup50/n5iKEiSWp4+kiS1DAVJUstQkCS1DAVJUstQkCS1OvvmNWnYmlsY/7yZ\n/GHgGXpDSkDvg4Q7R1LYDJL8MrC++fyCNHLekqp56fk0Om2SxVX1zD6W/RVwWVVtmMX2llTV7jkr\nUOrj6SMtCEnenOSOZgz6q5MsSrIkyfeSvDfJPUluSXJGks8neWDPWPVJ3pLk0838ryd5x4DbfV+S\njcDpSX47yZ1J7k5yTXreQO+DSH/cPP+gJFuSHNFs++VJbmse/26SG5J8EfhY8xrvbV57Y5K3DL+r\nmo8MBc17SX6C3pAAP9UMWLiE3siTAIcDn6uqfwrsBK6kN/TELwHv6tvM6fSGbj4VeGOSUwfY7heq\n6pSq+hLw/qp6GXBys+zsqvpjYAPwhqo6dYDTWy8GzqqqNwFrgceq6nTgZfQGYDz22fRH6uc1BS0E\nP0vvjfOuJADLgIebZdur6tbm8Sbg+1W1O8km4IV927ilqh4HSPIZ4JX0/v3sa7s7+fthTwDOSvIb\nwCHA0cBXgM/N8vf4bFU93Tx+NfBPkvSH0An0hkWQnjVDQQtBgOuq6j/tNTNZQu/Ne48JYEff4/5/\nH5MvvtV+tru9Ge6ZJIcCf0hvNNStSX6XXjhMZzd/fwQ/eZ2nJv1Ob62qP0eaQ54+0kJwG/D6JEdD\n7y6lZ3Gq5dXpfbfyofS+EeyLs9juMnoh851mJN3z+5Y9CSzvm34QeGnzuH+9yW4B3toE0J7v9F02\ny99JmsIjBc17VbUpyW/T+1a8RcAu4BLgkVls5k56Qzf/KHD9nruFBtluVW1L73uZ76X3xShf7lv8\nUeDaJNvpXbe4EvhIku8BX5ihng/TGz10Q3Pq6jF6YSU9J96SKu1Hc2fPT1TV20Zdi9Q1Tx9Jkloe\nKUiSWh4pSJJahoIkqWUoSJJahoIkqWUoSJJa/x9HrV1ZOc+mWgAAAABJRU5ErkJggg==\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFaNJREFUeJzt3X2QZXV95/H3p2cGGASFwGZiMSAQWFdKCWALGtxkiMRCqxzWwgfYSjRGnWwJlTImRuK6hLCmaiUxJlaIOroaYUuRh1Vnd3ERNK3REmHUCY/BzCJCgwHFUWkY5oH+7h/3zvFOd0/37aHPvUz3+1XVNfec+zvnfvvL4X76PNxzU1VIkgQwMuwCJElPH4aCJKlhKEiSGoaCJKlhKEiSGoaCJKnRWigk+XiSh5Pcvofnk+SDSTYnuTXJKW3VIknqT5t7Cn8PnDXL868Aju/+rAM+1GItkqQ+tBYKVfVV4MezDDkbuLw6bgIOSfLstuqRJM1t+RBf+wjg/p7p8e68H0wdmGQdnb0JVq5c+cIjjzxyIAU+VZOTk4yMeNqmlz2Zzp5MZ09m9lT68t3vfvdHVfVv5ho3zFDIDPNmvOdGVa0H1gOMjo7Wxo0b26xrwYyNjbFmzZphl/G0Yk+msyfT2ZOZPZW+JPl+P+OGGcXjQO+f/KuBB4dUiySJ4YbCBuAN3auQXgz8tKqmHTqSJA1Oa4ePknwaWAMcnmQc+FNgBUBVfRi4DnglsBl4HHhTW7VIkvrTWihU1XlzPF/A+W29viRp/jy9L0lqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5KcneSzUkunOH5o5L8Q5LvJLk1ySvbrEeSNLvWQiHJMuAy4BXACcB5SU6YMuw9wFVVdTJwLvB3bdUjSZpbm3sKpwKbq+qeqtoOXAmcPWVMAc/sPn4W8GCL9UiS5pCqamfFyWuAs6rqLd3p3wZOq6oLesY8G/gicCjwDODMqvrWDOtaB6wDWLVq1QuvvPLKVmpeaBMTExx00EHDLuNpxZ5MZ0+msyczeyp9OeOMM75VVaNzjVu+V2vvT2aYNzWBzgP+vqren+QlwBVJnl9Vk7stVLUeWA8wOjpaa9asaaPeBTc2Nsa+Uuug2JPp7Ml09mRmg+hLm4ePxoEje6ZXM/3w0JuBqwCq6hvAAcDhLdYkSZpFm6FwC3B8kmOS7EfnRPKGKWPuA14GkOR5dELhhy3WJEmaRWuhUFU7gQuA64G76FxldEeSS5Ks7Q77Q+CtSf4J+DTwO9XWSQ5J0pzaPKdAVV0HXDdl3kU9j+8ETm+zBklS//xEsySpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqthkKSs5LcnWRzkgv3MOZ1Se5MckeST7VZjyRpdsv7GZTk+VV1+3xWnGQZcBnwm8A4cEuSDVV1Z8+Y44E/AU6vqi1JfnE+ryFJWlj97il8OMnNSd6W5JA+lzkV2FxV91TVduBK4OwpY94KXFZVWwCq6uE+1y1JakFfewpV9dLuX/W/C2xMcjPwiaq6YZbFjgDu75keB06bMubfAiT5OrAMuLiq/u/UFSVZB6wDWLVqFWNjY/2UPXQTExP7TK2DYk+msyfT2ZOZDaIvfYUCQFX9S5L3ABuBDwInJwnw7qr6nzMskplWM8PrHw+sAVYD/9g9VPWTKa+9HlgPMDo6WmvWrOm37KEaGxtjX6l1UOzJdPZkOnsys0H0pa/DR0lOTPIB4C7gN4BXVdXzuo8/sIfFxoEje6ZXAw/OMObzVbWjqr4H3E0nJCRJQ9DvOYW/Bb4N/EpVnV9V3waoqgeB9+xhmVuA45Mck2Q/4Fxgw5QxnwPOAEhyOJ3DSffM71eQJC2Ufg8fvRLYWlVPAiQZAQ6oqser6oqZFqiqnUkuAK6nc77g41V1R5JLgI1VtaH73MuT3Ak8Cbyzqh55ir+TJGkv9RsKNwJnAhPd6QOBLwK/OttCVXUdcN2UeRf1PC7gHd0fSdKQ9Xv46ICq2hUIdB8f2E5JkqRh6TcUHktyyq6JJC8EtrZTkiRpWPo9fPR24Ooku64eejbw+nZKkiQNS78fXrslyb8Dnkvn8wf/XFU7Wq1MkjRwfX94DXgRcHR3mZOTUFWXt1KVJGko+r0h3hXALwOb6Fw6Cp1PJxsKkrSI9LunMAqc0L2EVJK0SPV79dHtwC+1WYgkafj63VM4HLize3fUbbtmVtXaVqqSJA1Fv6FwcZtFSJKeHvq9JPUrSZ4DHF9VNyY5kM79jCRJi0i/t85+K3AN8JHurCPo3OFUkrSI9Hui+XzgdOBn0PnCHcDvU5akRabfUNjW/Z5lAJIsZ/q3qEmS9nH9hsJXkrwbWJnkN4Grgf/VXlmSpGHoNxQuBH4I3Ab8Hp3vSNjTN65JkvZR/V59NAl8tPsjSVqk+r330feY4RxCVR274BVJkoZmPvc+2uUA4LXALyx8OZKkYerrnEJVPdLz80BV/TXwGy3XJkkasH4PH53SMzlCZ8/h4FYqkiQNTb+Hj97f83gncC/wugWvRpI0VP1efXRG24VIkoav38NH75jt+ar6q4UpR5I0TPO5+uhFwIbu9KuArwL3t1GUJGk45vMlO6dU1aMASS4Grq6qt7RVmCRp8Pq9zcVRwPae6e3A0QtejSRpqPrdU7gCuDnJZ+l8svnVwOWtVSVJGop+rz768yRfAP59d9abquo77ZUlSRqGfg8fARwI/Kyq/gYYT3JMSzVJkoak36/j/FPgXcCfdGetAP5HW0VJkoaj3z2FVwNrgccAqupBvM2FJC06/YbC9qoqurfPTvKM9kqSJA1Lv6FwVZKPAIckeStwI37hjiQtOv1effSX3e9m/hnwXOCiqrqh1cokSQM3555CkmVJbqyqG6rqnVX1R/0GQpKzktydZHOSC2cZ95oklWR0T2MkSe2bMxSq6kng8STPms+KkywDLgNeAZwAnJfkhBnGHQz8PvDN+axfkrTw+v1E8xPAbUluoHsFEkBV/f4sy5wKbK6qewCSXAmcDdw5Zdx/BS4F/qjfoiVJ7eg3FP5P92c+jmD3u6iOA6f1DkhyMnBkVf3vJHsMhSTrgHUAq1atYmxsbJ6lDMfExMQ+U+ug2JPp7Ml09mRmg+jLrKGQ5Kiquq+qPrkX684M86pn3SPAB4DfmWtFVbUeWA8wOjpaa9as2YtyBm9sbIx9pdZBsSfT2ZPp7MnMBtGXuc4pfG7XgyTXznPd48CRPdOrgQd7pg8Gng+MJbkXeDGwwZPNkjQ8c4VC71/7x85z3bcAxyc5Jsl+wLn8/Et6qKqfVtXhVXV0VR0N3ASsraqN83wdSdICmSsUag+P51RVO4ELgOuBu4CrquqOJJckWTu/MiVJgzDXieZfSfIzOnsMK7uP6U5XVT1ztoWr6jrguinzLtrD2DV9VSxJas2soVBVywZViCRp+ObzfQqSpEXOUJAkNQwFSVLDUJAkNZZMKDwysY1/uv8nPDKxbdilSNK8PTKxja07nmz9PWxJhMLnNz3A6e/7Mr/1sW9y+vu+zIZNDwy7JEnq2673sO/98LHW38MWfSg8MrGNd117K0/smOTRbTt5Ysckf3ztre4xSNon9L6HPVnV+nvYog+F8S1bWTGy+6+5YmSE8S1bh1SRJPVv0O9hiz4UVh+6kh2Tk7vN2zE5yepDVw6pIknq36DfwxZ9KBx20P5ces6JHLBihIP3X84BK0a49JwTOeyg/YddmiTNqfc9bFnS+ntYv1+ys09be9IRnH7c4Yxv2crqQ1caCJL2Kbvew27+xtf4+tqXtvoetiRCATppaxhI2lcddtD+rFyxrPX3sUV/+EiS1D9DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSY1WQyHJWUnuTrI5yYUzPP+OJHcmuTXJl5I8p816JEmzay0UkiwDLgNeAZwAnJfkhCnDvgOMVtWJwDXApW3VI0maW5t7CqcCm6vqnqraDlwJnN07oKr+oaoe707eBKxusR5J0hyWt7juI4D7e6bHgdNmGf9m4AszPZFkHbAOYNWqVYyNjS1Qie2amJjYZ2odFHsynT2Zzp7MbBB9aTMUMsO8mnFg8lvAKPDrMz1fVeuB9QCjo6O1Zs2aBSqxXWNjY+wrtQ6KPZnOnkxnT2Y2iL60GQrjwJE906uBB6cOSnIm8J+BX6+qbS3WI0maQ5vnFG4Bjk9yTJL9gHOBDb0DkpwMfARYW1UPt1iLJKkPrYVCVe0ELgCuB+4CrqqqO5JckmRtd9hfAAcBVyfZlGTDHlYnSRqANg8fUVXXAddNmXdRz+Mz23z9peSRiW2Mb9nK6kNXcthB+7e+3GJmT4Zr80OPsuXxHWx+6FGOW3XwsMtZcloNBQ3G5zc9wLuuvZUVIyPsmJzk0nNOZO1JR7S23GJmT4bros/dxuU33ccfvmAnf/CBr/KGlxzFJWe/YNhlLSne5mIf98jENt517a08sWOSR7ft5Ikdk/zxtbfyyMTs5+z3drnFzJ4M1+aHHuXym+7bbd7l37iPzQ89OqSKliZDYR83vmUrK0Z2/8+4YmSE8S1bW1luMbMnw7Xp/p/Ma77aYSjs41YfupIdk5O7zdsxOcnqQ1e2stxiZk+G66QjD5nXfLXDUNjHHXbQ/lx6zokcsGKEg/dfzgErRrj0nBPnPEG6t8stZvZkuI5bdTBveMlRu817w0uO8mTzgHmieRFYe9IRnH7c4fO+YmZvl1vM7MlwXXL2C3jDi4/mtm/dxI1/8GIDYQgMhUXisIP236s3sL1dbjGzJ8N13KqDGT9whYEwJB4+kiQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUqPVUEhyVpK7k2xOcuEMz++f5DPd57+Z5Og265Ekza61UEiyDLgMeAVwAnBekhOmDHszsKWqjgM+ALyvrXokSXNrc0/hVGBzVd1TVduBK4Gzp4w5G/hk9/E1wMuSpMWaJEmzWN7iuo8A7u+ZHgdO29OYqtqZ5KfAYcCPegclWQes605OJLm7lYoX3uFM+V1kT2ZgT6azJzN7Kn15Tj+D2gyFmf7ir70YQ1WtB9YvRFGDlGRjVY0Ou46nE3synT2Zzp7MbBB9afPw0ThwZM/0auDBPY1Jshx4FvDjFmuSJM2izVC4BTg+yTFJ9gPOBTZMGbMBeGP38WuAL1fVtD0FSdJgtHb4qHuO4ALgemAZ8PGquiPJJcDGqtoA/HfgiiSb6ewhnNtWPUOyzx3yGgB7Mp09mc6ezKz1vsQ/zCVJu/iJZklSw1CQJDUMhQWS5N4ktyXZlGRjd97FSR7oztuU5JXDrnPQkhyS5Jok/5zkriQvSfILSW5I8i/dfw8ddp2DtIeeLNltJclze37vTUl+luTtS3k7maUnrW8nnlNYIEnuBUar6kc98y4GJqrqL4dV17Al+STwj1X1se5VaAcC7wZ+XFX/rXtPrEOr6l1DLXSA9tCTt7PEtxVobo/zAJ0Pup7PEt5OdpnSkzfR8nbinoJak+SZwK/RucqMqtpeVT9h99ubfBL4D8OpcPBm6Yk6Xgb8v6r6Pkt4O5mityetMxQWTgFfTPKt7m05drkgya1JPr6Udn+7jgV+CHwiyXeSfCzJM4BVVfUDgO6/vzjMIgdsTz2Bpb2t7HIu8Onu46W8nfTq7Qm0vJ0YCgvn9Ko6hc5dYc9P8mvAh4BfBk4CfgC8f4j1DcNy4BTgQ1V1MvAYMO0W6kvMnnqy1LcVuofS1gJXD7uWp4sZetL6dmIoLJCqerD778PAZ4FTq+qhqnqyqiaBj9K5c+xSMg6MV9U3u9PX0HlDfCjJswG6/z48pPqGYcaeuK0AnT+ovl1VD3Wnl/J2sstuPRnEdmIoLIAkz0hy8K7HwMuB23dt0F2vBm4fRn3DUlX/Ctyf5LndWS8D7mT325u8Efj8EMobij31ZKlvK13nsfthkiW7nfTYrSeD2E68+mgBJDmWzt4BdA4PfKqq/jzJFXR28wq4F/i9XcdIl4okJwEfA/YD7qFz9cQIcBVwFHAf8NqqWjI3QtxDTz7IEt5WkhxI5zb6x1bVT7vzDmNpbycz9aT19xRDQZLU8PCRJKlhKEiSGoaCJKlhKEiSGoaCJKnR2jevSYPWvYTxS93JXwKepHNLCeh8mHD7UAqbRZLfBa7rfn5BGjovSdWi9HS6Q22SZVX15B6e+xpwQVVtmsf6llfVzgUrUOrh4SMtCUnemOTm7j3o/y7JSJLlSX6S5C+SfDvJ9UlOS/KVJPfsuld9krck+Wz3+buTvKfP9b43yc3AqUn+LMktSW5P8uF0vJ7OB5E+011+vyTjSQ7prvvFSW7sPn5vko8kuYHOzfSWJ/mr7mvfmuQtg++qFiNDQYtekufTuSXAr1bVSXQOm57bffpZwBe7NzPcDlxM59YTrwUu6VnNqd1lTgH+Y5KT+ljvt6vq1Kr6BvA3VfUi4AXd586qqs8Am4DXV9VJfRzeOhl4VVX9NrAOeLiqTgVeROcmjEftTX+kXp5T0FJwJp03zo1JAFbSuX0AwNaquqH7+Dbgp1W1M8ltwNE967i+qrYAJPkc8FI6///sab3b+fmtTwBeluSdwAHA4cC3gC/M8/f4fFU90X38cuB5SXpD6Hg6t4OQ9pqhoKUgwMer6r/sNjNZTufNe5dJYFvP497/P6aefKs51ru1uifsuvew+Vs6d0N9IMl76YTDTHby8z34qWMem/I7va2qvoS0gDx8pKXgRuB1SQ6HzlVKe3Go5eXpfLfygXS+Eezr81jvSjoh86Pu3XTP6XnuUeDgnul7gRd2H/eOm+p64G3dANr1nb4r5/k7SdO4p6BFr6puS/JnwI1JRoAdwH8CHpzHar4GfIrOF5xcsetqoX7WW1WPpPO9zLcD3we+2fP0J4CPJdlK57zFxcBHk/wrcPMs9XyEzt1DN3UPXT1MJ6ykp8RLUqU5dK/seX5VvX3YtUht8/CRJKnhnoIkqeGegiSpYShIkhqGgiSpYShIkhqGgiSp8f8B+Q9eu+sB8EwAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x101c638d0>"
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
......@@ -496,42 +498,34 @@
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/hinsen/anaconda3/envs/py36/lib/python3.6/site-packages/statsmodels/compat/pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.\n",
