diff --git a/module2/exo5/exo5_R_en.org b/module2/exo5/exo5_R_en.org
new file mode 100644
index 0000000000000000000000000000000000000000..e299e975cef035d5d8f0cd1f72731d7b8fd1cf83
--- /dev/null
+++ b/module2/exo5/exo5_R_en.org
@@ -0,0 +1,201 @@
+#+TITLE: Analysis of the risk of failure of the O-rings on the Challenger shuttle
+#+AUTHOR: Arnaud Legrand
+#+LANGUAGE: en
+
+#+HTML_HEAD:
+#+HTML_HEAD:
+#+HTML_HEAD:
+#+HTML_HEAD:
+#+HTML_HEAD:
+#+HTML_HEAD:
+
+#+LATEX_HEADER: \usepackage[utf8]{inputenc}
+#+LATEX_HEADER: \usepackage[T1]{fontenc}
+#+LATEX_HEADER: \usepackage[a4paper,margin=.8in]{geometry}
+#+LATEX_HEADER: \usepackage[french]{babel}
+
+# #+PROPERTY: header-args :session :exports both
+
+On January 27, 1986, the day before the takeoff of the shuttle /Challenger/, had
+a three-hour teleconference was held between
+Morton Thiokol (the manufacturer of one of the engines) and NASA. The
+discussion focused on the consequences of the
+temperature at take-off of 31°F (just below
+0°C) for the success of the flight and in particular on the performance of the
+O-rings used in the engines. Indeed, no test
+had been performed at this temperature.
+
+The following study takes up some of the analyses carried out that
+night with the objective of assessing the potential influence of
+the temperature and pressure to which the O-rings are subjected
+on their probability of malfunction. Our starting point is
+the results of the experiments carried out by NASA engineers
+during the six years preceding the launch of the shuttle
+Challenger.
+
+* Loading the data
+We start by loading this data:
+#+begin_src R :results output :session *R* :exports both
+data = read.csv("shuttle.csv",header=T)
+data
+#+end_src
+
+#+RESULTS:
+#+begin_example
+ Date Count Temperature Pressure Malfunction
+1 4/12/81 6 66 50 0
+2 11/12/81 6 70 50 1
+3 3/22/82 6 69 50 0
+4 11/11/82 6 68 50 0
+5 4/04/83 6 67 50 0
+6 6/18/82 6 72 50 0
+7 8/30/83 6 73 100 0
+8 11/28/83 6 70 100 0
+9 2/03/84 6 57 200 1
+10 4/06/84 6 63 200 1
+11 8/30/84 6 70 200 1
+12 10/05/84 6 78 200 0
+13 11/08/84 6 67 200 0
+14 1/24/85 6 53 200 2
+15 4/12/85 6 67 200 0
+16 4/29/85 6 75 200 0
+17 6/17/85 6 70 200 0
+18 7/2903/85 6 81 200 0
+19 8/27/85 6 76 200 0
+20 10/03/85 6 79 200 0
+21 10/30/85 6 75 200 2
+22 11/26/85 6 76 200 0
+23 1/12/86 6 58 200 1
+#+end_example
+
+The data set shows us the date of each test, the number of O-rings
+(there are 6 on the main launcher), the
+temperature (in Fahrenheit) and pressure (in psi), and finally the
+number of identified malfunctions.
+
+* Graphical inspection
+Flights without incidents do not provide any information
+on the influence of temperature or pressure on malfunction.
+We thus focus on the experiments in which at least one O-ring was defective.
+
+#+begin_src R :results output :session *R* :exports both
+data = data[data$Malfunction>0,]
+data
+#+end_src
+
+#+RESULTS:
+: Date Count Temperature Pressure Malfunction
+: 2 11/12/81 6 70 50 1
+: 9 2/03/84 6 57 200 1
+: 10 4/06/84 6 63 200 1
+: 11 8/30/84 6 70 200 1
+: 14 1/24/85 6 53 200 2
+: 21 10/30/85 6 75 200 2
+: 23 1/12/86 6 58 200 1
+
+We have a high temperature variability but
+the pressure is almost always 200, which should
+simplify the analysis.
+
+How does the frequency of failure vary with temperature?
+#+begin_src R :results output graphics :file "freq_temp.png" :exports both :width 600 :height 400 :session *R*
+plot(data=data, Malfunction/Count ~ Temperature, ylim=c(0,1))
+#+end_src
+
+#+RESULTS:
+[[file:freq_temp.png]]
+
+At first glance, the dependence does not look very important, but let's try to
+estimate the impact of temperature $t$ on the probability of O-ring malfunction.
+
+* Estimation of the temperature influence
+
+Suppose that each of the six O-rings is damaged with the same
+probability and independently of the others and that this probability
+depends only on the temperature. If $p(t)$ is this probability, the
+number $D$ of malfunctioning O-rings during a flight at
+temperature $t$ follows a binomial law with parameters $n=6$ and
+$p=p(t)$. To link $p(t)$ to $t$, we will therefore perform a
+logistic regression.
+
+#+begin_src R :results output :session *R* :exports both
+logistic_reg = glm(data=data, Malfunction/Count ~ Temperature, weights=Count,
+ family=binomial(link='logit'))
+summary(logistic_reg)
+#+end_src
+
+#+RESULTS:
+#+begin_example
+
+Call:
+glm(formula = Malfunction/Count ~ Temperature, family = binomial(link = "logit"),
+ data = data, weights = Count)
+
+Deviance Residuals:
+ 2 9 10 11 14 21 23
+-0.3015 -0.2836 -0.2919 -0.3015 0.6891 0.6560 -0.2850
+
+Coefficients:
+ Estimate Std. Error z value Pr(>|z|)
+(Intercept) -1.389528 3.195752 -0.435 0.664
+Temperature 0.001416 0.049773 0.028 0.977
+
+(Dispersion parameter for binomial family taken to be 1)
+
+ Null deviance: 1.3347 on 6 degrees of freedom
+Residual deviance: 1.3339 on 5 degrees of freedom
+AIC: 18.894
+
+Number of Fisher Scoring iterations: 4
+#+end_example
+
+The most likely estimator of the temperature parameter is 0.001416
+and the standard error of this estimator is 0.049, in other words we
+cannot distinguish any particular impact and we must take our
+estimates with caution.
+
+* Estimation of the probability of O-ring malfunction
+The expected temperature on the take-off day is 31°F. Let's try to
+estimate the probability of O-ring malfunction at
+this temperature from the model we just built:
+
+#+begin_src R :results output graphics :file "proba_estimate.png" :exports both :width 600 :height 400 :session *R*
+# shuttle=shuttle[shuttle$r!=0,]
+tempv = seq(from=30, to=90, by = .5)
+rmv <- predict(logistic_reg,list(Temperature=tempv),type="response")
+plot(tempv,rmv,type="l",ylim=c(0,1))
+points(data=data, Malfunction/Count ~ Temperature)
+#+end_src
+
+#+RESULTS:
+[[file:proba_estimate.png]]
+
+As expected from the initial data, the
+temperature has no significant impact on the probability of failure of the
+O-rings. It will be about 0.2, as in the tests
+where we had a failure of at least one joint. Let's get back to the initial dataset to estimate the probability of failure:
+
+#+begin_src R :results output :session *R* :exports both
+data_full = read.csv("shuttle.csv",header=T)
+sum(data_full$Malfunction)/sum(data_full$Count)
+#+end_src
+
+#+RESULTS:
+: [1] 0.06521739
+
+This probability is thus about $p=0.065$. Knowing that there is
+a primary and a secondary O-ring on each of the three parts of the
+launcher, the probability of failure of both joints of a launcher
+is $p^2 \approx 0.00425$. The probability of failure of any one of the
+launchers is $1-(1-p^2)^3 \approx 1.2%$. That would really be
+bad luck.... Everything is under control, so the takeoff can happen
+tomorrow as planned.
+
+But the next day, the Challenger shuttle exploded and took away
+with her the seven crew members. The public was shocked and in
+the subsequent investigation, the reliability of the
+O-rings was questioned. Beyond the internal communication problems
+of NASA, which have a lot to do with this fiasco, the previous analysis
+includes (at least) a small problem.... Can you find it?
+You are free to modify this analysis and to look at this dataset
+from all angles in order to to explain what's wrong.
diff --git a/module2/exo5/exo5_R.org b/module2/exo5/exo5_R_fr.org
similarity index 100%
rename from module2/exo5/exo5_R.org
rename to module2/exo5/exo5_R_fr.org
diff --git a/module2/exo5/exo5_en.Rmd b/module2/exo5/exo5_en.Rmd
new file mode 100644
index 0000000000000000000000000000000000000000..f9003e3a9de8b87c66b620b3fb5157fc127a4e17
--- /dev/null
+++ b/module2/exo5/exo5_en.Rmd
@@ -0,0 +1,119 @@
+---
+title: "Analysis of the risk of failure of the O-rings on the Challenger shuttle"
+author: "Arnaud Legrand"
+date: "28 juin 2018"
+output: html_document
+---
+
+On January 27, 1986, the day before the takeoff of the shuttle _Challenger_, had
+a three-hour teleconference was held between
+Morton Thiokol (the manufacturer of one of the engines) and NASA. The
+discussion focused on the consequences of the
+temperature at take-off of 31°F (just below
+0°C) for the success of the flight and in particular on the performance of the
+O-rings used in the engines. Indeed, no test
+had been performed at this temperature.
+
+The following study takes up some of the analyses carried out that
+night with the objective of assessing the potential influence of
+the temperature and pressure to which the O-rings are subjected
+on their probability of malfunction. Our starting point is
+the results of the experiments carried out by NASA engineers
+during the six years preceding the launch of the shuttle
+Challenger.
+
+# Loading the data
+We start by loading this data:
+
+```{r}
+data = read.csv("shuttle.csv",header=T)
+data
+```
+
+The data set shows us the date of each test, the number of O-rings
+(there are 6 on the main launcher), the
+temperature (in Fahrenheit) and pressure (in psi), and finally the
+number of identified malfunctions.
+
+# Graphical inspection
+Flights without incidents do not provide any information
+on the influence of temperature or pressure on malfunction.
+We thus focus on the experiments in which at least one O-ring was defective.
+
+```{r}
+data = data[data$Malfunction>0,]
+data
+```
+
+We have a high temperature variability but
+the pressure is almost always 200, which should
+simplify the analysis.
+
+How does the frequency of failure vary with temperature?
+```{r}
+plot(data=data, Malfunction/Count ~ Temperature, ylim=c(0,1))
+```
+
+At first glance, the dependence does not look very important, but let's try to
+estimate the impact of temperature $t$ on the probability of O-ring malfunction.
+
+# Estimation of the temperature influence
+
+Suppose that each of the six O-rings is damaged with the same
+probability and independently of the others and that this probability
+depends only on the temperature. If $p(t)$ is this probability, the
+number $D$ of malfunctioning O-rings during a flight at
+temperature $t$ follows a binomial law with parameters $n=6$ and
+$p=p(t)$. To link $p(t)$ to $t$, we will therefore perform a
+logistic regression.
+
+```{r}
+logistic_reg = glm(data=data, Malfunction/Count ~ Temperature, weights=Count,
+ family=binomial(link='logit'))
+summary(logistic_reg)
+```
+
+The most likely estimator of the temperature parameter is 0.001416
+and the standard error of this estimator is 0.049, in other words we
+cannot distinguish any particular impact and we must take our
+estimates with caution.
+
+# Estimation of the probability of O-ring malfunction
+The expected temperature on the take-off day is 31°F. Let's try to
+estimate the probability of O-ring malfunction at
+this temperature from the model we just built:
+
+```{r}
+# shuttle=shuttle[shuttle$r!=0,]
+tempv = seq(from=30, to=90, by = .5)
+rmv <- predict(logistic_reg,list(Temperature=tempv),type="response")
+plot(tempv,rmv,type="l",ylim=c(0,1))
+points(data=data, Malfunction/Count ~ Temperature)
+```
+
+As expected from the initial data, the
+temperature has no significant impact on the probability of failure of the
+O-rings. It will be about 0.2, as in the tests
+where we had a failure of at least one joint. Let's get back to the initial dataset to estimate the probability of failure:
+
+```{r}
+data_full = read.csv("shuttle.csv",header=T)
+sum(data_full$Malfunction)/sum(data_full$Count)
+```
+
+This probability is thus about $p=0.065$. Knowing that there is
+a primary and a secondary O-ring on each of the three parts of the
+launcher, the probability of failure of both joints of a launcher
+is $p^2 \approx 0.00425$. The probability of failure of any one of the
+launchers is $1-(1-p^2)^3 \approx 1.2%$. That would really be
+bad luck.... Everything is under control, so the takeoff can happen
+tomorrow as planned.
+
+But the next day, the Challenger shuttle exploded and took away
+with her the seven crew members. The public was shocked and in
+the subsequent investigation, the reliability of the
+O-rings was questioned. Beyond the internal communication problems
+of NASA, which have a lot to do with this fiasco, the previous analysis
+includes (at least) a small problem.... Can you find it?
+You are free to modify this analysis and to look at this dataset
+from all angles in order to to explain what's wrong.
diff --git a/module2/exo5/exo5_en.ipynb b/module2/exo5/exo5_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..d3fb0b6ffc4bdef5ab4134ae39a1c60c45e34204
--- /dev/null
+++ b/module2/exo5/exo5_en.ipynb
@@ -0,0 +1,720 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Analysis of the risk of failure of the O-rings on the Challenger shuttle"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "On January 27, 1986, the day before the takeoff of the shuttle _Challenger_, had\n",
+ "a three-hour teleconference was held between \n",
+ "Morton Thiokol (the manufacturer of one of the engines) and NASA. The\n",
+ "discussion focused on the consequences of the\n",
+ "temperature at take-off of 31°F (just below\n",
+ "0°C) for the success of the flight and in particular on the performance of the\n",
+ "O-rings used in the engines. Indeed, no test\n",
+ "had been performed at this temperature.\n",
+ "\n",
+ "The following study takes up some of the analyses carried out that\n",
+ "night with the objective of assessing the potential influence of\n",
+ "the temperature and pressure to which the O-rings are subjected\n",
+ "on their probability of malfunction. Our starting point is \n",
+ "the results of the experiments carried out by NASA engineers\n",
+ "during the six years preceding the launch of the shuttle\n",
+ "Challenger."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Loading the data\n",
+ "We start by loading this data:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
Date
\n",
+ "
Count
\n",
+ "
Temperature
\n",
+ "
Pressure
\n",
+ "
Malfunction
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
4/12/81
\n",
+ "
6
\n",
+ "
66
\n",
+ "
50
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
11/12/81
\n",
+ "
6
\n",
+ "
70
\n",
+ "
50
\n",
+ "
1
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
3/22/82
\n",
+ "
6
\n",
+ "
69
\n",
+ "
50
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
11/11/82
\n",
+ "
6
\n",
+ "
68
\n",
+ "
50
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
4/04/83
\n",
+ "
6
\n",
+ "
67
\n",
+ "
50
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
5
\n",
+ "
6/18/82
\n",
+ "
6
\n",
+ "
72
\n",
+ "
50
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
6
\n",
+ "
8/30/83
\n",
+ "
6
\n",
+ "
73
\n",
+ "
100
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
7
\n",
+ "
11/28/83
\n",
+ "
6
\n",
+ "
70
\n",
+ "
100
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
8
\n",
+ "
2/03/84
\n",
+ "
6
\n",
+ "
57
\n",
+ "
200
\n",
+ "
1
\n",
+ "
\n",
+ "
\n",
+ "
9
\n",
+ "
4/06/84
\n",
+ "
6
\n",
+ "
63
\n",
+ "
200
\n",
+ "
1
\n",
+ "
\n",
+ "
\n",
+ "
10
\n",
+ "
8/30/84
\n",
+ "
6
\n",
+ "
70
\n",
+ "
200
\n",
+ "
1
\n",
+ "
\n",
+ "
\n",
+ "
11
\n",
+ "
10/05/84
\n",
+ "
6
\n",
+ "
78
\n",
+ "
200
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
12
\n",
+ "
11/08/84
\n",
+ "
6
\n",
+ "
67
\n",
+ "
200
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
13
\n",
+ "
1/24/85
\n",
+ "
6
\n",
+ "
53
\n",
+ "
200
\n",
+ "
2
\n",
+ "
\n",
+ "
\n",
+ "
14
\n",
+ "
4/12/85
\n",
+ "
6
\n",
+ "
67
\n",
+ "
200
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
15
\n",
+ "
4/29/85
\n",
+ "
6
\n",
+ "
75
\n",
+ "
200
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
16
\n",
+ "
6/17/85
\n",
+ "
6
\n",
+ "
70
\n",
+ "
200
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
17
\n",
+ "
7/2903/85
\n",
+ "
6
\n",
+ "
81
\n",
+ "
200
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
18
\n",
+ "
8/27/85
\n",
+ "
6
\n",
+ "
76
\n",
+ "
200
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
19
\n",
+ "
10/03/85
\n",
+ "
6
\n",
+ "
79
\n",
+ "
200
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
20
\n",
+ "
10/30/85
\n",
+ "
6
\n",
+ "
75
\n",
+ "
200
\n",
+ "
2
\n",
+ "
\n",
+ "
\n",
+ "
21
\n",
+ "
11/26/85
\n",
+ "
6
\n",
+ "
76
\n",
+ "
200
\n",
+ "
0
\n",
+ "
\n",
+ "
\n",
+ "
22
\n",
+ "
1/12/86
\n",
+ "
6
\n",
+ "
58
\n",
+ "
200
\n",
+ "
1
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Date Count Temperature Pressure Malfunction\n",
+ "0 4/12/81 6 66 50 0\n",
+ "1 11/12/81 6 70 50 1\n",
+ "2 3/22/82 6 69 50 0\n",
+ "3 11/11/82 6 68 50 0\n",
+ "4 4/04/83 6 67 50 0\n",
+ "5 6/18/82 6 72 50 0\n",
+ "6 8/30/83 6 73 100 0\n",
+ "7 11/28/83 6 70 100 0\n",
+ "8 2/03/84 6 57 200 1\n",
+ "9 4/06/84 6 63 200 1\n",
+ "10 8/30/84 6 70 200 1\n",
+ "11 10/05/84 6 78 200 0\n",
+ "12 11/08/84 6 67 200 0\n",
+ "13 1/24/85 6 53 200 2\n",
+ "14 4/12/85 6 67 200 0\n",
+ "15 4/29/85 6 75 200 0\n",
+ "16 6/17/85 6 70 200 0\n",
+ "17 7/2903/85 6 81 200 0\n",
+ "18 8/27/85 6 76 200 0\n",
+ "19 10/03/85 6 79 200 0\n",
+ "20 10/30/85 6 75 200 2\n",
+ "21 11/26/85 6 76 200 0\n",
+ "22 1/12/86 6 58 200 1"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "data = pd.read_csv(\"shuttle.csv\")\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The data set shows us the date of each test, the number of O-rings (there are 6 on the main launcher), the temperature (in Fahrenheit) and pressure (in psi), and finally the number of identified malfunctions."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Graphical inspection\n",
+ "Flights without incidents do not provide any information\n",
+ "on the influence of temperature or pressure on malfunction.\n",
+ "We thus focus on the experiments in which at least one O-ring\n",
+ "was defective."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
Date
\n",
+ "
Count
\n",
+ "
Temperature
\n",
+ "
Pressure
\n",
+ "
Malfunction
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
1
\n",
+ "
11/12/81
\n",
+ "
6
\n",
+ "
70
\n",
+ "
50
\n",
+ "
1
\n",
+ "
\n",
+ "
\n",
+ "
8
\n",
+ "
2/03/84
\n",
+ "
6
\n",
+ "
57
\n",
+ "
200
\n",
+ "
1
\n",
+ "
\n",
+ "
\n",
+ "
9
\n",
+ "
4/06/84
\n",
+ "
6
\n",
+ "
63
\n",
+ "
200
\n",
+ "
1
\n",
+ "
\n",
+ "
\n",
+ "
10
\n",
+ "
8/30/84
\n",
+ "
6
\n",
+ "
70
\n",
+ "
200
\n",
+ "
1
\n",
+ "
\n",
+ "
\n",
+ "
13
\n",
+ "
1/24/85
\n",
+ "
6
\n",
+ "
53
\n",
+ "
200
\n",
+ "
2
\n",
+ "
\n",
+ "
\n",
+ "
20
\n",
+ "
10/30/85
\n",
+ "
6
\n",
+ "
75
\n",
+ "
200
\n",
+ "
2
\n",
+ "
\n",
+ "
\n",
+ "
22
\n",
+ "
1/12/86
\n",
+ "
6
\n",
+ "
58
\n",
+ "
200
\n",
+ "
1
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Date Count Temperature Pressure Malfunction\n",
+ "1 11/12/81 6 70 50 1\n",
+ "8 2/03/84 6 57 200 1\n",
+ "9 4/06/84 6 63 200 1\n",
+ "10 8/30/84 6 70 200 1\n",
+ "13 1/24/85 6 53 200 2\n",
+ "20 10/30/85 6 75 200 2\n",
+ "22 1/12/86 6 58 200 1"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = data[data.Malfunction>0]\n",
+ "data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We have a high temperature variability but\n",
+ "the pressure is almost always 200, which should\n",
+ "simplify the analysis.\n",
+ "\n",
+ "How does the frequency of failure vary with temperature?"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEKCAYAAAD9xUlFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFWxJREFUeJzt3X20ZXV93/H3Zx6AQaZAoJ0kMxAxUCwNSHAEDSYdS2JB\nV8AsEgVrsaRmwhLSZdomUJc1xCRrVRKt2og4UhTsakgUH0g7lkDSq4kRAc1kBrDgFBFmMKAjCheH\neeB++8fZs3Pm3jt3zoW7z2Hufb/WumvOfjj7fO939pzP7IfzO6kqJEkCWDTqAiRJzx+GgiSpZShI\nklqGgiSpZShIklqGgiSp1VkoJLkuyWNJ7t7H8iT5QJLNSTYmOa2rWiRJg+nySOFjwNkzLD8HOKH5\nWQt8qMNaJEkD6CwUquoLwHdnWOU84IbquR04IsmPdFWPJGn/lozwtVcCD/dNb2nmfWvyiknW0jua\nYNmyZS895phjhlLgczUxMcGiRV626WdPprIn07MvUz2Xntx///3fqap/uL/1RhkKA6uqdcA6gNWr\nV9ddd9014ooGMzY2xpo1a0ZdxvOKPZnKnkzPvkz1XHqS5JuDrDfKGN4K9P+Xf1UzT5I0IqMMhZuB\ni5q7kF4OfL+qppw6kiQNT2enj5L8EbAGODrJFuC3gKUAVXUNsB54DbAZ+AFwcVe1SJIG01koVNWF\n+1lewKVdvb4kafa8tC9JahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSW\noSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJ\nahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJanUa\nCknOTnJfks1Jrphm+eFJ/jTJ3ya5J8nFXdYjSZpZZ6GQZDHwQeAc4CTgwiQnTVrtUuDeqnoJsAZ4\nT5KDuqpJkjSzLo8UTgc2V9UDVbUTuBE4b9I6BSxPEuAw4LvA7g5rkiTNYEmH214JPNw3vQU4Y9I6\nfwjcDDwCLAfeUFUTkzeUZC2wFmDFihWMjY11Ue+cGx8fP2BqHRZ7MpU9mZ59mWoYPekyFAbxL4AN\nwD8Hfhy4NclfVtUT/StV1TpgHcDq1atrzZo1w67zWRkbG+NAqXVY7MlU9mR69mWqYfSky9NHW4Fj\n+qZXNfP6XQx8qno2A98AXtxhTZKkGXQZCncCJyQ5rrl4fAG9U0X9HgLOAkiyAjgReKDDmiRJM+js\n9FFV7U5yGXALsBi4rqruSXJJs/wa4HeAjyXZBAS4vKq+01VNkqSZdXpNoarWA+snzbum7/EjwKu7\nrEGSNDg/0SxJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkK\nkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSW\noSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqRWp6GQ5Owk9yXZnOSK\nfayzJsmGJPck+XyX9UiSZrZkkJWSnFxVm2az4SSLgQ8CPwdsAe5McnNV3du3zhHA1cDZVfVQkn80\nm9eQJM2tQY8Urk5yR5K3Jjl8wOecDmyuqgeqaidwI3DepHXeCHyqqh4CqKrHBty2JKkDAx0pVNVP\nJzkB+GXgK0nuAD5aVbfO8LSVwMN901uAMyat84+BpUnGgOXA+6vqhskbSrIWWAuwYsUKxsbGBil7\n5MbHxw+YWofFnkxlT6ZnX6YaRk8GCgWAqvp6kncAdwEfAH4ySYC3V9WnnsPrvxQ4C1gGfCnJ7VV1\n/6TXXgesA1i9enWtWbPmWb7ccI2NjXGg1Dos9mQqezI9+zLVMHoy6DWFU4CLgdcCtwI/X1VfTfKj\nwJeA6UJhK3BM3/SqZl6/LcC2qnoKeCrJF4CXAPcjSRq6Qa8p/Ffgq8BLqurSqvoqQFU9ArxjH8+5\nEzghyXFJDgIuAG6etM5ngVcmWZLkUHqnl742219CkjQ3Bj199Fpge1U9A5BkEXBIVf2gqj4+3ROq\naneSy4BbgMXAdVV1T5JLmuXXVNXXkvxvYCMwAVxbVXc/x99JkvQsDRoKtwE/C4w304cCfwb81ExP\nqqr1wPpJ866ZNP37wO8PWIckqUODnj46pKr2BALN40O7KUmSNCqDhsJTSU7bM5HkpcD2bkqSJI3K\noKeP3gZ8IskjQIAfBt7QWVWSpJEY9MNrdyZ5MXBiM+u+qtrVXVmSpFEY+MNrwMuAFzbPOS0J0336\nWJJ04Br0w2sfB34c2AA808wuwFCQpHlk0COF1cBJVVVdFiNJGq1B7z66m97FZUnSPDbokcLRwL3N\n6Kg79sysqnM7qUqSNBKDhsKVXRYhSXp+GPSW1M8n+THghKq6rRm8bnG3pUmShm2gawpJfgX4JPDh\nZtZK4DNdFSVJGo1BLzRfCpwJPAG9L9wB/D5lSZpnBg2FHc33LAOQZAm9zylIkuaRQUPh80neDixL\n8nPAJ4A/7a4sSdIoDBoKVwDfBjYBv0rvOxL29Y1rkqQD1KB3H00AH2l+JEnz1KBjH32Daa4hVNWL\n5rwiSdLIzGbsoz0OAX4J+KG5L0eSNEoDXVOoqm19P1ur6n3AazuuTZI0ZIOePjqtb3IRvSOH2XwX\ngyTpADDoG/t7+h7vBh4EXj/n1UiSRmrQu49e1XUhkqTRG/T00b+baXlVvXduypEkjdJs7j56GXBz\nM/3zwB3A17soSpI0GoOGwirgtKp6EiDJlcD/qqo3dVWYJGn4Bh3mYgWws296ZzNPkjSPDHqkcANw\nR5JPN9OvA67vpiRJ0qgMevfR7yX5HPDTzayLq+pvuitLkjQKg54+AjgUeKKq3g9sSXJcRzVJkkZk\n0K/j/C3gcuA/NrOWAv+9q6IkSaMx6JHCLwDnAk8BVNUjwPKuipIkjcagobCzqopm+OwkL+iuJEnS\nqAwaCn+S5MPAEUl+BbgNv3BHkuadQe8++oPmu5mfAE4E3llVt3ZamSRp6PZ7pJBkcZL/U1W3VtVv\nVNV/GDQQkpyd5L4km5NcMcN6L0uyO8kvzqZ4SdLc2m8oVNUzwESSw2ez4SSLgQ8C5wAnARcmOWkf\n670b+LPZbF+SNPcG/UTzOLApya00dyABVNW/neE5pwObq+oBgCQ3AucB905a79eAm+gNuCdJGqFB\nQ+FTzc9srAQe7pveApzRv0KSlfRud30VM4RCkrXAWoAVK1YwNjY2y1JGY3x8/ICpdVjsyVT2ZHr2\nZaph9GTGUEhybFU9VFVdjXP0PuDyqppIss+VqmodsA5g9erVtWbNmo7KmVtjY2McKLUOiz2Zyp5M\nz75MNYye7O+awmf2PEhy0yy3vRU4pm96VTOv32rgxiQPAr8IXJ3kdbN8HUnSHNnf6aP+/76/aJbb\nvhM4oRkjaStwAfDG/hWqqh0/KcnHgP9ZVZ9BkjQS+wuF2sfj/aqq3UkuA24BFgPXVdU9SS5pll8z\nq0olSZ3bXyi8JMkT9I4YljWPaaarqv7BTE+uqvXA+knzpg2DqvrXA1UsSerMjKFQVYuHVYgkafRm\n830KkqR5zlCQJLUMBUlSy1CQJLUWVChsG9/B3z78PbaN7xh1KZI0K9vGd7B91zOdv38tmFD47Iat\nnPnuv+BN136ZM9/9F9y8YfKHqyXp+WnP+9c3vv1U5+9fCyIUto3v4PKbNvL0rgme3LGbp3dN8Js3\nbfSIQdLzXv/71zNVnb9/LYhQ2PL4dpYu2vtXXbpoEVse3z6iiiRpMMN+/1oQobDqyGXsmpjYa96u\niQlWHblsRBVJ0mCG/f61IELhqMMO5qrzT+GQpYtYfvASDlm6iKvOP4WjDjt41KVJ0oz6378WJ52/\nfw36JTsHvHNPXcmZxx/Nlse3s+rIZQaCpAPGnvevO770V3zx3Fd2+v61YEIBeolrGEg6EB112MEs\nW7q48/ewBXH6SJI0GENBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJ\nLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJrU5DIcnZSe5LsjnJ\nFdMs/5dJNibZlOSvk7yky3okSTPrLBSSLAY+CJwDnARcmOSkSat9A/hnVXUy8DvAuq7qkSTtX5dH\nCqcDm6vqgaraCdwInNe/QlX9dVU93kzeDqzqsB5J0n4s6XDbK4GH+6a3AGfMsP6/AT433YIka4G1\nACtWrGBsbGyOSuzW+Pj4AVPrsNiTqezJ9OzLVMPoSZehMLAkr6IXCq+cbnlVraM5tbR69epas2bN\n8Ip7DsbGxjhQah0WezKVPZmefZlqGD3pMhS2Asf0Ta9q5u0lySnAtcA5VbWtw3okSfvR5TWFO4ET\nkhyX5CDgAuDm/hWSHAt8CvhXVXV/h7VIkgbQ2ZFCVe1OchlwC7AYuK6q7klySbP8GuCdwFHA1UkA\ndlfV6q5qkiTNrNNrClW1Hlg/ad41fY/fArylyxoWim3jO9jy+HZWHbmMow47uPPnzWf2ZPQ2P/ok\nj/9gF5sffZLjVywfdTkLyvPiQrOem89u2MrlN21k6aJF7JqY4KrzT+HcU1d29rz5zJ6M3js/s4kb\nbn+If3/ybn79v3yBi15xLO867+RRl7VgOMzFAW7b+A4uv2kjT++a4Mkdu3l61wS/edNGto3v6OR5\n85k9Gb3Njz7JDbc/tNe8G770EJsffXJEFS08hsIBbsvj21m6aO+/xqWLFrHl8e2dPG8+syejt+Hh\n781qvuaeoXCAW3XkMnZNTOw1b9fEBKuOXNbJ8+YzezJ6px5zxKzma+4ZCge4ow47mKvOP4VDli5i\n+cFLOGTpIq46/5T9XiB9ts+bz+zJ6B2/YjkXveLYveZd9Ipjvdg8RF5ongfOPXUlZx5/9KzvmHm2\nz5vP7Mnoveu8k7no5S9k01du57Zff7mBMGSGwjxx1GEHP6s3sGf7vPnMnoze8SuWs+XQpQbCCHj6\nSJLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLU\nMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQkSS1DQZLUMhQk\nSS1DQZLUMhQkSa1OQyHJ2UnuS7I5yRXTLE+SDzTLNyY5rct6JEkz6ywUkiwGPgicA5wEXJjkpEmr\nnQOc0PysBT7UVT2SpP3r8kjhdGBzVT1QVTuBG4HzJq1zHnBD9dwOHJHkRzqsSZI0gyUdbnsl8HDf\n9BbgjAHWWQl8q3+lJGvpHUkAjCe5b25L7czRwHdGXcTzjD2Zyp5Mz75M9Vx68mODrNRlKMyZqloH\nrBt1HbOV5K6qWj3qOp5P7MlU9mR69mWqYfSky9NHW4Fj+qZXNfNmu44kaUi6DIU7gROSHJfkIOAC\n4OZJ69wMXNTchfRy4PtV9a3JG5IkDUdnp4+qaneSy4BbgMXAdVV1T5JLmuXXAOuB1wCbgR8AF3dV\nz4gccKe8hsCeTGVPpmdfpuq8J6mqrl9DknSA8BPNkqSWoSBJahkKcyjJg0k2JdmQ5K5m3pVJtjbz\nNiR5zajrHKYkRyT5ZJL/m+RrSV6R5IeS3Jrk682fR466zmHaR08W7H6S5MS+33tDkieSvG0h7ycz\n9KTz/cRrCnMoyYPA6qr6Tt+8K4HxqvqDUdU1SkmuB/6yqq5t7kI7FHg78N2q+s/NmFhHVtXlIy10\niPbRk7exgPeTPZrhcbbS+6DrpSzg/WSPST25mI73E48U1JkkhwM/A/w3gKraWVXfoze8yfXNatcD\nrxtNhcM3Q0/Ucxbw/6rqmyzg/WSS/p50zlCYWwXcluQrzdAce/xaMwrsdQvpEBg4Dvg28NEkf5Pk\n2iQvAFb0fR7l74AVI6tw+PbVE1i4+0m/C4A/ah4v5P2kX39PoOP9xFCYW6+sqlPpjf56aZKfoTfy\n64uAU+mN6fSeEdY3bEuA04APVdVPAk8Bew2hXr3zlwvpHOa+erKQ9xMAmlNp5wKfmLxsAe4nwLQ9\n6Xw/MRTmUFVtbf58DPg0cHpVPVpVz1TVBPAReqPHLhRbgC1V9eVm+pP03hAf3TMabvPnYyOqbxSm\n7ckC30/2OAf4alU92kwv5P1kj716Moz9xFCYI0lekGT5nsfAq4G7Jw0F/gvA3aOobxSq6u+Ah5Oc\n2Mw6C7iX3vAmb27mvRn47AjKG4l99WQh7yd9LmTv0yQLdj/ps1dPhrGfePfRHEnyInpHB9A7RfA/\nqur3knyc3qFeAQ8Cv7qQxndKcipwLXAQ8AC9uycWAX8CHAt8E3h9VX13ZEUO2T568gEW9n7yAuAh\n4EVV9f1m3lEs7P1kup50/n5iKEiSWp4+kiS1DAVJUstQkCS1DAVJUstQkCS1OvvmNWnYmlsY/7yZ\n/GHgGXpDSkDvg4Q7R1LYDJL8MrC++fyCNHLekqp56fk0Om2SxVX1zD6W/RVwWVVtmMX2llTV7jkr\nUOrj6SMtCEnenOSOZgz6q5MsSrIkyfeSvDfJPUluSXJGks8neWDPWPVJ3pLk0838ryd5x4DbfV+S\njcDpSX47yZ1J7k5yTXreQO+DSH/cPP+gJFuSHNFs++VJbmse/26SG5J8EfhY8xrvbV57Y5K3DL+r\nmo8MBc17SX6C3pAAP9UMWLiE3siTAIcDn6uqfwrsBK6kN/TELwHv6tvM6fSGbj4VeGOSUwfY7heq\n6pSq+hLw/qp6GXBys+zsqvpjYAPwhqo6dYDTWy8GzqqqNwFrgceq6nTgZfQGYDz22fRH6uc1BS0E\nP0vvjfOuJADLgIebZdur6tbm8Sbg+1W1O8km4IV927ilqh4HSPIZ4JX0/v3sa7s7+fthTwDOSvIb\nwCHA0cBXgM/N8vf4bFU93Tx+NfBPkvSH0An0hkWQnjVDQQtBgOuq6j/tNTNZQu/Ne48JYEff4/5/\nH5MvvtV+tru9Ge6ZJIcCf0hvNNStSX6XXjhMZzd/fwQ/eZ2nJv1Ob62qP0eaQ54+0kJwG/D6JEdD\n7y6lZ3Gq5dXpfbfyofS+EeyLs9juMnoh851mJN3z+5Y9CSzvm34QeGnzuH+9yW4B3toE0J7v9F02\ny99JmsIjBc17VbUpyW/T+1a8RcAu4BLgkVls5k56Qzf/KHD9nruFBtluVW1L73uZ76X3xShf7lv8\nUeDaJNvpXbe4EvhIku8BX5ihng/TGz10Q3Pq6jF6YSU9J96SKu1Hc2fPT1TV20Zdi9Q1Tx9Jkloe\nKUiSWh4pSJJahoIkqWUoSJJahoIkqWUoSJJa/x9HrV1ZOc+mWgAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "pd.set_option('mode.chained_assignment',None) # this removes a useless warning from pandas\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "data[\"Frequency\"]=data.Malfunction/data.Count\n",
+ "data.plot(x=\"Temperature\",y=\"Frequency\",kind=\"scatter\",ylim=[0,1])\n",
+ "plt.grid(True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "At first glance, the dependence does not look very important, but let's try to\n",
+ "estimate the impact of temperature $t$ on the probability of O-ring malfunction."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Estimation of the temperature influence\n",
+ "\n",
+ "Suppose that each of the six O-rings is damaged with the same\n",
+ "probability and independently of the others and that this probability\n",
+ "depends only on the temperature. If $p(t)$ is this probability, the\n",
+ "number $D$ of malfunctioning O-rings during a flight at\n",
+ "temperature $t$ follows a binomial law with parameters $n=6$ and\n",
+ "$p=p(t)$. To link $p(t)$ to $t$, we will therefore perform a\n",
+ "logistic regression."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/hinsen/anaconda3/envs/py36/lib/python3.6/site-packages/statsmodels/compat/pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.\n",
+ " from pandas.core import datetools\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "
Generalized Linear Model Regression Results
\n",
+ "
\n",
+ "
Dep. Variable:
Frequency
No. Observations:
7
\n",
+ "
\n",
+ "
\n",
+ "
Model:
GLM
Df Residuals:
5
\n",
+ "
\n",
+ "
\n",
+ "
Model Family:
Binomial
Df Model:
1
\n",
+ "
\n",
+ "
\n",
+ "
Link Function:
logit
Scale:
1.0
\n",
+ "
\n",
+ "
\n",
+ "
Method:
IRLS
Log-Likelihood:
-3.6370
\n",
+ "
\n",
+ "
\n",
+ "
Date:
Wed, 27 Mar 2019
Deviance:
3.3763
\n",
+ "
\n",
+ "
\n",
+ "
Time:
13:03:27
Pearson chi2:
0.236
\n",
+ "
\n",
+ "
\n",
+ "
No. Iterations:
5
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
\n",
+ "
coef
std err
z
P>|z|
[0.025
0.975]
\n",
+ "
\n",
+ "
\n",
+ "
Intercept
-1.3895
7.828
-0.178
0.859
-16.732
13.953
\n",
+ "
\n",
+ "
\n",
+ "
Temperature
0.0014
0.122
0.012
0.991
-0.238
0.240
\n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ "\n",
+ "\"\"\"\n",
+ " Generalized Linear Model Regression Results \n",
+ "==============================================================================\n",
+ "Dep. Variable: Frequency No. Observations: 7\n",
+ "Model: GLM Df Residuals: 5\n",
+ "Model Family: Binomial Df Model: 1\n",
+ "Link Function: logit Scale: 1.0\n",
+ "Method: IRLS Log-Likelihood: -3.6370\n",
+ "Date: Wed, 27 Mar 2019 Deviance: 3.3763\n",
+ "Time: 13:03:27 Pearson chi2: 0.236\n",
+ "No. Iterations: 5 \n",
+ "===============================================================================\n",
+ " coef std err z P>|z| [0.025 0.975]\n",
+ "-------------------------------------------------------------------------------\n",
+ "Intercept -1.3895 7.828 -0.178 0.859 -16.732 13.953\n",
+ "Temperature 0.0014 0.122 0.012 0.991 -0.238 0.240\n",
+ "===============================================================================\n",
+ "\"\"\""
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import statsmodels.api as sm\n",
+ "\n",
+ "data[\"Success\"]=data.Count-data.Malfunction\n",
+ "data[\"Intercept\"]=1\n",
+ "\n",
+ "logmodel=sm.GLM(data['Frequency'], data[['Intercept','Temperature']], family=sm.families.Binomial(sm.families.links.logit)).fit()\n",
+ "\n",
+ "logmodel.summary()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The most likely estimator of the temperature parameter is 0.0014\n",
+ "and the standard error of this estimator is 0.122, in other words we\n",
+ "cannot distinguish any particular impact and we must take our\n",
+ "estimates with caution."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Estimation of the probability of O-ring malfunction\n",
+ "\n",
+ "The expected temperature on the take-off day is 31°F. Let's try to\n",
+ "estimate the probability of O-ring malfunction at\n",
+ "this temperature from the model we just built:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEKCAYAAADpfBXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGwxJREFUeJzt3X901fWd5/HnOwlIIAiCygChC7NLcW2VXyGosG7Q4Vfb\nQd11RHSc1h2WulPa6e6RrZzTWe2MnrNzcOfQ6Vopqwzt8Wh0HEXtMoXqmDrjaA0IgsDwYy3VRFuE\nFiEalCTv/eP7vcn3XhJyc7nJvffj63FODvf7/X6+n+/nnct95ZvP/d5vzN0REZGwlBV6ACIikn8K\ndxGRACncRUQCpHAXEQmQwl1EJEAKdxGRAPUa7ma2wcyOmNmbPWw3M/trMztkZrvMbEb+hykiIn2R\nzZn7RmDRWbYvBibHXyuAB899WCIici56DXd3fwn4zVmaXAf8yCOvAiPNbGy+BigiIn1XkYc+xgPv\nJJab4nXvZTY0sxVEZ/dUVlbOnDBhQk4H7OjooKwsjLcLVEtxCqWWUOoA1ZJy4MCBo+5+UW/t8hHu\nWXP39cB6gJqaGt+2bVtO/TQ0NFBXV5fHkRWOailOodQSSh2gWlLM7JfZtMvHj8FmIHkKXh2vExGR\nAslHuD8L/FF81cwVwAfufsaUjIiIDJxep2XM7DGgDrjQzJqAu4FBAO6+DtgMfAE4BHwE3N5fgxUR\nkez0Gu7uvqyX7Q58LW8jEpGScPr0aZqamjh16tSAHG/EiBHs27dvQI7V37KpZciQIVRXVzNo0KCc\njjGgb6iKSDiampoYPnw4EydOxMz6/XgnT55k+PDh/X6cgdBbLe7OsWPHaGpqYtKkSTkdI4zrikRk\nwJ06dYrRo0cPSLB/2pgZo0ePPqffihTuIpIzBXv/OdfvrcJdRCRAmnMXkZJVXl7OZZdd1rm8adMm\nJk6cWLgBFRGFu4iUrMrKSnbu3Nnj9ra2NioqPp0xp2kZEQnKxo0bWbJkCddccw3XXnstAGvWrGHW\nrFlcfvnl3H333Z1t77vvPj772c8yd+5cli1bxv333w9AXV0dqdujHD16tPO3gfb2dlatWtXZ1w9+\n8AOg63YCN954I5dccgm33nor0VXi0NjYyFVXXcXUqVOpra3l5MmTLFq0KO2H0ty5c3njjTfy+n34\ndP5IE5G8+s5ze9j77om89nnpuPO5+/c/d9Y2ra2tTJs2DYBJkybx9NNPA/D666+za9cuRo0axdat\nWzl48CCvvfYa7s6SJUt46aWXGDZsGPX19ezcuZO2tjZmzJjBzJkzz3q8hx9+mBEjRtDY2MjHH3/M\nnDlzWLBgAQA7duxgz549jBs3jjlz5vDyyy9TW1vL0qVLefzxx5k1axYnTpygsrKS2267jY0bN7J2\n7VoOHDjAqVOnmDp1ah6+a10U7iJSsnqalpk/fz6jRo0CYOvWrWzdupXp06cD0NLSwsGDBzl58iQ3\n3HADQ4cOBWDJkiW9Hm/r1q3s2rWLJ598EoAPPviAgwcPMnjwYGpra6murgZg2rRpHD58mBEjRjB2\n7FhmzZoFwPnnnw/ADTfcwJw5c1izZg0bNmzgK1/5yrl9I7qhcBeRc9bbGfZAGzZsWOdjd2f16tV8\n9atfTWuzdu3aHvevqKigo6MDIO1ac3fne9/7HgsXLkxr39DQwHnnnde5XF5eTltbW4/9Dx06lPnz\n5/PMM8/wxBNPsH379uwK6wPNuYtI0BYuXMiGDRtoaWkBoLm5mSNHjnD11VezadMmWltbOXnyJM89\n91znPhMnTuwM3NRZeqqvBx98kNOnTwNw4MABPvzwwx6PPWXKFN577z0aGxuB6JOpqdBfvnw53/jG\nN5g1axYXXHBBfotGZ+4iErgFCxawb98+rrzySgCqqqp45JFHmDFjBkuXLmXq1KlcfPHFnVMnAHfe\neSc33XQT69ev54tf/GLn+uXLl3P48GFmzJiBu3PRRRexadOmHo89ePBgHn/8cb7+9a/T2tpKZWUl\nzz//PAAzZ87k/PPP5/bb++lei+5ekK+ZM2d6rl588cWc9y02qqU4hVJLf9axd+/efuu7OydOnOjX\n/u+++25fs2ZNvx4j5cSJE97c3OyTJ0/29vb2Htt19z0GtnkWGatpGRGRAfboo48ye/Zs7rvvvn77\n04GalhERAe65554BO9Ytt9xyxhu8+aYzdxHJmccf1JH8O9fvrcJdRHIyZMgQjh07poDvBx7fz33I\nkCE596FpGRHJSXV1NU1NTbz//vsDcrxTp06dU9gVk2xqSf0lplwp3EUkJ4MGDcr5rwTloqGhofNT\npqVuIGrRtIyISIAU7iIiAVK4i4gESOEuIhIghbuISIAU7iIiAVK4i4gESOEuIhIghbuISIAU7iIi\nAVK4i4gESOEuIhIghbuISIAU7iIiAVK4i4gESOEuIhKgrMLdzBaZ2X4zO2Rmd3WzfYSZPWdmb5jZ\nHjO7Pf9DFRGRbPUa7mZWDjwALAYuBZaZ2aUZzb4G7HX3qUAd8L/MbHCexyoiIlnK5sy9Fjjk7m+5\n+ydAPXBdRhsHhpuZAVXAb4C2vI5URESyZr395XIzuxFY5O7L4+XbgNnuvjLRZjjwLHAJMBxY6u7/\nt5u+VgArAMaMGTOzvr4+p0G3tLRQVVWV077FRrUUp1BqCaUOUC0p8+bN2+7uNb21y9cfyF4I7ASu\nAf418FMz+0d3P5Fs5O7rgfUANTU1XldXl9PBGhoayHXfYqNailMotYRSB6iWvspmWqYZmJBYro7X\nJd0OPOWRQ8AviM7iRUSkALIJ90ZgsplNit8kvZloCibpbeBaADMbA0wB3srnQEVEJHu9Tsu4e5uZ\nrQS2AOXABnffY2Z3xNvXAX8BbDSz3YAB33L3o/04bhEROYus5tzdfTOwOWPdusTjd4EF+R2aiIjk\nSp9QFREJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncR\nkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJd\nRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRw\nFxEJkMJdRCRAWYW7mS0ys/1mdsjM7uqhTZ2Z7TSzPWb2s/wOU0RE+qKitwZmVg48AMwHmoBGM3vW\n3fcm2owEvg8scve3zezi/hqwiIj0Lpsz91rgkLu/5e6fAPXAdRltbgGecve3Adz9SH6HKSIifWHu\nfvYGZjcSnZEvj5dvA2a7+8pEm7XAIOBzwHDgu+7+o276WgGsABgzZszM+vr6nAbd0tJCVVVVTvsW\nG9VSnEKpJZQ6QLWkzJs3b7u71/TWrtdpmSxVADOBa4FK4BUze9XdDyQbuft6YD1ATU2N19XV5XSw\nhoYGct232KiW4hRKLaHUAaqlr7IJ92ZgQmK5Ol6X1AQcc/cPgQ/N7CVgKnAAEREZcNnMuTcCk81s\nkpkNBm4Gns1o8www18wqzGwoMBvYl9+hiohItno9c3f3NjNbCWwByoEN7r7HzO6It69z931m9hNg\nF9ABPOTub/bnwEVEpGdZzbm7+2Zgc8a6dRnLa4A1+RuaiIjkSp9QFREJkMJdRCRACncRkQAp3EVE\nAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncR\nkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJd\nRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQBlFe5mtsjM\n9pvZITO76yztZplZm5ndmL8hiohIX/Ua7mZWDjwALAYuBZaZ2aU9tPtLYGu+BykiIn2TzZl7LXDI\n3d9y90+AeuC6btp9Hfg74EgexyciIjkwdz97g2iKZZG7L4+XbwNmu/vKRJvxwKPAPGAD8GN3f7Kb\nvlYAKwDGjBkzs76+PqdBt7S0UFVVldO+xUa1FKdQagmlDlAtKfPmzdvu7jW9tavIqfczrQW+5e4d\nZtZjI3dfD6wHqKmp8bq6upwO1tDQQK77FhvVUpxCqSWUOkC19FU24d4MTEgsV8frkmqA+jjYLwS+\nYGZt7r4pL6MUEZE+ySbcG4HJZjaJKNRvBm5JNnD3SanHZraRaFpGwS4iUiC9hru7t5nZSmALUA5s\ncPc9ZnZHvH1dP49RRET6KKs5d3ffDGzOWNdtqLv7V859WCIici70CVURkQAp3EVEAqRwFxEJkMJd\nRCRACncRkQDl6xOqIjnZtKOZNVv28+7xVsaNrGTVwilcP318oYclWdLzV7wU7lIwm3Y0s/qp3bSe\nbgeg+Xgrq5/aDaCAKAF6/oqbpmWkYNZs2d8ZDCmtp9tZs2V/gUYkfaHnr7gp3KVg3j3e2qf1Ulz0\n/BU3hbsUzLiRlX1aL8VFz19xU7hLwaxaOIXKQeVp6yoHlbNq4ZQCjUj6Qs9fcdMbqlIwqTfddLVF\nadLzV9wU7lJQ108frzAoYXr+ipemZUREAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRA\nCncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJkMJdRCRACncRkQAp3EVEAqRwFxEJ\nkMJdRCRA+huqIpKmo8Npd6e9w3GHDo+WOzqidR2pdR1Oh0dt2ju62nTEy8k20VfX+o4OEu173qe9\ng842+94+zTuv/rJzuas9cZ9xP+54vL1r3CTGES1ntkntm6zTPf17kd7eaXfSxuPJPjxRa7ycOmbd\nOKir69/nUeEuRSPzBZEKFY+DIHrxpNqQeBGmv8iTL7LUPmcNj84XXVcwvNl8mqPbmzLGlB5umcfM\nDJiufc4Mlq5w6Nqna3sifDKCJa2NdwVUh5/ZZ7s7H310ivNeeSHuJ73P7o7b4YX+X9CLvW9m1azM\noMyMsjKj3CxaLjPK42WL15WXGWUWry8zzKA8Xo72j/vpXBctD64oi9sb5XE/YJSXpffZtS9pyxd8\n/Kv+/T6RZbib2SLgu0A58JC7/8+M7bcC3wIMOAn8F3d/I89jzbvUiz79BU9XiHT+tE20SYZOdy/u\n3vZPnLW4O7t+1caJN97t+UWacWZw5jHIOJPICIKOrn46x5QWNmeGZEc3QZI+rjNDpd2dlpaPGNL4\nYjyeMwMwLfwSZzKp5aKzO7f/wqkQiF74iVDIfLHHIZMMlrJ4nyiI0oPFiPqoKCvjvAqL+6OzfSqs\nksc98utfM27shV1Bl9Fnd8dN9pkMtM7ASqyLaqCzr8wQ7ArJzLF2jSXVprOfZJs4YMvLjFdfeYW5\nc+ak11mWMYb4sZnl9/9CnjU0HO33Y/Qa7mZWDjwAzAeagEYze9bd9yaa/QL49+7+WzNbDKwHZvfH\ngH924H2+/U8fUfn6z9KCLO0MLRlqZ5zFdZ1VebHkyc4d59xF5gs7GSZdZwxdL6bMF0P6WUbG/nGb\n7s5WLPECPFrWytjfGdnZT/qLkMQZU/zC7jyrSpxZJV7Y6TWlv6C7C4/yuN+0Y2SGR2f9lgiSZHhF\n+2977TWuuvKKrL43qf1TYy8mDQ0N1NVNLfQw8uKCIWVcNPy8Qg+jZGRz5l4LHHL3twDMrB64DugM\nd3f/50T7V4HqfA4yqeq8csYMK2PMxVVnBFlnUGS8qHsKGjL3P8tZSlff6Wc/yUDoCo7046edyWUE\n0/Zt27hi9qwz9s8ce9exu8I2s+9Ci4JkeqGHkRfvDCtjwqihhR6GSM7Mezl9NbMbgUXuvjxevg2Y\n7e4re2h/J3BJqn3GthXACoAxY8bMrK+vz2nQLS0tVFVV5bRvsVEtxSmUWkKpA1RLyrx587a7e01v\n7fL6hqqZzQP+GJjb3XZ3X080ZUNNTY3X5fh2cXSGmNu+xUa1FKdQagmlDlAtfZVNuDcDExLL1fG6\nNGZ2OfAQsNjdj+VneCIikotsPsTUCEw2s0lmNhi4GXg22cDMPgM8Bdzm7gfyP0wREemLXs/c3b3N\nzFYCW4guhdzg7nvM7I54+zrgfwCjge/Hb+y1ZTMnJCIi/SOrOXd33wxszli3LvF4OXDGG6giA23T\njmbWbNnPu8dbGTeyklULpwCcse766eMH5Nj9cZxsfHvTbh77+Tt88/On+ePVm1k2ewL3Xn9ZQcYi\nhaFPqEowNu1oZvVTu2k93Q5A8/FWVv3tG2Bwut07161+ajdAXoO3u2P3x3Gy8e1Nu3nk1bc7l9vd\nO5cV8J8eunGYBGPNlv2d4ZpyusM7gz2l9XQ7a7bs7/dj98dxsvHYz9/p03oJk8JdgvHu8dZ+aXsu\n/eX7ONlo7+GzKz2tlzAp3CUY40ZW9kvbc+kv38fJRnkPn1buab2ESeEuwVi1cAqVg8rT1g0qMwaV\np4da5aDyzjda+/PY/XGcbCybPaFP6yVMekNVgpF647IQV8v0dOxCXC2TetM0NcdebqarZT6FFO4S\nlOunj+82UAciZHs6diHce/1l3Hv9ZTQ0NPD/bq0r9HCkADQtIyISIIW7iEiAFO4iIgFSuIuIBEjh\nLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFS\nuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiAFO4iIgFSuIuIBEjhLiISIIW7iEiA\nFO4iIgFSuIuIBCircDezRWa238wOmdld3Ww3M/vrePsuM5uR/6GKiEi2eg13MysHHgAWA5cCy8zs\n0oxmi4HJ8dcK4ME8j1NERPogmzP3WuCQu7/l7p8A9cB1GW2uA37kkVeBkWY2Ns9jFRGRLFVk0WY8\n8E5iuQmYnUWb8cB7yUZmtoLozB6gxcz292m0XS4Ejua4b7FRLcUplFpCqQNUS8q/yqZRNuGeN+6+\nHlh/rv2Y2TZ3r8nDkApOtRSnUGoJpQ5QLX2VzbRMMzAhsVwdr+trGxERGSDZhHsjMNnMJpnZYOBm\n4NmMNs8CfxRfNXMF8IG7v5fZkYiIDIxep2Xcvc3MVgJbgHJgg7vvMbM74u3rgM3AF4BDwEfA7f03\nZCAPUztFRLUUp1BqCaUOUC19Yu7e38cQEZEBpk+oiogESOEuIhKgog93MxtiZq+Z2RtmtsfMvhOv\nH2VmPzWzg/G/FxR6rNkws3Iz22FmP46XS7WOw2a228x2mtm2eF2p1jLSzJ40s38xs31mdmUp1mJm\nU+LnI/V1wsy+WaK1/Nf49f6mmT0W50DJ1QFgZn8a17HHzL4Zr+v3Woo+3IGPgWvcfSowDVgUX5Fz\nF/CCu08GXoiXS8GfAvsSy6VaB8A8d5+WuF63VGv5LvATd78EmEr0/JRcLe6+P34+pgEziS5ueJoS\nq8XMxgPfAGrc/fNEF3LcTInVAWBmnwf+M9En/acCXzKzf8NA1OLuJfMFDAVeJ/qE7H5gbLx+LLC/\n0OPLYvzV8RN5DfDjeF3J1RGP9TBwYca6kqsFGAH8gvjiglKuJWP8C4CXS7EWuj7xPoroir4fx/WU\nVB3xOP8AeDix/GfAfx+IWkrhzD01lbETOAL81N1/DozxrmvpfwWMKdgAs7eW6IntSKwrxToAHHje\nzLbHt5WA0qxlEvA+8DfxdNlDZjaM0qwl6WbgsfhxSdXi7s3A/cDbRLcw+cDdt1JidcTeBP6dmY02\ns6FEl4xPYABqKYlwd/d2j37VrAZq4191ktudKGyKlpl9CTji7tt7alMKdSTMjZ+TxcDXzOzq5MYS\nqqUCmAE86O7TgQ/J+BW5hGoBIP6w4RLgbzO3lUIt8fzzdUQ/eMcBw8zsD5NtSqEOAHffB/wlsBX4\nCbATaM9o0y+1lES4p7j7ceBFYBHw69SdJ+N/jxRybFmYAywxs8NEd9a8xsweofTqADrPrnD3I0Tz\nurWUZi1NQFP82yDAk0RhX4q1pCwGXnf3X8fLpVbL7wG/cPf33f008BRwFaVXBwDu/rC7z3T3q4Hf\nAgcYgFqKPtzN7CIzGxk/rgTmA/9CdMuDL8fNvgw8U5gRZsfdV7t7tbtPJPqV+R/c/Q8psToAzGyY\nmQ1PPSaaD32TEqzF3X8FvGNmU+JV1wJ7KcFaEpbRNSUDpVfL28AVZjbUzIzoOdlH6dUBgJldHP/7\nGeA/AI8yALUU/SdUzexy4IdE75iXAU+4+5+b2WjgCeAzwC+Bm9z9N4UbafbMrA64092/VIp1mNnv\nEp2tQzSt8ai731eKtQCY2TTgIWAw8BbR7TPKKM1ahhGF4++6+wfxupJ7XuJLnpcCbcAOYDlQRYnV\nAWBm/wiMBk4D/83dXxiI56Tow11ERPqu6KdlRESk7xTuIiIBUriLiARI4S4iEiCFu4hIgAb0D2SL\nZCO+TOyFePF3iD7R9368XOvunxRkYGdhZv8J2BxfNy9ScLoUUoqamd0DtLj7/UUwlnJ3b+9h2z8B\nK919Zx/6q3D3trwNUCRB0zJSUszsyxbd33+nmX3fzMrMrMLMjpvZX8X3zN5iZrPN7Gdm9paZfSHe\nd7mZPR2vP2hm386y37VmtovovkbfMbPG+P7c6yyylOh21I/H+w82s6bEJ6uvMLPn48f3mtmPzOxl\nYGN8jL+Kj73LzJYP/HdVQqRwl5IR3zDuBuCq+KZlFUS3coDo1r1/7+6fAz4B7iH62PofAH+e6KYW\nuJ4ojG8xs2lZ9PuSu1/u7q8A33X3WcBl8bZF7v440Q2hlnp0P/Xepo0uAa6Nbz+xguiGcrXALKKb\nsH0ml++PSJLm3KWU/B5RAG6LbjlCJdF9vwFa3f2n8ePdRLeJbTOz3cDERB9b3P23AGa2CZhL9Dro\nqd9P6LrVAsC1ZrYKGAJcCGwH/r6PdTzj7qfixwuAf2tmyR8mk4luISCSM4W7lBIDNrj7n6WtNKsg\nCuGUDqK/4JV6nPx/nvkmk/fSb2t8S1bi+3H/b2CGuzeb2b1EId+dNrp+M85s82FGTX/i7i8gkkea\nlpFS8jxwk5ldCNFVNTlMYSyw6G+mDiW6Z/jLfei3kuiHxdH4rpj/MbHtJDA8sXyY6E/dkdEu0xbg\nT+IfJKm/g1rZx5pEzqAzdykZ7r47vlvg82ZWRnSXvTuAd/vQTSPR7VXHAT9MXd2STb/ufszMfkh0\nS+D3gJ8nNv8N8JCZtRLN698D/B8zOw68dJbx/IDozoA74ymhI0Q/dETOiS6FlE+N+EqUz7v7Nws9\nFpH+pmkZEZEA6cxdRCRAOnMXEQmQwl1EJEAKdxGRACncRUQCpHAXEQnQ/wdM0TaFl04YAQAAAABJ\nRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "%matplotlib inline\n",
+ "data_pred = pd.DataFrame({'Temperature': np.linspace(start=30, stop=90, num=121), 'Intercept': 1})\n",
+ "data_pred['Frequency'] = logmodel.predict(data_pred)\n",
+ "data_pred.plot(x=\"Temperature\",y=\"Frequency\",kind=\"line\",ylim=[0,1])\n",
+ "plt.scatter(x=data[\"Temperature\"],y=data[\"Frequency\"])\n",
+ "plt.grid(True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "hideCode": false,
+ "hidePrompt": false,
+ "scrolled": true
+ },
+ "source": [
+ "As expected from the initial data, the\n",
+ "temperature has no significant impact on the probability of failure of the\n",
+ "O-rings. It will be about 0.2, as in the tests\n",
+ "where we had a failure of at least one joint. Let's get back\n",
+ "to the initial dataset to estimate the probability of failure:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0.0652173913043\n"
+ ]
+ }
+ ],
+ "source": [
+ "data = pd.read_csv(\"shuttle.csv\")\n",
+ "print(np.sum(data.Malfunction)/np.sum(data.Count))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This probability is thus about $p=0.065$. Knowing that there is\n",
+ "a primary and a secondary O-ring on each of the three parts of the\n",
+ "launcher, the probability of failure of both joints of a launcher\n",
+ "is $p^2 \\approx 0.00425$. The probability of failure of any one of the\n",
+ "launchers is $1-(1-p^2)^3 \\approx 1.2%$. That would really be\n",
+ "bad luck.... Everything is under control, so the takeoff can happen\n",
+ "tomorrow as planned.\n",
+ "\n",
+ "But the next day, the Challenger shuttle exploded and took away\n",
+ "with her the seven crew members. The public was shocked and in\n",
+ "the subsequent investigation, the reliability of the\n",
+ "O-rings was questioned. Beyond the internal communication problems\n",
+ "of NASA, which have a lot to do with this fiasco, the previous analysis\n",
+ "includes (at least) a small problem.... Can you find it?\n",
+ "You are free to modify this analysis and to look at this dataset\n",
+ "from all angles in order to to explain what's wrong."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "celltoolbar": "Hide code",
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.6.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/module2/exo5/exo5.Rmd b/module2/exo5/exo5_fr.Rmd
similarity index 80%
rename from module2/exo5/exo5.Rmd
rename to module2/exo5/exo5_fr.Rmd
index 3c1d6b557120469e186823bb6be0134db69a9aad..479d7823321976e2d925d00ea599e205bfbd8cc7 100644
--- a/module2/exo5/exo5.Rmd
+++ b/module2/exo5/exo5_fr.Rmd
@@ -5,7 +5,7 @@ date: "28 juin 2018"
output: html_document
---
-Le 27 Janvier 1986, veille du décollage de la navette /Challenger/, eu
+Le 27 Janvier 1986, veille du décollage de la navette _Challenger_, eu
lieu une télé-conférence de trois heures entre les ingénieurs de la
Morton Thiokol (constructeur d'un des moteurs) et de la NASA. La
discussion portait principalement sur les conséquences de la
@@ -93,12 +93,25 @@ plot(tempv,rmv,type="l",ylim=c(0,1))
points(data=data, Malfunction/Count ~ Temperature)
```
-La probabilité d'échec des joints toriques est donc d'environ 0.2
-(comme dans les essais précédents) et comme on pouvait s'attendre au
-vu des données initiales, la température n'a pas d'impact notable. La
-probabilité que tous les joints toriques dysfonctionnent est de
-$0.2^6 \approx 6.4\times10^{-5}$. Tout est sous contrôle, le décollage
-peut donc avoir lieu demain comme prévu.
+Comme on pouvait s'attendre au vu des données initiales, la
+température n'a pas d'impact notable sur la probabilité d'échec des
+joints toriques. Elle sera d'environ 0.2, comme dans les essais
+précédents où nous il y a eu défaillance d'au moins un joint. Revenons
+à l'ensemble des données initiales pour estimer la probabilité de
+défaillance d'un joint:
+
+```{r}
+data_full = read.csv("shuttle.csv",header=T)
+sum(data_full$Malfunction)/sum(data_full$Count)
+```
+
+Cette probabilité est donc d'environ $p=0.065$, sachant qu'il existe
+un joint primaire un joint secondaire sur chacune des trois parties du
+lançeur, la probabilité de défaillance des deux joints d'un lançeur
+est de $p^2 \approx 0.00425$. La probabilité de défaillance d'un des
+lançeur est donc de $1-(1-p^2)^3 \approx 1.2%$. Ça serait vraiment
+pas de chance... Tout est sous contrôle, le décollage peut donc avoir
+lieu demain comme prévu.
Seulement, le lendemain, la navette Challenger explosera et emportera
avec elle ses sept membres d'équipages. L'opinion publique est
@@ -109,4 +122,3 @@ fiasco, l'analyse précédente comporte (au moins) un petit
problème... Saurez-vous le trouver ? Vous êtes libre de modifier cette
analyse et de regarder ce jeu de données sous tous les angles afin
d'expliquer ce qui ne va pas.
-
diff --git a/module2/exo5/exo5.ipynb b/module2/exo5/exo5_fr.ipynb
similarity index 99%
rename from module2/exo5/exo5.ipynb
rename to module2/exo5/exo5_fr.ipynb
index 4540ac817ead2bc28bcac65f485d6e83ba009784..b8dba2d37ab1cb8533519fea6bf1bcae9a2a6f67 100644
--- a/module2/exo5/exo5.ipynb
+++ b/module2/exo5/exo5_fr.ipynb
@@ -709,7 +709,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.6.5rc1"
+ "version": "3.6.1"
}
},
"nbformat": 4,
diff --git a/module2/exo5/exo5_python-en.org b/module2/exo5/exo5_python_en.org
similarity index 99%
rename from module2/exo5/exo5_python-en.org
rename to module2/exo5/exo5_python_en.org
index 8c4c66a12d63e37a92945e5f12bc90e611c724cb..23bfbbe6ceb1705b8ea031dda10fc3c21094e49a 100644
--- a/module2/exo5/exo5_python-en.org
+++ b/module2/exo5/exo5_python_en.org
@@ -1,6 +1,6 @@
#+TITLE: Analysis of the risk of failure of the O-rings on the Challenger shuttle
#+AUTHOR: Arnaud Legrand
-#+LANGUAGE: fr
+#+LANGUAGE: en
#+HTML_HEAD:
#+HTML_HEAD:
@@ -202,7 +202,7 @@ This probability is thus about $p=0.065$. Knowing that there is
a primary and a secondary O-ring on each of the three parts of the
launcher, the probability of failure of both joints of a launcher
is $p^2 \approx 0.00425$. The probability of failure of any one of the
-launchers is $1-(1-p^2)^3 \approximately 1.2%$. That would really be
+launchers is $1-(1-p^2)^3 \approx 1.2%$. That would really be
bad luck.... Everything is under control, so the takeoff can happen
tomorrow as planned.
diff --git a/module2/exo5/exo5_python.org b/module2/exo5/exo5_python_fr.org
similarity index 100%
rename from module2/exo5/exo5_python.org
rename to module2/exo5/exo5_python_fr.org