" from pandas.core import datetools\n"
]
},
{
"data": {
"text/html": [
"<table class=\"simpletable\">\n",
"<caption>Generalized Linear Model Regression Results</caption>\n",
"<tr>\n",
" <th>Dep. Variable:</th> <td>Frequency</td> <th> No. Observations: </th> <td> 7</td> \n",
" <th>Dep. Variable:</th> <td>Frequency</td> <th> No. Observations: </th> <td> 7</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model:</th> <td>GLM</td> <th> Df Residuals: </th> <td> 5</td> \n",
" <th>Model:</th> <td>GLM</td> <th> Df Residuals: </th> <td> 5</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model Family:</th> <td>Binomial</td> <th> Df Model: </th> <td> 1</td> \n",
" <th>Model Family:</th> <td>Binomial</td> <th> Df Model: </th> <td> 1</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Link Function:</th> <td>logit</td> <th> Scale: </th> <td>1.0</td> \n",
" <th>Link Function:</th> <td>logit</td> <th> Scale: </th> <td> 1.0000</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -3.6370</td>\n",
" <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -2.5250</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Date:</th> <td>Wed, 27 Mar 2019</td> <th> Deviance: </th> <td> 3.3763</td>\n",
" <th>Date:</th> <td>Sat, 13 Apr 2019</td> <th> Deviance: </th> <td> 0.22231</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Time:</th> <td>13:03:27</td> <th> Pearson chi2: </th> <td> 0.236</td> \n",
" <th>Time:</th> <td>19:12:05</td> <th> Pearson chi2: </th> <td> 0.236</td> \n",
"</tr>\n",
"<tr>\n",
" <th>No. Iterations:</th> <td>5</td> <th> </th> <td> </td> \n",
" <th>No. Iterations:</th> <td>4</td> <th> Covariance Type: </th> <td>nonrobust</td>\n",
"</tr>\n",
"</table>\n",
"<table class=\"simpletable\">\n",
......@@ -554,11 +548,11 @@
"Dep. Variable: Frequency No. Observations: 7\n",
"Model: GLM Df Residuals: 5\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0\n",
"Method: IRLS Log-Likelihood: -3.6370\n",
"Date: Wed, 27 Mar 2019 Deviance: 3.3763\n",
"Time: 13:03:27 Pearson chi2: 0.236\n",
"No. Iterations: 5 \n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -2.5250\n",
"Date: Sat, 13 Apr 2019 Deviance: 0.22231\n",
"Time: 19:12:05 Pearson chi2: 0.236\n",
"No. Iterations: 4 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
......@@ -612,19 +606,21 @@
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGwxJREFUeJzt3X901fWd5/HnOwlIIAiCygChC7NLcW2VXyGosG7Q4Vfb\nQd11RHSc1h2WulPa6e6RrZzTWe2MnrNzcOfQ6Vopqwzt8Wh0HEXtMoXqmDrjaA0IgsDwYy3VRFuE\nFiEalCTv/eP7vcn3XhJyc7nJvffj63FODvf7/X6+n+/nnct95ZvP/d5vzN0REZGwlBV6ACIikn8K\ndxGRACncRUQCpHAXEQmQwl1EJEAKdxGRAPUa7ma2wcyOmNmbPWw3M/trMztkZrvMbEb+hykiIn2R\nzZn7RmDRWbYvBibHXyuAB899WCIici56DXd3fwn4zVmaXAf8yCOvAiPNbGy+BigiIn1XkYc+xgPv\nJJab4nXvZTY0sxVEZ/dUVlbOnDBhQk4H7OjooKwsjLcLVEtxCqWWUOoA1ZJy4MCBo+5+UW/t8hHu\nWXP39cB6gJqaGt+2bVtO/TQ0NFBXV5fHkRWOailOodQSSh2gWlLM7JfZtMvHj8FmIHkKXh2vExGR\nAslHuD8L/FF81cwVwAfufsaUjIiIDJxep2XM7DGgDrjQzJqAu4FBAO6+DtgMfAE4BHwE3N5fgxUR\nkez0Gu7uvqyX7Q58LW8jEpGScPr0aZqamjh16tSAHG/EiBHs27dvQI7V37KpZciQIVRXVzNo0KCc\njjGgb6iKSDiampoYPnw4EydOxMz6/XgnT55k+PDh/X6cgdBbLe7OsWPHaGpqYtKkSTkdI4zrikRk\nwJ06dYrRo0cPSLB/2pgZo0ePPqffihTuIpIzBXv/OdfvrcJdRCRAmnMXkZJVXl7OZZdd1rm8adMm\nJk6cWLgBFRGFu4iUrMrKSnbu3Nnj9ra2NioqPp0xp2kZEQnKxo0bWbJkCddccw3XXnstAGvWrGHW\nrFlcfvnl3H333Z1t77vvPj772c8yd+5cli1bxv333w9AXV0dqdujHD16tPO3gfb2dlatWtXZ1w9+\n8AOg63YCN954I5dccgm33nor0VXi0NjYyFVXXcXUqVOpra3l5MmTLFq0KO2H0ty5c3njjTfy+n34\ndP5IE5G8+s5ze9j77om89nnpuPO5+/c/d9Y2ra2tTJs2DYBJkybx9NNPA/D666+za9cuRo0axdat\nWzl48CCvvfYa7s6SJUt46aWXGDZsGPX19ezcuZO2tjZmzJjBzJkzz3q8hx9+mBEjRtDY2MjHH3/M\nnDlzWLBgAQA7duxgz549jBs3jjlz5vDyyy9TW1vL0qVLefzxx5k1axYnTpygsrKS2267jY0bN7J2\n7VoOHDjAqVOnmDp1ah6+a10U7iJSsnqalpk/fz6jRo0CYOvWrWzdupXp06cD0NLSwsGDBzl58iQ3\n3HADQ4cOBWDJkiW9Hm/r1q3s2rWLJ598EoAPPviAgwcPMnjwYGpra6murgZg2rRpHD58mBEjRjB2\n7FhmzZoFwPnnnw/ADTfcwJw5c1izZg0bNmzgK1/5yrl9I7qhcBeRc9bbGfZAGzZsWOdjd2f16tV8\n9atfTWuzdu3aHvevqKigo6MDIO1ac3fne9/7HgsXLkxr39DQwHnnnde5XF5eTltbW4/9Dx06lPnz\n5/PMM8/wxBNPsH379uwK6wPNuYtI0BYuXMiGDRtoaWkBoLm5mSNHjnD11VezadMmWltbOXnyJM89\n91znPhMnTuwM3NRZeqqvBx98kNOnTwNw4MABPvzwwx6PPWXKFN577z0aGxuB6JOpqdBfvnw53/jG\nN5g1axYXXHBBfotGZ+4iErgFCxawb98+rrzySgCqqqp45JFHmDFjBkuXLmXq1KlcfPHFnVMnAHfe\neSc33XQT69ev54tf/GLn+uXLl3P48GFmzJiBu3PRRRexadOmHo89ePBgHn/8cb7+9a/T2tpKZWUl\nzz//PAAzZ87k/PPP5/bb++lei+5ekK+ZM2d6rl588cWc9y02qqU4hVJLf9axd+/efuu7OydOnOjX\n/u+++25fs2ZNvx4j5cSJE97c3OyTJ0/29vb2Htt19z0GtnkWGatpGRGRAfboo48ye/Zs7rvvvn77\n04GalhERAe65554BO9Ytt9xyxhu8+aYzdxHJmccf1JH8O9fvrcJdRHIyZMgQjh07poDvBx7fz33I\nkCE596FpGRHJSXV1NU1NTbz//vsDcrxTp06dU9gVk2xqSf0lplwp3EUkJ4MGDcr5rwTloqGhofNT\npqVuIGrRtIyISIAU7iIiAVK4i4gESOEuIhIghbuISIAU7iIiAVK4i4gESOEuIhIghbuISIAU7iIi\nAVK4i4gESOEuIhIghbuISIAU7iIiAVK4i4gESOEuIhKgrMLdzBaZ2X4zO2Rmd3WzfYSZPWdmb5jZ\nHjO7Pf9DFRGRbPUa7mZWDjwALAYuBZaZ2aUZzb4G7HX3qUAd8L/MbHCexyoiIlnK5sy9Fjjk7m+5\n+ydAPXBdRhsHhpuZAVXAb4C2vI5URESyZr395XIzuxFY5O7L4+XbgNnuvjLRZjjwLHAJMBxY6u7/\nt5u+VgArAMaMGTOzvr4+p0G3tLRQVVWV077FRrUUp1BqCaUOUC0p8+bN2+7uNb21y9cfyF4I7ASu\nAf418FMz+0d3P5Fs5O7rgfUANTU1XldXl9PBGhoayHXfYqNailMotYRSB6iWvspmWqYZmJBYro7X\nJd0OPOWRQ8AviM7iRUSkALIJ90ZgsplNit8kvZloCibpbeBaADMbA0wB3srnQEVEJHu9Tsu4e5uZ\nrQS2AOXABnffY2Z3xNvXAX8BbDSz3YAB33L3o/04bhEROYus5tzdfTOwOWPdusTjd4EF+R2aiIjk\nSp9QFREJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncR\nkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJd\nRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRw\nFxEJkMJdRCRAWYW7mS0ys/1mdsjM7uqhTZ2Z7TSzPWb2s/wOU0RE+qKitwZmVg48AMwHmoBGM3vW\n3fcm2owEvg8scve3zezi/hqwiIj0Lpsz91rgkLu/5e6fAPXAdRltbgGecve3Adz9SH6HKSIifWHu\nfvYGZjcSnZEvj5dvA2a7+8pEm7XAIOBzwHDgu+7+o276WgGsABgzZszM+vr6nAbd0tJCVVVVTvsW\nG9VSnEKpJZQ6QLWkzJs3b7u71/TWrtdpmSxVADOBa4FK4BUze9XdDyQbuft6YD1ATU2N19XV5XSw\nhoYGct232KiW4hRKLaHUAaqlr7IJ92ZgQmK5Ol6X1AQcc/cPgQ/N7CVgKnAAEREZcNnMuTcCk81s\nkpkNBm4Gns1o8www18wqzGwoMBvYl9+hiohItno9c3f3NjNbCWwByoEN7r7HzO6It69z931m9hNg\nF9ABPOTub/bnwEVEpGdZzbm7+2Zgc8a6dRnLa4A1+RuaiIjkSp9QFREJkMJdRCRACncRkQAp3EVE\nAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncR\nkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJd\nRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQBlFe5mtsjM\n9pvZITO76yztZplZm5ndmL8hiohIX/Ua7mZWDjwALAYuBZaZ2aU9tPtLYGu+BykiIn2TzZl7LXDI\n3d9y90+AeuC6btp9Hfg74EgexyciIjkwdz97g2iKZZG7L4+XbwNmu/vKRJvxwKPAPGAD8GN3f7Kb\nvlYAKwDGjBkzs76+PqdBt7S0UFVVldO+xUa1FKdQagmlDlAtKfPmzdvu7jW9tavIqfczrQW+5e4d\nZtZjI3dfD6wHqKmp8bq6upwO1tDQQK77FhvVUpxCqSWUOkC19FU24d4MTEgsV8frkmqA+jjYLwS+\nYGZt7r4pL6MUEZE+ySbcG4HJZjaJKNRvBm5JNnD3SanHZraRaFpGwS4iUiC9hru7t5nZSmALUA5s\ncPc9ZnZHvH1dP49RRET6KKs5d3ffDGzOWNdtqLv7V859WCIici70CVURkQAp3EVEAqRwFxEJkMJd\nRCRACncRkQDl6xOqIjnZtKOZNVv28+7xVsaNrGTVwilcP318oYclWdLzV7wU7lIwm3Y0s/qp3bSe\nbgeg+Xgrq5/aDaCAKAF6/oqbpmWkYNZs2d8ZDCmtp9tZs2V/gUYkfaHnr7gp3KVg3j3e2qf1Ulz0\n/BU3hbsUzLiRlX1aL8VFz19xU7hLwaxaOIXKQeVp6yoHlbNq4ZQCjUj6Qs9fcdMbqlIwqTfddLVF\nadLzV9wU7lJQ108frzAoYXr+ipemZUREAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRA\nCncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJ\nkMJdRCRA+huqIpKmo8Npd6e9w3GHDo+WOzqidR2pdR1Oh0dt2ju62nTEy8k20VfX+o4OEu173qe9\ng842+94+zTuv/rJzuas9cZ9xP+54vL1r3CTGES1ntkntm6zTPf17kd7eaXfSxuPJPjxRa7ycOmbd\nOKir69/nUeEuRSPzBZEKFY+DIHrxpNqQeBGmv8iTL7LUPmcNj84XXVcwvNl8mqPbmzLGlB5umcfM\nDJiufc4Mlq5w6Nqna3sifDKCJa2NdwVUh5/ZZ7s7H310ivNeeSHuJ73P7o7b4YX+X9CLvW9m1azM\noMyMsjKj3CxaLjPK42WL15WXGWUWry8zzKA8Xo72j/vpXBctD64oi9sb5XE/YJSXpffZtS9pyxd8\n/Kv+/T6RZbib2SLgu0A58JC7/8+M7bcC3wIMOAn8F3d/I89jzbvUiz79BU9XiHT+tE20SYZOdy/u\n3vZPnLW4O7t+1caJN97t+UWacWZw5jHIOJPICIKOrn46x5QWNmeGZEc3QZI+rjNDpd2dlpaPGNL4\nYjyeMwMwLfwSZzKp5aKzO7f/wqkQiF74iVDIfLHHIZMMlrJ4nyiI0oPFiPqoKCvjvAqL+6OzfSqs\nksc98utfM27shV1Bl9Fnd8dN9pkMtM7ASqyLaqCzr8wQ7ArJzLF2jSXVprOfZJs4YMvLjFdfeYW5\nc+ak11mWMYb4sZnl9/9CnjU0HO33Y/Qa7mZWDjwAzAeagEYze9bd9yaa/QL49+7+WzNbDKwHZvfH\ngH924H2+/U8fUfn6z9KCLO0MLRlqZ5zFdZ1VebHkyc4d59xF5gs7GSZdZwxdL6bMF0P6WUbG/nGb\n7s5WLPECPFrWytjfGdnZT/qLkMQZU/zC7jyrSpxZJV7Y6TWlv6C7C4/yuN+0Y2SGR2f9lgiSZHhF\n+2977TWuuvKKrL43qf1TYy8mDQ0N1NVNLfQw8uKCIWVcNPy8Qg+jZGRz5l4LHHL3twDMrB64DugM\nd3f/50T7V4HqfA4yqeq8csYMK2PMxVVnBFlnUGS8qHsKGjL3P8tZSlff6Wc/yUDoCo7046edyWUE\n0/Zt27hi9qwz9s8ce9exu8I2s+9Ci4JkeqGHkRfvDCtjwqihhR6GSM7Mezl9NbMbgUXuvjxevg2Y\n7e4re2h/J3BJqn3GthXACoAxY8bMrK+vz2nQLS0tVFVV5bRvsVEtxSmUWkKpA1RLyrx587a7e01v\n7fL6hqqZzQP+GJjb3XZ3X080ZUNNTY3X5fh2cXSGmNu+xUa1FKdQagmlDlAtfZVNuDcDExLL1fG6\nNGZ2OfAQsNjdj+VneCIikotsPsTUCEw2s0lmNhi4GXg22cDMPgM8Bdzm7gfyP0wREemLXs/c3b3N\nzFYCW4guhdzg7nvM7I54+zrgfwCjge/Hb+y1ZTMnJCIi/SOrOXd33wxszli3LvF4OXDGG6giA23T\njmbWbNnPu8dbGTeyklULpwCcse766eMH5Nj9cZxsfHvTbh77+Tt88/On+ePVm1k2ewL3Xn9ZQcYi\nhaFPqEowNu1oZvVTu2k93Q5A8/FWVv3tG2Bwut07161+ajdAXoO3u2P3x3Gy8e1Nu3nk1bc7l9vd\nO5cV8J8eunGYBGPNlv2d4ZpyusM7gz2l9XQ7a7bs7/dj98dxsvHYz9/p03oJk8JdgvHu8dZ+aXsu\n/eX7ONlo7+GzKz2tlzAp3CUY40ZW9kvbc+kv38fJRnkPn1buab2ESeEuwVi1cAqVg8rT1g0qMwaV\np4da5aDyzjda+/PY/XGcbCybPaFP6yVMekNVgpF647IQV8v0dOxCXC2TetM0NcdebqarZT6FFO4S\nlOunj+82UAciZHs6diHce/1l3Hv9ZTQ0NPD/bq0r9HCkADQtIyISIIW7iEiAFO4iIgFSuIuIBEjh\nLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFS\nuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiA\nFO4iIgFSuIuIBCircDezRWa238wOmdld3Ww3M/vrePsuM5uR/6GKiEi2eg13MysHHgAWA5cCy8zs\n0oxmi4HJ8dcK4ME8j1NERPogmzP3WuCQu7/l7p8A9cB1GW2uA37kkVeBkWY2Ns9jFRGRLFVk0WY8\n8E5iuQmYnUWb8cB7yUZmtoLozB6gxcz292m0XS4Ejua4b7FRLcUplFpCqQNUS8q/yqZRNuGeN+6+\nHlh/rv2Y2TZ3r8nDkApOtRSnUGoJpQ5QLX2VzbRMMzAhsVwdr+trGxERGSDZhHsjMNnMJpnZYOBm\n4NmMNs8CfxRfNXMF8IG7v5fZkYiIDIxep2Xcvc3MVgJbgHJgg7vvMbM74u3rgM3AF4BDwEfA7f03\nZCAPUztFRLUUp1BqCaUOUC19Yu7e38cQEZEBpk+oiogESOEuIhKgog93MxtiZq+Z2RtmtsfMvhOv\nH2VmPzWzg/G/FxR6rNkws3Iz22FmP46XS7WOw2a228x2mtm2eF2p1jLSzJ40s38xs31mdmUp1mJm\nU+LnI/V1wsy+WaK1/Nf49f6mmT0W50DJ1QFgZn8a17HHzL4Zr+v3Woo+3IGPgWvcfSowDVgUX5Fz\nF/CCu08GXoiXS8GfAvsSy6VaB8A8d5+WuF63VGv5LvATd78EmEr0/JRcLe6+P34+pgEziS5ueJoS\nq8XMxgPfAGrc/fNEF3LcTInVAWBmnwf+M9En/acCXzKzf8NA1OLuJfMFDAVeJ/qE7H5gbLx+LLC/\n0OPLYvzV8RN5DfDjeF3J1RGP9TBwYca6kqsFGAH8gvjiglKuJWP8C4CXS7EWuj7xPoroir4fx/WU\nVB3xOP8AeDix/GfAfx+IWkrhzD01lbETOAL81N1/DozxrmvpfwWMKdgAs7eW6IntSKwrxToAHHje\nzLbHt5WA0qxlEvA+8DfxdNlDZjaM0qwl6WbgsfhxSdXi7s3A/cDbRLcw+cDdt1JidcTeBP6dmY02\ns6FEl4xPYABqKYlwd/d2j37VrAZq4191ktudKGyKlpl9CTji7tt7alMKdSTMjZ+TxcDXzOzq5MYS\nqqUCmAE86O7TgQ/J+BW5hGoBIP6w4RLgbzO3lUIt8fzzdUQ/eMcBw8zsD5NtSqEOAHffB/wlsBX4\nCbATaM9o0y+1lES4p7j7ceBFYBHw69SdJ+N/jxRybFmYAywxs8NEd9a8xsweofTqADrPrnD3I0Tz\nurWUZi1NQFP82yDAk0RhX4q1pCwGXnf3X8fLpVbL7wG/cPf33f008BRwFaVXBwDu/rC7z3T3q4Hf\nAgcYgFqKPtzN7CIzGxk/rgTmA/9CdMuDL8fNvgw8U5gRZsfdV7t7tbtPJPqV+R/c/Q8psToAzGyY\nmQ1PPSaaD32TEqzF3X8FvGNmU+JV1wJ7KcFaEpbRNSUDpVfL28AVZjbUzIzoOdlH6dUBgJldHP/7\nGeA/AI8yALUU/SdUzexy4IdE75iXAU+4+5+b2WjgCeAzwC+Bm9z9N4UbafbMrA64092/VIp1mNnv\nEp2tQzSt8ai731eKtQCY2TTgIWAw8BbR7TPKKM1ahhGF4++6+wfxupJ7XuJLnpcCbcAOYDlQRYnV\nAWBm/wiMBk4D/83dXxiI56Tow11ERPqu6KdlRESk7xTuIiIBUriLiARI4S4iEiCFu4hIgAb0D2SL\nZCO+TOyFePF3iD7R9368XOvunxRkYGdhZv8J2BxfNy9ScLoUUoqamd0DtLj7/UUwlnJ3b+9h2z8B\nK919Zx/6q3D3trwNUCRB0zJSUszsyxbd33+nmX3fzMrMrMLMjpvZX8X3zN5iZrPN7Gdm9paZfSHe\nd7mZPR2vP2hm386y37VmtovovkbfMbPG+P7c6yyylOh21I/H+w82s6bEJ6uvMLPn48f3mtmPzOxl\nYGN8jL+Kj73LzJYP/HdVQqRwl5IR3zDuBuCq+KZlFUS3coDo1r1/7+6fAz4B7iH62PofAH+e6KYW\nuJ4ojG8xs2lZ9PuSu1/u7q8A33X3WcBl8bZF7v440Q2hlnp0P/Xepo0uAa6Nbz+xguiGcrXALKKb\nsH0ml++PSJLm3KWU/B5RAG6LbjlCJdF9vwFa3f2n8ePdRLeJbTOz3cDERB9b3P23AGa2CZhL9Dro\nqd9P6LrVAsC1ZrYKGAJcCGwH/r6PdTzj7qfixwuAf2tmyR8mk4luISCSM4W7lBIDNrj7n6WtNKsg\nCuGUDqK/4JV6nPx/nvkmk/fSb2t8S1bi+3H/b2CGuzeb2b1EId+dNrp+M85s82FGTX/i7i8gkkea\nlpFS8jxwk5ldCNFVNTlMYSyw6G+mDiW6Z/jLfei3kuiHxdH4rpj/MbHtJDA8sXyY6E/dkdEu0xbg\nT+IfJKm/g1rZx5pEzqAzdykZ7r47vlvg82ZWRnSXvTuAd/vQTSPR7VXHAT9MXd2STb/ufszMfkh0\nS+D3gJ8nNv8N8JCZtRLN698D/B8zOw68dJbx/IDozoA74ymhI0Q/dETOiS6FlE+N+EqUz7v7Nws9\nFpH+pmkZEZEA6cxdRCRAOnMXEQmQwl1EJEAKdxGRACncRUQCpHAXEQnQ/wdM0TaFl04YAQAAAABJ\nRU5ErkJggg==\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGyFJREFUeJzt3X2UVPWd5/H3pxuQBhEjkhkFDWSWtHF9ABRQWZ3WqGhORLPrE2vGMRNCdmeMk83Knng2E43Rc2YHd2I26zgy6jgxiUo8iiSHCahjT2Y8PoCCILAIY4g2JEGND7Q2Snd/9497u6kuqunqpvqhfnxe5/Tpurd+de/3V7fvp27fuvUrRQRmZpaumsEuwMzM+peD3swscQ56M7PEOejNzBLnoDczS5yD3swscT0GvaR7Je2U9HI390vS/5G0VdI6SdMrX6aZmfVVOUf09wEX7Of+C4Ep+c8C4M4DL8vMzCqlx6CPiF8Av9tPk4uBH0TmWeBwSUdVqkAzMzswwyqwjAnA6wXTTfm8Xxc3lLSA7KifkSNHnnLsscdWYPVDU3t7OzU16b4FknL/Uu4buH/V7pVXXnkzIsb35jGVCHqVmFdyXIWIWAwsBqivr4/NmzdXYPVDU2NjIw0NDYNdRr9JuX8p9w3cv2on6Ve9fUwlXvaagGMKpicCOyqwXDMzq4BKBP0y4Or86pvTgHcjYp/TNmZmNjh6PHUj6QGgAThSUhNwIzAcICL+FlgOfBbYCnwAfLG/ijUzs97rMegjYl4P9wfwZxWryMyqwp49e2hqamL37t2DXUoXY8eOZdOmTYNdxgEbOXIkEydOZPjw4Qe8rEq8GWtmB6GmpibGjBnDpEmTkEpdkzE4du3axZgxYwa7jAMSEbz11ls0NTUxefLkA15eutcgmVm/2r17N+PGjRtSIZ8KSYwbN65i/y056M2szxzy/aeSz62D3swscT5Hb2ZVq7a2lhNPPLFzeunSpYwbN24QKxqaHPRmVrXq6upYu3Ztl3m7du3qvN3a2sqwYY45n7oxs6T86Ec/4rLLLuOiiy7i/PPPB2DRokXMmDGDk046iRtvvLGz7a233kp9fT3nnnsu8+bN47bbbgOgoaGB1atXA/Dmm28yadIkANra2li4cGHnsu666y5g77ALl156KccddxxXXXUV2ZXnsGrVKs444wxOPvlkZs6cya5duzjzzDO7vEDNnj2bdevW9dtz4pc6Mztg3/7pBjbueK+iyzz+6MO48aJ/v982LS0tTJ06FYDJkyfz6KOPAvDMM8+wbt06jjjiCFauXMmWLVt4/vnniQjmzp3LL37xC0aPHs2DDz7ImjVraG1tZfr06Zxyyin7Xd8999zD2LFjWbVqFR9++CGzZ8/ufDFZs2YNGzZs4Oijj2b27Nk8/fTTzJw5kyuuuIKHHnqIGTNm8N5771FXV8f8+fO57777uP3223nllVf48MMPOemkkyrwrJXmoDezqlXq1A3AeeedxxFHHAHAypUrWblyJdOmTQOgubmZLVu2sGvXLj7/+c8zatQoAObOndvj+lauXMm6det4+OGHAXj33XfZsmULI0aMYObMmUycOBGAqVOnsm3bNsaOHctRRx3FjBkzADjssMMAuOyyy/jOd77DokWLuPfee7nmmmsO7InogYPezA5YT0feA2306NGdtyOCG264ga985Std2tx+++3dXsI4bNgw2tvbAbpcyx4RfP/732fOnDld2jc2NnLIIYd0TtfW1tLa2kpElFzHqFGjOO+883jsscdYsmRJ52mi/uJz9GaWtDlz5nDvvffS3NwMwPbt29m5cydnnXUWjz76KC0tLezatYuf/vSnnY+ZNGkSL7zwAkDn0XvHsu6880727NkDwCuvvML777/f7bqPO+44duzYwapVq4DsjeLW1lYA5s+fz3XXXceMGTM6//voLz6iN7OknX/++WzatInTTz8dgEMPPZQf/vCHTJ8+nSuuuIKpU6fyiU98gjPPPLPzMddffz2XX345999/P+ecc07n/Pnz57Nt2zamT59ORDB+/HiWLl3a7bpHjBjBQw89xFe/+lVaWlqoq6vjiSee4NBDD+WUU07hsMMO44tfHIBxICNiUH4+9alPRcqeeuqpwS6hX6Xcv5T7FlG5/m3cuLEiy6m09957r0+Pu/HGG2PRokUVrqZ727dvjylTpkRbW1u3bUo9x8Dq6GXe+tSNmdkA+8EPfsCsWbO49dZbB+RrD33qxswMuOmmmwZsXVdffTVXX331gK3PR/Rm1mcRJb8e2iqgks+tg97M+mTkyJG89dZbDvt+EPl49CNHjqzI8nzqxsz6ZOLEiTQ1NfHGG28Mdild7N69u2IBOZg6vmGqEhz0ZtYnw4cPr8i3H1VaY2Nj56dgLeNTN2ZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG+UuP9YSU9JWiNpnaTPVr5UMzPrix6DXlItcAdwIXA8ME/S8UXNvgksiYhpwJXA31S6UDMz65tyjuhnAlsj4tWI+Ah4ELi4qE0Ah+W3xwI7KleimZkdCPX0De6SLgUuiIj5+fQfAbMi4tqCNkcBK4GPAaOBcyPihRLLWgAsABg/fvwpS5YsqVQ/hpzm5mYOPfTQwS6j36Tcv5T7Bu5ftTv77LNfiIhTe/OYcr4cXCXmFb86zAPui4j/Lel04H5JJ0REe5cHRSwGFgPU19dHQ0NDb2qtKo2Njbh/1SnlvoH7dzAq59RNE3BMwfRE9j018yVgCUBEPAOMBI6sRIFmZnZgygn6VcAUSZMljSB7s3VZUZvXgM8ASPo0WdC/UclCzcysb3oM+ohoBa4FVgCbyK6u2SDpZklz82b/HfiypJeAB4BroqeT/2ZmNiDKOUdPRCwHlhfN+1bB7Y3A7MqWZmZmleBPxpqZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWuLKCXtIFkjZL2irpG920uVzSRkkbJP24smWamVlfDeupgaRa4A7gPKAJWCVpWURsLGgzBbgBmB0Rb0v6eH8VbGZmvVPOEf1MYGtEvBoRHwEPAhcXtfkycEdEvA0QETsrW6aZmfVVj0f0wATg9YLpJmBWUZtPAUh6GqgFboqInxcvSNICYAHA+PHjaWxs7EPJ1aG5udn9q1Ip9w3cv4NROUGvEvOixHKmAA3AROBfJJ0QEe90eVDEYmAxQH19fTQ0NPS23qrR2NiI+1edUu4buH8Ho3JO3TQBxxRMTwR2lGjzWETsiYhfApvJgt/MzAZZOUG/CpgiabKkEcCVwLKiNkuBswEkHUl2KufVShZqZmZ902PQR0QrcC2wAtgELImIDZJuljQ3b7YCeEvSRuApYGFEvNVfRZuZWfnKOUdPRCwHlhfN+1bB7QC+nv+YmdkQ4k/GmpklzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG/sp92lkkLSqZUr0czMDkSPQS+pFrgDuBA4Hpgn6fgS7cYA1wHPVbpIMzPru3KO6GcCWyPi1Yj4CHgQuLhEu+8AfwXsrmB9ZmZ2gIaV0WYC8HrBdBMwq7CBpGnAMRHxM0nXd7cgSQuABQDjx4+nsbGx1wVXi+bmZvevSqXcN3D/DkblBL1KzIvOO6Ua4LvANT0tKCIWA4sB6uvro6Ghoawiq1FjYyPuX3VKuW/g/h2Myjl10wQcUzA9EdhRMD0GOAFolLQNOA1Y5jdkzcyGhnKCfhUwRdJkSSOAK4FlHXdGxLsRcWRETIqIScCzwNyIWN0vFZuZWa/0GPQR0QpcC6wANgFLImKDpJslze3vAs3M7MCUc46eiFgOLC+a961u2jYceFlmZlYp/mSsmVniHPRmZolz0JuZJc5Bb2aWOAe9mVniyrrqxqxSlq7ZzqIVm9nxTgtHH17Hwjn1XDJtwmCXZf3A23rocNDbgFm6Zjs3PLKelj1tAGx/p4UbHlkP4ABIjLf10OJTNzZgFq3Y3Lnjd2jZ08aiFZsHqSLrL97WQ4uD3gbMjndaejXfqpe39dDioLcBc/Thdb2ab9XL23pocdDbgFk4p5664bVd5tUNr2XhnPpBqsj6i7f10OI3Y23AdLwJ5ysx0udtPbQ46G1AXTJtgnf2g4S39dDhUzdmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOH9nrJmVJSJoaw/aA9oj8h9oa49u72tvL9Eugvb20svYp13RMtoj8mloi6L15u02vbaH15/9Vba89qAtStS+T61BW3vpPnZMd3df5DV31Fiq9s52HevrspyCdlG0vKK+tkfftp2D3gZN4Y7dJRwiiPaCnaI4GPLbe3f0vfdFqeX1cud8eUcrv3uxqcdgiYKAKL1Tlg6P0kGwd3n7C7G2gvW2t5doV+r5KgqSDz7YzSHPPLnf9RSHS1tfE2awbHy57KYS1ErUSNTUQI1ErYQENTUdt0WNoLZmb7u9j8nuqylaRo0K5teI2hoxvOPxUr4sAFFbky1b+bq7PK5omWv68HSUFfSSLgC+B9QCd0fEXxbd/3VgPtAKvAH8SUT8qg/19Nk+r/qljgAKjhpKvcruEzzFO0vnEUL2uP0dtaz/TSvvvbRjnzCIotvdBl3Rq3rbfu7b35HBPvOLQ6rLkcq+Ry7dHYE1N3/AyFVPdd7X2ZcSwVNYb9fneyD/Qnpp3UsH9PDC8FBhQOThURwEtTXZziyU7/D7Pr62RojC8MkeO6y2hkOG7Q2cjmDqWEbn8vL17vztbzn6qCP3CaWOdvvczutUPr+wPqlrqGX9UNewLFFDTan11AhREKI1RcuVgL3PRZdw7QjfGvHsM88we/YZBbUL1RQ9FwXPrfLlVotb+vCYHoNeUi1wB3Ae0ASskrQsIjYWNFsDnBoRH0j6r8BfAVfsb7nbm9s596//uXQQlArtff716Ro8Q9Lavrz2ltbxh93lFb9oR+g86ug4AqnpLmz2hkoWGnuPHrJ1lA6O2jwUJHizpoWjfv/wLjt58Tpqa9Sl9pJHPwV9KWyX9TN7LHmfawtrrum6jNqa7LkR+4ZNjYAuobdvUBTWvnrV85x+2qx9gqXrkV/R9ig6EhzK4dHY2EhDw8mDXUa/+djIGj4+ZuRglzGklHNEPxPYGhGvAkh6ELgY6Az6iHiqoP2zwBd6WujwGlH/e2M6d8CSQdBNKOzdWfNQoGvoFR/xFP6bpOLbRUc1xUddxQGyN/T2hlvx0UiNxIurVzNr1oyCYN7fkR37HAWpKJiGmiwspg12Gf2iaXQNnxg3erDLMKuYcoJ+AvB6wXQTMGs/7b8E/GOpOyQtABYAjB8/nssmvFdmmX0Q+U8FteU/5RirD2ja+EJlCxhCmpubaWxsHOwy+kXKfQP372BUTtCXOpwsGaGSvgCcCvxhqfsjYjGwGKC+vj4aGhrKq7IKZUe8DYNdRr9JuX8p9w3cv4NROUHfBBxTMD0R2FHcSNK5wP8E/jAiPqxMeWZmdqDK+cDUKmCKpMmSRgBXAssKG0iaBtwFzI2InZUv08zM+qrHoI+IVuBaYAWwCVgSERsk3Sxpbt5sEXAo8BNJayUt62ZxZmY2wMq6jj4ilgPLi+Z9q+D2uRWuy6zXlq7ZzqIVm9nxTgtHH17Hwjn1APvMu2TahAGtoT/X1xvfXLqeB557na+dsIcv3bCcebOO4ZZLThzssmwA+JOxloSla7ZzwyPradmTXRe1/Z0WFv7kJRDsaYvOeTc8sh6gX8K3VA39ub7e+ObS9fzw2dc6p9siOqcd9unzoGaWhEUrNncGbIc97dEZ8h1a9rSxaMXmAauhP9fXGw8893qv5ltaHPSWhB3vtPRL20rU0F/r6422bsab6G6+pcVBb0k4+vC6fmlbiRr6a329UdvNp6u7m29pcdBbEhbOqadueG2XecNrxPDarkFWN7y2803agaihP9fXG/NmHdOr+ZYWvxlrSeh4s3Mwr7rprobBfiMW9r7h2nFOvlbyVTcHEQe9JeOSaRNKhupABm13NQwFt1xyIrdcciKNjY3821UNg12ODSCfujEzS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBJXVtBLukDSZklbJX2jxP2HSHoov/85SZMqXaiZmfVNj0EvqRa4A7gQOB6YJ+n4omZfAt6OiH8HfBf4X5Uu1MzM+qacI/qZwNaIeDUiPgIeBC4uanMx8A/57YeBz0hS5co0M7O+GlZGmwnA6wXTTcCs7tpERKukd4FxwJuFjSQtABbkkx9KerkvRVeJIynqf2JS7l/KfQP3r9rV9/YB5QR9qSPz6EMbImIxsBhA0uqIOLWM9Vcl9696pdw3cP+qnaTVvX1MOadumoBjCqYnAju6ayNpGDAW+F1vizEzs8orJ+hXAVMkTZY0ArgSWFbUZhnwx/ntS4F/ioh9jujNzGzg9XjqJj/nfi2wAqgF7o2IDZJuBlZHxDLgHuB+SVvJjuSvLGPdiw+g7mrg/lWvlPsG7l+163X/5ANvM7O0+ZOxZmaJc9CbmSVuQIJe0khJz0t6SdIGSd/O50/Oh0zYkg+hMGIg6ukPkmolrZH0s3w6pb5tk7Re0tqOS7skHSHp8bx/j0v62GDX2VeSDpf0sKT/J2mTpNNT6Z+k+ny7dfy8J+lrCfXvv+WZ8rKkB/KsSWnf+/O8bxskfS2f1+ttN1BH9B8C50TEycBU4AJJp5ENlfDdiJgCvE02lEK1+nNgU8F0Sn0DODsiphZcn/wN4Mm8f0/m09Xqe8DPI+I44GSy7ZhE/yJic77dpgKnAB8Aj5JA/yRNAK4DTo2IE8guFrmSRPY9SScAXyYbneBk4HOSptCXbRcRA/oDjAJeJPt07ZvAsHz+6cCKga6nQn2amD/h5wA/I/sAWRJ9y+vfBhxZNG8zcFR++yhg82DX2ce+HQb8kvzChNT6V9Sn84GnU+kfez+RfwTZFYQ/A+aksu8BlwF3F0z/BfA/+rLtBuwcfX5qYy2wE3gc+DfgnYhozZs0kW24anQ72QZoz6fHkU7fIPuU80pJL+TDWAD8XkT8GiD//fFBq+7AfBJ4A/j7/NTb3ZJGk07/Cl0JPJDfrvr+RcR24DbgNeDXwLvAC6Sz770MnCVpnKRRwGfJPpja6203YEEfEW2R/fs4kexfkU+XajZQ9VSKpM8BOyPihcLZJZpWXd8KzI6I6WQjmP6ZpLMGu6AKGgZMB+6MiGnA+1ThaYye5Oep5wI/GexaKiU/N30xMBk4GhhN9jdarCr3vYjYRHYa6nHg58BLQOt+H9SNAb/qJiLeARqB04DD8yEToPTQCtVgNjBX0jaykT3PITvCT6FvAETEjvz3TrLzuzOB30o6CiD/vXPwKjwgTUBTRDyXTz9MFvyp9K/DhcCLEfHbfDqF/p0L/DIi3oiIPcAjwBmkte/dExHTI+Issg+jbqEP226grroZL+nw/HYd2QbaBDxFNmQCZEMoPDYQ9VRSRNwQERMjYhLZv8b/FBFXkUDfACSNljSm4zbZed6X6TrsRdX2LyJ+A7wuqWNEwM8AG0mkfwXmsfe0DaTRv9eA0ySNyodF79h2Sex7AJI+nv8+FviPZNuw19tuQD4ZK+kksvHqa8leXJZExM2SPkl2FHwEsAb4QkR82O8F9RNJDcD1EfG5VPqW9+PRfHIY8OOIuFXSOGAJcCzZDndZRFTlQHaSpgJ3AyOAV4Evkv+dkkb/RpG9afnJiHg3n5fE9ssv1b6C7JTGGmA+2Tn5qt/3ACT9C9l7fnuAr0fEk33Zdh4Cwcwscf5krJlZ4hz0ZmaJc9CbmSXOQW9mljgHvZlZ4sr5cnCzAZVfPvZkPvn7QBvZMAUAMyPio0EpbD8k/QmwPL8u32xI8eWVNqRJuglojojbhkAttRHR1s19/wpcGxFre7G8YQVjspj1G5+6saoi6Y+VfbfBWkl/I6lG0jBJ70haJOlFSSskzZL0z5JelfTZ/LHzJT2a379Z0jfLXO4tkp4HZkr6tqRV+Rjhf6vMFWTDbz+UP36EpKaCT4OfJumJ/PYtku6S9DjZQGrDJP11vu51kuYP/LNqqXPQW9XIx+f+PHBGPkDeMPZ+Ef1YYGU++NpHwE1kH4m/DLi5YDEz88dMB/6zpKllLPfFiJgZEc8A34uIGcCJ+X0XRMRDwFrgisjGfu/p1NI04KKI+CNgAdmgeDOBGWSDxh3bl+fHrDs+R2/V5FyyMFydDW1CHdlH+wFaIuLx/PZ64N2IaJW0HphUsIwVEfE2gKSlwH8g2w+6W+5H7B0CAuAzkhYCI4EjyYbF/cde9uOxiNid3z4f+LSkwheWKWQfbTerCAe9VRMB90bEX3SZmY1UWHgU3U72rWYdtwv/zovflIoeltsS+RtZ+Zgx/xeYHhHbJd1CFviltLL3P+biNu8X9elPI+JJzPqJT91YNXkCuFzSkZBdndOH0xznK/uO2FFkY5k/3Yvl1pG9cLyZj+j5nwru2wWMKZjeRvbVfRS1K7YC+NOOYXWVfcdrXS/7ZLZfPqK3qhER6/PRCp+QVEM2ot9/oXfjjf8r8GPgD4D7O66SKWe5EfGWpH8gG6b5V8BzBXf/PXC3pBay9wFuAv5O0m+A5/dTz11koxCuzU8b7SR7ATKrGF9eaQeN/IqWEyLia4Ndi9lA8qkbM7PE+YjezCxxPqI3M0ucg97MLHEOejOzxDnozcwS56A3M0vc/wcowwoTqhaBUgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x111d88fd0>"
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n",
"data_pred['Frequency'] = logmodel.predict(data_pred)\n",
"data_pred['Frequency'] = logmodel.predict(data_pred[['Intercept','Temperature']])\n",
"data_pred.plot(x=\"Temperature\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n",
"plt.scatter(x=data[\"Temperature\"],y=data[\"Frequency\"])\n",
"plt.grid(True)"
......@@ -654,7 +650,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"0.0652173913043\n"
"0.06521739130434782\n"
]
}
],
......@@ -688,9 +684,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"metadata": {},
"outputs": [],
"source": []
}
......@@ -712,7 +706,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
"version": "3.7.3"
}
},
"nbformat": 4,
......
......@@ -453,12 +453,14 @@
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAFaNJREFUeJzt3X2QZXV95/H3p2cGGASFwGZiMSAQWFdKCWALGtxkiMRCqxzWwgfYSjRGnWwJlTImRuK6hLCmaiUxJlaIOroaYUuRh1Vnd3ERNK3REmHUCY/BzCJCgwHFUWkY5oH+7h/3zvFOd0/37aHPvUz3+1XVNfec+zvnfvvL4X76PNxzU1VIkgQwMuwCJElPH4aCJKlhKEiSGoaCJKlhKEiSGoaCJKnRWigk+XiSh5Pcvofnk+SDSTYnuTXJKW3VIknqT5t7Cn8PnDXL868Aju/+rAM+1GItkqQ+tBYKVfVV4MezDDkbuLw6bgIOSfLstuqRJM1t+RBf+wjg/p7p8e68H0wdmGQdnb0JVq5c+cIjjzxyIAU+VZOTk4yMeNqmlz2Zzp5MZ09m9lT68t3vfvdHVfVv5ho3zFDIDPNmvOdGVa0H1gOMjo7Wxo0b26xrwYyNjbFmzZphl/G0Yk+msyfT2ZOZPZW+JPl+P+OGGcXjQO+f/KuBB4dUiySJ4YbCBuAN3auQXgz8tKqmHTqSJA1Oa4ePknwaWAMcnmQc+FNgBUBVfRi4DnglsBl4HHhTW7VIkvrTWihU1XlzPF/A+W29viRp/jy9L0lqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5KcneSzUkunOH5o5L8Q5LvJLk1ySvbrEeSNLvWQiHJMuAy4BXACcB5SU6YMuw9wFVVdTJwLvB3bdUjSZpbm3sKpwKbq+qeqtoOXAmcPWVMAc/sPn4W8GCL9UiS5pCqamfFyWuAs6rqLd3p3wZOq6oLesY8G/gicCjwDODMqvrWDOtaB6wDWLVq1QuvvPLKVmpeaBMTExx00EHDLuNpxZ5MZ0+msyczeyp9OeOMM75VVaNzjVu+V2vvT2aYNzWBzgP+vqren+QlwBVJnl9Vk7stVLUeWA8wOjpaa9asaaPeBTc2Nsa+Uuug2JPp7Ml09mRmg+hLm4ePxoEje6ZXM/3w0JuBqwCq6hvAAcDhLdYkSZpFm6FwC3B8kmOS7EfnRPKGKWPuA14GkOR5dELhhy3WJEmaRWuhUFU7gQuA64G76FxldEeSS5Ks7Q77Q+CtSf4J+DTwO9XWSQ5J0pzaPKdAVV0HXDdl3kU9j+8ETm+zBklS//xEsySpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqthkKSs5LcnWRzkgv3MOZ1Se5MckeST7VZjyRpdsv7GZTk+VV1+3xWnGQZcBnwm8A4cEuSDVV1Z8+Y44E/AU6vqi1JfnE+ryFJWlj97il8OMnNSd6W5JA+lzkV2FxV91TVduBK4OwpY94KXFZVWwCq6uE+1y1JakFfewpV9dLuX/W/C2xMcjPwiaq6YZbFjgDu75keB06bMubfAiT5OrAMuLiq/u/UFSVZB6wDWLVqFWNjY/2UPXQTExP7TK2DYk+msyfT2ZOZDaIvfYUCQFX9S5L3ABuBDwInJwnw7qr6nzMskplWM8PrHw+sAVYD/9g9VPWTKa+9HlgPMDo6WmvWrOm37KEaGxtjX6l1UOzJdPZkOnsys0H0pa/DR0lOTPIB4C7gN4BXVdXzuo8/sIfFxoEje6ZXAw/OMObzVbWjqr4H3E0nJCRJQ9DvOYW/Bb4N/EpVnV9V3waoqgeB9+xhmVuA45Mck2Q/4Fxgw5QxnwPOAEhyOJ3DSffM71eQJC2Ufg8fvRLYWlVPAiQZAQ6oqser6oqZFqiqnUkuAK6nc77g41V1R5JLgI1VtaH73MuT3Ak8Cbyzqh55ir+TJGkv9RsKNwJnAhPd6QOBLwK/OttCVXUdcN2UeRf1PC7gHd0fSdKQ9Xv46ICq2hUIdB8f2E5JkqRh6TcUHktyyq6JJC8EtrZTkiRpWPo9fPR24Ooku64eejbw+nZKkiQNS78fXrslyb8Dnkvn8wf/XFU7Wq1MkjRwfX94DXgRcHR3mZOTUFWXt1KVJGko+r0h3hXALwOb6Fw6Cp1PJxsKkrSI9LunMAqc0L2EVJK0SPV79dHtwC+1WYgkafj63VM4HLize3fUbbtmVtXaVqqSJA1Fv6FwcZtFSJKeHvq9JPUrSZ4DHF9VNyY5kM79jCRJi0i/t85+K3AN8JHurCPo3OFUkrSI9Hui+XzgdOBn0PnCHcDvU5akRabfUNjW/Z5lAJIsZ/q3qEmS9nH9hsJXkrwbWJnkN4Grgf/VXlmSpGHoNxQuBH4I3Ab8Hp3vSNjTN65JkvZR/V59NAl8tPsjSVqk+r330feY4RxCVR274BVJkoZmPvc+2uUA4LXALyx8OZKkYerrnEJVPdLz80BV/TXwGy3XJkkasH4PH53SMzlCZ8/h4FYqkiQNTb+Hj97f83gncC/wugWvRpI0VP1efXRG24VIkoav38NH75jt+ar6q4UpR5I0TPO5+uhFwIbu9KuArwL3t1GUJGk45vMlO6dU1aMASS4Grq6qt7RVmCRp8Pq9zcVRwPae6e3A0QtejSRpqPrdU7gCuDnJZ+l8svnVwOWtVSVJGop+rz768yRfAP59d9abquo77ZUlSRqGfg8fARwI/Kyq/gYYT3JMSzVJkoak36/j/FPgXcCfdGetAP5HW0VJkoaj3z2FVwNrgccAqupBvM2FJC06/YbC9qoqurfPTvKM9kqSJA1Lv6FwVZKPAIckeStwI37hjiQtOv1effSX3e9m/hnwXOCiqrqh1cokSQM3555CkmVJbqyqG6rqnVX1R/0GQpKzktydZHOSC2cZ95oklWR0T2MkSe2bMxSq6kng8STPms+KkywDLgNeAZwAnJfkhBnGHQz8PvDN+axfkrTw+v1E8xPAbUluoHsFEkBV/f4sy5wKbK6qewCSXAmcDdw5Zdx/BS4F/qjfoiVJ7eg3FP5P92c+jmD3u6iOA6f1DkhyMnBkVf3vJHsMhSTrgHUAq1atYmxsbJ6lDMfExMQ+U+ug2JPp7Ml09mRmg+jLrKGQ5Kiquq+qPrkX684M86pn3SPAB4DfmWtFVbUeWA8wOjpaa9as2YtyBm9sbIx9pdZBsSfT2ZPp7MnMBtGXuc4pfG7XgyTXznPd48CRPdOrgQd7pg8Gng+MJbkXeDGwwZPNkjQ8c4VC71/7x85z3bcAxyc5Jsl+wLn8/Et6qKqfVtXhVXV0VR0N3ASsraqN83wdSdICmSsUag+P51RVO4ELgOuBu4CrquqOJJckWTu/MiVJgzDXieZfSfIzOnsMK7uP6U5XVT1ztoWr6jrguinzLtrD2DV9VSxJas2soVBVywZViCRp+ObzfQqSpEXOUJAkNQwFSVLDUJAkNZZMKDwysY1/uv8nPDKxbdilSNK8PTKxja07nmz9PWxJhMLnNz3A6e/7Mr/1sW9y+vu+zIZNDwy7JEnq2673sO/98LHW38MWfSg8MrGNd117K0/smOTRbTt5Ysckf3ztre4xSNon9L6HPVnV+nvYog+F8S1bWTGy+6+5YmSE8S1bh1SRJPVv0O9hiz4UVh+6kh2Tk7vN2zE5yepDVw6pIknq36DfwxZ9KBx20P5ces6JHLBihIP3X84BK0a49JwTOeyg/YddmiTNqfc9bFnS+ntYv1+ys09be9IRnH7c4Yxv2crqQ1caCJL2Kbvew27+xtf4+tqXtvoetiRCATppaxhI2lcddtD+rFyxrPX3sUV/+EiS1D9DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSY1WQyHJWUnuTrI5yYUzPP+OJHcmuTXJl5I8p816JEmzay0UkiwDLgNeAZwAnJfkhCnDvgOMVtWJwDXApW3VI0maW5t7CqcCm6vqnqraDlwJnN07oKr+oaoe707eBKxusR5J0hyWt7juI4D7e6bHgdNmGf9m4AszPZFkHbAOYNWqVYyNjS1Qie2amJjYZ2odFHsynT2Zzp7MbBB9aTMUMsO8mnFg8lvAKPDrMz1fVeuB9QCjo6O1Zs2aBSqxXWNjY+wrtQ6KPZnOnkxnT2Y2iL60GQrjwJE906uBB6cOSnIm8J+BX6+qbS3WI0maQ5vnFG4Bjk9yTJL9gHOBDb0DkpwMfARYW1UPt1iLJKkPrYVCVe0ELgCuB+4CrqqqO5JckmRtd9hfAAcBVyfZlGTDHlYnSRqANg8fUVXXAddNmXdRz+Mz23z9peSRiW2Mb9nK6kNXcthB+7e+3GJmT4Zr80OPsuXxHWx+6FGOW3XwsMtZcloNBQ3G5zc9wLuuvZUVIyPsmJzk0nNOZO1JR7S23GJmT4bros/dxuU33ccfvmAnf/CBr/KGlxzFJWe/YNhlLSne5mIf98jENt517a08sWOSR7ft5Ikdk/zxtbfyyMTs5+z3drnFzJ4M1+aHHuXym+7bbd7l37iPzQ89OqSKliZDYR83vmUrK0Z2/8+4YmSE8S1bW1luMbMnw7Xp/p/Ma77aYSjs41YfupIdk5O7zdsxOcnqQ1e2stxiZk+G66QjD5nXfLXDUNjHHXbQ/lx6zokcsGKEg/dfzgErRrj0nBPnPEG6t8stZvZkuI5bdTBveMlRu817w0uO8mTzgHmieRFYe9IRnH7c4fO+YmZvl1vM7MlwXXL2C3jDi4/mtm/dxI1/8GIDYQgMhUXisIP236s3sL1dbjGzJ8N13KqDGT9whYEwJB4+kiQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUqPVUEhyVpK7k2xOcuEMz++f5DPd57+Z5Og265Ekza61UEiyDLgMeAVwAnBekhOmDHszsKWqjgM+ALyvrXokSXNrc0/hVGBzVd1TVduBK4Gzp4w5G/hk9/E1wMuSpMWaJEmzWN7iuo8A7u+ZHgdO29OYqtqZ5KfAYcCPegclWQes605OJLm7lYoX3uFM+V1kT2ZgT6azJzN7Kn15Tj+D2gyFmf7ir70YQ1WtB9YvRFGDlGRjVY0Ou46nE3synT2Zzp7MbBB9afPw0ThwZM/0auDBPY1Jshx4FvDjFmuSJM2izVC4BTg+yTFJ9gPOBTZMGbMBeGP38WuAL1fVtD0FSdJgtHb4qHuO4ALgemAZ8PGquiPJJcDGqtoA/HfgiiSb6ewhnNtWPUOyzx3yGgB7Mp09mc6ezKz1vsQ/zCVJu/iJZklSw1CQJDUMhQWS5N4ktyXZlGRjd97FSR7oztuU5JXDrnPQkhyS5Jok/5zkriQvSfILSW5I8i/dfw8ddp2DtIeeLNltJclze37vTUl+luTtS3k7maUnrW8nnlNYIEnuBUar6kc98y4GJqrqL4dV17Al+STwj1X1se5VaAcC7wZ+XFX/rXtPrEOr6l1DLXSA9tCTt7PEtxVobo/zAJ0Pup7PEt5OdpnSkzfR8nbinoJak+SZwK/RucqMqtpeVT9h99ubfBL4D8OpcPBm6Yk6Xgb8v6r6Pkt4O5mityetMxQWTgFfTPKt7m05drkgya1JPr6Udn+7jgV+CHwiyXeSfCzJM4BVVfUDgO6/vzjMIgdsTz2Bpb2t7HIu8Onu46W8nfTq7Qm0vJ0YCgvn9Ko6hc5dYc9P8mvAh4BfBk4CfgC8f4j1DcNy4BTgQ1V1MvAYMO0W6kvMnnqy1LcVuofS1gJXD7uWp4sZetL6dmIoLJCqerD778PAZ4FTq+qhqnqyqiaBj9K5c+xSMg6MV9U3u9PX0HlDfCjJswG6/z48pPqGYcaeuK0AnT+ovl1VD3Wnl/J2sstuPRnEdmIoLIAkz0hy8K7HwMuB23dt0F2vBm4fRn3DUlX/Ctyf5LndWS8D7mT325u8Efj8EMobij31ZKlvK13nsfthkiW7nfTYrSeD2E68+mgBJDmWzt4BdA4PfKqq/jzJFXR28wq4F/i9XcdIl4okJwEfA/YD7qFz9cQIcBVwFHAf8NqqWjI3QtxDTz7IEt5WkhxI5zb6x1bVT7vzDmNpbycz9aT19xRDQZLU8PCRJKlhKEiSGoaCJKlhKEiSGoaCJKnR2jevSYPWvYTxS93JXwKepHNLCeh8mHD7UAqbRZLfBa7rfn5BGjovSdWi9HS6Q22SZVX15B6e+xpwQVVtmsf6llfVzgUrUOrh4SMtCUnemOTm7j3o/y7JSJLlSX6S5C+SfDvJ9UlOS/KVJPfsuld9krck+Wz3+buTvKfP9b43yc3AqUn+LMktSW5P8uF0vJ7OB5E+011+vyTjSQ7prvvFSW7sPn5vko8kuYHOzfSWJ/mr7mvfmuQtg++qFiNDQYtekufTuSXAr1bVSXQOm57bffpZwBe7NzPcDlxM59YTrwUu6VnNqd1lTgH+Y5KT+ljvt6vq1Kr6BvA3VfUi4AXd586qqs8Am4DXV9VJfRzeOhl4VVX9NrAOeLiqTgVeROcmjEftTX+kXp5T0FJwJp03zo1JAFbSuX0AwNaquqH7+Dbgp1W1M8ltwNE967i+qrYAJPkc8FI6///sab3b+fmtTwBeluSdwAHA4cC3gC/M8/f4fFU90X38cuB5SXpD6Hg6t4OQ9pqhoKUgwMer6r/sNjNZTufNe5dJYFvP497/P6aefKs51ru1uifsuvew+Vs6d0N9IMl76YTDTHby8z34qWMem/I7va2qvoS0gDx8pKXgRuB1SQ6HzlVKe3Go5eXpfLfygXS+Eezr81jvSjoh86Pu3XTP6XnuUeDgnul7gRd2H/eOm+p64G3dANr1nb4r5/k7SdO4p6BFr6puS/JnwI1JRoAdwH8CHpzHar4GfIrOF5xcsetqoX7WW1WPpPO9zLcD3we+2fP0J4CPJdlK57zFxcBHk/wrcPMs9XyEzt1DN3UPXT1MJ6ykp8RLUqU5dK/seX5VvX3YtUht8/CRJKnhnoIkqeGegiSpYShIkhqGgiSpYShIkhqGgiSp8f8B+Q9eu+sB8EwAAAAASUVORK5CYII=\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFaNJREFUeJzt3X2QZXV95/H3p2cGGASFwGZiMSAQWFdKCWALGtxkiMRCqxzWwgfYSjRGnWwJlTImRuK6hLCmaiUxJlaIOroaYUuRh1Vnd3ERNK3REmHUCY/BzCJCgwHFUWkY5oH+7h/3zvFOd0/37aHPvUz3+1XVNfec+zvnfvvL4X76PNxzU1VIkgQwMuwCJElPH4aCJKlhKEiSGoaCJKlhKEiSGoaCJKnRWigk+XiSh5Pcvofnk+SDSTYnuTXJKW3VIknqT5t7Cn8PnDXL868Aju/+rAM+1GItkqQ+tBYKVfVV4MezDDkbuLw6bgIOSfLstuqRJM1t+RBf+wjg/p7p8e68H0wdmGQdnb0JVq5c+cIjjzxyIAU+VZOTk4yMeNqmlz2Zzp5MZ09m9lT68t3vfvdHVfVv5ho3zFDIDPNmvOdGVa0H1gOMjo7Wxo0b26xrwYyNjbFmzZphl/G0Yk+msyfT2ZOZPZW+JPl+P+OGGcXjQO+f/KuBB4dUiySJ4YbCBuAN3auQXgz8tKqmHTqSJA1Oa4ePknwaWAMcnmQc+FNgBUBVfRi4DnglsBl4HHhTW7VIkvrTWihU1XlzPF/A+W29viRp/jy9L0lqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqGAqSpIahIElqtBoKSc5KcneSzUkunOH5o5L8Q5LvJLk1ySvbrEeSNLvWQiHJMuAy4BXACcB5SU6YMuw9wFVVdTJwLvB3bdUjSZpbm3sKpwKbq+qeqtoOXAmcPWVMAc/sPn4W8GCL9UiS5pCqamfFyWuAs6rqLd3p3wZOq6oLesY8G/gicCjwDODMqvrWDOtaB6wDWLVq1QuvvPLKVmpeaBMTExx00EHDLuNpxZ5MZ0+msyczeyp9OeOMM75VVaNzjVu+V2vvT2aYNzWBzgP+vqren+QlwBVJnl9Vk7stVLUeWA8wOjpaa9asaaPeBTc2Nsa+Uuug2JPp7Ml09mRmg+hLm4ePxoEje6ZXM/3w0JuBqwCq6hvAAcDhLdYkSZpFm6FwC3B8kmOS7EfnRPKGKWPuA14GkOR5dELhhy3WJEmaRWuhUFU7gQuA64G76FxldEeSS5Ks7Q77Q+CtSf4J+DTwO9XWSQ5J0pzaPKdAVV0HXDdl3kU9j+8ETm+zBklS//xEsySpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqGgiSpYShIkhqthkKSs5LcnWRzkgv3MOZ1Se5MckeST7VZjyRpdsv7GZTk+VV1+3xWnGQZcBnwm8A4cEuSDVV1Z8+Y44E/AU6vqi1JfnE+ryFJWlj97il8OMnNSd6W5JA+lzkV2FxV91TVduBK4OwpY94KXFZVWwCq6uE+1y1JakFfewpV9dLuX/W/C2xMcjPwiaq6YZbFjgDu75keB06bMubfAiT5OrAMuLiq/u/UFSVZB6wDWLVqFWNjY/2UPXQTExP7TK2DYk+msyfT2ZOZDaIvfYUCQFX9S5L3ABuBDwInJwnw7qr6nzMskplWM8PrHw+sAVYD/9g9VPWTKa+9HlgPMDo6WmvWrOm37KEaGxtjX6l1UOzJdPZkOnsys0H0pa/DR0lOTPIB4C7gN4BXVdXzuo8/sIfFxoEje6ZXAw/OMObzVbWjqr4H3E0nJCRJQ9DvOYW/Bb4N/EpVnV9V3waoqgeB9+xhmVuA45Mck2Q/4Fxgw5QxnwPOAEhyOJ3DSffM71eQJC2Ufg8fvRLYWlVPAiQZAQ6oqser6oqZFqiqnUkuAK6nc77g41V1R5JLgI1VtaH73MuT3Ak8Cbyzqh55ir+TJGkv9RsKNwJnAhPd6QOBLwK/OttCVXUdcN2UeRf1PC7gHd0fSdKQ9Xv46ICq2hUIdB8f2E5JkqRh6TcUHktyyq6JJC8EtrZTkiRpWPo9fPR24Ooku64eejbw+nZKkiQNS78fXrslyb8Dnkvn8wf/XFU7Wq1MkjRwfX94DXgRcHR3mZOTUFWXt1KVJGko+r0h3hXALwOb6Fw6Cp1PJxsKkrSI9LunMAqc0L2EVJK0SPV79dHtwC+1WYgkafj63VM4HLize3fUbbtmVtXaVqqSJA1Fv6FwcZtFSJKeHvq9JPUrSZ4DHF9VNyY5kM79jCRJi0i/t85+K3AN8JHurCPo3OFUkrSI9Hui+XzgdOBn0PnCHcDvU5akRabfUNjW/Z5lAJIsZ/q3qEmS9nH9hsJXkrwbWJnkN4Grgf/VXlmSpGHoNxQuBH4I3Ab8Hp3vSNjTN65JkvZR/V59NAl8tPsjSVqk+r330feY4RxCVR274BVJkoZmPvc+2uUA4LXALyx8OZKkYerrnEJVPdLz80BV/TXwGy3XJkkasH4PH53SMzlCZ8/h4FYqkiQNTb+Hj97f83gncC/wugWvRpI0VP1efXRG24VIkoav38NH75jt+ar6q4UpR5I0TPO5+uhFwIbu9KuArwL3t1GUJGk45vMlO6dU1aMASS4Grq6qt7RVmCRp8Pq9zcVRwPae6e3A0QtejSRpqPrdU7gCuDnJZ+l8svnVwOWtVSVJGop+rz768yRfAP59d9abquo77ZUlSRqGfg8fARwI/Kyq/gYYT3JMSzVJkoak36/j/FPgXcCfdGetAP5HW0VJkoaj3z2FVwNrgccAqupBvM2FJC06/YbC9qoqurfPTvKM9kqSJA1Lv6FwVZKPAIckeStwI37hjiQtOv1effSX3e9m/hnwXOCiqrqh1cokSQM3555CkmVJbqyqG6rqnVX1R/0GQpKzktydZHOSC2cZ95oklWR0T2MkSe2bMxSq6kng8STPms+KkywDLgNeAZwAnJfkhBnGHQz8PvDN+axfkrTw+v1E8xPAbUluoHsFEkBV/f4sy5wKbK6qewCSXAmcDdw5Zdx/BS4F/qjfoiVJ7eg3FP5P92c+jmD3u6iOA6f1DkhyMnBkVf3vJHsMhSTrgHUAq1atYmxsbJ6lDMfExMQ+U+ug2JPp7Ml09mRmg+jLrKGQ5Kiquq+qPrkX684M86pn3SPAB4DfmWtFVbUeWA8wOjpaa9as2YtyBm9sbIx9pdZBsSfT2ZPp7MnMBtGXuc4pfG7XgyTXznPd48CRPdOrgQd7pg8Gng+MJbkXeDGwwZPNkjQ8c4VC71/7x85z3bcAxyc5Jsl+wLn8/Et6qKqfVtXhVXV0VR0N3ASsraqN83wdSdICmSsUag+P51RVO4ELgOuBu4CrquqOJJckWTu/MiVJgzDXieZfSfIzOnsMK7uP6U5XVT1ztoWr6jrguinzLtrD2DV9VSxJas2soVBVywZViCRp+ObzfQqSpEXOUJAkNQwFSVLDUJAkNZZMKDwysY1/uv8nPDKxbdilSNK8PTKxja07nmz9PWxJhMLnNz3A6e/7Mr/1sW9y+vu+zIZNDwy7JEnq2673sO/98LHW38MWfSg8MrGNd117K0/smOTRbTt5Ysckf3ztre4xSNon9L6HPVnV+nvYog+F8S1bWTGy+6+5YmSE8S1bh1SRJPVv0O9hiz4UVh+6kh2Tk7vN2zE5yepDVw6pIknq36DfwxZ9KBx20P5ces6JHLBihIP3X84BK0a49JwTOeyg/YddmiTNqfc9bFnS+ntYv1+ys09be9IRnH7c4Yxv2crqQ1caCJL2Kbvew27+xtf4+tqXtvoetiRCATppaxhI2lcddtD+rFyxrPX3sUV/+EiS1D9DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSQ1DQZLUMBQkSY1WQyHJWUnuTrI5yYUzPP+OJHcmuTXJl5I8p816JEmzay0UkiwDLgNeAZwAnJfkhCnDvgOMVtWJwDXApW3VI0maW5t7CqcCm6vqnqraDlwJnN07oKr+oaoe707eBKxusR5J0hyWt7juI4D7e6bHgdNmGf9m4AszPZFkHbAOYNWqVYyNjS1Qie2amJjYZ2odFHsynT2Zzp7MbBB9aTMUMsO8mnFg8lvAKPDrMz1fVeuB9QCjo6O1Zs2aBSqxXWNjY+wrtQ6KPZnOnkxnT2Y2iL60GQrjwJE906uBB6cOSnIm8J+BX6+qbS3WI0maQ5vnFG4Bjk9yTJL9gHOBDb0DkpwMfARYW1UPt1iLJKkPrYVCVe0ELgCuB+4CrqqqO5JckmRtd9hfAAcBVyfZlGTDHlYnSRqANg8fUVXXAddNmXdRz+Mz23z9peSRiW2Mb9nK6kNXcthB+7e+3GJmT4Zr80OPsuXxHWx+6FGOW3XwsMtZcloNBQ3G5zc9wLuuvZUVIyPsmJzk0nNOZO1JR7S23GJmT4bros/dxuU33ccfvmAnf/CBr/KGlxzFJWe/YNhlLSne5mIf98jENt517a08sWOSR7ft5Ikdk/zxtbfyyMTs5+z3drnFzJ4M1+aHHuXym+7bbd7l37iPzQ89OqSKliZDYR83vmUrK0Z2/8+4YmSE8S1bW1luMbMnw7Xp/p/Ma77aYSjs41YfupIdk5O7zdsxOcnqQ1e2stxiZk+G66QjD5nXfLXDUNjHHXbQ/lx6zokcsGKEg/dfzgErRrj0nBPnPEG6t8stZvZkuI5bdTBveMlRu817w0uO8mTzgHmieRFYe9IRnH7c4fO+YmZvl1vM7MlwXXL2C3jDi4/mtm/dxI1/8GIDYQgMhUXisIP236s3sL1dbjGzJ8N13KqDGT9whYEwJB4+kiQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUsNQkCQ1DAVJUqPVUEhyVpK7k2xOcuEMz++f5DPd57+Z5Og265Ekza61UEiyDLgMeAVwAnBekhOmDHszsKWqjgM+ALyvrXokSXNrc0/hVGBzVd1TVduBK4Gzp4w5G/hk9/E1wMuSpMWaJEmzWN7iuo8A7u+ZHgdO29OYqtqZ5KfAYcCPegclWQes605OJLm7lYoX3uFM+V1kT2ZgT6azJzN7Kn15Tj+D2gyFmf7ir70YQ1WtB9YvRFGDlGRjVY0Ou46nE3synT2Zzp7MbBB9afPw0ThwZM/0auDBPY1Jshx4FvDjFmuSJM2izVC4BTg+yTFJ9gPOBTZMGbMBeGP38WuAL1fVtD0FSdJgtHb4qHuO4ALgemAZ8PGquiPJJcDGqtoA/HfgiiSb6ewhnNtWPUOyzx3yGgB7Mp09mc6ezKz1vsQ/zCVJu/iJZklSw1CQJDUMhQWS5N4ktyXZlGRjd97FSR7oztuU5JXDrnPQkhyS5Jok/5zkriQvSfILSW5I8i/dfw8ddp2DtIeeLNltJclze37vTUl+luTtS3k7maUnrW8nnlNYIEnuBUar6kc98y4GJqrqL4dV17Al+STwj1X1se5VaAcC7wZ+XFX/rXtPrEOr6l1DLXSA9tCTt7PEtxVobo/zAJ0Pup7PEt5OdpnSkzfR8nbinoJak+SZwK/RucqMqtpeVT9h99ubfBL4D8OpcPBm6Yk6Xgb8v6r6Pkt4O5mityetMxQWTgFfTPKt7m05drkgya1JPr6Udn+7jgV+CHwiyXeSfCzJM4BVVfUDgO6/vzjMIgdsTz2Bpb2t7HIu8Onu46W8nfTq7Qm0vJ0YCgvn9Ko6hc5dYc9P8mvAh4BfBk4CfgC8f4j1DcNy4BTgQ1V1MvAYMO0W6kvMnnqy1LcVuofS1gJXD7uWp4sZetL6dmIoLJCqerD778PAZ4FTq+qhqnqyqiaBj9K5c+xSMg6MV9U3u9PX0HlDfCjJswG6/z48pPqGYcaeuK0AnT+ovl1VD3Wnl/J2sstuPRnEdmIoLIAkz0hy8K7HwMuB23dt0F2vBm4fRn3DUlX/Ctyf5LndWS8D7mT325u8Efj8EMobij31ZKlvK13nsfthkiW7nfTYrSeD2E68+mgBJDmWzt4BdA4PfKqq/jzJFXR28wq4F/i9XcdIl4okJwEfA/YD7qFz9cQIcBVwFHAf8NqqWjI3QtxDTz7IEt5WkhxI5zb6x1bVT7vzDmNpbycz9aT19xRDQZLU8PCRJKlhKEiSGoaCJKlhKEiSGoaCJKnR2jevSYPWvYTxS93JXwKepHNLCeh8mHD7UAqbRZLfBa7rfn5BGjovSdWi9HS6Q22SZVX15B6e+xpwQVVtmsf6llfVzgUrUOrh4SMtCUnemOTm7j3o/y7JSJLlSX6S5C+SfDvJ9UlOS/KVJPfsuld9krck+Wz3+buTvKfP9b43yc3AqUn+LMktSW5P8uF0vJ7OB5E+011+vyTjSQ7prvvFSW7sPn5vko8kuYHOzfSWJ/mr7mvfmuQtg++qFiNDQYtekufTuSXAr1bVSXQOm57bffpZwBe7NzPcDlxM59YTrwUu6VnNqd1lTgH+Y5KT+ljvt6vq1Kr6BvA3VfUi4AXd586qqs8Am4DXV9VJfRzeOhl4VVX9NrAOeLiqTgVeROcmjEftTX+kXp5T0FJwJp03zo1JAFbSuX0AwNaquqH7+Dbgp1W1M8ltwNE967i+qrYAJPkc8FI6///sab3b+fmtTwBeluSdwAHA4cC3gC/M8/f4fFU90X38cuB5SXpD6Hg6t4OQ9pqhoKUgwMer6r/sNjNZTufNe5dJYFvP497/P6aefKs51ru1uifsuvew+Vs6d0N9IMl76YTDTHby8z34qWMem/I7va2qvoS0gDx8pKXgRuB1SQ6HzlVKe3Go5eXpfLfygXS+Eezr81jvSjoh86Pu3XTP6XnuUeDgnul7gRd2H/eOm+p64G3dANr1nb4r5/k7SdO4p6BFr6puS/JnwI1JRoAdwH8CHpzHar4GfIrOF5xcsetqoX7WW1WPpPO9zLcD3we+2fP0J4CPJdlK57zFxcBHk/wrcPMs9XyEzt1DN3UPXT1MJ6ykp8RLUqU5dK/seX5VvX3YtUht8/CRJKnhnoIkqeGegiSpYShIkhqGgiSpYShIkhqGgiSp8f8B+Q9eu+sB8EwAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f98e29d9dd8>"
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
......@@ -501,42 +503,34 @@
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/lib/python3/dist-packages/statsmodels/compat/pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.\n",
" from pandas.core import datetools\n"
]
},
{
"data": {
"text/html": [
"<table class=\"simpletable\">\n",
"<caption>Generalized Linear Model Regression Results</caption>\n",
"<tr>\n",
" <th>Dep. Variable:</th> <td>Frequency</td> <th> No. Observations: </th> <td> 7</td> \n",
" <th>Dep. Variable:</th> <td>Frequency</td> <th> No. Observations: </th> <td> 7</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model:</th> <td>GLM</td> <th> Df Residuals: </th> <td> 5</td> \n",
" <th>Model:</th> <td>GLM</td> <th> Df Residuals: </th> <td> 5</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Model Family:</th> <td>Binomial</td> <th> Df Model: </th> <td> 1</td> \n",
" <th>Model Family:</th> <td>Binomial</td> <th> Df Model: </th> <td> 1</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Link Function:</th> <td>logit</td> <th> Scale: </th> <td>1.0</td> \n",
" <th>Link Function:</th> <td>logit</td> <th> Scale: </th> <td> 1.0000</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -3.6370</td>\n",
" <th>Method:</th> <td>IRLS</td> <th> Log-Likelihood: </th> <td> -2.5250</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Date:</th> <td>Fri, 20 Jul 2018</td> <th> Deviance: </th> <td> 3.3763</td>\n",
" <th>Date:</th> <td>Sat, 13 Apr 2019</td> <th> Deviance: </th> <td> 0.22231</td> \n",
"</tr>\n",
"<tr>\n",
" <th>Time:</th> <td>17:09:09</td> <th> Pearson chi2: </th> <td> 0.236</td> \n",
" <th>Time:</th> <td>19:11:24</td> <th> Pearson chi2: </th> <td> 0.236</td> \n",
"</tr>\n",
"<tr>\n",
" <th>No. Iterations:</th> <td>5</td> <th> </th> <td> </td> \n",
" <th>No. Iterations:</th> <td>4</td> <th> Covariance Type: </th> <td>nonrobust</td>\n",
"</tr>\n",
"</table>\n",
"<table class=\"simpletable\">\n",
......@@ -559,11 +553,11 @@
"Dep. Variable: Frequency No. Observations: 7\n",
"Model: GLM Df Residuals: 5\n",
"Model Family: Binomial Df Model: 1\n",
"Link Function: logit Scale: 1.0\n",
"Method: IRLS Log-Likelihood: -3.6370\n",
"Date: Fri, 20 Jul 2018 Deviance: 3.3763\n",
"Time: 17:09:09 Pearson chi2: 0.236\n",
"No. Iterations: 5 \n",
"Link Function: logit Scale: 1.0000\n",
"Method: IRLS Log-Likelihood: -2.5250\n",
"Date: Sat, 13 Apr 2019 Deviance: 0.22231\n",
"Time: 19:11:24 Pearson chi2: 0.236\n",
"No. Iterations: 4 Covariance Type: nonrobust\n",
"===============================================================================\n",
" coef std err z P>|z| [0.025 0.975]\n",
"-------------------------------------------------------------------------------\n",
......@@ -616,19 +610,21 @@
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAG3BJREFUeJzt3X90VeWd7/H3NwlI+CEMoAwYKvQOg/X6gx8hqLl1glXAroo6gyK1duyU0ntnqNPbkbtkXadar651Z3BN7XQcR64yztilgboEaRdTUIdMpy5/BARBYPgxlmqgFaHyIxqQJN/7x94nnJycJCcnJznnPH5ea2Vx9j7P3s/znM3+nJ3n7PPE3B0REQlLSb4bICIiuadwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJULfhbmYrzeywmb3dyfNmZn9rZvvNbLuZTct9M0VEpCcyuXJ/CpjbxfPXA5Pin8XAY71vloiI9Ea34e7uPwd+20WRG4F/9shrwAgzG5urBoqISM+V5WAfFwDvJS03xOt+nVrQzBYTXd1TXl4+ffz48VlV2NraSklJGB8XqC+FJ5R+gPpSqHrTl7179x5x9/O6K5eLcLc069LOaeDuK4AVAJWVlb558+asKqyrq6OmpiarbQuN+lJ4QukHqC+Fqjd9MbNfZVIuF2+DDUDyJXgFcCgH+xURkSzlItzXAV+N75q5Ajju7h2GZEREpP90OyxjZs8CNcBoM2sA7gMGALj7PwDrgS8C+4GPga/1VWNFRCQz3Ya7uy/s5nkH/ixnLRKRonDmzBkaGho4depUv9Q3fPhwdu/e3S919bVM+jJo0CAqKioYMGBAVnXk4gNVEfkUamhoYNiwYUyYMAGzdPdV5NbJkycZNmxYn9fTH7rri7tz9OhRGhoamDhxYlZ1hHFfkYj0u1OnTjFq1Kh+CfZPGzNj1KhRvfqtSOEuIllTsPed3r62CncRkQBpzF1EilZpaSmXXnpp2/LatWuZMGFC/hpUQBTuIlK0ysvL2bZtW6fPNzc3U1b26Yw5DcuISFCeeuopbrnlFm644QZmz54NwPLly5kxYwaXXXYZ9913X1vZhx56iMmTJ3PttdeycOFCHn74YQBqampITI9y5MiRtt8GWlpaWLp0adu+Hn/8ceDsdALz58/noosu4vbbbye6Sxzq6+u56qqruPzyy6mqquLkyZPMmTOn3ZtSdXU127dvz+nr8Ol8SxORnPreT3ay69CJnO7z4nHnct8N/7XLMk1NTUyZMgWAiRMnsmbNGgBeffVVtm/fzsiRI9m4cSP79u3jjTfewN2ZN28eP//5zxkyZAi1tbVs3bqV5uZmpk2bxvTp07us78knn2T48OHU19dz+vRpqqur295Atm7dys6dOxk3bhzV1dW88sorVFVVsWDBAlatWsWMGTM4ceIE5eXlfPWrX+Wpp57ikUceYe/evZw+fZrLLrssB6/aWQp3ESlanQ3LXHfddYwcORKAjRs3snHjRqZOnQpAY2Mj+/bt4+TJk9x8880MHjwYgHnz5nVb38aNG9m+fTvPPfccAMePH2ffvn0MHDiQqqoqKioqAJgyZQoHDhxg+PDhjB07lhkzZgBw7rnnAnDzzTdTXV3N8uXLWblyJXfeeWfvXog0FO4i0mvdXWH3tyFDhrQ9dneWLVvGN7/5zXZlHnnkkU5vNywrK6O1tRWg3b3m7s4Pf/hD5syZ0658XV0d55xzTttyaWkpzc3NuHvaOgYPHsx1113HCy+8wOrVq8l2htyuaMxdRII2Z84cVq5cSWNjIwAHDx7k8OHDXH311axZs4ampiZOnjzJT37yk7ZtJkyYwJYtWwDartIT+3rsscc4c+YMAHv37uWjjz7qtO6LLrqIQ4cOUV9fD0TfTG1ubgZg0aJF3HXXXcyYMaPtt4xc0pW7iARt9uzZ7N69myuvvBKAoUOH8qMf/Yhp06axYMECpkyZwoUXXsjnP//5tm3uvvtubr31Vp5++mmuueaatvWLFi3iwIEDTJs2DXfnvPPOY+3atZ3WPXDgQFatWsW3vvUtmpqaKC8v56WXXgJg+vTpnHvuuXzta30016K75+Vn+vTpnq1NmzZlvW2hUV8KTyj9cO/bvuzatavP9p3OiRMn+nT/9913ny9fvrxP60g4ceKEHzx40CdNmuQtLS2dlkv3GgObPYOM1bCMiEg/e+aZZ5g5cyYPPfRQn/3pQA3LiIgA999/f7/V9eUvf7nDB7y5pit3Ecmae9o/lyw50NvXVuEuIlkZNGgQR48eVcD3AY/ncx80aFDW+9CwjIhkpaKigoaGBj744IN+qe/UqVO9CrtCkklfEn+JKVsKdxHJyoABA7L+K0HZqKura/uWabHrj75oWEZEJEAKdxGRACncRUQCpHAXEQmQwl1EJEAKdxGRACncRUQCpHAXEQmQwl1EJEAKdxGRACncRUQCpHAXEQmQwl1EJEAKdxGRACncRUQCpHAXEQlQRuFuZnPNbI+Z7Teze9I8/xkz22RmW81su5l9MfdNFRGRTHUb7mZWCjwKXA9cDCw0s4tTit0LrHb3qcBtwN/nuqEiIpK5TK7cq4D97v6Ou38C1AI3ppRx4Nz48XDgUO6aKCIiPWXd/eVyM5sPzHX3RfHyHcBMd1+SVGYssBH4HWAIcK27b0mzr8XAYoAxY8ZMr62tzarRjY2NDB06NKttC436UnhC6QeoL4WqN32ZNWvWFnev7Lagu3f5A9wCPJG0fAfww5Qy3wH+In58JbALKOlqv9OnT/dsbdq0KettC436UnhC6Ye7+lKoetMXYLN3k9vuntGwTAMwPmm5go7DLl8HVsdvFq8Cg4DRGexbRET6QCbhXg9MMrOJZjaQ6APTdSll3gW+AGBmnyMK9w9y2VAREclct+Hu7s3AEmADsJvorpidZvaAmc2Li/0F8A0zewt4Frgz/vVBRETyoCyTQu6+Hlifsu67SY93AdW5bZqIiGRL31AVEQmQwl1EJEAKdxGRACncRUQCpHAXEQmQwl1EJEAKdxGRACncRUQCpHAXEQmQwl1EJEAKdxGRACncRUQCpHAXEQmQwl1EJEAKdxGRACncRUQCpHAXEQmQwl1EJEAKdxGRACncRUQCpHAXEQmQwl1EJEAKdxGRACncRUQCpHAXEQmQwl1EJEAKdxGRACncRUQCpHAXEQmQwl1EJEAKdxGRACncRUQCpHAXEQmQwl1EJEAZhbuZzTWzPWa238zu6aTMrWa2y8x2mtkzuW2miIj0RFl3BcysFHgUuA5oAOrNbJ2770oqMwlYBlS7+4dmdn5fNVhERLqXyZV7FbDf3d9x90+AWuDGlDLfAB519w8B3P1wbpspIiI9Ye7edQGz+cBcd18UL98BzHT3JUll1gJ7gWqgFLjf3X+WZl+LgcUAY8aMmV5bW5tVoxsbGxk6dGhW2xYa9aXwhNIPUF8KVW/6MmvWrC3uXtlduW6HZQBLsy71HaEMmATUABXAv5vZJe5+rN1G7iuAFQCVlZVeU1OTQfUd1dXVke22hUZ9KTyh9APUl0LVH33JZFimARiftFwBHEpT5gV3P+PuvwT2EIW9iIjkQSbhXg9MMrOJZjYQuA1Yl1JmLTALwMxGA78PvJPLhoqISOa6DXd3bwaWABuA3cBqd99pZg+Y2by42AbgqJntAjYBS939aF81WkREupbJmDvuvh5Yn7Luu0mPHfhO/CMiInmmb6iKiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgDIKdzOba2Z7zGy/md3TRbn5ZuZmVpm7JoqISE91G+5mVgo8ClwPXAwsNLOL05QbBtwFvJ7rRoqISM9kcuVeBex393fc/ROgFrgxTbn/A/w1cCqH7RMRkSyYu3ddwGw+MNfdF8XLdwAz3X1JUpmpwL3u/kdmVgfc7e6b0+xrMbAYYMyYMdNra2uzanRjYyNDhw7NattCo74UnlD6AepLoepNX2bNmrXF3bsd+i7LYF+WZl3bO4KZlQDfB+7sbkfuvgJYAVBZWek1NTUZVN9RXV0d2W5baNSXwhNKP0B9KVT90ZdMhmUagPFJyxXAoaTlYcAlQJ2ZHQCuANbpQ1URkfzJJNzrgUlmNtHMBgK3AesST7r7cXcf7e4T3H0C8BowL92wjIiI9I9uw93dm4ElwAZgN7Da3Xea2QNmNq+vGygiIj2XyZg77r4eWJ+y7rudlK3pfbNERKQ39A1VEZEAKdxFRAKkcBcRCZDCXUQkQAp3EZEAZXS3jEhfWbv1IMs37OHQsSbGjShn6ZzJ3DT1gnw3SzKk41e4FO6SN2u3HmTZ8ztoOtMCwMFjTSx7fgeAAqII6PgVNg3LSN4s37CnLRgSms60sHzDnjy1SHpCx6+wKdwlbw4da+rReiksOn6FTeEueTNuRHmP1kth0fErbAp3yZulcyZTPqC03bryAaUsnTM5Ty2SntDxK2z6QFXyJvGhm+62KE46foVN4S55ddPUCxQGRUzHr3BpWEZEJEAKdxGRACncRUQCpHAXEQmQwl1EJEAKdxGRACncRUQCpHAXEQmQwl1EJEAKdxGRACncRUQCpHAXEQmQwl1EJEAKdxGRACncRUQCpHAXEQmQwl1EJEAKdxGRACncRUQCpL+hKiJt3J1Wh1Z3Wlodd2hxp9Wd1tZoXYvH61sT6+PyiTLJ2ybKxPttaT1bptWhNX4+KkfS48R62sr/x7tneO+1X7W1o12ZuO7WRHvb6ki0m6TyKXW3laddPxPtSW5T8rYtSXW2bzdpX4ez5Z0//KxR08fHUuEuBaPDCZF0cramCYrksOmsTLSvjuERBVT6YHj7UDO/fbOhw0namhQCafeZqKtDcJHUpvaBlS6UkrdJ1JscEN7Wh5R2pAaaOx9/fIqBr76cdp/J9Sbvp6DtejujYiUGpSVGiUU/0WMoKTFKzSiJl0vNsPj50hLD4nVt25bQbh+l8bqyspK2Mol9m1nbthbX366upPLnt7zfxy9UhuFuZnOBHwClwBPu/n9Tnv8OsAhoBj4A/sTdf5XjtuZc4iql/VVAtO7sCdTxKqW70GkfBB2vYBInmbuz/TfNnHjrUNtJne4k7djG7q9U2gVbF2GTemXR1WvS2RVXIogbGz/mnPpN7a/mkvuVWC6GUNn+VtabJk5qaxcwxCd54gQn6cRvHywl8frUMiUWBU1ZaQnnlLUPqOQASQ6Zw++/z7ixo9vts11YxfWW2NkgKo3bZ0nB1S4kE6GV1KfU/Sa2ORuS7dua/LokHqcG4tnXIlr/+quvUl1dfXabRN2JMnZ2P2aWw/8MuVdXd6TP6+g23M2sFHgUuA5oAOrNbJ2770oqthWodPePzex/AH8NLOiLBq/e/B5/+4uPGfTmv7UL0NZW2oKsJelxp782xaFbELZt7fUuUk/stquUpEBpdzWTcjK0vwpJOXFTrlaiOlLqK4EjJU2M/d0RHevr5iqp85M/TWAkBWdyQCWHZvI2lhoeHQLq7NVZoo7N9fVcecXMtIGT/HqkhnLi9SgkdXV11NRcnu9m5MSIQSWcN+ycfDejaGRy5V4F7Hf3dwDMrBa4EWgLd3fflFT+NeAruWxksuHlAxgzpIQx5w/t+GtQylXP2ZBJWk666mh3ZdLuxDWMjsHU7b7T/ErWeR3RNls2b+aKmTPaBWv7K76ut08EXSGEShQkU/PdjF5rGFLChaOG5LsZIr1i3s3lq5nNB+a6+6J4+Q5gprsv6aT83wG/cfcH0zy3GFgMMGbMmOm1tbVZNbqxsZGhQ4dmtW2hUV8KTyj9APWlUPWmL7Nmzdri7pXdlcvkyj3dJWHadwQz+wpQCfxBuufdfQWwAqCystJramoyqL6j6Aoxu20LjfpSeELpB6gvhao/+pJJuDcA45OWK4BDqYXM7FrgfwN/4O6nc9M8ERHJRiZfYqoHJpnZRDMbCNwGrEsuYGZTgceBee5+OPfNFBGRnug23N29GVgCbAB2A6vdfaeZPWBm8+Jiy4GhwI/NbJuZretkdyIi0g8yus/d3dcD61PWfTfp8bU5bpdIVtZuPcjyDXs4dKyJcSPKWTpnMkCHdTdNvaBf6u6LejJx79odPPv6e3z7kjN8fdl6Fs4cz4M3XZqXtkh+6BuqEoy1Ww+y7PkdNJ1pAeDgsSaW/vgtMDjT4m3rlj2/AyCnwZuu7r6oJxP3rt3Bj157t225xb1tWQH/6aGJwyQYyzfsaQvXhDOt3hbsCU1nWli+YU+f190X9WTi2dff69F6CZPCXYJx6FhTn5Ttzf5yXU8mWjr57kpn6yVMCncJxrgR5X1Stjf7y3U9mSjt5NvKna2XMCncJRhL50ymfEBpu3UDSowBpe1DrXxAadsHrX1Zd1/Uk4mFM8f3aL2ESR+oSjASH1zm426ZzurOx90yiQ9NE2PspWa6W+ZTSOEuQblp6gVpA7U/QrazuvPhwZsu5cGbLqWuro7/vL0m382RPNCwjIhIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEiCFu4hIgBTuIiIBUriLiARI4S4iEqCMwt3M5prZHjPbb2b3pHn+HDNbFT//uplNyHVDRUQkc92Gu5mVAo8C1wMXAwvN7OKUYl8HPnT33wO+D/xVrhsqIiKZy+TKvQrY7+7vuPsnQC1wY0qZG4F/ih8/B3zBzCx3zRQRkZ4oy6DMBcB7ScsNwMzOyrh7s5kdB0YBR5ILmdliYHG82Ghme7JpNDA6dd9FTH0pPKH0A9SXQtWbvlyYSaFMwj3dFbhnUQZ3XwGsyKDOrhtkttndK3u7n0KgvhSeUPoB6kuh6o++ZDIs0wCMT1quAA51VsbMyoDhwG9z0UAREem5TMK9HphkZhPNbCBwG7Aupcw64I/jx/OBf3X3DlfuIiLSP7odlonH0JcAG4BSYKW77zSzB4DN7r4OeBJ42sz2E12x39aXjSYHQzsFRH0pPKH0A9SXQtXnfTFdYIuIhEffUBURCZDCXUQkQAUf7mY2yMzeMLO3zGynmX0vXj8xnupgXzz1wcB8tzUTZlZqZlvN7KfxcrH244CZ7TCzbWa2OV430sxejPvyopn9Tr7bmQkzG2Fmz5nZf5jZbjO7shj7YmaT4+OR+DlhZt8u0r78z/h8f9vMno1zoFjPlT+P+7HTzL4dr+vzY1Lw4Q6cBq5x98uBKcBcM7uCaIqD77v7JOBDoikQisGfA7uTlou1HwCz3H1K0v269wAvx315OV4uBj8AfubuFwGXEx2fouuLu++Jj8cUYDrwMbCGIuuLmV0A3AVUuvslRDdy3EYRnitmdgnwDaJv+l8OfMnMJtEfx8Tdi+YHGAy8SfQN2SNAWbz+SmBDvtuXQfsr4gN5DfBToi9/FV0/4rYeAEanrNsDjI0fjwX25LudGfTjXOCXxDcXFHNfUto/G3ilGPvC2W+8jyS6o++nwJxiPFeAW4Ankpb/Evhf/XFMiuHKPTGUsQ04DLwI/CdwzN2b4yINRP8hCt0jRAe2NV4eRXH2A6JvIG80sy3xtBIAY9z91wDxv+fnrXWZ+yzwAfCP8XDZE2Y2hOLsS7LbgGfjx0XVF3c/CDwMvAv8GjgObKE4z5W3gavNbJSZDQa+SPSFzz4/JkUR7u7e4tGvmhVEv958Ll2x/m1Vz5jZl4DD7r4leXWaogXdjyTV7j6NaLbQPzOzq/PdoCyVAdOAx9x9KvARBT5s0Z14LHoe8ON8tyUb8fjzjcBEYBwwhOj/WaqCP1fcfTfRcNKLwM+At4DmLjfKkaII9wR3PwbUAVcAI+KpDiD9lAiFphqYZ2YHiGbWvIboSr7Y+gGAux+K/z1MNK5bBbxvZmMB4n8P56+FGWsAGtz99Xj5OaKwL8a+JFwPvOnu78fLxdaXa4FfuvsH7n4GeB64iuI9V55092nufjXRlzz30Q/HpODD3czOM7MR8eNyogO/G9hENNUBRFMfvJCfFmbG3Ze5e4W7TyD6lflf3f12iqwfAGY2xMyGJR4Tje++TftpKIqiL+7+G+A9M5scr/oCsIsi7EuShZwdkoHi68u7wBVmNjieOjxxTIruXAEws/Pjfz8D/CHRsenzY1Lw31A1s8uI5oovJXozWu3uD5jZZ4mugEcCW4GvuPvp/LU0c2ZWA9zt7l8qxn7EbV4TL5YBz7j7Q2Y2ClgNfIboBL3F3Qt+AjkzmwI8AQwE3gG+Rvx/jeLry2CiDyM/6+7H43VFd1ziW54XEA1hbAUWEY2xF9W5AmBm/070+doZ4Dvu/nJ/HJOCD3cREem5gh+WERGRnlO4i4gESOEuIhIghbuISIAU7iIiAcrkD2SL9Kv4NrGX48XfBVqIpggAqHL3T/LSsC6Y2Z8A6+P75kXyTrdCSkEzs/uBRnd/uADaUuruLZ089wtgibtv68H+ypLmShHJKQ3LSFExsz+2aH7/bWb292ZWYmZlZnbMzJab2ZtmtsHMZprZv5nZO2b2xXjbRWa2Jn5+j5ndm+F+HzSzN4AqM/uemdXH83P/g0UWEE1HvSrefqCZNSR9s/oKM3spfvygmT1uZi8STVZWZmZ/E9e93cwW9f+rKiFSuEvRiOfGvhm4Kp5Iroyzf4x9OLAxnszsE+B+oq+t3wI8kLSbqnibacCXzWxKBvt9092r3P1V4AfuPgO4NH5urruvArYBCzyaT727YaOpwA3ufgewmGhCuSpgBtEkbJ/J5vURSaYxdykm1xIF4OZoyhHKib5qD9Dk7i/Gj3cAx9292cx2ABOS9rHB3T8EMLO1wH8jOg862+8nnJ1qAeALZrYUGASMJpqK9l962I8X3P1U/Hg28DkzS34zmUT0lXSRrCncpZgYsNLd/7LdymimwOSr5Vaiv+CVeJz8/zz1QybvZr9NHn8wFc/b8nfANHc/aGYPEoV8Os2c/c04tcxHKX36U3d/GZEc0rCMFJOXgFvNbDREd9VkMYQx26K/mTqYaM7wV3qw33KiN4sj8ayYf5T03ElgWNLyAaI/dUdKuVQbgD9NTGVr0d9BLe9hn0Q60JW7FA133xHPFviSmZUQzbL33+nZvN6/AJ4B/gvwdOLulkz26+5HzeyfiKY3/hXwetLT/wg8YWZNROP69wP/z8x+A7zRRXseJ5oZcFs8JHSY6E1HpFd0K6R8asR3olzi7t/Od1tE+pqGZUREAqQrdxGRAOnKXUQkQAp3EZEAKdxFRAKkcBcRCZDCXUQkQP8fn9uGN4q2ovIAAAAASUVORK5CYII=\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEKCAYAAAAcgp5RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAGyFJREFUeJzt3X2UVPWd5/H3pxuQBhEjkhkFDWSWtHF9ABRQWZ3WqGhORLPrE2vGMRNCdmeMk83Knng2E43Rc2YHd2I26zgy6jgxiUo8iiSHCahjT2Y8PoCCILAIY4g2JEGND7Q2Snd/9497u6kuqunqpvqhfnxe5/Tpurd+de/3V7fvp27fuvUrRQRmZpaumsEuwMzM+peD3swscQ56M7PEOejNzBLnoDczS5yD3swscT0GvaR7Je2U9HI390vS/5G0VdI6SdMrX6aZmfVVOUf09wEX7Of+C4Ep+c8C4M4DL8vMzCqlx6CPiF8Av9tPk4uBH0TmWeBwSUdVqkAzMzswwyqwjAnA6wXTTfm8Xxc3lLSA7KifkSNHnnLsscdWYPVDU3t7OzU16b4FknL/Uu4buH/V7pVXXnkzIsb35jGVCHqVmFdyXIWIWAwsBqivr4/NmzdXYPVDU2NjIw0NDYNdRr9JuX8p9w3cv2on6Ve9fUwlXvaagGMKpicCOyqwXDMzq4BKBP0y4Or86pvTgHcjYp/TNmZmNjh6PHUj6QGgAThSUhNwIzAcICL+FlgOfBbYCnwAfLG/ijUzs97rMegjYl4P9wfwZxWryMyqwp49e2hqamL37t2DXUoXY8eOZdOmTYNdxgEbOXIkEydOZPjw4Qe8rEq8GWtmB6GmpibGjBnDpEmTkEpdkzE4du3axZgxYwa7jAMSEbz11ls0NTUxefLkA15eutcgmVm/2r17N+PGjRtSIZ8KSYwbN65i/y056M2szxzy/aeSz62D3swscT5Hb2ZVq7a2lhNPPLFzeunSpYwbN24QKxqaHPRmVrXq6upYu3Ztl3m7du3qvN3a2sqwYY45n7oxs6T86Ec/4rLLLuOiiy7i/PPPB2DRokXMmDGDk046iRtvvLGz7a233kp9fT3nnnsu8+bN47bbbgOgoaGB1atXA/Dmm28yadIkANra2li4cGHnsu666y5g77ALl156KccddxxXXXUV2ZXnsGrVKs444wxOPvlkZs6cya5duzjzzDO7vEDNnj2bdevW9dtz4pc6Mztg3/7pBjbueK+iyzz+6MO48aJ/v982LS0tTJ06FYDJkyfz6KOPAvDMM8+wbt06jjjiCFauXMmWLVt4/vnniQjmzp3LL37xC0aPHs2DDz7ImjVraG1tZfr06Zxyyin7Xd8999zD2LFjWbVqFR9++CGzZ8/ufDFZs2YNGzZs4Oijj2b27Nk8/fTTzJw5kyuuuIKHHnqIGTNm8N5771FXV8f8+fO57777uP3223nllVf48MMPOemkkyrwrJXmoDezqlXq1A3AeeedxxFHHAHAypUrWblyJdOmTQOgubmZLVu2sGvXLj7/+c8zatQoAObOndvj+lauXMm6det4+OGHAXj33XfZsmULI0aMYObMmUycOBGAqVOnsm3bNsaOHctRRx3FjBkzADjssMMAuOyyy/jOd77DokWLuPfee7nmmmsO7InogYPezA5YT0feA2306NGdtyOCG264ga985Std2tx+++3dXsI4bNgw2tvbAbpcyx4RfP/732fOnDld2jc2NnLIIYd0TtfW1tLa2kpElFzHqFGjOO+883jsscdYsmRJ52mi/uJz9GaWtDlz5nDvvffS3NwMwPbt29m5cydnnXUWjz76KC0tLezatYuf/vSnnY+ZNGkSL7zwAkDn0XvHsu6880727NkDwCuvvML777/f7bqPO+44duzYwapVq4DsjeLW1lYA5s+fz3XXXceMGTM6//voLz6iN7OknX/++WzatInTTz8dgEMPPZQf/vCHTJ8+nSuuuIKpU6fyiU98gjPPPLPzMddffz2XX345999/P+ecc07n/Pnz57Nt2zamT59ORDB+/HiWLl3a7bpHjBjBQw89xFe/+lVaWlqoq6vjiSee4NBDD+WUU07hsMMO44tfHIBxICNiUH4+9alPRcqeeuqpwS6hX6Xcv5T7FlG5/m3cuLEiy6m09957r0+Pu/HGG2PRokUVrqZ727dvjylTpkRbW1u3bUo9x8Dq6GXe+tSNmdkA+8EPfsCsWbO49dZbB+RrD33qxswMuOmmmwZsXVdffTVXX331gK3PR/Rm1mcRJb8e2iqgks+tg97M+mTkyJG89dZbDvt+EPl49CNHjqzI8nzqxsz6ZOLEiTQ1NfHGG28Mdild7N69u2IBOZg6vmGqEhz0ZtYnw4cPr8i3H1VaY2Nj56dgLeNTN2ZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG+UuP9YSU9JWiNpnaTPVr5UMzPrix6DXlItcAdwIXA8ME/S8UXNvgksiYhpwJXA31S6UDMz65tyjuhnAlsj4tWI+Ah4ELi4qE0Ah+W3xwI7KleimZkdCPX0De6SLgUuiIj5+fQfAbMi4tqCNkcBK4GPAaOBcyPihRLLWgAsABg/fvwpS5YsqVQ/hpzm5mYOPfTQwS6j36Tcv5T7Bu5ftTv77LNfiIhTe/OYcr4cXCXmFb86zAPui4j/Lel04H5JJ0REe5cHRSwGFgPU19dHQ0NDb2qtKo2Njbh/1SnlvoH7dzAq59RNE3BMwfRE9j018yVgCUBEPAOMBI6sRIFmZnZgygn6VcAUSZMljSB7s3VZUZvXgM8ASPo0WdC/UclCzcysb3oM+ohoBa4FVgCbyK6u2SDpZklz82b/HfiypJeAB4BroqeT/2ZmNiDKOUdPRCwHlhfN+1bB7Y3A7MqWZmZmleBPxpqZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWuLKCXtIFkjZL2irpG920uVzSRkkbJP24smWamVlfDeupgaRa4A7gPKAJWCVpWURsLGgzBbgBmB0Rb0v6eH8VbGZmvVPOEf1MYGtEvBoRHwEPAhcXtfkycEdEvA0QETsrW6aZmfVVj0f0wATg9YLpJmBWUZtPAUh6GqgFboqInxcvSNICYAHA+PHjaWxs7EPJ1aG5udn9q1Ip9w3cv4NROUGvEvOixHKmAA3AROBfJJ0QEe90eVDEYmAxQH19fTQ0NPS23qrR2NiI+1edUu4buH8Ho3JO3TQBxxRMTwR2lGjzWETsiYhfApvJgt/MzAZZOUG/CpgiabKkEcCVwLKiNkuBswEkHUl2KufVShZqZmZ902PQR0QrcC2wAtgELImIDZJuljQ3b7YCeEvSRuApYGFEvNVfRZuZWfnKOUdPRCwHlhfN+1bB7QC+nv+YmdkQ4k/GmpklzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeIc9GZmiXPQm5klzkFvZpY4B72ZWeLKCnpJF0jaLGmrpG/sp92lkkLSqZUr0czMDkSPQS+pFrgDuBA4Hpgn6fgS7cYA1wHPVbpIMzPru3KO6GcCWyPi1Yj4CHgQuLhEu+8AfwXsrmB9ZmZ2gIaV0WYC8HrBdBMwq7CBpGnAMRHxM0nXd7cgSQuABQDjx4+nsbGx1wVXi+bmZvevSqXcN3D/DkblBL1KzIvOO6Ua4LvANT0tKCIWA4sB6uvro6Ghoawiq1FjYyPuX3VKuW/g/h2Myjl10wQcUzA9EdhRMD0GOAFolLQNOA1Y5jdkzcyGhnKCfhUwRdJkSSOAK4FlHXdGxLsRcWRETIqIScCzwNyIWN0vFZuZWa/0GPQR0QpcC6wANgFLImKDpJslze3vAs3M7MCUc46eiFgOLC+a961u2jYceFlmZlYp/mSsmVniHPRmZolz0JuZJc5Bb2aWOAe9mVniyrrqxqxSlq7ZzqIVm9nxTgtHH17Hwjn1XDJtwmCXZf3A23rocNDbgFm6Zjs3PLKelj1tAGx/p4UbHlkP4ABIjLf10OJTNzZgFq3Y3Lnjd2jZ08aiFZsHqSLrL97WQ4uD3gbMjndaejXfqpe39dDioLcBc/Thdb2ab9XL23pocdDbgFk4p5664bVd5tUNr2XhnPpBqsj6i7f10OI3Y23AdLwJ5ysx0udtPbQ46G1AXTJtgnf2g4S39dDhUzdmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOAe9mVniHPRmZolz0JuZJc5Bb2aWOH9nrJmVJSJoaw/aA9oj8h9oa49u72tvL9Eugvb20svYp13RMtoj8mloi6L15u02vbaH15/9Vba89qAtStS+T61BW3vpPnZMd3df5DV31Fiq9s52HevrspyCdlG0vKK+tkfftp2D3gZN4Y7dJRwiiPaCnaI4GPLbe3f0vfdFqeX1cud8eUcrv3uxqcdgiYKAKL1Tlg6P0kGwd3n7C7G2gvW2t5doV+r5KgqSDz7YzSHPPLnf9RSHS1tfE2awbHy57KYS1ErUSNTUQI1ErYQENTUdt0WNoLZmb7u9j8nuqylaRo0K5teI2hoxvOPxUr4sAFFbky1b+bq7PK5omWv68HSUFfSSLgC+B9QCd0fEXxbd/3VgPtAKvAH8SUT8qg/19Nk+r/qljgAKjhpKvcruEzzFO0vnEUL2uP0dtaz/TSvvvbRjnzCIotvdBl3Rq3rbfu7b35HBPvOLQ6rLkcq+Ry7dHYE1N3/AyFVPdd7X2ZcSwVNYb9fneyD/Qnpp3UsH9PDC8FBhQOThURwEtTXZziyU7/D7Pr62RojC8MkeO6y2hkOG7Q2cjmDqWEbn8vL17vztbzn6qCP3CaWOdvvczutUPr+wPqlrqGX9UNewLFFDTan11AhREKI1RcuVgL3PRZdw7QjfGvHsM88we/YZBbUL1RQ9FwXPrfLlVotb+vCYHoNeUi1wB3Ae0ASskrQsIjYWNFsDnBoRH0j6r8BfAVfsb7nbm9s596//uXQQlArtff716Ro8Q9Lavrz2ltbxh93lFb9oR+g86ug4AqnpLmz2hkoWGnuPHrJ1lA6O2jwUJHizpoWjfv/wLjt58Tpqa9Sl9pJHPwV9KWyX9TN7LHmfawtrrum6jNqa7LkR+4ZNjYAuobdvUBTWvnrV85x+2qx9gqXrkV/R9ig6EhzK4dHY2EhDw8mDXUa/+djIGj4+ZuRglzGklHNEPxPYGhGvAkh6ELgY6Az6iHiqoP2zwBd6WujwGlH/e2M6d8CSQdBNKOzdWfNQoGvoFR/xFP6bpOLbRUc1xUddxQGyN/T2hlvx0UiNxIurVzNr1oyCYN7fkR37HAWpKJiGmiwspg12Gf2iaXQNnxg3erDLMKuYcoJ+AvB6wXQTMGs/7b8E/GOpOyQtABYAjB8/nssmvFdmmX0Q+U8FteU/5RirD2ja+EJlCxhCmpubaWxsHOwy+kXKfQP372BUTtCXOpwsGaGSvgCcCvxhqfsjYjGwGKC+vj4aGhrKq7IKZUe8DYNdRr9JuX8p9w3cv4NROUHfBBxTMD0R2FHcSNK5wP8E/jAiPqxMeWZmdqDK+cDUKmCKpMmSRgBXAssKG0iaBtwFzI2InZUv08zM+qrHoI+IVuBaYAWwCVgSERsk3Sxpbt5sEXAo8BNJayUt62ZxZmY2wMq6jj4ilgPLi+Z9q+D2uRWuy6zXlq7ZzqIVm9nxTgtHH17Hwjn1APvMu2TahAGtoT/X1xvfXLqeB557na+dsIcv3bCcebOO4ZZLThzssmwA+JOxloSla7ZzwyPradmTXRe1/Z0WFv7kJRDsaYvOeTc8sh6gX8K3VA39ub7e+ObS9fzw2dc6p9siOqcd9unzoGaWhEUrNncGbIc97dEZ8h1a9rSxaMXmAauhP9fXGw8893qv5ltaHPSWhB3vtPRL20rU0F/r6422bsab6G6+pcVBb0k4+vC6fmlbiRr6a329UdvNp6u7m29pcdBbEhbOqadueG2XecNrxPDarkFWN7y2803agaihP9fXG/NmHdOr+ZYWvxlrSeh4s3Mwr7rprobBfiMW9r7h2nFOvlbyVTcHEQe9JeOSaRNKhupABm13NQwFt1xyIrdcciKNjY3821UNg12ODSCfujEzS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBLnoDczS5yD3swscQ56M7PEOejNzBJXVtBLukDSZklbJX2jxP2HSHoov/85SZMqXaiZmfVNj0EvqRa4A7gQOB6YJ+n4omZfAt6OiH8HfBf4X5Uu1MzM+qacI/qZwNaIeDUiPgIeBC4uanMx8A/57YeBz0hS5co0M7O+GlZGmwnA6wXTTcCs7tpERKukd4FxwJuFjSQtABbkkx9KerkvRVeJIynqf2JS7l/KfQP3r9rV9/YB5QR9qSPz6EMbImIxsBhA0uqIOLWM9Vcl9696pdw3cP+qnaTVvX1MOadumoBjCqYnAju6ayNpGDAW+F1vizEzs8orJ+hXAVMkTZY0ArgSWFbUZhnwx/ntS4F/ioh9jujNzGzg9XjqJj/nfi2wAqgF7o2IDZJuBlZHxDLgHuB+SVvJjuSvLGPdiw+g7mrg/lWvlPsG7l+163X/5ANvM7O0+ZOxZmaJc9CbmSVuQIJe0khJz0t6SdIGSd/O50/Oh0zYkg+hMGIg6ukPkmolrZH0s3w6pb5tk7Re0tqOS7skHSHp8bx/j0v62GDX2VeSDpf0sKT/J2mTpNNT6Z+k+ny7dfy8J+lrCfXvv+WZ8rKkB/KsSWnf+/O8bxskfS2f1+ttN1BH9B8C50TEycBU4AJJp5ENlfDdiJgCvE02lEK1+nNgU8F0Sn0DODsiphZcn/wN4Mm8f0/m09Xqe8DPI+I44GSy7ZhE/yJic77dpgKnAB8Aj5JA/yRNAK4DTo2IE8guFrmSRPY9SScAXyYbneBk4HOSptCXbRcRA/oDjAJeJPt07ZvAsHz+6cCKga6nQn2amD/h5wA/I/sAWRJ9y+vfBhxZNG8zcFR++yhg82DX2ce+HQb8kvzChNT6V9Sn84GnU+kfez+RfwTZFYQ/A+aksu8BlwF3F0z/BfA/+rLtBuwcfX5qYy2wE3gc+DfgnYhozZs0kW24anQ72QZoz6fHkU7fIPuU80pJL+TDWAD8XkT8GiD//fFBq+7AfBJ4A/j7/NTb3ZJGk07/Cl0JPJDfrvr+RcR24DbgNeDXwLvAC6Sz770MnCVpnKRRwGfJPpja6203YEEfEW2R/fs4kexfkU+XajZQ9VSKpM8BOyPihcLZJZpWXd8KzI6I6WQjmP6ZpLMGu6AKGgZMB+6MiGnA+1ThaYye5Oep5wI/GexaKiU/N30xMBk4GhhN9jdarCr3vYjYRHYa6nHg58BLQOt+H9SNAb/qJiLeARqB04DD8yEToPTQCtVgNjBX0jaykT3PITvCT6FvAETEjvz3TrLzuzOB30o6CiD/vXPwKjwgTUBTRDyXTz9MFvyp9K/DhcCLEfHbfDqF/p0L/DIi3oiIPcAjwBmkte/dExHTI+Issg+jbqEP226grroZL+nw/HYd2QbaBDxFNmQCZEMoPDYQ9VRSRNwQERMjYhLZv8b/FBFXkUDfACSNljSm4zbZed6X6TrsRdX2LyJ+A7wuqWNEwM8AG0mkfwXmsfe0DaTRv9eA0ySNyodF79h2Sex7AJI+nv8+FviPZNuw19tuQD4ZK+kksvHqa8leXJZExM2SPkl2FHwEsAb4QkR82O8F9RNJDcD1EfG5VPqW9+PRfHIY8OOIuFXSOGAJcCzZDndZRFTlQHaSpgJ3AyOAV4Evkv+dkkb/RpG9afnJiHg3n5fE9ssv1b6C7JTGGmA+2Tn5qt/3ACT9C9l7fnuAr0fEk33Zdh4Cwcwscf5krJlZ4hz0ZmaJc9CbmSXOQW9mljgHvZlZ4sr5cnCzAZVfPvZkPvn7QBvZMAUAMyPio0EpbD8k/QmwPL8u32xI8eWVNqRJuglojojbhkAttRHR1s19/wpcGxFre7G8YQVjspj1G5+6saoi6Y+VfbfBWkl/I6lG0jBJ70haJOlFSSskzZL0z5JelfTZ/LHzJT2a379Z0jfLXO4tkp4HZkr6tqRV+Rjhf6vMFWTDbz+UP36EpKaCT4OfJumJ/PYtku6S9DjZQGrDJP11vu51kuYP/LNqqXPQW9XIx+f+PHBGPkDeMPZ+Ef1YYGU++NpHwE1kH4m/DLi5YDEz88dMB/6zpKllLPfFiJgZEc8A34uIGcCJ+X0XRMRDwFrgisjGfu/p1NI04KKI+CNgAdmgeDOBGWSDxh3bl+fHrDs+R2/V5FyyMFydDW1CHdlH+wFaIuLx/PZ64N2IaJW0HphUsIwVEfE2gKSlwH8g2w+6W+5H7B0CAuAzkhYCI4EjyYbF/cde9uOxiNid3z4f+LSkwheWKWQfbTerCAe9VRMB90bEX3SZmY1UWHgU3U72rWYdtwv/zovflIoeltsS+RtZ+Zgx/xeYHhHbJd1CFviltLL3P+biNu8X9elPI+JJzPqJT91YNXkCuFzSkZBdndOH0xznK/uO2FFkY5k/3Yvl1pG9cLyZj+j5nwru2wWMKZjeRvbVfRS1K7YC+NOOYXWVfcdrXS/7ZLZfPqK3qhER6/PRCp+QVEM2ot9/oXfjjf8r8GPgD4D7O66SKWe5EfGWpH8gG6b5V8BzBXf/PXC3pBay9wFuAv5O0m+A5/dTz11koxCuzU8b7SR7ATKrGF9eaQeN/IqWEyLia4Ndi9lA8qkbM7PE+YjezCxxPqI3M0ucg97MLHEOejOzxDnozcwS56A3M0vc/wcowwoTqhaBUgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f98d595b8d0>"
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n",
"data_pred['Frequency'] = logmodel.predict(data_pred)\n",
"data_pred['Frequency'] = logmodel.predict(data_pred[['Intercept','Temperature']])\n",
"data_pred.plot(x=\"Temperature\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n",
"plt.scatter(x=data[\"Temperature\"],y=data[\"Frequency\"])\n",
"plt.grid(True)"
......@@ -709,7 +705,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
"version": "3.7.3"
}
},
"nbformat": 4,
......
......@@ -173,7 +173,7 @@ this temperature from the model we just built:
import matplotlib.pyplot as plt
data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})
data_pred['Frequency'] = logmodel.predict(data_pred)
data_pred['Frequency'] = logmodel.predict(data_pred[['Intercept','Temperature']])
data_pred.plot(x="Temperature",y="Frequency",kind="line",ylim=[0,1])
plt.scatter(x=data["Temperature"],y=data["Frequency"])
plt.grid(True)
......
......@@ -175,7 +175,7 @@ cette température à partir du modèle que nous venons de construire:
import matplotlib.pyplot as plt
data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})
data_pred['Frequency'] = logmodel.predict(data_pred)
data_pred['Frequency'] = logmodel.predict(data_pred[['Intercept','Temperature']])
data_pred.plot(x="Temperature",y="Frequency",kind="line",ylim=[0,1])
plt.scatter(x=data["Temperature"],y=data["Frequency"])
plt.grid(True)
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment